JP2008105053A - Hydroform process - Google Patents

Hydroform process Download PDF

Info

Publication number
JP2008105053A
JP2008105053A JP2006290019A JP2006290019A JP2008105053A JP 2008105053 A JP2008105053 A JP 2008105053A JP 2006290019 A JP2006290019 A JP 2006290019A JP 2006290019 A JP2006290019 A JP 2006290019A JP 2008105053 A JP2008105053 A JP 2008105053A
Authority
JP
Japan
Prior art keywords
molding
volume
pressure
hydroforming
internal pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006290019A
Other languages
Japanese (ja)
Other versions
JP4823850B2 (en
Inventor
Keinosuke Iguchi
敬之助 井口
Masaaki Mizumura
正昭 水村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006290019A priority Critical patent/JP4823850B2/en
Publication of JP2008105053A publication Critical patent/JP2008105053A/en
Application granted granted Critical
Publication of JP4823850B2 publication Critical patent/JP4823850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydroform process having high safety which is hardly affected by the variance of a material. <P>SOLUTION: In the hydroform process, the internal volume Vz during the process of a product which can be calculated by formula Vz =((V0+Vi0)×(R-P)/R)-Vip is controlled as the shaft pressing is advanced, where V0 denotes the volume inside a metallic pipe before starting the hydroforming; Vi0 denotes the total value of the volume inside a booster machine and the volume inside a high-pressure pipe before starting the hydroforming; Vip denotes the total value of the volume inside the booster machine and the volume inside the high-pressure pipe during the hydroforming; R denotes the volume elasticity of a hydroforming liquid, and P denotes the internal pressure during the hydroforming. By controlling the internal volume Vz of the product which is the pipe expansion value of the product as the shaft pressing is advanced, the high internal pressure is naturally loaded to a material having high strength and large thickness, and the low internal pressure is loaded to a material having low strength and small thickness, and any defect caused by the variance of the material can be suppressed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属管を金型内に装着し、金属管内に成形液を充填し、その後内圧を高めながら、ポンチを介し軸押し力を負荷することで材料を金型内部に流入させつつ、金属管を膨張させ金型に密着させて成形するハイドロフォーム成形方法に関する。   The present invention attaches the metal tube into the mold, fills the metal tube with the molding liquid, and then increases the internal pressure while applying the axial pushing force through the punch to allow the material to flow into the mold. The present invention relates to a hydroform molding method in which a metal tube is expanded and molded in close contact with a mold.

ハイドロフォーム成形では、図1のように金属管1を金型2内に装着し、金属管内に成形液を充填し、その後、しわが発生したり、割れが生じたりすることがない適切な内圧を負荷しながら、ポンチ3を介し軸押し力を負荷することで材料を金型2内部に流入させつつ、金属管1を膨張させ金型2に密着させて所望の部品形状を得る。この際、従来のハイドロフォーム成形では、例えば特許文献1に開示されているように量産を開始するまえにテスト材を用いて試行錯誤により割れやしわの無い良成形品が得ることが出来る、図2のような内圧と軸押し量で表される最適な負荷経路を求め、この負荷経路を量産時の成形条件として内圧と軸押し量を制御して生産を行っている。 ところが、実際には、金属管1の製造工程や予加工の工程で生じるばらつきによりハイドロフォーム成形前の金属管の強度や板厚にはばらつきが存在する。その為、最適な負荷経路を策定した際に用いたテスト材に比べ強度が高い側もしくは板厚が厚い側にばらついた場合、あらかじめ策定した負荷経路では内圧が低すぎる為、しわが発生し、一方で強度が低い側もしくは板厚が薄い側にばらついた場合、あらかじめ策定した不可経路では内圧が高すぎて割れが発生してしまう。このように軸押しの進行に伴い内圧を制御して生産を実施した場合、材料の板厚や強度のバラツキによって成形不良が発生してしまう問題があった。このようなバラツキによる成形不良の原因は、現在のハイドロフォーム成形が一般に力のパラメータである内圧を制御値として成形を行っていることに起因している。
特開2000-42646
In hydroforming, a metal tube 1 is mounted in a mold 2 as shown in FIG. 1 and the metal tube is filled with a molding solution. Thereafter, an appropriate internal pressure that does not cause wrinkles or cracks. While applying a load, an axial pushing force is applied through the punch 3 to allow the material to flow into the mold 2 and to expand the metal tube 1 to be in close contact with the mold 2 to obtain a desired part shape. At this time, in the conventional hydroform molding, for example, as disclosed in Patent Document 1, a good molded product free from cracks and wrinkles can be obtained by trial and error using a test material before mass production is started. The optimum load path represented by the internal pressure and the shaft push amount as shown in Fig. 2 is obtained, and production is performed by controlling the internal pressure and the shaft push amount using the load path as a molding condition during mass production. However, in practice, there are variations in the strength and plate thickness of the metal tube before hydroforming due to variations that occur in the manufacturing process and pre-working process of the metal tube 1. Therefore, when the strength varies compared to the test material used when formulating the optimum load path or when the plate thickness is thicker, the internal pressure is too low in the load path that has been formulated in advance, so wrinkles occur. On the other hand, if the strength is low or the plate thickness is thin, the internal pressure is too high in the previously determined impossibility route and cracking occurs. As described above, when the production is carried out by controlling the internal pressure as the shaft is pushed, there is a problem that a molding defect occurs due to variations in the thickness and strength of the material. The cause of molding failure due to such variations is due to the fact that current hydroforming molding is generally performed with the internal pressure, which is a force parameter, being controlled.
JP2000-42646

従来のハイドロフォーム成形では、軸押し量の増加にともない適切な内圧を負荷する制御を行うことで成形を行っていた。この為、材料強度や板厚がバラついた場合、割れやしわが発生し不良率が増加する問題があった。
本発明は、材料バラつきの影響を受け難く安定性の高いハイドロフォーム成形方法を提供することを目的とする。
In conventional hydroform molding, molding is performed by performing control to load an appropriate internal pressure as the amount of axial push increases. For this reason, when the material strength and the plate thickness vary, there is a problem that cracks and wrinkles occur and the defect rate increases.
An object of the present invention is to provide a hydroform molding method that is not easily affected by material variations and has high stability.

係る課題を解決する為に、本発明の要旨とするところは、下記の通りである。
(1)金属管1を金型2内に装着し、金属管1内に成形液を充填し、その後内圧を高めながら、ポンチを介し軸押し力を負荷することで材料を金型2内部に流入させつつ、金属管1を膨張させ金型2に密着させて成形するハイドロフォーム成形方法において、成形開始前の金属管内部の容積V0、成形開始前の増圧機内部および高圧配管内部の容積の合計値Vi0、成形中の増圧機内部および高圧配管内部の容積の合計値Vip、成形液の体積弾性率R、成形中の内圧Pとすると式(1)のように計算できる成形品の成形途中の内部容積Vzを軸押しの進行に伴い制御することを特徴とするハイドロフォーム成形方法。
Vz=((V0+Vi0)×(R−P)/R)−Vip ・・・・・・・(1)
In order to solve the problem, the gist of the present invention is as follows.
(1) The metal tube 1 is mounted in the mold 2, the metal tube 1 is filled with a molding liquid, and then the material is put into the mold 2 by applying axial force through the punch while increasing the internal pressure. In the hydroform molding method in which the metal tube 1 is expanded and brought into close contact with the mold 2 while being infused, the volume V0 inside the metal tube before molding, the volume inside the pressure booster before molding and inside the high-pressure pipe In the middle of molding a molded product that can be calculated as shown in Equation (1) where the total value Vi0, the total volume Vip inside the intensifier during molding and the inside of the high-pressure pipe, volume elastic modulus R of molding fluid, and internal pressure P during molding A hydroform molding method characterized by controlling the internal volume Vz of the steel as the axial push proceeds.
Vz = ((V0 + Vi0) × (RP) / R) −Vip (1)

本発明により、材料バラツキの影響を受けにくい安定性の高いハイドロフォーム成形方法を提供することができる。   According to the present invention, it is possible to provide a highly stable hydrofoam molding method that is not easily affected by material variations.

図3(a)平面図、(b)正面図、(c)側面図は、パイプの中央部分が長方形断面に拡管成形されているハイドロフォーム部品の例であるが、この例を用いて本発明の詳細を説明する。   3A is a plan view, FIG. 3B is a front view, and FIG. 3C is a side view, which is an example of a hydroform component in which a central portion of a pipe is expanded into a rectangular cross section. Details will be described.

図4および図5に示すように、ハイドロフォーム成形では、左右の軸押しポンチ3により金属管1に軸押しを加えると共に増圧機4のピストン5を押し込み増圧機4内部の成形液を成形品内部に流入させることで内圧を制御して拡管を進行させる。成形時の内圧は、増圧機4と成形品をつなぐ高圧配管内に取り付けられた、圧力ゲージ6によって測定されている。このように従来の成形方法では、内圧という力を制御することで成形を行っている。その為、成形条件を決定する為に用いたテスト材料と同じ材質、強度、板厚の材料であれば成形不良は、発生しないが材質、強度、板厚がばらついた場合、負荷している内圧が適正な値ではなくなってしまい成形不良が発生する。一方で本発明のハイドロフォーム成形方法では、軸押しに伴い、負荷する圧力の強さを制御するのではなく、成形品の拡管量である成形品の内部体積Vzを制御する。このように、軸押し量に対して成形品の拡管の進み具合を適正に保つ制御を行って成形することで、強度が高く、板厚の大きい材料に対しては自然に高い内圧が負荷され一方で強度が低く板厚が小さい材料に対しては低い内圧が負荷されることになり材料バラツキによる不良を抑えることができる。この際、制御の実績値が目標のVzに対して上下数パーセント程度の範囲にあれば本発明の効果は失われない。尚、ハイドロフォーム成形前の金属管内部の容積V0、ハイドロフォーム成形開始前の増圧機内部および高圧配管内部の容積の合計値Vi0、成形液の体積弾性率R、ハイドロフォーム成形中の内圧Pとすると、成形中の全成形液の体積は((V0+Vi0)×(R−P)/ R)とあらわせる。ここから、ハイドロフォーム成形中の増圧機内部および高圧配管内部の容積の合計値Vipを差し引いた残りが成形中の成形品の内部容積Vzとなり、これは式(1) Vz=((V0+Vi0)×(R−P)/R)−Vip のように表す事ができる。実際の手順としては、以下のようになる。
(1) 通常のハイドロフォーム成形と同じように、テスト材料を用いて内圧と軸押し量の関係を試行錯誤によって調整し、シワおよび割れのない良成形品を得ることのできる内圧と軸押しの負荷経路を決定する。
(2)この負荷経路を用いて成形を行った際に、成形の進行に伴い軸押し量D、内圧P、増圧機4内および高圧配管内の容積Vipがどのような値となったかを測定する。ここで、Vipは、増圧機4のピストン位置とピストンの断面積からもとまる増圧機内の容積と高圧配管内部の容積から測定できる。 これらの値から、式(1)を用いて良成形品が得られた成形での成形品内部の容積Vzと軸押し量Dの関係を求める。ここで求めた、軸押し量Dと成形品内部の容積Vzとの関係が本発明の成形法における成形条件となる。
(3)(2)で得られた成形品内部の容積Vzと軸押し量Dの関係を常に再現するように軸押しの進行にともない増圧機ピストン5の位置を制御してハイドロフォーム成形を行う。
As shown in FIGS. 4 and 5, in hydroforming, the metal tube 1 is axially pressed by the left and right axial push punches 3 and the piston 5 of the pressure booster 4 is pushed in, so that the molding liquid inside the pressure booster 4 is fed into the molded product. The tube is expanded by controlling the internal pressure. The internal pressure at the time of molding is measured by a pressure gauge 6 attached in a high-pressure pipe connecting the intensifier 4 and the molded product. Thus, in the conventional molding method, molding is performed by controlling the force called internal pressure. Therefore, if the material is the same material, strength, and thickness as the test material used to determine the molding conditions, molding defects will not occur, but if the material, strength, and thickness vary, the applied internal pressure Is not an appropriate value, and molding defects occur. On the other hand, in the hydroform molding method of the present invention, the internal volume Vz of the molded product, which is the amount of pipe expansion of the molded product, is controlled instead of controlling the strength of the pressure to be applied as the shaft is pushed. In this way, by controlling the shaft push amount to keep the progress of tube expansion of the molded product properly, molding is performed, and a high internal pressure is naturally applied to materials with high strength and large thickness. On the other hand, a low internal pressure is applied to a material with low strength and a small plate thickness, and defects due to material variations can be suppressed. At this time, the effect of the present invention is not lost if the actual value of the control is in the range of several percent above and below the target Vz. In addition, the volume V0 inside the metal tube before hydroforming, the total value Vi0 inside the pressure booster and the inside of the high pressure pipe before starting hydroforming, the volume modulus R of the molding fluid, and the internal pressure P during hydroforming Then, the volume of all molding liquids during molding is expressed as ((V0 + Vi0) × (RP) / R). From this, the remainder after subtracting the total value Vip of the volume inside the intensifier and the high-pressure pipe during hydroforming is the internal volume Vz of the molded product being molded. This is the formula (1) Vz = ((V0 + Vi0) x It can be expressed as (RP) / R) -Vip. The actual procedure is as follows.
(1) As with normal hydroforming, the relationship between the internal pressure and the axial push amount is adjusted by trial and error using test materials, and the internal pressure and axial push can be obtained without wrinkles and cracks. Determine the load path.
(2) When molding is performed using this load path, the values of the axial push amount D, internal pressure P, volume Vip in the intensifier 4 and high-pressure piping are measured as the molding progresses. To do. Here, Vip can be measured from the volume in the pressure booster determined from the piston position of the pressure booster 4 and the cross-sectional area of the piston, and the volume in the high pressure pipe. From these values, the relationship between the volume Vz inside the molded product and the axial push amount D in the molding in which a good molded product was obtained using the formula (1) is obtained. The relationship between the shaft pushing amount D and the volume Vz inside the molded product obtained here is the molding condition in the molding method of the present invention.
(3) Hydroform molding is performed by controlling the position of the pressure booster piston 5 with the progress of the shaft push so as to always reproduce the relationship between the volume Vz inside the molded product obtained in (2) and the shaft push amount D. .

以下に、具体的な実施の一例を示す。
長さ530mmで外径63.5mmの鋼管を用いて図3においてa1=460mm,a2=100mm,a3=400mm,b1=63.5mm,b2=75mm,b3=90mmとした成形品をハイドロフォーム成形により生産する。まず、生産前に適切な成形条件を決定する為の、テスト材として引張強度が440MPaで板厚1.4mmの鋼管を用いて試行錯誤によって割れおよびシワのない成形品を得る事ができる内圧と軸押しの関係からなる図6に示すような負荷経路を策定した。つづいて図6の負荷経路を用いてテスト材を成形し良成形品を得た際の内圧P、軸押し量D、増圧機4内部および高圧配管の容積Vipのデータから、式(1)を用いて成形進行に伴う成形品の内部容積Vzの変化を求めたところ図7のような軸押し量Dと内部容積Vzの関係を得る事ができた。図7の軸押し量Dと内部容積Vzの関係が満たされるように、増圧機4のピストン位置を制御しながら軸押しを負荷して成形を行った。材料強度、板厚のバラツキに対する安定性を確認する為に、板厚1.4mm、引張強度340MPaの鋼管、板厚1.4mm、引張強度590MPaの鋼管および板厚1.3mm、引張強度440MPaの鋼管を用いて成形を行った際の成形結果を表1に示す。比較例として図6に示した内圧と軸押しの関係が満たされるように制御して成形を行う従来の成形法による結果も併記した。
An example of specific implementation is shown below.
Using a steel pipe with a length of 530 mm and an outer diameter of 63.5 mm, a molded product with a1 = 460 mm, a2 = 100 mm, a3 = 400 mm, b1 = 63.5 mm, b2 = 75 mm, b3 = 90 mm in FIG. Produce. First, to determine appropriate molding conditions before production, using a steel pipe with a tensile strength of 440 MPa and a plate thickness of 1.4 mm as a test material, it is possible to obtain a molded product free of cracks and wrinkles by trial and error. A load path as shown in FIG. Next, formula (1) is obtained from the data of internal pressure P, shaft push amount D, internal pressure intensifier 4 and high-pressure pipe volume Vip when a test material is molded using the load path shown in FIG. When the change in the internal volume Vz of the molded product with the progress of molding was obtained, the relationship between the axial push amount D and the internal volume Vz as shown in FIG. 7 was obtained. Molding was performed by applying a shaft push while controlling the piston position of the pressure booster 4 so that the relationship between the shaft push amount D and the internal volume Vz in FIG. 7 was satisfied. In order to confirm the stability against material strength and thickness variation, a steel pipe with a thickness of 1.4 mm and a tensile strength of 340 MPa, a steel pipe with a thickness of 1.4 mm and a tensile strength of 590 MPa, and a steel pipe with a thickness of 1.3 mm and a tensile strength of 440 MPa are used. Table 1 shows the molding results when molding is performed. As a comparative example, the result of a conventional molding method in which molding is performed so as to satisfy the relationship between the internal pressure and the shaft pressing shown in FIG. 6 is also shown.

Figure 2008105053
表1に示されるように、本発明の成形法を用いることで成形条件を決定する為に用いたテスト材から強度板厚が大きくバラつく場合でも良成形品を得られることがわかった。一方、内圧を制御する従来の成形方法では、テスト材から強度・板厚がずれた場合割れやシワが発生してしまい成形不良となる事が分かる。
Figure 2008105053
As shown in Table 1, it was found that a good molded product can be obtained even when the strength plate thickness varies greatly from the test material used for determining the molding conditions by using the molding method of the present invention. On the other hand, in the conventional molding method for controlling the internal pressure, it can be seen that cracks and wrinkles occur when the strength and the plate thickness deviate from the test material, resulting in molding failure.

ハイドロフォーム成形方法を示す断面図であり、(a)は軸押し負荷前、(b)は成形中の状態を示す。It is sectional drawing which shows the hydroform shaping | molding method, (a) is before axial pushing load, (b) shows the state in process of shaping | molding. 従来のハイドロフォーム成形方法の成形条件を示すグラフである。It is a graph which shows the molding conditions of the conventional hydroform molding method. パイプの中央部分が長方形断面に拡管成形されているハイドロフォーム部品の例を示す三面図である。It is a three-plane figure which shows the example of the hydroform components by which the center part of the pipe is pipe-molded by the rectangular cross section. ハイドフォーム成形に伴い成形品の内部容積が変化する様子を示す断面図であり、軸押しを負荷および増圧機ピストンによる成形液流入が起こる前の状態を示す。It is sectional drawing which shows a mode that the internal volume of a molded article changes with Hyde foam shaping | molding, and shows the state before the molding liquid inflow by a load and a pressure booster piston occurs. 成形液が増圧機ピストンにより成形品内部に流入するとともに軸押しが負荷され拡管が進んだ状態を示す断面図である。It is sectional drawing which shows the state which the molding liquid flowed in into the molded article by the pressure booster piston, the axial pushing was loaded, and the pipe expansion advanced. 実施例における成形条件策定用テスト材を成形するためのハイドロフォーム成形条件を示すグラフである。It is a graph which shows the hydroform molding conditions for shape | molding the test material for shaping | molding condition formulation in an Example. 実施例における本発明のハイドロフォーム成形方法の成形条件を示すグラフである。It is a graph which shows the shaping | molding conditions of the hydroform shaping | molding method of this invention in an Example.

符号の説明Explanation of symbols

1 金属管
2 金型
3 ポンチ
4 増圧機
5 増圧機ピストン
6 圧力ゲージ
7 成形品
1 Metal Pipe 2 Mold 3 Punch 4 Pressure Booster 5 Pressure Booster Piston 6 Pressure Gauge 7 Molded Product

Claims (1)

金属管を金型内に装着し、金属管内に成形液を充填し、その後内圧を高めながら、ポンチを介し軸押し力を負荷することで材料を金型内部に流入させつつ、金属管を膨張させ金型に密着させて成形するハイドロフォーム成形方法において、成形開始前の金属管内部の容積V0、成形開始前の増圧機内部および高圧配管内部の容積の合計値Vi0、成形中の増圧機内部および高圧配管内部の容積の合計値Vip、成形液の体積弾性率R、成形中の内圧Pとすると式(1)のように計算できる成形品の成形途中の内部容積Vzを軸押しの進行に伴い制御することを特徴とするハイドロフォーム成形方法。
Vz=((V0+Vi0)×(R−P)/R)−Vip ・・・・・・・(1)
Mount the metal tube in the mold, fill the metal tube with the molding liquid, and then increase the internal pressure while applying the axial pushing force through the punch to expand the metal tube while allowing the material to flow into the mold In the hydroform molding method in which the mold is brought into close contact with the mold, the volume V0 inside the metal pipe before molding, the total value Vi0 inside the pressure booster before molding and inside the high-pressure pipe, inside the pressure booster during molding And the total volume Vip inside the high-pressure pipe, the bulk modulus R of the molding fluid, and the internal pressure P during molding, the internal volume Vz in the middle of molding of the molded product that can be calculated as shown in Equation (1) A hydrofoam molding method characterized by control.
Vz = ((V0 + Vi0) × (RP) / R) −Vip (1)
JP2006290019A 2006-10-25 2006-10-25 Hydroform molding method Active JP4823850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290019A JP4823850B2 (en) 2006-10-25 2006-10-25 Hydroform molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290019A JP4823850B2 (en) 2006-10-25 2006-10-25 Hydroform molding method

Publications (2)

Publication Number Publication Date
JP2008105053A true JP2008105053A (en) 2008-05-08
JP4823850B2 JP4823850B2 (en) 2011-11-24

Family

ID=39438852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290019A Active JP4823850B2 (en) 2006-10-25 2006-10-25 Hydroform molding method

Country Status (1)

Country Link
JP (1) JP4823850B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002027A1 (en) * 2008-07-04 2010-01-07 新日本製鐵株式会社 Hydroforming method and hydroformed component
JP2014018805A (en) * 2012-07-13 2014-02-03 Shiroki Corp Method for forming light metal material of profiled section
CN108994141A (en) * 2018-07-20 2018-12-14 哈尔滨工业大学 A kind of accurate compensation method of component hydroforming rebound based on liquid volume control
WO2020088322A1 (en) * 2018-11-02 2020-05-07 陈志城 Preparation process for novel hydroformed cart

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311343A (en) * 2002-04-24 2003-11-05 Jfe Steel Kk Hydroform forming method and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311343A (en) * 2002-04-24 2003-11-05 Jfe Steel Kk Hydroform forming method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002027A1 (en) * 2008-07-04 2010-01-07 新日本製鐵株式会社 Hydroforming method and hydroformed component
US8281630B2 (en) 2008-07-04 2012-10-09 Nippon Steel Corporation Method for hydroforming and a hydroformed product
JP2014018805A (en) * 2012-07-13 2014-02-03 Shiroki Corp Method for forming light metal material of profiled section
CN108994141A (en) * 2018-07-20 2018-12-14 哈尔滨工业大学 A kind of accurate compensation method of component hydroforming rebound based on liquid volume control
WO2020088322A1 (en) * 2018-11-02 2020-05-07 陈志城 Preparation process for novel hydroformed cart

Also Published As

Publication number Publication date
JP4823850B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
KR101996155B1 (en) Method for manufacturing molded article, mold, and tubular molded article
JP4823850B2 (en) Hydroform molding method
CN104001781B (en) The forming device of a kind of high accuracy hollow unit and method
KR101322229B1 (en) Method for forming deformed cross-section and formed article of quadrilateral cross-section exhibiting excellent spot weldability
JP2010167924A (en) Handle bar and method of manufacturing the same
JP2010029937A (en) Hydroforming method and hydroformed component
CN107614154B (en) Aspirate compression casting method
US9034246B2 (en) Method and assembly for forming a component by isostatic pressing
JP2006198646A (en) Hydroforming method
Mori et al. Improvement of formability by oscillation of internal pressure in pulsating hydroforming of tube
JP2012040604A (en) Method for manufacturing square pipe-like molded product
JP5367558B2 (en) How to improve residual stress in piping
JP4628217B2 (en) Bulge forming method and its mold
JP2002102931A (en) Manufacturing method of uoe steel pipe
JP2003311343A (en) Hydroform forming method and device
JP4650609B2 (en) Hydraulic forming apparatus and hydraulic pressure control method thereof
JP3927428B2 (en) Hydroform processing method and processing apparatus
JP4625421B2 (en) Hydroform processing method and apparatus
KR100785250B1 (en) Hydroforming method for preventing exprosion defect of tube
JP2008272781A (en) Press die device for sheet metal and press forming method
JP2005262241A (en) Hydroforming method for tubular body
JP2004230433A (en) Method for hydroforming tubular body
JP2011156571A (en) Apparatus for casting sintered compact, and method for manufacturing con rod
JP6439767B2 (en) Mold for powder molding
Wallace A guide to correcting soldering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R151 Written notification of patent or utility model registration

Ref document number: 4823850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350