JP2008103096A - Glass composition and manufacturing method of glass ceramic - Google Patents

Glass composition and manufacturing method of glass ceramic Download PDF

Info

Publication number
JP2008103096A
JP2008103096A JP2006282394A JP2006282394A JP2008103096A JP 2008103096 A JP2008103096 A JP 2008103096A JP 2006282394 A JP2006282394 A JP 2006282394A JP 2006282394 A JP2006282394 A JP 2006282394A JP 2008103096 A JP2008103096 A JP 2008103096A
Authority
JP
Japan
Prior art keywords
glass
lithium
glass ceramic
sulfide
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006282394A
Other languages
Japanese (ja)
Other versions
JP5270825B2 (en
Inventor
Minoru Chiga
実 千賀
Susumu Nakagawa
將 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2006282394A priority Critical patent/JP5270825B2/en
Publication of JP2008103096A publication Critical patent/JP2008103096A/en
Application granted granted Critical
Publication of JP5270825B2 publication Critical patent/JP5270825B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Glass Compositions (AREA)
  • Conductive Materials (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a glass ceramic, whereby the crystal content ratio of Li<SB>4</SB>P<SB>2</SB>S<SB>7</SB>and Li<SB>3</SB>PS<SB>4</SB>can be enhanced while suppressing formation of crystals of Li<SB>4</SB>P<SB>2</SB>S<SB>6</SB>. <P>SOLUTION: In this glass composition, glass having Li<SB>4</SB>P<SB>2</SB>S<SB>7</SB>as a main component and glass having Li<SB>3</SB>PS<SB>4</SB>as a main component are contained, and the content ratio of Li<SB>4</SB>P<SB>2</SB>S<SB>7</SB>and Li<SB>3</SB>PS<SB>4</SB>, (Li<SB>4</SB>P<SB>2</SB>S<SB>7</SB>/Li<SB>3</SB>PS<SB>4</SB>) is 30/70-70/30 (mole ratio). This glass composition is heat-treated in this manufacturing method of glass ceramic. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガラス組成物、ガラスセラミック及びその製造方法に関する。さらに詳しくは、リチウムイオン二次電池に使用する固体電解質として好適なガラスセラミックを与えるガラス組成物、ガラスセラミック及びその製造方法に関する。   The present invention relates to a glass composition, a glass ceramic, and a method for producing the same. More specifically, the present invention relates to a glass composition that gives a glass ceramic suitable as a solid electrolyte used in a lithium ion secondary battery, a glass ceramic, and a method for producing the same.

近年、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等に用いられる高性能リチウム電池等二次電池の需要が増加している。
使用される用途が広がるのに伴い、二次電池の更なる安全性の向上及び高性能化が要求されている。
リチウム電池の安全性を確保する方法としては、有機溶媒電解質に代えて無機固体電解質を用いることが有効である。
In recent years, the demand for secondary batteries such as high-performance lithium batteries used in personal digital assistants, portable electronic devices, small household power storage devices, motorcycles powered by motors, electric vehicles, hybrid electric vehicles, etc. has increased. Yes.
As the applications for use expand, further improvements in safety and performance of secondary batteries are required.
In order to ensure the safety of the lithium battery, it is effective to use an inorganic solid electrolyte instead of the organic solvent electrolyte.

無機固体電解質としては、リチウム元素、リン元素及びイオウ元素を主成分とする硫化物系ガラスを熱処理したものが高いイオン伝導性を有することが知られている(例えば、特許文献1参照。)。   As the inorganic solid electrolyte, it is known that a heat-treated sulfide glass mainly composed of lithium element, phosphorus element and sulfur element has high ionic conductivity (for example, see Patent Document 1).

また、特許文献2には固体電解質として、リチウム(Li)、リン(P)及び硫黄(S)元素を含有し、X線回折(CuKα:λ=1.5418Å)において、2θ=17.8±0.3deg,18.2±0.3deg,19.8±0.3deg,21.8±0.3deg,23.8±0.3deg,25.9±0.3deg,29.5±0.3deg,30.0±0.3degに回折ピークを有するリチウムイオン伝導性硫化物系結晶化ガラスが開示されている。これらのX線回折ピークを示すものが特に高いイオン伝導性を示している。
これら硫化物系固体電解質においては、LiやLiPSの結晶構造が、固体電解質のLiイオン伝導性の向上に寄与していることが知られている。
Patent Document 2 contains lithium (Li), phosphorus (P), and sulfur (S) elements as solid electrolytes, and 2θ = 17.8 ± in X-ray diffraction (CuKα: λ = 1.5418 =). 0.3 deg, 18.2 ± 0.3 deg, 19.8 ± 0.3 deg, 21.8 ± 0.3 deg, 23.8 ± 0.3 deg, 25.9 ± 0.3 deg, 29.5 ± 0. A lithium ion conductive sulfide-based crystallized glass having a diffraction peak at 3 deg and 30.0 ± 0.3 deg is disclosed. Those exhibiting these X-ray diffraction peaks exhibit particularly high ionic conductivity.
In these sulfide-based solid electrolytes, it is known that the crystal structure of Li 4 P 2 S 7 or Li 3 PS 4 contributes to the improvement of the Li ion conductivity of the solid electrolyte.

ところで、硫化物系固体電解質は、硫化リチウム(LiS)と、五硫化二燐(P)を出発原料とし、これらの混合物からメカニカルミリング法や溶融急冷法により硫化物ガラスを作製し、これを加熱処理することで製造されている。
しかしながら、この製造方法では、固体電解質中のLi及びLiPSの結晶含有率を高めると、Liの結晶も生成するという問題があった。Liの結晶は、固体電解質のイオン伝導性において好ましくない結晶である。
そのため、Liの結晶の生成を抑制しつつ、Li及びLiPSの結晶含有率を向上できる硫化物系固体電解質の製造方法が要求されていた。
特開2002−109955号公報 特開2005−228570号公報
By the way, a sulfide-based solid electrolyte is made of lithium sulfide (Li 2 S) and diphosphorus pentasulfide (P 2 S 5 ) as starting materials, and a sulfide glass is produced from these mixtures by a mechanical milling method or a melt quench method. And it is manufactured by heat-processing this.
However, this manufacturing method has a problem that when the crystal content of Li 4 P 2 S 7 and Li 3 PS 4 in the solid electrolyte is increased, crystals of Li 4 P 2 S 6 are also generated. The crystal of Li 4 P 2 S 6 is an unfavorable crystal in the ionic conductivity of the solid electrolyte.
Therefore, a method for producing a sulfide-based solid electrolyte that can improve the crystal content of Li 4 P 2 S 7 and Li 3 PS 4 while suppressing the formation of crystals of Li 4 P 2 S 6 has been required.
JP 2002-109955 A JP 2005-228570 A

本発明は上述の問題に鑑みなされたものであり、Liの結晶の生成を抑制しつつ、Li及びLiPSの結晶含有率を向上できるガラスセラミックの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is a glass ceramic that can improve the crystal content of Li 4 P 2 S 7 and Li 3 PS 4 while suppressing the formation of crystals of Li 4 P 2 S 6 . An object is to provide a manufacturing method.

本発明によれば、以下のガラス組成物、ガラスセラミック及びその製造方法が提供できる。
1.Liを主成分とするガラスと、LiPSを主成分とするガラスとを含有し、LiとLiPSの含有率比がLi/LiPS=30/70〜70/30(モル比)であるガラス組成物。
2.上記1に記載のガラス組成物を熱処理するガラスセラミックの製造方法。
3.上記2に記載のガラス組成物の製造方法により得られるガラスセラミック。
According to the present invention, the following glass composition, glass ceramic and production method thereof can be provided.
1. Glass mainly composed of Li 4 P 2 S 7, Li 3 PS 4 contains a glass as a main component, Li 4 P 2 S 7 and Li 3 PS 4 of content ratio Li 4 P 2 S 7 / Li 3 PS 4 = 30/70 to 70/30 (molar ratio).
2. A method for producing a glass ceramic, wherein the glass composition according to 1 is heat-treated.
3. 3. A glass ceramic obtained by the method for producing a glass composition as described in 2 above.

本発明によれば、イオン伝導性の高いガラスセラミックが提供できる。   According to the present invention, a glass ceramic having high ion conductivity can be provided.

本発明のガラス組成物は、本発明のガラスセラミックの製造方法で使用する原料に相当し、以下のガラスを含む混合物である。
(1)Liを主成分とするガラス
(2)LiPSを主成分とするガラス
The glass composition of the present invention corresponds to a raw material used in the method for producing a glass ceramic of the present invention, and is a mixture containing the following glass.
(1) Glass mainly composed of Li 4 P 2 S 7 (2) Glass mainly composed of Li 3 PS 4

Liを主成分とするガラスとは、ガラス中にLiを80〜100mol%、好ましくは約100mol%含有しているものである。このガラスは、例えば、Chem.Mater.2,273(1990);H.E.Eckert,Z.Zhang,and J.H.Kennedyを参照して製造できる。具体的には、硫化リチウム(LiS)と五硫化二燐(P)を66:34(モル比)の比率で混合した材料を、真空中石英ガラス内に封管し、800℃で30分間加熱し溶融させた後、氷水で急冷することにより製造できる。この製法で得られるガラスは、ほぼLi単体からなる。 The glass containing Li 4 P 2 S 7 as a main component is one containing 80 to 100 mol%, preferably about 100 mol% of Li 4 P 2 S 7 in the glass. This glass is described, for example, in Chem. Mater. 2, 273 (1990); E. Eckert, Z. et al. Zhang, and J.H. H. It can be manufactured with reference to Kennedy. Specifically, a material obtained by mixing lithium sulfide (Li 2 S) and diphosphorus pentasulfide (P 2 S 5 ) in a ratio of 66:34 (molar ratio) is sealed in quartz glass in a vacuum, and 800 It can be produced by heating and melting at 30 ° C. for 30 minutes, followed by rapid cooling with ice water. The glass obtained by this manufacturing method is substantially composed of Li 4 P 2 S 7 alone.

LiPSを主成分とするガラスとは、ガラス中にLiPSを70〜100mol%、好ましくは80〜100mol%、含有しているものである。このガラスは、硫化リチウム(LiS)と五硫化二燐(P)を80:20のモル比で仕込み、遊星ミルを用いたメカニカルミリングなどの粉砕手段により製造できる。この製法で得られるガラスは、ガラス中にLiPSを約83mol%含んでいる。
尚、上記(1)で作製したガラスがほぼLi単体からなることは、その固体31PNMRスペクトルが上記のEckertらの論文に記載されたLiのスペクトルと一致することで確認できる。また、(2)のガラスにおけるLi又はLiPSの含有率は、固体31PNMRスペクトルのピークの積分値(面積比)から算出した値である。
The glass containing Li 3 PS 4 as a main component is a glass containing Li 3 PS 4 in an amount of 70 to 100 mol%, preferably 80 to 100 mol%. This glass can be produced by pulverizing means such as mechanical milling using a planetary mill by charging lithium sulfide (Li 2 S) and phosphorus pentasulfide (P 2 S 5 ) in a molar ratio of 80:20. The glass obtained by this manufacturing method contains about 83 mol% of Li 3 PS 4 in the glass.
Incidentally, the fact that the glass produced in (1) is substantially composed of Li 4 P 2 S 7 alone indicates that the solid 31 PNMR spectrum coincides with the spectrum of Li 4 P 2 S 7 described in the above paper by Eckert et al. This can be confirmed. Further, the content of Li 4 P 2 S 7 or Li 3 PS 4 in the glass of (2) is a value calculated from the integrated value (area ratio) of the peak of the solid 31 PNMR spectrum.

本発明のガラス組成物は、上述した2種のガラスの混合物であり、そのLiとLiPSの含有率比(Li:LiPS、モル比)は30:70〜70:30であり、好ましくは、40:60〜60:40である。この比率の組成物を使用したときに、イオン伝導性の高いガラスセラミックが得られる。 The glass composition of the present invention is a mixture of the two types of glass described above, and the content ratio of Li 4 P 2 S 7 and Li 3 PS 4 (Li 4 P 2 S 7 : Li 3 PS 4 , molar ratio). ) Is 30:70 to 70:30, preferably 40:60 to 60:40. When a composition having this ratio is used, a glass ceramic having high ion conductivity is obtained.

上記(1)及び(2)のガラスの原料であるLiSは、特に制限なく工業的に入手可能なものが使用できるが、以下に説明するように高純度のものが好ましい。
硫化リチウムは、少なくとも硫黄酸化物のリチウム塩の総含有量が、好ましくは0.15質量%以下、より好ましくは0.1質量%以下であり、かつN−メチルアミノ酪酸リチウムの含有量が0.15質量%以下、好ましくは0.1質量%以下である。硫黄酸化物のリチウム塩の総含有量が0.15質量%以下であると、高イオン伝導度の固体電解質を得ることはできないおそれがある。
Li 2 S which is a raw material for the glass of the above (1) and (2) can be industrially available without particular limitation, but is preferably highly purified as described below.
The lithium sulfide has a total content of at least a lithium salt of sulfur oxide of preferably 0.15% by mass or less, more preferably 0.1% by mass or less, and a content of lithium N-methylaminobutyrate of 0. .15% by mass or less, preferably 0.1% by mass or less. If the total content of the lithium salt of the sulfur oxide is 0.15% by mass or less, it may not be possible to obtain a solid electrolyte with high ionic conductivity.

また、N−メチルアミノ酪酸リチウムの含有量が0.15質量%以下であると、N−メチルアミノ酪酸リチウムの劣化物がリチウム電池のサイクル性能を低下させることがない。
従って、高イオン伝導性電解質を得るためには、不純物が低減された硫化リチウムを用いる必要がある。
Further, when the content of lithium N-methylaminobutyrate is 0.15% by mass or less, the deteriorated product of lithium N-methylaminobutyrate does not deteriorate the cycle performance of the lithium battery.
Therefore, in order to obtain a high ion conductive electrolyte, it is necessary to use lithium sulfide with reduced impurities.

この固体物質で用いられる硫化リチウムの製造法としては、少なくとも上記不純物を低減できる方法であれば特に制限はない。
例えば、以下の方法で製造された硫化リチウムを精製することにより得ることもできる。
以下の製造法の中では、特にa又はbの方法が好ましい。
a.非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを0〜150℃で反応させて水硫化リチウムを生成し、次いでこの反応液を150〜200℃で脱硫化水素化する方法(特開平7−330312号公報)。
b.非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを150〜200℃で反応させ、直接硫化リチウムを生成する方法(特開平7−330312号公報)。
c.水酸化リチウムとガス状硫黄源を130〜445℃の温度で反応させる方法(特開平9−283156号公報)。
The method for producing lithium sulfide used in the solid substance is not particularly limited as long as it is a method that can reduce at least the impurities.
For example, it can also be obtained by purifying lithium sulfide produced by the following method.
Among the following production methods, the method a or b is particularly preferable.
a. A method in which lithium hydroxide and hydrogen sulfide are reacted at 0 to 150 ° C. in an aprotic organic solvent to produce lithium hydrosulfide, and this reaction solution is then desulfurized at 150 to 200 ° C. -330312).
b. A method of directly producing lithium sulfide by reacting lithium hydroxide and hydrogen sulfide at 150 to 200 ° C. in an aprotic organic solvent (Japanese Patent Laid-Open No. 7-330312).
c. A method of reacting lithium hydroxide and a gaseous sulfur source at a temperature of 130 to 445 ° C. (Japanese Patent Laid-Open No. 9-283156).

上記のようにして得られた硫化リチウムの精製方法としては、特に制限はない。好ましい精製法としては、例えば、国際公開WO2005/40039号等が挙げられる。
具体的には、上記のようにして得られた硫化リチウムを、有機溶媒を用い、100℃以上の温度で洗浄する。
洗浄に用いる有機溶媒は、非プロトン性極性溶媒であることが好ましく、さらに、硫化リチウム製造に使用する非プロトン性有機溶媒と洗浄に用いる非プロトン性極性有機溶媒とが同一であることがより好ましい。
洗浄に好ましく用いられる非プロトン性極性有機溶媒としては、例えば、アミド化合物、ラクタム化合物、尿素化合物、有機硫黄化合物、環式有機リン化合物等の非プロトン性の極性有機化合物が挙げられ、単独溶媒、又は混合溶媒として好適に使用することができる。特に、N−メチル−2−ピロリドン(NMP)は、良好な溶媒に選択される。
There is no restriction | limiting in particular as a purification method of the lithium sulfide obtained as mentioned above. Preferable purification methods include, for example, International Publication No. WO2005 / 40039.
Specifically, the lithium sulfide obtained as described above is washed at a temperature of 100 ° C. or higher using an organic solvent.
The organic solvent used for washing is preferably an aprotic polar solvent, and more preferably, the aprotic organic solvent used for lithium sulfide production and the aprotic polar organic solvent used for washing are the same. .
Examples of the aprotic polar organic solvent preferably used for washing include aprotic polar organic compounds such as amide compounds, lactam compounds, urea compounds, organic sulfur compounds, cyclic organophosphorus compounds, Or it can use suitably as a mixed solvent. In particular, N-methyl-2-pyrrolidone (NMP) is selected as a good solvent.

洗浄に使用する有機溶媒の量は特に限定されず、また、洗浄の回数も特に限定されないが、2回以上であることが好ましい。洗浄は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
洗浄された硫化リチウムを、洗浄に使用した有機溶媒の沸点以上の温度で、窒素等の不活性ガス気流下、常圧又は減圧下で、5分以上、好ましくは約2〜3時間以上乾燥することにより、本発明で用いられる硫化リチウムを得ることができる。
The amount of the organic solvent used for washing is not particularly limited, and the number of times of washing is not particularly limited, but is preferably 2 or more. Cleaning is preferably performed under an inert gas such as nitrogen or argon.
The washed lithium sulfide is dried at a temperature equal to or higher than the boiling point of the organic solvent used for washing for 5 minutes or more, preferably about 2 to 3 hours or more under an inert gas stream such as nitrogen under normal pressure or reduced pressure. Thus, lithium sulfide used in the present invention can be obtained.

は、工業的に製造され、販売されているものであれば、特に限定なく使用することができる。 P 2 S 5 can be used without particular limitation as long as it is industrially manufactured and sold.

次に、本発明のガラスセラミックの製造方法について説明する。
本発明の製造方法は、上述したガラス組成物を加熱処理することを特徴とする。
従来の製造方法では、硫化リチウム(LiS)と五硫化二燐(P)を出発原料とし、これらの混合物からメカニカルミリング法や溶融急冷法により硫化物ガラスを作製し、これを熱処理していた。この方法では、ガラスセラミックにおけるLi及びLiPSの含有率が50mol%程度であれば、Liの生成はほとんどなく問題はなかった。しかしながら、Li及びLiPSの含有率をさらに高めるように、熱処理条件や時間を調整すると、Liの生成が顕著になるということがあった。
Next, the manufacturing method of the glass ceramic of this invention is demonstrated.
The production method of the present invention is characterized by heat-treating the glass composition described above.
In the conventional manufacturing method, lithium sulfide (Li 2 S) and diphosphorus pentasulfide (P 2 S 5 ) are used as starting materials, and a sulfide glass is produced from the mixture by a mechanical milling method or a melt quenching method. It was heat-treated. In this method, when the contents of Li 4 P 2 S 7 and Li 3 PS 4 in the glass ceramic were about 50 mol%, there was almost no production of Li 4 P 2 S 6 and there was no problem. However, when the heat treatment conditions and time are adjusted so as to further increase the contents of Li 4 P 2 S 7 and Li 3 PS 4 , the production of Li 4 P 2 S 6 may become remarkable.

一方、本発明では、予め、上述したLi及びLiPSの含有率が極めて高いガラス組成物を作製し、これを原料として使用する。これにより、硫化物ガラスの製造段階、即ち、メカニカルミリング法や溶融急冷法による処理工程や、硫化物ガラスの熱処理中におけるLiの生成を抑制している。 On the other hand, in the present invention, a glass composition having a very high content of the above-described Li 4 P 2 S 7 and Li 3 PS 4 is prepared and used as a raw material. Accordingly, the manufacturing stage of the sulfide glass, i.e., and processing steps by mechanical milling method or melt quenching method, and suppress the formation of Li 4 P 2 S 6 during heat treatment of the sulfide glass.

ガラスセラミックの製造方法において、ガラス組成物の熱処理温度は、好ましくは190℃〜340℃、より好ましくは、195℃〜335℃、特に好ましくは、200℃〜330℃である。190℃より低いと高イオン伝導性の結晶が得られにくい場合があり、340℃より高いとイオン伝導性の低い結晶が生じる恐れがある。
熱処理時間は、190℃以上220℃以下の温度の場合は、3〜240時間が好ましく、特に4〜230時間が好ましい。また、220℃より高く340℃以下の温度の場合は、0.1〜240時間が好ましく、特に0.2〜235時間が好ましく、さらに、0.3〜230時間が好ましい。熱処理時間が0.1時間より短いと、高イオン伝導性の結晶が得られにくい場合があり、240時間より長いと、イオン伝導性の低い結晶が生じる恐れがある。
In the method for producing a glass ceramic, the heat treatment temperature of the glass composition is preferably 190 ° C to 340 ° C, more preferably 195 ° C to 335 ° C, and particularly preferably 200 ° C to 330 ° C. When the temperature is lower than 190 ° C., it may be difficult to obtain a crystal with high ion conductivity. When the temperature is higher than 340 ° C., a crystal with low ion conductivity may be generated.
In the case of a temperature of 190 ° C. or higher and 220 ° C. or lower, the heat treatment time is preferably 3 to 240 hours, particularly preferably 4 to 230 hours. Moreover, in the case of the temperature higher than 220 degreeC and 340 degrees C or less, 0.1 to 240 hours are preferable, 0.2 to 235 hours are especially preferable, Furthermore, 0.3 to 230 hours are preferable. If the heat treatment time is shorter than 0.1 hour, a crystal having high ion conductivity may be difficult to obtain, and if it is longer than 240 hours, a crystal having low ion conductivity may be generated.

本発明のガラスセラミックの製造方法では、固体31PNMRスペクトルが、90.9±0.4ppm及び86.5±0.4ppmの位置に起因する結晶の比率(Xc)が50mol〜100mol%であり、Liの含有率を10mol%以下にすることができる。このため、イオン伝導性の高いガラスセラミックが得られる。
尚、各結晶の含有率の測定方法は、固体31P−NMRスペクトルについて、70〜120ppmに観測される共鳴線を、非線形最小二乗法を用いてガウス曲線に分離し、各曲線の面積比から算出する。固体31P−NMRスペクトルにおいて、90.9±0.4ppm及び86.5±0.4ppmのピークが、結晶中のP 4−とPS 3−に起因するピークであり、108.5±0.6ppmのピークが、結晶中のP 4−に起因するピークである。詳細は特願2005−356889を参照すればよい。
In the method for producing a glass ceramic of the present invention, the solid 31 PNMR spectrum has a crystal ratio (Xc) due to the positions of 90.9 ± 0.4 ppm and 86.5 ± 0.4 ppm of 50 mol to 100 mol%, The content rate of Li 4 P 2 S 6 can be made 10 mol% or less. For this reason, a glass ceramic with high ion conductivity is obtained.
The measurement method of the content of each crystal is a solid-state 31 P-NMR spectrum, the resonance lines observed in 70~120Ppm, separated into a Gaussian curve using non-linear least squares method, from the area ratio of each curve calculate. In the solid 31 P-NMR spectrum, peaks of 90.9 ± 0.4 ppm and 86.5 ± 0.4 ppm are peaks attributed to P 2 S 7 4- and PS 4 3- in the crystal, and 108. The peak at 5 ± 0.6 ppm is a peak due to P 2 S 6 4- in the crystal. For details, refer to Japanese Patent Application No. 2005-356889.

製造例1
(1)硫化リチウム(LiS)の製造
硫化リチウムは、特開平7−330312号公報の第1の態様(2工程法)の方法にしたがって製造した。具体的には、撹拌翼のついた10リットルオートクレーブにN−メチル−2−ピロリドン(NMP)3326.4g(33.6モル)及び水酸化リチウム287.4g(12モル)を仕込み、300rpm、130℃に昇温した。昇温後、液中に硫化水素を3リットル/分の供給速度で2時間吹き込んだ。続いてこの反応液を窒素気流下(200cc/分)昇温し、反応した硫化水素の一部を脱硫化水素化した。昇温するにつれ、上記硫化水素と水酸化リチウムの反応により副生した水が蒸発を始めたが、この水はコンデンサにより凝縮し系外に抜き出した。水を系外に留去すると共に反応液の温度は上昇するが、180℃に達した時点で昇温を停止し、一定温度に保持した。脱硫化水素反応が終了後(約80分)反応を終了し、硫化リチウムを得た。
Production Example 1
(1) Production of lithium sulfide (Li 2 S) Lithium sulfide was produced according to the method of the first aspect (two-step method) of JP-A-7-330312. Specifically, N-methyl-2-pyrrolidone (NMP) 3326.4 g (33.6 mol) and lithium hydroxide 287.4 g (12 mol) were charged into a 10 liter autoclave equipped with a stirring blade, and 300 rpm, 130 The temperature was raised to ° C. After the temperature rise, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters / minute for 2 hours. Subsequently, this reaction solution was heated in a nitrogen stream (200 cc / min) to dehydrosulfide a part of the reacted hydrogen sulfide. As the temperature increased, water produced as a by-product due to the reaction between hydrogen sulfide and lithium hydroxide started to evaporate, but this water was condensed by the condenser and extracted out of the system. While water was distilled out of the system, the temperature of the reaction solution rose, but when the temperature reached 180 ° C., the temperature increase was stopped and the temperature was kept constant. After the dehydrosulfurization reaction was completed (about 80 minutes), the reaction was completed to obtain lithium sulfide.

(2)硫化リチウムの精製
上記(1)で得られた500mLのスラリー反応溶液(NMP−硫化リチウムスラリー)中のNMPをデカンテーションした後、脱水したNMP 100mLを加え、105℃で約1時間撹拌した。その温度のままNMPをデカンテーションした。さらにNMP 100mLを加え、105℃で約1時間撹拌し、その温度のままNMPをデカンテーションし、同様の操作を合計4回繰り返した。デカンテーション終了後、窒素気流下230℃(NMPの沸点以上の温度)で硫化リチウムを常圧下で3時間乾燥した。得られた硫化リチウム中の不純物含有量を測定した。
(2) Purification of lithium sulfide After decanting NMP in the 500 mL slurry reaction solution (NMP-lithium sulfide slurry) obtained in (1) above, 100 mL of dehydrated NMP was added and stirred at 105 ° C. for about 1 hour. did. NMP was decanted at that temperature. Further, 100 mL of NMP was added, stirred at 105 ° C. for about 1 hour, NMP was decanted at that temperature, and the same operation was repeated a total of 4 times. After completion of the decantation, lithium sulfide was dried at 230 ° C. (temperature higher than the boiling point of NMP) under a nitrogen stream for 3 hours under normal pressure. The impurity content in the obtained lithium sulfide was measured.

尚、亜硫酸リチウム(LiSO)、硫酸リチウム(LiSO)並びにチオ硫酸リチウム(Li)の各硫黄酸化物、及びN−メチルアミノ酪酸リチウム(LMAB)の含有量は、イオンクロマトグラフ法により定量した。その結果、硫黄酸化物の総含有量は0.13質量%であり、LMABは0.07質量%であった。 Incidentally, lithium sulfite (Li 2 SO 3), the content of each sulfur oxide lithium sulfate (Li 2 SO 4) and lithium thiosulfate (Li 2 S 2 O 3) , and N- methylamino acid lithium (LMAB) Was quantified by ion chromatography. As a result, the total content of sulfur oxides was 0.13% by mass, and LMAB was 0.07% by mass.

実施例1
(1)Liを主成分とするガラス(ガラスA)の製造
製造例1で得た硫化リチウム(LiS)と五硫化二燐(P、アルドリッチ製)を66:34(モル比)の比率で混合した。この混合材料を、真空中にて石英ガラス内に封管し、800℃で30分間加熱し溶融させた。その後、氷水で急冷することによりガラスAを製造した。
このガラスAについて、固体31PNMRを測定した結果、H. E. Eckert, Z. Zhang, and J. H. Kennedy, Chem. Mater. 2, 273(1990)の論文と同じスペクトルが得られた。
Example 1
(1) Manufacture of glass (glass A) mainly composed of Li 4 P 2 S 7 Lithium sulfide (Li 2 S) and diphosphorus pentasulfide (P 2 S 5 , manufactured by Aldrich) obtained in Production Example 1 are 66 : 34 (molar ratio). This mixed material was sealed in quartz glass in a vacuum, and heated at 800 ° C. for 30 minutes to melt. Then, glass A was manufactured by quenching with ice water.
As for this glass A, solid 31 PNMR was measured. E. Eckert, Z. Zhang, and J.H. H. Kennedy, Chem. Mater. 2, 273 (1990), the same spectrum was obtained.

(2)LiPSを主成分とするガラス(ガラスB)の製造
製造例1で得た硫化リチウムと五硫化二リン(アルドリッチ製)を原料に用いた。これらを80:20のモル比となるように秤量し、遊星ボールミルにてメカニカルミリングを行いガラスBを得た。得られたガラスBを固体31PNMRを測定した結果、LiPSがピークの面積比から83mol%含まれていることがわかった。
(2) Manufacture of glass (glass B) mainly composed of Li 3 PS 4 The lithium sulfide and diphosphorus pentasulfide (manufactured by Aldrich) obtained in Production Example 1 were used as raw materials. These were weighed so as to have a molar ratio of 80:20, and subjected to mechanical milling with a planetary ball mill to obtain glass B. As a result of measuring solid 31 PNMR of the obtained glass B, it was found that 83 mol% of Li 3 PS 4 was contained from the peak area ratio.

(3)ガラス組成物の調製
上記(1)及び(2)で作製したガラスA(2.00g)とガラスB(2.22g)を混合し、乳鉢で粉砕混合した。尚、この混合物におけるLiとLiPSの含有率比(Li:LiPS、モル比)は50:50である。
(3) Preparation of glass composition Glass A (2.00 g) and glass B (2.22 g) produced in the above (1) and (2) were mixed and pulverized and mixed in a mortar. The content ratio of Li 4 P 2 S 7 and Li 3 PS 4 in the mixture (Li 4 P 2 S 7: Li 3 PS 4, molar ratio) is 50:50.

(4)ガラスセラミックの製造
上記(3)で調製したガラス組成物の粉末を、300℃にて2時間熱処理を行いガラスセラミックとした。
このガラスセラミックをペレット状に賦形し、イオン伝導度(25℃、以下同様)を測定したところ5×10−3S/cmであった。
(4) Production of glass ceramic The glass composition powder prepared in (3) above was heat-treated at 300 ° C. for 2 hours to obtain a glass ceramic.
The glass ceramic was shaped into a pellet and its ionic conductivity (25 ° C., hereinafter the same) was measured and found to be 5 × 10 −3 S / cm 2 .

実施例2
実施例1(3)において、ガラスAの配合量を2.00g、ガラスBの配合量を1.48gとした。即ち、ガラス組成物におけるLiとLiPSの含有率比(Li:LiPS、モル比)を60:40とした。その他は実施例1と同様にしてガラスセラミックを製造した。
このガラスセラミックをペレット状に賦形し、イオン伝導度を測定したところ2×10−3S/cmであった。
Example 2
In Example 1 (3), the amount of glass A was 2.00 g, and the amount of glass B was 1.48 g. That is, the content ratio (Li 4 P 2 S 7 : Li 3 PS 4 , molar ratio) of Li 4 P 2 S 7 and Li 3 PS 4 in the glass composition was set to 60:40. Otherwise, glass ceramic was produced in the same manner as in Example 1.
When this glass ceramic was shaped into a pellet and the ionic conductivity was measured, it was 2 × 10 −3 S / cm 2 .

実施例3
実施例1(3)において、ガラスAの配合量を2.00g、ガラスBの配合量を3.33gとした。即ち、ガラス組成物におけるLiとLiPSの含有率比(Li:LiPS、モル比)を40:60とした。その他は実施例1と同様にしてガラスセラミックを製造した。
このガラスセラミックをペレット状に賦形し、イオン伝導度を測定したところ2×10−3S/cmであった。
Example 3
In Example 1 (3), the amount of glass A was 2.00 g, and the amount of glass B was 3.33 g. That is, the content ratio of Li 4 P 2 S 7 and Li 3 PS 4 in the glass composition (Li 4 P 2 S 7 : Li 3 PS 4 , molar ratio) was set to 40:60. Otherwise, glass ceramic was produced in the same manner as in Example 1.
When this glass ceramic was shaped into a pellet and the ionic conductivity was measured, it was 2 × 10 −3 S / cm 2 .

比較例1
実施例1(3)において、ガラスAのみを乳鉢で粉砕した。即ち、ガラス組成物におけるLiとLiPSの含有率比(Li:LiPS、モル比)を100:0とした。その他は実施例1と同様にしてガラスセラミックを製造した。
このガラスセラミックをペレット状に賦形し、イオン伝導度を測定したところ2×10−4S/cmであった。
Comparative Example 1
In Example 1 (3), only glass A was crushed with a mortar. That is, the content ratio of Li 4 P 2 S 7 and Li 3 PS 4 in the glass composition (Li 4 P 2 S 7 : Li 3 PS 4 , molar ratio) was set to 100: 0. Otherwise, glass ceramic was produced in the same manner as in Example 1.
When this glass ceramic was shaped into a pellet and the ionic conductivity was measured, it was 2 × 10 −4 S / cm 2 .

比較例2
実施例1(3)において、ガラスBのみを乳鉢で粉砕した。即ち、ガラス組成物におけるLiとLiPSの含有率比(Li:LiPS、モル比)を0:100とした。その他は実施例1と同様にしてガラスセラミックを製造した。
このガラスセラミックをペレット状に賦形し、イオン伝導度を測定したところ7×10−4S/cmであった。
Comparative Example 2
In Example 1 (3), only glass B was crushed with a mortar. That is, the content ratio (Li 4 P 2 S 7 : Li 3 PS 4 , molar ratio) of Li 4 P 2 S 7 and Li 3 PS 4 in the glass composition was set to 0: 100. Otherwise, glass ceramic was produced in the same manner as in Example 1.
This glass ceramic was shaped into a pellet and its ionic conductivity was measured and found to be 7 × 10 −4 S / cm 2 .

本発明のガラス組成物は、イオン伝導性の高いガラスセラミックの原料として好適に使用できる。
また、製造方法で得られるガラスセラミックは、高いイオン伝導性を有するため、リチウム電池の固体電解質として適している。
The glass composition of the present invention can be suitably used as a raw material for a glass ceramic having high ion conductivity.
Moreover, since the glass ceramic obtained by a manufacturing method has high ion conductivity, it is suitable as a solid electrolyte of a lithium battery.

Claims (3)

Liを主成分とするガラスと、
LiPSを主成分とするガラスとを含有し、
LiとLiPSの含有率比がLi/LiPS=30/70〜70/30(モル比)であるガラス組成物。
Glass mainly composed of Li 4 P 2 S 7 ;
Glass containing Li 3 PS 4 as a main component,
Li 4 P 2 S 7 and Li 3 content ratio of PS 4 is Li 4 P 2 S 7 / Li 3 PS 4 = 30 / 70~70 / 30 Glass composition (molar ratio).
請求項1に記載のガラス組成物を熱処理するガラスセラミックの製造方法。   The manufacturing method of the glass ceramic which heat-processes the glass composition of Claim 1. 請求項2に記載のガラス組成物の製造方法により得られるガラスセラミック。

A glass ceramic obtained by the method for producing a glass composition according to claim 2.

JP2006282394A 2006-10-17 2006-10-17 Glass composition and method for producing glass ceramic Expired - Fee Related JP5270825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282394A JP5270825B2 (en) 2006-10-17 2006-10-17 Glass composition and method for producing glass ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282394A JP5270825B2 (en) 2006-10-17 2006-10-17 Glass composition and method for producing glass ceramic

Publications (2)

Publication Number Publication Date
JP2008103096A true JP2008103096A (en) 2008-05-01
JP5270825B2 JP5270825B2 (en) 2013-08-21

Family

ID=39437288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282394A Expired - Fee Related JP5270825B2 (en) 2006-10-17 2006-10-17 Glass composition and method for producing glass ceramic

Country Status (1)

Country Link
JP (1) JP5270825B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120034529A1 (en) * 2009-02-27 2012-02-09 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material
WO2012017544A1 (en) * 2010-08-05 2012-02-09 トヨタ自動車株式会社 Sulfide solid electrolyte glass, lithium solid-state battery, and method for producing sulfide solid electrolyte glass
WO2014010172A1 (en) * 2012-07-10 2014-01-16 出光興産株式会社 Sulfide glass, and method for producing sulfide glass ceramic
JP2014096391A (en) * 2009-01-15 2014-05-22 Idemitsu Kosan Co Ltd Manufacturing method of lithium ion conductive solid electrolyte
US10186730B2 (en) 2015-07-15 2019-01-22 Samsung Electronics Co., Ltd. Electrolyte solution for secondary battery and secondary battery
US10461363B2 (en) 2014-06-25 2019-10-29 Tokyo Institute Of Technology Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
US10741299B2 (en) 2015-07-31 2020-08-11 Tokyo Insititute of Technology Solid α-lithium electrolyte

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120666A (en) * 2006-10-17 2008-05-29 Idemitsu Kosan Co Ltd Glass ceramic and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120666A (en) * 2006-10-17 2008-05-29 Idemitsu Kosan Co Ltd Glass ceramic and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096391A (en) * 2009-01-15 2014-05-22 Idemitsu Kosan Co Ltd Manufacturing method of lithium ion conductive solid electrolyte
US20120034529A1 (en) * 2009-02-27 2012-02-09 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material
US9064615B2 (en) * 2009-02-27 2015-06-23 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material
WO2012017544A1 (en) * 2010-08-05 2012-02-09 トヨタ自動車株式会社 Sulfide solid electrolyte glass, lithium solid-state battery, and method for producing sulfide solid electrolyte glass
US9172112B2 (en) 2010-08-05 2015-10-27 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte glass, lithium solid state battery and producing method of sulfide solid electrolyte glass
WO2014010172A1 (en) * 2012-07-10 2014-01-16 出光興産株式会社 Sulfide glass, and method for producing sulfide glass ceramic
JPWO2014010172A1 (en) * 2012-07-10 2016-06-20 出光興産株式会社 Method for producing sulfide glass and sulfide glass ceramics
US9991554B2 (en) 2012-07-10 2018-06-05 Idemitsu Kosan Co., Ltd. Sulfide glass, and method for producing sulfide glass ceramic
US10461363B2 (en) 2014-06-25 2019-10-29 Tokyo Institute Of Technology Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
EP3163665B1 (en) * 2014-06-25 2020-05-06 Tokyo Institute Of Technology Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
US10186730B2 (en) 2015-07-15 2019-01-22 Samsung Electronics Co., Ltd. Electrolyte solution for secondary battery and secondary battery
US10741299B2 (en) 2015-07-31 2020-08-11 Tokyo Insititute of Technology Solid α-lithium electrolyte

Also Published As

Publication number Publication date
JP5270825B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
KR101181148B1 (en) Lithium ion conducting sulfide based crystallized glass and method for production thereof
JP5414143B2 (en) Method for producing sulfide solid electrolyte
JP5189304B2 (en) Glass ceramic and method for producing the same
JP4996120B2 (en) Solid electrolyte, method for producing the same, and all-solid-state secondary battery
JP6302901B2 (en) Method for producing solid electrolyte
JP4834442B2 (en) Solid electrolyte, method for producing the same, and all-solid-state secondary battery
JP5311169B2 (en) Lithium ion conductive solid electrolyte, method for producing the same, solid electrolyte for lithium secondary battery using the solid electrolyte, and all solid lithium battery using the solid electrolyte for secondary battery
JP4873479B2 (en) High performance all solid lithium battery
JP5590836B2 (en) Sulfide solid electrolyte
JP5270825B2 (en) Glass composition and method for producing glass ceramic
JP5395346B2 (en) Sulfide-based solid electrolyte for lithium ion secondary battery
JP5848801B2 (en) Lithium ion conductive solid electrolyte sheet and method for producing the same
JP5577028B2 (en) Method for producing sulfide solid electrolyte
WO2014174829A1 (en) Method for producing solid electrolyte
JP2014102987A (en) Method for producing sulfide solid electrolyte
JP2014093263A (en) Solid electrolyte and lithium battery
JP2014212065A (en) Method for producing solid electrolyte
JP5729940B2 (en) Solid electrolyte glass and method for producing the same
JP5685814B2 (en) Method for producing sulfide solid electrolyte material
JP2008124011A (en) Lithium ion conductive solid electrolyte sheet, and its manufacturing method
JP2016027554A (en) Solid electrolyte
JP4989181B2 (en) Lithium sulfide solid electrolyte
JP2014013772A (en) Sulfide-based solid electrolyte for lithium ion secondary battery
JP2014091664A (en) Solid electrolyte glass particles and lithium ion battery
JP2016006798A (en) Sulfide-based solid electrolyte for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20120112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Ref document number: 5270825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees