JP2008101673A - Rolling bearing and rolling bearing device - Google Patents

Rolling bearing and rolling bearing device Download PDF

Info

Publication number
JP2008101673A
JP2008101673A JP2006283758A JP2006283758A JP2008101673A JP 2008101673 A JP2008101673 A JP 2008101673A JP 2006283758 A JP2006283758 A JP 2006283758A JP 2006283758 A JP2006283758 A JP 2006283758A JP 2008101673 A JP2008101673 A JP 2008101673A
Authority
JP
Japan
Prior art keywords
peripheral surface
outer peripheral
outer ring
tapered roller
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006283758A
Other languages
Japanese (ja)
Inventor
Kazuyuki Kotani
一之 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2006283758A priority Critical patent/JP2008101673A/en
Publication of JP2008101673A publication Critical patent/JP2008101673A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent losing pre-load due to temperature rise of a rolling bearing device by impelling an outer ring by a pressure supply means in a pre-load apply direction. <P>SOLUTION: When axial pre-load is applied to a tapered roller bearing 9, the outer ring 42 receives a component of force on a tilted rolling contact surface of a tapered roller 43 and displaces in a radial direction, and the first outer circumference surface 42b and a second outer circumference surface 42c of the outer ring 42 are pressed against an inner circumference surface of a bearing housing 40 to support the pre-load. If the temperature of the tapered roller bearing 9 rises, light metal bearing housing 40 expands more greatly than a steel main rotary shaft 4 having the tapered roller bearing 9 attached thereto. However, since pre-load is applied to the outer ring 42, an inner circumference raceway surface 42a of the outer ring 42 does not separate from a rolling contact surface of the tapered roller 43. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は転がり軸受および転がり軸受装置に関し、特に円錐ころ軸受,アンギュラ玉軸受などの予圧をかけて使用される転がり軸受および転がり軸受装置に関する。 The present invention relates to a rolling bearing and a rolling bearing device, and more particularly to a rolling bearing and a rolling bearing device that are used with a preload, such as a tapered roller bearing and an angular ball bearing.

円錐ころ軸受,アンギュラ玉軸受などの予圧をかけて使用される転がり軸受では、内輪および外輪をそれぞれ軸および軸受ハウジングに嵌合し、その後に予圧を調整する。軸と軸受ハウジングとが同じ材料であれば、温度による寸法変化も同じで大きな予圧の変化はなく、組み込み時に設定した予圧で運転される。 In a rolling bearing used with preload such as a tapered roller bearing and an angular ball bearing, an inner ring and an outer ring are fitted into a shaft and a bearing housing, respectively, and then the preload is adjusted. If the shaft and the bearing housing are made of the same material, the dimensional change with temperature is the same and there is no significant change in the preload, and operation is performed with the preload set at the time of assembly.

例えば、自動車用のトランスミッションにおいては、その要所(例えば終減速装置部分)に円錐ころ軸受が採用されている。円錐ころ軸受は、コンパクトでありながら大容量で使用可能な利点があり、また、ギアチェンジ時等における衝撃荷重への耐久性にも優れている利点がある。しかし、円錐ころ軸受は、円錐ころの転動面が傾斜しているため、アキシャル隙間規制用の予圧が必要である。予圧により、円錐ころ軸受のアキシャル隙間を負に設定することで、ギアの噛合い精度も向上する。 For example, in a transmission for an automobile, a tapered roller bearing is adopted at its main point (for example, a final reduction gear portion). The tapered roller bearing has an advantage that it can be used with a large capacity while being compact, and also has an advantage of excellent durability against an impact load at the time of gear change or the like. However, the tapered roller bearing requires a preload for regulating the axial gap because the rolling surface of the tapered roller is inclined. By setting the axial clearance of the tapered roller bearing to be negative by preloading, the gear meshing accuracy is also improved.

ところで、近年は軽量化の一環として、トランスミッションのケースをAl合金などの軽金属で構成することが行われている。Alは構成材料中でも線膨張係数が最も高く(室温で約23.5×10−6/℃:以下、線膨張係数の単位はppm/℃と略記する)、回転軸を構成する鋼(Fe系材料)の線膨張係数(室温で約12ppm/℃)とは相当の差がある。自動車の使用環境上の可能性を考慮すると、トランスミッションひいては回転軸を支持する円錐ころ軸受がさらされる温度環境は、最大で−40℃以上150℃以下にも及び、軽金属製のケースの回転軸に対する相対的な寸法変化範囲も相当に大きい。この場合、寒冷地以外の通常の使用環境では、走行中にトランスミッションの温度は室温よりも高い、例えば50℃以上80℃以下の温度域に昇温する。運転されると、組み込み時から温度が上昇することになり、運転中の温度上昇により回転軸に比べて円錐ころ軸受の軸受ハウジングの寸法変化が大きく、予圧が抜けてしまうおそれがある。 By the way, in recent years, as a part of weight reduction, a transmission case is made of a light metal such as an Al alloy. Al has the highest linear expansion coefficient among the constituent materials (about 23.5 × 10 −6 / ° C. at room temperature: hereinafter, the unit of linear expansion coefficient is abbreviated as ppm / ° C.), and steel constituting the rotating shaft (Fe-based) There is a considerable difference from the linear expansion coefficient of the material (about 12 ppm / ° C. at room temperature). Considering the possibility of usage environment of automobiles, the temperature environment to which the tapered roller bearings supporting the transmission and the rotating shaft are exposed is -40 ° C or more and 150 ° C or less at the maximum. The relative dimensional change range is also quite large. In this case, in a normal use environment other than a cold region, the temperature of the transmission is raised to a temperature range higher than room temperature, for example, 50 ° C. or higher and 80 ° C. or lower during traveling. When it is operated, the temperature rises from the time of installation, and due to the temperature increase during operation, the dimensional change of the bearing housing of the tapered roller bearing is larger than that of the rotating shaft, and the preload may be lost.

例えば、図6に示すように、従来の転がり軸受装置における円錐ころ軸受109では、外輪142は、外周面142bが、主回転軸104の構成材料よりも線膨張係数の大きい材料よりなる軸受ハウジング140の内周面140aと当接している。具体的には、主回転軸104が鋼製(例えば、機械構造用低合金鋼)であり、軸受ハウジング140が軽金属製(例えば、ダイキャスト用Al合金)である。 For example, as shown in FIG. 6, in the tapered roller bearing 109 in the conventional rolling bearing device, the outer ring 142 has an outer peripheral surface 142b made of a material having a larger linear expansion coefficient than that of the constituent material of the main rotary shaft 104. Is in contact with the inner peripheral surface 140a. Specifically, the main rotating shaft 104 is made of steel (for example, low alloy steel for machine structure), and the bearing housing 140 is made of light metal (for example, die cast Al alloy).

図6に示すように、円錐ころ軸受109にアキシャル方向(矢印a方向)の予圧を加えると、外輪142は、円錐ころ143の傾斜した転動面上での分力を受けてラジアル方向にも変位し、右端面142cと外周面142bとが軸受ハウジング140の内周面140aと内端面140cとに押し付けられて予圧が支持される。しかし、上記のごとく軸受ハウジング140を軽金属で構成する場合、図7に示すように、トランスミッションが昇温すると、軽金属製の軸受ハウジング140は、円錐ころ軸受109が取り付けられた主回転軸104よりも大きく膨張するから、外輪142の内周軌道面142aが円錐ころ143の転動面から矢印b方向に離間する。つまり、予圧状態での円錐ころ軸受109のアキシャル隙間およびラジアル隙間の温度変化が大きく、昇温時に予圧不足となってギアのがたつきによる騒音等も生じやすくなる問題がある。 As shown in FIG. 6, when a preload in the axial direction (arrow a direction) is applied to the tapered roller bearing 109, the outer ring 142 receives a component force on the inclined rolling surface of the tapered roller 143 and also in the radial direction. The right end surface 142c and the outer peripheral surface 142b are pressed against the inner peripheral surface 140a and the inner end surface 140c of the bearing housing 140 to support the preload. However, when the bearing housing 140 is made of light metal as described above, as shown in FIG. 7, when the transmission is heated, the light metal bearing housing 140 is more than the main rotating shaft 104 to which the tapered roller bearing 109 is attached. Since it expands greatly, the inner circumferential raceway surface 142a of the outer ring 142 is separated from the rolling surface of the tapered roller 143 in the direction of arrow b. That is, there is a problem that the temperature change of the axial gap and the radial gap of the tapered roller bearing 109 in the preload state is large, and the preload is insufficient at the time of temperature rise, and noise due to rattling of the gear tends to occur.

このため、特許文献1では、軸受ハウジングまたは軸受ハウジング内に設けられて軸方向に当接した部材の内部に配設された複数のピストンからなる予圧機構を備える転がり軸受装置が提案されている。 For this reason, Patent Document 1 proposes a rolling bearing device including a preload mechanism including a plurality of pistons disposed in a bearing housing or a member provided in the bearing housing and abutted in the axial direction.

また、特許文献2では、軸(アウトプットシャフト)と内輪とで囲まれた油圧室と、油圧室に潤滑油流路を介して潤滑油を供給する油圧ポンプとからなる予圧機構を備える転がり軸受装置が提案されている。
特開昭57−33216号(第16頁、図6) 特開2003−184873号(第5−6頁、図4)
Further, in Patent Document 2, a rolling bearing device including a preload mechanism including a hydraulic chamber surrounded by a shaft (output shaft) and an inner ring, and a hydraulic pump that supplies lubricating oil to the hydraulic chamber via a lubricating oil passage. Has been proposed.
JP-A-57-33216 (page 16, FIG. 6) JP 2003-184873 (page 5-6, FIG. 4)

特許文献1に記載の転がり軸受装置は、軸の軸方向長さの温度変化が軸受ハウジングの軸方向長さの温度変化よりも小さい用途で用いると、ピストンで外輪を押すため、油圧が抜け、再度油圧がかかるときにピストンと外輪との当接点が変わることが生じ、そのまま油圧によって軸方向に押すことにより、外輪が傾きやすく、外輪の内周軌道面と円錐ころとが傾いて接触し、外輪の内周軌道面と円錐ころとが傷つくおそれがある。 When the rolling bearing device described in Patent Document 1 is used in an application in which the temperature change in the axial length of the shaft is smaller than the temperature change in the axial length of the bearing housing, the oil pressure is released because the piston is pushed by the outer ring. When the hydraulic pressure is applied again, the contact point between the piston and the outer ring may change, and by pushing it axially with the hydraulic pressure as it is, the outer ring tends to tilt, and the inner ring raceway surface of the outer ring and the tapered roller come into contact with each other, The inner raceway surface of the outer ring and the tapered roller may be damaged.

また、特許文献2に記載の転がり軸受装置は、軸(アウトプットシャフト)と内輪との間で油圧室を形成しているので、Oリングが内輪の内周面で軸と接しており、熱膨張で径方向内方にすきまができやすく圧油がもれるおそれがある。さらに、内輪の内周面のOリングの熱膨張で、Oリングの内径が大きくなることで、内輪が軸線方向に傾きやすくなり、圧油によって軸線方向に移動する場合に内輪が傾くことで、内輪と軸とが傾いて接触すること、および内輪がころ端面を押すことから摩擦が生じるおそれがある。 In the rolling bearing device described in Patent Document 2, since a hydraulic chamber is formed between the shaft (output shaft) and the inner ring, the O-ring is in contact with the shaft on the inner peripheral surface of the inner ring, and thermal expansion is performed. With this, there is a risk of pressure oil leaking easily due to a clearance inward in the radial direction. Furthermore, by the thermal expansion of the O-ring on the inner peripheral surface of the inner ring, the inner diameter of the O-ring increases, so that the inner ring tends to tilt in the axial direction, and the inner ring tilts when moving in the axial direction by pressure oil, Friction may occur due to the contact between the inner ring and the shaft being inclined and the inner ring pressing the roller end face.

本発明の課題は、転がり軸受の外輪と軸受ハウジングとで油圧室を形成して、圧力供給手段によって液状圧力媒体(オイル)を油圧室に供給することにより、運転中の温度上昇による予圧抜けを防止するようにした転がり軸受および転がり軸受装置を提供することにある。 An object of the present invention is to form a hydraulic chamber by an outer ring of a rolling bearing and a bearing housing, and to supply a liquid pressure medium (oil) to the hydraulic chamber by pressure supply means, thereby preventing preload loss due to a temperature rise during operation. An object of the present invention is to provide a rolling bearing and a rolling bearing device which are prevented.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

請求項1記載の転がり軸受は、内輪と、転動体と、前記転動体からの軸方向一方側向きの荷重を負荷可能な内周軌道面,軸方向他方側に形成された第1の外周面,軸方向一方側に形成され前記第1の外周面よりも小径の第2の外周面,および前記第1の外周面および前記第2の外周面を繋ぐ第1の連結面を備えた外輪とを備え、前記第1の外周面および前記第2の外周面に周溝が形成されていることを特徴とする。請求項1記載の転がり軸受によれば、外輪と軸受ハウジングとのみで液状圧力媒体(オイル)を注入可能な空間(油圧室)を構成することができるため、前記空間(油圧室)に圧力供給手段(油圧ポンプ)から液状圧力媒体(オイル)を注入することにより、外輪を予圧付与方向に付勢して、温度上昇により軸受ハウジングが熱膨張しても予圧抜けを防止することができる。また、外輪の第1の外周面の周溝および第2の外周面の周溝にOリングが配設できるので、前記空間(油圧室)をOリング2箇所でシールすることができ、温度上昇により軸受ハウジングが熱膨張しても軸受ハウジングの第1の内周面および第2の内周面と外輪の第1の外周面および第2の外周面とのラジアル隙間を塞ぐことができ、液状圧力媒体(オイル)が漏れにくいとともに、外輪が軸受ハウジングに対して傾きにくいという効果が得られる。 The rolling bearing according to claim 1 includes an inner ring, a rolling element, an inner circumferential raceway surface capable of applying a load in one axial direction from the rolling element, and a first outer circumferential surface formed on the other axial side. An outer ring having a second outer peripheral surface formed on one side in the axial direction and having a smaller diameter than the first outer peripheral surface, and a first connection surface connecting the first outer peripheral surface and the second outer peripheral surface; And a circumferential groove is formed on the first outer peripheral surface and the second outer peripheral surface. According to the rolling bearing of the first aspect, since a space (hydraulic chamber) into which the liquid pressure medium (oil) can be injected can be constituted only by the outer ring and the bearing housing, pressure is supplied to the space (hydraulic chamber). By injecting the liquid pressure medium (oil) from the means (hydraulic pump), the outer ring is urged in the preload application direction, and preload loss can be prevented even if the bearing housing is thermally expanded due to temperature rise. Further, since the O-ring can be disposed in the circumferential groove on the first outer circumferential surface and the circumferential groove on the second outer circumferential surface of the outer ring, the space (hydraulic chamber) can be sealed at two O-rings, and the temperature rises. Even if the bearing housing is thermally expanded, the radial gaps between the first inner peripheral surface and the second inner peripheral surface of the bearing housing and the first outer peripheral surface and the second outer peripheral surface of the outer ring can be closed. The pressure medium (oil) hardly leaks and the outer ring is less likely to tilt with respect to the bearing housing.

請求項2記載の転がり軸受は、請求項1記載の転がり軸受において、前記転動体が、円錐ころであり、前記円錐ころの両端面が前記外輪の内周軌道面に接触しないことを特徴とする。請求項2記載の転がり軸受によれば、転動体が円錐ころであるため、軸方向荷重を十分に受けることができ、軸受ハウジングが熱膨張する際、外輪と軸受ハウジングとのラジアル隙間によって外輪が円錐ころに対して傾こうとしても鍔がないため、鍔と円錐ころの端面とが異常接触して摩耗することがない。 The rolling bearing according to claim 2 is characterized in that, in the rolling bearing according to claim 1, the rolling element is a tapered roller, and both end faces of the tapered roller do not contact the inner circumferential raceway surface of the outer ring. . According to the rolling bearing of the second aspect, since the rolling element is a tapered roller, the axial load can be sufficiently received, and when the bearing housing is thermally expanded, the outer ring is caused by the radial gap between the outer ring and the bearing housing. Since there is no wrinkle even if it tries to incline with respect to the tapered roller, the wrinkle and the end surface of the tapered roller do not wear abnormally and wear.

請求項3記載の転がり軸受装置は、第1の線膨張係数を有するハウジング,第1の線膨張係数よりも小さい第2の線膨張係数を有する軸,前記軸に嵌合される内輪,第1の線膨張係数よりも小さい第3の線膨張係数を有し前記ハウジングに嵌合される外輪,および前記内輪と前記外輪との間に介挿されて転動する転動体を備えた転がり軸受を、接触角が軸方向内方から軸方向外方に向けて拡径するように2つ配設する転がり軸受装置であって、少なくとも一方の転がり軸受の前記外輪は、軸方向内方側に形成される第1の外周面,軸方向外方側に前記第1の外周面よりも小径に形成される第2の外周面,および前記第1の外周面と前記第2の外周面とを繋ぐ第1の連結面を備え、前記第1の外周面および前記第2の外周面には周溝が形成され、前記第1の外周面の周溝および前記第2の外周面の周溝にはそれぞれ第3の線膨張係数より大きい第4の線膨張係数を有するOリングを嵌合しており、前記ハウジングは、軸方向内方側に形成され前記第1の外周面に径方向に対向する第1の内周面,軸方向外方側に形成され前記第1の内周面より小径かつ前記第2の外周面に径方向に対向する第2の内周面,および前記第1の内周面と前記第2の内周面とを繋ぐ第2の連結面を備え、前記第1の内周面,前記第2の外周面,前記第1の連結面,および前記第2の連結面で形成可能な空間に開口し、圧力供給手段に連通する孔が形成されていることを特徴とする。請求項3記載の転がり軸受装置によれば、外輪の第2の外周面および第1の連結面と軸受ハウジングの第1の内周面および第2の連結面とで液状圧力媒体(オイル)を注入可能な空間(油圧室)を構成することができるため、前記空間(油圧室)に圧力供給手段(油圧ポンプ)から液状圧力媒体(オイル)を注入することにより、外輪を予圧付与方向に付勢して、温度上昇により軸受ハウジングが熱膨張しても予圧抜けを防止することができる。また、外輪の第1の外周面および第2の外周面の周溝にOリングが配設されるため、前記空間(油圧室)をOリング2箇所でシールすることができ、温度上昇により軸受ハウジングが熱膨張しても軸受ハウジングの第1の内周面および第2の内周面と外輪の第1の外周面および第2の外周面とのラジアル隙間を塞ぐことができるので、液状圧力媒体(オイル)が漏れにくいとともに、外輪が軸受ハウジングに対して傾きにくいという利点がある。なお、接触角は、日本工業規格JISB0104−1991「転がり軸受用語」に記載の接触角[呼び接触角]で定義する。 The rolling bearing device according to claim 3 includes a housing having a first linear expansion coefficient, a shaft having a second linear expansion coefficient smaller than the first linear expansion coefficient, an inner ring fitted to the shaft, A rolling bearing having a third linear expansion coefficient smaller than that of the outer ring fitted into the housing, and a rolling element interposed between the inner ring and the outer ring to roll. The two rolling bearing devices are arranged so that the contact angle increases from the axially inner side toward the axially outer side, wherein the outer ring of at least one of the rolling bearings is formed on the inner side in the axial direction. The first outer peripheral surface, the second outer peripheral surface formed smaller in diameter than the first outer peripheral surface on the axially outer side, and the first outer peripheral surface and the second outer peripheral surface are connected to each other. A first connecting surface, and a circumferential groove is formed in the first outer peripheral surface and the second outer peripheral surface; An O-ring having a fourth linear expansion coefficient larger than a third linear expansion coefficient is fitted in each of the peripheral groove on the first outer peripheral surface and the peripheral groove on the second outer peripheral surface, and the housing A first inner peripheral surface formed on the inner side in the axial direction and radially opposed to the first outer peripheral surface, and formed on the outer side in the axial direction and having a smaller diameter than the first inner peripheral surface. A second inner peripheral surface opposed to the outer peripheral surface in the radial direction, and a second connecting surface connecting the first inner peripheral surface and the second inner peripheral surface, the first inner peripheral surface; A hole that opens to a space that can be formed by the second outer peripheral surface, the first connection surface, and the second connection surface and that communicates with the pressure supply means is formed. According to the rolling bearing device of the third aspect, the liquid pressure medium (oil) is supplied between the second outer peripheral surface and the first connection surface of the outer ring and the first inner peripheral surface and the second connection surface of the bearing housing. Since an injectable space (hydraulic chamber) can be configured, a liquid pressure medium (oil) is injected from the pressure supply means (hydraulic pump) into the space (hydraulic chamber), so that the outer ring is attached in the preloading direction. Thus, even if the bearing housing is thermally expanded due to a temperature rise, it is possible to prevent preload loss. In addition, since the O-rings are disposed in the circumferential grooves on the first outer peripheral surface and the second outer peripheral surface of the outer ring, the space (hydraulic chamber) can be sealed at two O-rings, and the bearing rises due to temperature rise. Even if the housing is thermally expanded, the radial gaps between the first inner peripheral surface and the second inner peripheral surface of the bearing housing and the first outer peripheral surface and the second outer peripheral surface of the outer ring can be closed. There are advantages that the medium (oil) is less likely to leak and the outer ring is less likely to tilt with respect to the bearing housing. The contact angle is defined by the contact angle [nominal contact angle] described in Japanese Industrial Standards JISB 0104-1991 “Rolling Bearing Terms”.

請求項4記載の転がり軸受装置は、請求項3記載の転がり軸受装置において、前記転がり軸受は、円錐ころ軸受であり、前記転動体の両端面が前記外輪の内周軌道面に接触しないことを特徴とする。請求項4記載の転がり軸受装置によれば、転がり軸受が円錐ころ軸受であるため、軸方向荷重を十分に受けることができ、軸受ハウジングが熱膨張する際、外輪と軸受ハウジングとのラジアル隙間によって外輪が円錐ころに対して傾こうとしても鍔がないため、鍔と円錐ころの端面とが異常接触して摩耗することがない。 The rolling bearing device according to claim 4 is the rolling bearing device according to claim 3, wherein the rolling bearing is a tapered roller bearing, and both end surfaces of the rolling element are not in contact with an inner circumferential raceway surface of the outer ring. Features. According to the rolling bearing device of the fourth aspect, since the rolling bearing is a tapered roller bearing, the axial load can be sufficiently received, and when the bearing housing is thermally expanded, the radial clearance between the outer ring and the bearing housing is used. Even if the outer ring is inclined with respect to the tapered roller, there is no wrinkle, so that the wrinkle and the end surface of the tapered roller do not wear abnormally and wear.

転がり軸受の運転中の温度上昇により軸に比べて軸受ハウジングの寸法変化が大きくて予圧が抜けてしまうという問題を、転がり軸受の外輪と軸受ハウジングとで油圧室を形成して、圧力供給手段によって液状圧力媒体(オイル)を油圧室に供給することによって解消した。 The problem that the dimensional change of the bearing housing is larger than that of the shaft due to the temperature rise during operation of the rolling bearing and the preload is released is that the outer ring of the rolling bearing and the bearing housing form a hydraulic chamber, and the pressure supply means The problem was solved by supplying a liquid pressure medium (oil) to the hydraulic chamber.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1に係る転がり軸受装置が配設されたトランスミッション1の一例を示す要部断面図である。このトランスミッション1は、ケース1Mを有し、その内部にギアボックス7が配置されている。ケース1M内において、入力軸(回転軸線O2)3と主回転軸(出力軸:回転軸線O1)4とが、それぞれギアボックス7を貫通する形で配置され、該ギアボックス7内において各々の軸上に配置されたギア30,31が噛み合っている。そして、入力軸3の回転は、ギア30,31を介して主回転軸4に正逆両方向に伝達される。入力軸3の両端は、ケース1Mの内側に固定された円筒ころ軸受5および玉軸受6によりそれぞれ支持されている。一方、主回転軸4の両端は、いずれも円錐ころ軸受8,9により支持されている。このうち、軸方向一方側の円錐ころ軸受8は、ケース1Mと一体の軸受ハウジング20に当て止めされて固定されている。他方、軸方向他方側の円錐ころ軸受9は、ケース1Mと一体の軸受ハウジング40に挿入され、かつ、外輪42において、上記軸方向一方側に向けて予圧付勢されている。軸受ハウジング40は、トランスミッション1のケース1Mと一体である結果、軸受ハウジング20とも一体である。 FIG. 1 is a cross-sectional view of an essential part showing an example of a transmission 1 in which a rolling bearing device according to Embodiment 1 of the present invention is arranged. The transmission 1 has a case 1M in which a gear box 7 is disposed. In the case 1M, an input shaft (rotation axis O2) 3 and a main rotation shaft (output shaft: rotation axis O1) 4 are arranged so as to penetrate the gear box 7, and the respective axes in the gear box 7 are arranged. Gears 30 and 31 arranged on the top mesh with each other. The rotation of the input shaft 3 is transmitted to the main rotating shaft 4 in both forward and reverse directions via gears 30 and 31. Both ends of the input shaft 3 are respectively supported by a cylindrical roller bearing 5 and a ball bearing 6 fixed inside the case 1M. On the other hand, both ends of the main rotating shaft 4 are supported by tapered roller bearings 8 and 9. Among these, the tapered roller bearing 8 on the one axial side is fixed to a bearing housing 20 integrated with the case 1M. On the other hand, the tapered roller bearing 9 on the other side in the axial direction is inserted into a bearing housing 40 integral with the case 1M, and is pre-biased in the outer ring 42 toward the one side in the axial direction. The bearing housing 40 is also integrated with the bearing housing 20 as a result of being integrated with the case 1M of the transmission 1.

トランスミッション1では、ギアボックス7内に配置されるギアは、入力軸3上に配置される歯数の異なる複数枚の入力側ギア(符号31側)と、主回転軸4上の同様の複数枚の出力側ギア(符号30側)とであり、得るべき変速比ないし前進/後退の区別に応じて、噛合いの組み合わせが切替え可能に構成されている(例えば、マニュアルトランスミッション車の場合。他方、オートマチック車の場合は、ギア30,31が遊星ギア機構の遊星ギアと太陽ギアとに振り分けられた構造となる場合がある)。 In the transmission 1, the gears arranged in the gear box 7 are a plurality of input-side gears (reference numeral 31 side) arranged on the input shaft 3 and having the same number of teeth on the main rotating shaft 4. Output side gear (reference numeral 30 side), and the combination of meshes can be switched in accordance with the speed ratio to be obtained or the forward / reverse distinction (for example, in the case of a manual transmission vehicle, on the other hand). In the case of an automatic vehicle, the gears 30 and 31 may be divided into a planetary gear and a sun gear of a planetary gear mechanism).

円錐ころ軸受8は、トランスミッション1のケース1Mと一体の軸受ハウジング20と、主回転軸4と、主回転軸4に嵌合される内輪14と、軸受ハウジング20に嵌合される外輪15と、内輪14と外輪15との間に転動するように介挿された複数の円錐ころ16とから、その主要部が構成されている。円錐ころ軸受8は、円錐ころ16と外輪15との接触角が軸方向内方から軸方向外方に向けて拡径するように配設されている。 The tapered roller bearing 8 includes a bearing housing 20 integral with the case 1M of the transmission 1, a main rotating shaft 4, an inner ring 14 fitted to the main rotating shaft 4, an outer ring 15 fitted to the bearing housing 20, The main part is composed of a plurality of tapered rollers 16 inserted so as to roll between the inner ring 14 and the outer ring 15. The tapered roller bearing 8 is disposed such that the contact angle between the tapered roller 16 and the outer ring 15 increases from the axially inner side toward the axially outer side.

円錐ころ軸受8は、外輪15の外周面が、主回転軸4の構成材料よりも線膨張係数の大きい材料よりなる軸受ハウジング20の内周面と当接している。具体的には、主回転軸4が鋼(例えば、機械構造用低合金鋼)製であり、軸受ハウジング20が軽金属製である。軽金属はAlまたはMgのいずれかを主成分(含有率にて50質量%以上)とする金属であるが、加工性および耐食性の観点からAlまたはAl合金が使用される。Al合金としては、具体的にはダイキャスト用Al合金が使用される。本実施例1では、ケース1MもAl合金製であり、軸受ハウジング20は該ケース1Mの内面に一体化されてなる。また、円錐ころ軸受8は、転動体(円錐ころ16)および軌道輪(外輪15/内輪14)が、いずれも鋼(例えば、軸受鋼,はだ焼き鋼,浸炭鋼)製にて構成されている。自動車用のトランスミッション1における軸受使用環境温度は−40℃以上150℃以下の範囲(寒冷地および高速連続運転等を除いた通常到達温度は、50℃以上80℃以下)であり、軸受ハウジング20の構成主成分であるAlの線膨張係数(第1の線膨張係数)は23〜24ppm/℃、主回転軸4および円錐ころ軸受8の構成主成分であるFeの線膨張係数(第2の線膨張係数)は12〜13ppm/℃である。 In the tapered roller bearing 8, the outer peripheral surface of the outer ring 15 is in contact with the inner peripheral surface of the bearing housing 20 made of a material having a larger linear expansion coefficient than the constituent material of the main rotary shaft 4. Specifically, the main rotating shaft 4 is made of steel (for example, low alloy steel for machine structure), and the bearing housing 20 is made of light metal. The light metal is a metal containing either Al or Mg as a main component (content of 50% by mass or more), but Al or Al alloy is used from the viewpoint of workability and corrosion resistance. Specifically, an Al alloy for die casting is used as the Al alloy. In the first embodiment, the case 1M is also made of an Al alloy, and the bearing housing 20 is integrated with the inner surface of the case 1M. In the tapered roller bearing 8, the rolling elements (the tapered rollers 16) and the races (the outer ring 15 / the inner ring 14) are both made of steel (for example, bearing steel, case-hardened steel, carburized steel). Yes. The environmental temperature of the bearing in the automobile transmission 1 is in the range of −40 ° C. or higher and 150 ° C. or lower (normally reached temperature excluding cold regions and high-speed continuous operation is 50 ° C. or higher and 80 ° C. or lower). The linear expansion coefficient (first linear expansion coefficient) of Al which is a constituent main component is 23 to 24 ppm / ° C., and the linear expansion coefficient of Fe which is a main constituent constituent of the main rotary shaft 4 and the tapered roller bearing 8 (second linear expansion coefficient). (Expansion coefficient) is 12-13 ppm / ° C.

図2および図3は、本実施例1に係る転がり軸受装置における円錐ころ軸受9の要部拡大断面図である。 2 and 3 are enlarged cross-sectional views of a main part of the tapered roller bearing 9 in the rolling bearing device according to the first embodiment.

円錐ころ軸受9は、第1の線膨張係数を有する軽金属(例えば、ダイキャスト用Al合金)製の軸受ハウジング40と、第1の線膨張係数よりも小さい第2の線膨張係数を有する鋼(例えば、機械構造用低合金鋼)製の主回転軸4と、主回転軸4に嵌合される内輪41と、軸受ハウジング40に嵌合される第1の線膨張係数よりも小さい第3の線膨張係数を有する鋼(例えば、軸受鋼,はだ焼き鋼,浸炭鋼)製の外輪42と、内輪41と外輪42との間に介挿されて転動する複数の円錐ころ43とから、その主要部が構成されている。円錐ころ軸受9は、円錐ころ43と外輪42との接触角が軸方向内方から軸方向外方に向けて拡径するように配設されている。 The tapered roller bearing 9 includes a bearing housing 40 made of a light metal (for example, an aluminum alloy for die casting) having a first linear expansion coefficient, and a steel having a second linear expansion coefficient smaller than the first linear expansion coefficient ( For example, a main rotating shaft 4 made of a low alloy steel for machine structure), an inner ring 41 fitted to the main rotating shaft 4, and a third coefficient smaller than the first linear expansion coefficient fitted to the bearing housing 40. From an outer ring 42 made of steel having a linear expansion coefficient (for example, bearing steel, case-hardened steel, carburized steel), and a plurality of tapered rollers 43 that are inserted between the inner ring 41 and the outer ring 42 and roll. Its main part is composed. The tapered roller bearing 9 is arranged so that the contact angle between the tapered roller 43 and the outer ring 42 increases from the axially inner side toward the axially outer side.

外輪42は、円錐ころ43の転動面が当接する内周軌道面42aと、軸方向内方側に形成される第1の外周面42bと、軸方向外方側に第1の外周面42bよりも小径に形成される第2の外周面42cと、第1の外周面42bと第2の外周面42cとを繋ぐ第1の連結面42dと、第2の外周面42cに連なる右端面42eとを備える。また、外輪42の第1の外周面42bおよび第2の外周面42cには、周溝42f,42gがそれぞれ形成され、第1の外周面42bの周溝42fおよび第2の外周面42cの周溝42gには、第3の線膨張係数より大きい第4の線膨張係数を有するゴム製のOリング44,45がそれぞれ圧縮形態で嵌合配置されている。 The outer ring 42 includes an inner circumferential raceway surface 42a with which the rolling surface of the tapered roller 43 abuts, a first outer circumferential surface 42b formed on the axially inner side, and a first outer circumferential surface 42b on the axially outer side. A second outer peripheral surface 42c formed with a smaller diameter, a first connecting surface 42d connecting the first outer peripheral surface 42b and the second outer peripheral surface 42c, and a right end surface 42e continuous with the second outer peripheral surface 42c. With. Further, circumferential grooves 42f and 42g are formed in the first outer circumferential surface 42b and the second outer circumferential surface 42c of the outer ring 42, respectively, and the circumferential grooves 42f and the second outer circumferential surface 42c of the first outer circumferential surface 42b are formed. In the groove 42g, rubber O-rings 44 and 45 having a fourth linear expansion coefficient larger than the third linear expansion coefficient are fitted and arranged in a compressed form.

軸受ハウジング40は、軸方向内方側に形成され外輪42の第1の外周面42bに径方向に対向する第1の内周面40aと、軸方向外方側に形成され第1の内周面40aより小径かつ外輪42の第2の外周面42cに径方向に対向する第2の内周面40bと、第1の内周面40aと第2の内周面40bとを繋ぐ第2の連結面40cと、外輪42の右端面42eと対向する内壁面40dとを備える。 The bearing housing 40 has a first inner peripheral surface 40a formed on the inner side in the axial direction and radially opposed to the first outer peripheral surface 42b of the outer ring 42, and a first inner periphery formed on the outer side in the axial direction. A second inner peripheral surface 40b having a smaller diameter than the surface 40a and radially opposing the second outer peripheral surface 42c of the outer ring 42, and a second inner peripheral surface 40b connecting the first inner peripheral surface 40a and the second inner peripheral surface 40b. A connection surface 40c and an inner wall surface 40d facing the right end surface 42e of the outer ring 42 are provided.

軸受ハウジング40に外輪42を嵌合することにより、軸受ハウジング40の第1の内周面40a,外輪42の第1の連結面42d,外輪42の第2の外周面42c,および軸受ハウジング40の第2の連結面40cで囲まれる環状の空間である油圧室46が形成される。 By fitting the outer ring 42 to the bearing housing 40, the first inner peripheral surface 40 a of the bearing housing 40, the first connection surface 42 d of the outer ring 42, the second outer peripheral surface 42 c of the outer ring 42, and the bearing housing 40 A hydraulic chamber 46 that is an annular space surrounded by the second connecting surface 40c is formed.

また、軸受ハウジング40は、油圧室46にオイルFを注入するために、軸受ハウジング40(図1で見て右側壁)を貫通させる形で、オイルFの注入経路の一部をなす孔51が形成されている。なお、孔51は、周方向所定間隔に複数形成されていてもよい。油圧室46は、孔51を介して油圧ポンプ52(図1参照)に連通されている。油圧ポンプ52による油圧室46へのオイルFの注入圧力(油圧)が、外輪42に加わる予圧となり、予圧荷重のレベルは油圧ポンプ52の圧送圧力に応じて調整可能である。油圧室46,孔51,および油圧ポンプ52は、圧力供給手段50を構成している。 Further, the bearing housing 40 has a hole 51 forming a part of the injection path of the oil F so as to penetrate the bearing housing 40 (the right side wall as viewed in FIG. 1) in order to inject the oil F into the hydraulic chamber 46. Is formed. A plurality of holes 51 may be formed at predetermined intervals in the circumferential direction. The hydraulic chamber 46 is communicated with a hydraulic pump 52 (see FIG. 1) through a hole 51. The injection pressure (hydraulic pressure) of the oil F into the hydraulic chamber 46 by the hydraulic pump 52 becomes a preload applied to the outer ring 42, and the level of the preload can be adjusted according to the pumping pressure of the hydraulic pump 52. The hydraulic chamber 46, the hole 51, and the hydraulic pump 52 constitute a pressure supply means 50.

油圧室46は、軸受ハウジング40がAl合金で構成される一方、外輪42が鋼で構成されている。このため、温度が上昇すると、軸受ハウジング40と外輪42との間の線膨張係数差により、軸受ハウジング40の第1の内周面40aおよび第2の内周面40bと外輪42の外周面とのアキシャル隙間およびラジアル隙間が増加することになる。そこで、ラジアル隙間には、軸受ハウジング40の第1の内周面40aおよび第2の内周面40bと外輪42の第1の外周面42bおよび第2の外周面42cとをシールするゴム製のOリング44,45が圧縮形態で周溝42f,42gにそれぞれ嵌合配置されている。温度履歴によりラジアル隙間の寸法が変化した場合、Oリング44,45は、その寸法変化に追随して自身の弾性圧縮変形量を変化させることで、シール面との密着状態を常時維持することが可能である。これにより、軸受ハウジング40の熱膨張によりラジアル隙間が増加しても、Oリング44,45の配置により油圧室46からオイルFが漏出することが防止される。Oリング44,45に使用するゴムの材質は、オイルFとの接触を考慮して、機械的強度と耐油性とを両立できるゴム、例えばニトリルゴム(特に、水素化ニトリルゴム),アクリルゴム,シリコンゴムおよびフッ素ゴム等が好適である。 In the hydraulic chamber 46, the bearing housing 40 is made of an Al alloy, while the outer ring 42 is made of steel. For this reason, when the temperature rises, the first inner peripheral surface 40a and the second inner peripheral surface 40b of the bearing housing 40 and the outer peripheral surface of the outer ring 42 are caused by the difference in coefficient of linear expansion between the bearing housing 40 and the outer ring 42. This increases the axial gap and radial gap. Accordingly, the radial gap is made of rubber that seals the first inner peripheral surface 40a and the second inner peripheral surface 40b of the bearing housing 40 and the first outer peripheral surface 42b and the second outer peripheral surface 42c of the outer ring 42. The O-rings 44 and 45 are fitted and arranged in the circumferential grooves 42f and 42g in a compressed form. When the dimension of the radial gap changes due to the temperature history, the O-rings 44 and 45 can keep their close contact with the seal surface at all times by changing their elastic compression deformation amount following the change in dimension. Is possible. Thereby, even if the radial gap increases due to the thermal expansion of the bearing housing 40, the oil F is prevented from leaking from the hydraulic chamber 46 due to the arrangement of the O-rings 44 and 45. The material of the rubber used for the O-rings 44 and 45 is a rubber capable of achieving both mechanical strength and oil resistance in consideration of contact with the oil F, such as nitrile rubber (particularly hydrogenated nitrile rubber), acrylic rubber, Silicon rubber, fluorine rubber and the like are preferable.

一方、圧力供給手段50では、温度履歴が原因となって外輪42の過予圧が生ずることもある。具体的には、軸受ハウジング40の第1の内周面40aおよび第2の内周面40bによる外輪42の第1の外周面42bおよび第2の外周面42cの支持位置が昇温により拡径方向に移動すると、そのままでは予圧不足となって円錐ころ軸受9のアキシャル隙間およびラジアル隙間が増加してしまう。そこで、前述のごとく、油圧室46へのオイルFの注入により、外輪42を、該アキシャル隙間およびラジアル隙間が減少する向き、つまり油圧室46が拡大する向きに変位させる。しかし、その状態で温度が低下すると、線膨張係数が主回転軸4よりも小さい軸受ハウジング40は収縮し、オイルFで満たされた油圧室46の体積も減少する。 On the other hand, in the pressure supply means 50, an excessive preload of the outer ring 42 may occur due to the temperature history. Specifically, the support positions of the first outer peripheral surface 42b and the second outer peripheral surface 42c of the outer ring 42 by the first inner peripheral surface 40a and the second inner peripheral surface 40b of the bearing housing 40 are increased in diameter by increasing the temperature. If it moves in the direction, the preload is insufficient as it is, and the axial gap and the radial gap of the tapered roller bearing 9 increase. Therefore, as described above, injection of the oil F into the hydraulic chamber 46 causes the outer ring 42 to be displaced in a direction in which the axial gap and the radial gap are reduced, that is, in a direction in which the hydraulic chamber 46 is enlarged. However, when the temperature decreases in this state, the bearing housing 40 having a linear expansion coefficient smaller than that of the main rotating shaft 4 contracts, and the volume of the hydraulic chamber 46 filled with the oil F also decreases.

そこで、圧力供給手段50では、油圧ポンプ52と油圧室46との間の注入経路から圧力排出手段55が分岐している。圧力排出手段55は、油圧ポンプ52に供給するオイルFを貯留するタンクまたは排出容器(図示せず)につながっている。油圧室46に供給するオイルFがトランスミッション1内で使用される潤滑油と同じ場合には、オイルFをトランスミッション1内に排出することもできる。圧力排出手段55としては、例えば、電磁弁や逆止弁等の開閉手段や、オリフィスやニードル等の差圧を保持する手段が用いられる。電磁弁の場合には、圧力供給手段50内の内圧(油圧室46や孔51の内圧,油圧ポンプ52の圧送圧力)を監視する圧力センサ(図示せず)をさらに備え、内圧が過剰に上昇した際に、圧力センサの出力により電磁弁を開くことで、オイルFを排出し、内圧を適正なものとする。逆止弁の場合、圧力供給手段50内の内圧が一定圧力を超えると開くように、前もって設定する。オリフィスやニードルの場合には、適正な内圧が得られるように設定する。また、逆止弁に代えて、電磁バルブ等で構成されたストップバルブを設け、他方、油圧室46内に圧力センサを配置し、圧力センサが検出する油圧室46の内圧により、逆方向スラストの発生を検知し、ストップバルブを作動させてオイルFの注入経路からの流出を遮断するようにしてもよい。さらに、圧力センサが検出する油圧室46の内圧に追従して、油圧ポンプ52によるオイルFの圧送圧力を変化させる方式も可能である。この場合、逆方向スラストが発生したときには、オイルFの圧送圧力を増加させることで、オイルFの注入経路からの流出が遮断される。従って、逆止弁やストップバルブなどが不要となる。 Therefore, in the pressure supply means 50, the pressure discharge means 55 branches off from the injection path between the hydraulic pump 52 and the hydraulic chamber 46. The pressure discharge means 55 is connected to a tank or a discharge container (not shown) for storing the oil F supplied to the hydraulic pump 52. When the oil F supplied to the hydraulic chamber 46 is the same as the lubricating oil used in the transmission 1, the oil F can be discharged into the transmission 1. As the pressure discharge means 55, for example, an opening / closing means such as an electromagnetic valve or a check valve, or a means for holding a differential pressure such as an orifice or a needle is used. In the case of a solenoid valve, a pressure sensor (not shown) for monitoring the internal pressure in the pressure supply means 50 (the internal pressure of the hydraulic chamber 46 and the hole 51, the pumping pressure of the hydraulic pump 52) is further provided, and the internal pressure rises excessively. When this occurs, the solenoid valve is opened by the output of the pressure sensor, so that the oil F is discharged and the internal pressure is made appropriate. In the case of a check valve, it is set in advance so that it opens when the internal pressure in the pressure supply means 50 exceeds a certain pressure. In the case of an orifice or needle, it is set so that an appropriate internal pressure can be obtained. Further, instead of the check valve, a stop valve constituted by an electromagnetic valve or the like is provided, and on the other hand, a pressure sensor is disposed in the hydraulic chamber 46, and the reverse thrust is detected by the internal pressure of the hydraulic chamber 46 detected by the pressure sensor. Generation may be detected, and a stop valve may be operated to block outflow of oil F from the injection path. Furthermore, a method of changing the pressure of the oil F fed by the hydraulic pump 52 in accordance with the internal pressure of the hydraulic chamber 46 detected by the pressure sensor is also possible. In this case, when reverse thrust is generated, the pumping pressure of the oil F is increased to block outflow of the oil F from the injection path. Therefore, a check valve or a stop valve is not necessary.

なお、圧力排出手段55の配置場所は、当然、油圧ポンプ52と油圧室46とを結ぶオイルFの注入経路上に設けることも可能であるし、油圧ポンプ52自身が逆止弁を内蔵している場合は、それを流用することもできる。しかし、オイルFの注入経路や油圧ポンプ52のオイル圧送空間の弾性変形代が大きいと、その変形代の分だけオイルFの逆流が許容されてしまい、外輪42の定位置化効果が損なわれる懸念もある。従って、圧力排出手段55は、油圧室46になるべく近い位置に設けることが望ましいといえる。 Of course, the pressure discharge means 55 can be disposed on the injection path of the oil F connecting the hydraulic pump 52 and the hydraulic chamber 46, or the hydraulic pump 52 itself has a built-in check valve. If so, you can use it. However, if the elastic deformation allowance of the injection path of the oil F and the oil pumping space of the hydraulic pump 52 is large, the backflow of the oil F is allowed by the deformation allowance, and the effect of positioning the outer ring 42 may be impaired. There is also. Therefore, it can be said that the pressure discharge means 55 is desirably provided as close as possible to the hydraulic chamber 46.

次に、このように構成された実施例1に係る転がり軸受装置の動作について説明する。 Next, operation | movement of the rolling bearing apparatus based on Example 1 comprised in this way is demonstrated.

油圧ポンプ52による油圧により、油圧室46を介して外輪42にアキシャル方向の予圧が加えられる。この状態では、図2に示すように、外輪42は、円錐ころ43の傾斜した転動面上での分力を受けてアキシャル方向およびラジアル方向に変位し、ラジアル方向の予圧が外輪42の第1の外周面42bおよび第2の外周面42dが軸受ハウジング40の第1の内周面40aおよび第2の内周面40bにそれぞれ押し付けられて支持される。 A preload in the axial direction is applied to the outer ring 42 through the hydraulic chamber 46 by the hydraulic pressure from the hydraulic pump 52. In this state, as shown in FIG. 2, the outer ring 42 receives a component force on the inclined rolling surface of the tapered roller 43 and is displaced in the axial direction and the radial direction. The first outer peripheral surface 42b and the second outer peripheral surface 42d are pressed against and supported by the first inner peripheral surface 40a and the second inner peripheral surface 40b of the bearing housing 40, respectively.

主回転軸4は、前進駆動時には正方向に、後退駆動時には逆方向に回転する。軸受ハウジング40からの外輪42への予圧付与方向は、正方向回転時のギア30,31のスラストの向きに一致させてある。その結果、外輪42は、主回転軸4の正転時には、ギア30,31からのスラストを予圧付与方向と一致した正方向スラストとして受ける一方、主回転軸4の逆転時には、ギア30,31からのスラストを予圧付与方向と逆向きの逆方向スラストとして受ける。このため、自動車の後退時のように主回転軸4が逆転する場合は、ギア30,31のスラストが予圧付与方向に対し逆向きにかかることになる。すると、この逆方向スラストにより外輪42が予圧付与方向と逆向きに押し戻される。外輪42が後退するためには、油圧室46の体積が減少しなければならず、油圧室46内のオイルFは孔51から油圧ポンプ52側へ流出する必要が生じる。油圧ポンプ52に逆流しようとするオイルFは、注入経路から圧力排出手段55を介してタンクまたは排出容器(図示せず)に排出されて貯留される。 The main rotating shaft 4 rotates in the forward direction during forward driving and in the reverse direction during backward driving. The direction in which the preload is applied from the bearing housing 40 to the outer ring 42 is made to coincide with the thrust direction of the gears 30 and 31 when rotating in the forward direction. As a result, the outer ring 42 receives the thrust from the gears 30 and 31 as a forward thrust that coincides with the preload application direction when the main rotating shaft 4 is rotated forward, while the outer ring 42 receives from the gears 30 and 31 when the main rotating shaft 4 is rotated reversely. This thrust is received as a reverse thrust opposite to the preload application direction. For this reason, when the main rotating shaft 4 rotates reversely, such as when the automobile is moving backward, the thrust of the gears 30 and 31 is applied in the opposite direction to the preload application direction. Then, the outer ring 42 is pushed back in the direction opposite to the preload application direction by the reverse direction thrust. In order for the outer ring 42 to move backward, the volume of the hydraulic chamber 46 must be reduced, and the oil F in the hydraulic chamber 46 needs to flow out from the hole 51 to the hydraulic pump 52 side. The oil F about to flow back to the hydraulic pump 52 is discharged from an injection path through a pressure discharge means 55 to a tank or a discharge container (not shown) and stored.

トランスミッション1の温度が比較的低温で一定に保たれていれば、外輪42の予圧付与方向の位置はあまり変化せず、油圧ポンプ52による油圧によって外輪42に与えられる予圧荷重のレベルもほぼ一定に保たれる。 If the temperature of the transmission 1 is kept relatively constant at a relatively low temperature, the position of the outer ring 42 in the preload application direction does not change much, and the level of the preload applied to the outer ring 42 by the hydraulic pressure from the hydraulic pump 52 is also substantially constant. Kept.

トランスミッション1が昇温すると、主回転軸4の線膨張係数よりも軸受ハウジング40の線膨張係数のほうが大きいため、軸受ハウジング40は、ラジアル方向に膨張し、第1の内周面40aおよび第2の内周面40bが拡径し、円錐ころ軸受9の軸受外径面である外輪42の第1の外周面42bおよび第2の外周面42cから離間しようとする。つまり、軸受ハウジング40の第1の内周面40aおよび第2の内周面40bによる外輪42の第1の外周面42bおよび第2の外周面42cの支持位置がラジアル方向外向きに変化し、軸受ハウジング40による外輪42への反力が減少する。すると、外輪42は、油圧ポンプ52による油圧である予圧と軸受ハウジング40からの反力とがバランスする位置まで移動する。その結果、温度上昇によって外輪42の第1の外周面42bおよび第2の外周面42cの支持位置が移動しても、外輪42に対する予圧はほぼ一定に保たれる。このため、軸受ハウジング40と主回転軸4との線膨張係数差に由来した、軸受ハウジング40の第1の内周面40aおよび第2の内周面40bによる外輪42の第1の外周面42bおよび第2の外周面42cの支持位置の温度変化が吸収される。つまり、予圧状態での円錐ころ軸受9のアキシャル隙間およびラジアル隙間の温度変化が大きくても、昇温時に予圧不足になることはなく、外輪42の内周軌道面42aは円錐ころ43の転動面から離間することはなく、ギア30,31のがたつきによる騒音等も抑制される。 When the temperature of the transmission 1 rises, the linear expansion coefficient of the bearing housing 40 is larger than the linear expansion coefficient of the main rotary shaft 4, so that the bearing housing 40 expands in the radial direction, and the first inner peripheral surface 40 a and the second The inner peripheral surface 40b of the outer peripheral surface of the tapered roller bearing 9 is increased in diameter, and tends to be separated from the first outer peripheral surface 42b and the second outer peripheral surface 42c of the outer ring 42 which is the bearing outer diameter surface of the tapered roller bearing 9. That is, the support positions of the first outer peripheral surface 42b and the second outer peripheral surface 42c of the outer ring 42 by the first inner peripheral surface 40a and the second inner peripheral surface 40b of the bearing housing 40 change radially outward, The reaction force applied to the outer ring 42 by the bearing housing 40 is reduced. Then, the outer ring 42 moves to a position where the preload that is the hydraulic pressure by the hydraulic pump 52 and the reaction force from the bearing housing 40 are balanced. As a result, even if the support positions of the first outer peripheral surface 42b and the second outer peripheral surface 42c of the outer ring 42 move due to the temperature rise, the preload on the outer ring 42 is kept substantially constant. For this reason, the first outer peripheral surface 42b of the outer ring 42 formed by the first inner peripheral surface 40a and the second inner peripheral surface 40b of the bearing housing 40 is derived from the difference in linear expansion coefficient between the bearing housing 40 and the main rotary shaft 4. And the temperature change of the support position of the 2nd outer peripheral surface 42c is absorbed. That is, even if the temperature change of the axial gap and the radial gap of the tapered roller bearing 9 in the preload state is large, the preload does not become insufficient when the temperature rises, and the inner circumferential raceway surface 42a of the outer ring 42 rolls the tapered roller 43. There is no separation from the surface, and noise caused by rattling of the gears 30 and 31 is also suppressed.

また、トランスミッション1が昇温すると、軸受ハウジング40がアキシャル方向に熱膨張し、油圧室46の内圧が減圧する。油圧室46の内圧の減圧が油圧室46内に設けられた圧力センサにより検出されると、油圧ポンプ52により油圧室46内のオイルFが加圧される。油圧室46内のオイルFが所定の圧力まで加圧されると、圧力センサにより検出され、油圧ポンプ52による油圧室46内のオイルFの加圧が停止される。 When the transmission 1 is heated, the bearing housing 40 is thermally expanded in the axial direction, and the internal pressure of the hydraulic chamber 46 is reduced. When a reduction in the internal pressure of the hydraulic chamber 46 is detected by a pressure sensor provided in the hydraulic chamber 46, the oil F in the hydraulic chamber 46 is pressurized by the hydraulic pump 52. When the oil F in the hydraulic chamber 46 is pressurized to a predetermined pressure, it is detected by the pressure sensor, and the pressurization of the oil F in the hydraulic chamber 46 by the hydraulic pump 52 is stopped.

一方、トランスミッション1の温度が低下すると、軸受ハウジング40がアキシャル方向およびラジアル方向に熱収縮し、油圧室46が縮小して、油圧室46内のオイルFは加圧される。油圧室46内のオイルFが加圧されると、逆止弁等でなる圧力排出手段55が作動して、オイルFが排出されてタンクまたは排出容器(図示せず)に貯留される。 On the other hand, when the temperature of the transmission 1 is lowered, the bearing housing 40 is thermally contracted in the axial direction and the radial direction, the hydraulic chamber 46 is contracted, and the oil F in the hydraulic chamber 46 is pressurized. When the oil F in the hydraulic chamber 46 is pressurized, the pressure discharge means 55 including a check valve is operated, and the oil F is discharged and stored in a tank or a discharge container (not shown).

なお、図2に示す状態から、主回転軸4に予圧付与方向とは逆方向(図3の矢印c参照)の衝撃荷重等が加えられた場合には、内輪41,円錐ころ43を介して外輪42が油圧ポンプ52による油圧に抗してアキシャル方向に移動することにより、衝撃荷重等が緩衝されて抑制される。この際、油圧室46内のオイルFは、孔51から油圧ポンプ52側に流出し、注入経路から圧力排出手段55を介してタンクまたは排出容器(図示せず)に排出して貯留される。また、外輪42の移動範囲を越える過大な衝撃荷重等が加えられるような最悪の場合でも、図3に示すように、外輪42の右端面42eが軸受ハウジング40(ケース1M)の内壁面40dに当接して衝撃荷重等が受け止められることになる。 2, when an impact load or the like in the direction opposite to the preload application direction (see arrow c in FIG. 3) is applied to the main rotating shaft 4 via the inner ring 41 and the tapered roller 43. When the outer ring 42 moves in the axial direction against the hydraulic pressure by the hydraulic pump 52, an impact load or the like is buffered and suppressed. At this time, the oil F in the hydraulic chamber 46 flows out from the hole 51 to the hydraulic pump 52 side, and is discharged and stored in a tank or a discharge container (not shown) through the pressure discharge means 55 from the injection path. Further, even in the worst case where an excessive impact load exceeding the moving range of the outer ring 42 is applied, as shown in FIG. 3, the right end surface 42e of the outer ring 42 is formed on the inner wall surface 40d of the bearing housing 40 (case 1M). The impact load or the like is received by contact.

実施例1によれば、外輪42の第2の外周面42cおよび第1の連結面42dと軸受ハウジング40の第1の内周面40aおよび第2の連結面40cとでオイルFを注入可能な油圧室46を形成し、油圧室46に油圧ポンプ52からオイルFを注入して、外輪42を予圧付与方向に付勢するようにしたので、温度上昇によって軸受ハウジング40が熱膨張しても予圧抜けを防止することができる。 According to the first embodiment, the oil F can be injected by the second outer peripheral surface 42c and the first connecting surface 42d of the outer ring 42 and the first inner peripheral surface 40a and the second connecting surface 40c of the bearing housing 40. Since the hydraulic chamber 46 is formed and oil F is injected into the hydraulic chamber 46 from the hydraulic pump 52 to urge the outer ring 42 in the preload application direction, the preload is applied even if the bearing housing 40 is thermally expanded due to a temperature rise. Omission can be prevented.

また、外輪42の第1の外周面42bおよび第2の外周面42cの周溝42f,42gにOリング44,45を圧縮形態で嵌合配置したことにより、油圧室46を2本のOリング44,45でシールすることができ、外輪42が軸受ハウジング40に対して傾きにくいという効果が得られる。加えて、温度上昇によって軸受ハウジング40が熱膨張しても、Oリング44,45の弾性復元によって軸受ハウジング40の第1の内周面40aおよび第2の内周面40bと外輪42の第1の外周面42bおよび第2の外周面42cとのラジアル隙間を塞ぐことができるので、オイルFが漏れにくいという効果が得られる。 Further, the O-rings 44 and 45 are fitted and arranged in a compressed form in the peripheral grooves 42f and 42g of the first outer peripheral surface 42b and the second outer peripheral surface 42c of the outer ring 42, so that the hydraulic chamber 46 has two O-rings. The outer ring 42 can be hardly tilted with respect to the bearing housing 40. In addition, even if the bearing housing 40 is thermally expanded due to a temperature rise, the first inner peripheral surface 40a and the second inner peripheral surface 40b of the bearing housing 40 and the first of the outer ring 42 are restored by elastic recovery of the O-rings 44 and 45. Since the radial gap between the outer peripheral surface 42b and the second outer peripheral surface 42c can be closed, the effect that the oil F hardly leaks is obtained.

さらに、転がり軸受が円錐ころ軸受9であるため、軸方向荷重を十分に受けることができ、軸受ハウジング40が熱膨張する際、外輪42と軸受ハウジング40とのラジアル隙間によって外輪42が円錐ころ43に対して傾こうとしても鍔がないため、鍔と円錐ころ43の端面とが異常接触して摩耗することがないという利点がある。 Further, since the rolling bearing is the tapered roller bearing 9, it can sufficiently receive an axial load, and when the bearing housing 40 is thermally expanded, the outer ring 42 is tapered by the radial gap between the outer ring 42 and the bearing housing 40. However, since there is no wrinkle even if it tries to incline, there is an advantage that the wrinkle and the end face of the tapered roller 43 do not wear abnormally.

図4は、本発明の実施例2に係る転がり軸受装置における円錐ころ軸受9’を示す要部断面図である。実施例1に係る転がり軸受装置においては、円錐ころ軸受9への圧力供給手段50として油圧室46に孔51を介して連通する油圧ポンプ52が備えられていたが、本実施例2に係る転がり軸受装置においては、円錐ころ軸受9’への圧力供給手段50として、さらに外輪42を予圧付与方向に付勢する圧縮コイルばね53を付加するようにしている。 FIG. 4 is a cross-sectional view of a main part showing a tapered roller bearing 9 ′ in the rolling bearing device according to the second embodiment of the present invention. In the rolling bearing device according to the first embodiment, the hydraulic pump 52 communicating with the hydraulic chamber 46 through the hole 51 is provided as the pressure supply means 50 to the tapered roller bearing 9. However, the rolling bearing device according to the second embodiment is provided. In the bearing device, a compression coil spring 53 for urging the outer ring 42 in the preload application direction is added as a pressure supply means 50 to the tapered roller bearing 9 ′.

圧縮コイルばね53は、油圧室46内に配置され、一端を外輪42の第1の連結面42dに、他端を軸受ハウジング40の第2の連結面40cにそれぞれ当接されている。圧縮コイルばね53は、油圧ポンプ52による油圧と協働して、外輪42を予圧付与方向に付勢する。圧縮コイルばね53を油圧室46内に配置することで、圧力供給手段50の大幅なコンパクト化が図られている。すなわち、圧力供給手段50として、油圧室46と圧縮コイルばね53とを併用する構成では、所定の予圧荷重を得る場合に、圧縮コイルばね53のばね反発力の分だけ、油圧ポンプ52による油圧を低下させることができ(小型の油圧ポンプ52を使用することができ)、圧力供給手段50を全体としてコンパクトに構成することができる。特に、圧縮コイルばね53が油圧室46内に配設されるので、外観上はスペースをとることがなく、この点からも省スペース化が図られることになる。圧縮コイルばね53は、油圧室46にてオイルFと常時接触する状態で配置されることを考慮すれば、吸油により膨潤の懸念があるゴムやプラスチック等で構成するよりは、ばね鋼やベリリウム銅などのばね用金属材料で構成するほうが耐久性の観点で有利である。 The compression coil spring 53 is disposed in the hydraulic chamber 46, and one end thereof is in contact with the first connection surface 42 d of the outer ring 42 and the other end is in contact with the second connection surface 40 c of the bearing housing 40. The compression coil spring 53 urges the outer ring 42 in the preload application direction in cooperation with the hydraulic pressure from the hydraulic pump 52. By disposing the compression coil spring 53 in the hydraulic chamber 46, the pressure supply means 50 is greatly reduced in size. That is, in the configuration in which the hydraulic chamber 46 and the compression coil spring 53 are used together as the pressure supply means 50, when a predetermined preload is obtained, the hydraulic pressure by the hydraulic pump 52 is increased by the amount of the spring repulsion force of the compression coil spring 53. The pressure can be reduced (a small hydraulic pump 52 can be used), and the pressure supply means 50 can be made compact as a whole. In particular, since the compression coil spring 53 is disposed in the hydraulic chamber 46, there is no space in appearance, and space can be saved from this point. Considering that the compression coil spring 53 is disposed in a state where it is always in contact with the oil F in the hydraulic chamber 46, it is preferable to use spring steel or beryllium copper rather than rubber or plastic that may swell due to oil absorption. It is more advantageous from the viewpoint of durability to use a metal material for springs.

なお、その他の特に言及しない部分は、実施例1における転がり軸受装置と同様に構成されているので、対応する部分に同一符号を付してそれらの詳細な説明を省略する。 In addition, since the part which is not mentioned especially is comprised similarly to the rolling bearing apparatus in Example 1, the same code | symbol is attached | subjected to a corresponding part and those detailed description is abbreviate | omitted.

次に、このように構成された実施例2に係る転がり軸受装置の動作について、実施例1に係る転がり軸受装置の動作と相違する点を中心に説明する。 Next, the operation of the rolling bearing device according to the second embodiment configured as described above will be described with a focus on differences from the operation of the rolling bearing device according to the first embodiment.

油圧ポンプ52による油圧および圧縮コイルばね53によるばね反発力により外輪42にアキシャル方向の予圧が加えられている状態では、図4に示すように、外輪42は、円錐ころ43の傾斜した転動面上での分力を受けてアキシャル方向およびラジアル方向に変位し、ラジアル方向の予圧が外輪42の第1の外周面42bおよび第2の外周面42dが軸受ハウジング40の第1の内周面40aおよび第2の内周面40bにそれぞれ押し付けられて支持される。 In the state where the axial ring preload is applied to the outer ring 42 by the hydraulic pressure from the hydraulic pump 52 and the spring repulsive force from the compression coil spring 53, the outer ring 42 has an inclined rolling surface of the tapered roller 43 as shown in FIG. 4. The axial force and the radial direction are displaced in response to the above-described component force, and the first outer peripheral surface 42b and the second outer peripheral surface 42d of the outer ring 42 are displaced in the radial direction by the preload in the radial direction. And supported by being pressed against the second inner peripheral surface 40b.

トランスミッション1の温度が比較的低温で一定に保たれていれば、外輪42の予圧付与方向の位置はあまり変化せず、油圧ポンプ52による油圧および圧縮コイルばね53によるばね反発力によって外輪42に与えられる予圧荷重のレベルもほぼ一定に保たれる。 If the temperature of the transmission 1 is kept relatively constant at a relatively low temperature, the position of the outer ring 42 in the preload application direction does not change so much and is given to the outer ring 42 by the hydraulic pressure by the hydraulic pump 52 and the spring repulsive force by the compression coil spring 53. The level of preload applied is also kept almost constant.

トランスミッション1が昇温すると、主回転軸4の線膨張係数よりも軸受ハウジング40の線膨張係数のほうが大きいため、軸受ハウジング40の第1の内周面40aおよび第2の内周面40bが拡径し、円錐ころ軸受9’の軸受外径面である外輪42の第1の外周面42bおよび第2の外周面42cから離間しようとする。つまり、軸受ハウジング40の第1の内周面40aおよび第2の内周面40bによる外輪42の第1の外周面42bおよび第2の外周面42cの支持位置がラジアル方向外向きに変化し、軸受ハウジング40による外輪42への反力が減少する。すると、外輪42は、油圧ポンプ52による油圧および圧縮コイルばね53によるばね反発力の和である予圧と軸受ハウジング40からの反力とがバランスする位置まで移動する。その結果、温度上昇によって外輪42の第1の外周面42bおよび第2の外周面42cの支持位置が移動しても、外輪42に対する予圧はほぼ一定に保たれる。このため、軸受ハウジング40と主回転軸4との線膨張係数差に由来した、軸受ハウジング40の第1の内周面40aおよび第2の内周面40bによる外輪42の第1の外周面42bおよび第2の外周面42cの支持位置の温度変化が吸収される。つまり、予圧状態での円錐ころ軸受9’のアキシャル隙間およびラジアル隙間の温度変化が大きくても、昇温時に予圧不足になることはなく、外輪42の内周軌道面42aは円錐ころ43の転動面から離間することはなく、ギア30,31のがたつきによる騒音等も抑制される。 When the temperature of the transmission 1 rises, the linear expansion coefficient of the bearing housing 40 is larger than the linear expansion coefficient of the main rotating shaft 4, so that the first inner peripheral surface 40 a and the second inner peripheral surface 40 b of the bearing housing 40 are expanded. The outer peripheral surface 42b and the second outer peripheral surface 42c of the outer ring 42, which are the outer diameter surfaces of the tapered roller bearing 9 ', are going to be separated from each other. That is, the support positions of the first outer peripheral surface 42b and the second outer peripheral surface 42c of the outer ring 42 by the first inner peripheral surface 40a and the second inner peripheral surface 40b of the bearing housing 40 change radially outward, The reaction force applied to the outer ring 42 by the bearing housing 40 is reduced. Then, the outer ring 42 moves to a position where the preload, which is the sum of the hydraulic pressure by the hydraulic pump 52 and the spring repulsive force by the compression coil spring 53, and the reaction force from the bearing housing 40 are balanced. As a result, even if the support positions of the first outer peripheral surface 42b and the second outer peripheral surface 42c of the outer ring 42 move due to the temperature rise, the preload on the outer ring 42 is kept substantially constant. For this reason, the first outer peripheral surface 42b of the outer ring 42 formed by the first inner peripheral surface 40a and the second inner peripheral surface 40b of the bearing housing 40 is derived from the difference in linear expansion coefficient between the bearing housing 40 and the main rotary shaft 4. And the temperature change of the support position of the 2nd outer peripheral surface 42c is absorbed. That is, even if the temperature change of the axial gap and the radial gap of the tapered roller bearing 9 ′ in the preload state is large, the preload does not become insufficient when the temperature rises, and the inner circumferential raceway surface 42 a of the outer ring 42 does not rotate the tapered roller 43. There is no separation from the moving surface, and noise caused by rattling of the gears 30 and 31 is also suppressed.

また、トランスミッション1が昇温すると、軸受ハウジング40がアキシャル方向およびラジアル方向に熱膨張し、油圧室46の内圧が減圧する。油圧室46の内圧の減圧が油圧室46内に設けられた圧力センサにより検出されると、油圧ポンプ52により油圧室46内のオイルFが加圧される。油圧室46内のオイルFが所定の圧力まで加圧されると、油圧室46内に設けられた圧力センサにより検出され、油圧ポンプ52による油圧室46内のオイルFの加圧が停止される。 When the transmission 1 is heated, the bearing housing 40 is thermally expanded in the axial direction and the radial direction, and the internal pressure of the hydraulic chamber 46 is reduced. When a reduction in the internal pressure of the hydraulic chamber 46 is detected by a pressure sensor provided in the hydraulic chamber 46, the oil F in the hydraulic chamber 46 is pressurized by the hydraulic pump 52. When the oil F in the hydraulic chamber 46 is pressurized to a predetermined pressure, it is detected by a pressure sensor provided in the hydraulic chamber 46, and the pressurization of the oil F in the hydraulic chamber 46 by the hydraulic pump 52 is stopped. .

一方、トランスミッション1の温度が低下すると、軸受ハウジング40がアキシャル方向およびラジアル方向に熱収縮し、油圧室46内のオイルFが加圧される。油圧室46内のオイルFが加圧されると、逆止弁等でなる圧力排出手段55が作動して、オイルFが排出されてタンクまたは排出容器(図示せず)に貯留される。 On the other hand, when the temperature of the transmission 1 is lowered, the bearing housing 40 is thermally contracted in the axial direction and the radial direction, and the oil F in the hydraulic chamber 46 is pressurized. When the oil F in the hydraulic chamber 46 is pressurized, the pressure discharge means 55 including a check valve is operated, and the oil F is discharged and stored in a tank or a discharge container (not shown).

なお、図2に示す状態から、主回転軸4に予圧付与方向とは逆方向の衝撃荷重等が加えられた場合には、内輪41,円錐ころ43を介して外輪42が油圧ポンプ52による油圧および圧縮コイルばね53によるばね反発力の和である予圧に抗してアキシャル方向に移動することにより、衝撃荷重等が緩衝されて抑制される。この際、油圧室46内のオイルFは、孔51から油圧ポンプ52側に流出し、注入経路から逆止弁等でなる圧力排出手段55を介してタンクまたは排出容器(図示せず)に排出して貯留される。また、外輪42の移動範囲を越える過大な衝撃荷重等が加えられるような最悪の場合でも、外輪42の右端面42eが軸受ハウジング40(ケース1M)の内壁面40dに当接して衝撃荷重等が受け止められることになる。 In the state shown in FIG. 2, when an impact load or the like in the direction opposite to the preloading direction is applied to the main rotating shaft 4, the outer ring 42 is hydraulically operated by the hydraulic pump 52 via the inner ring 41 and the tapered roller 43. Further, by moving in the axial direction against the preload which is the sum of the spring repulsion force by the compression coil spring 53, the impact load or the like is buffered and suppressed. At this time, the oil F in the hydraulic chamber 46 flows out from the hole 51 to the hydraulic pump 52 side, and is discharged from the injection path to a tank or a discharge container (not shown) through the pressure discharge means 55 including a check valve. And stored. Even in the worst case where an excessive impact load exceeding the movement range of the outer ring 42 is applied, the right end surface 42e of the outer ring 42 abuts against the inner wall surface 40d of the bearing housing 40 (case 1M) and the impact load or the like is generated. It will be accepted.

実施例2によれば、実施例1において得られる効果に加えて、油圧室46内に圧縮コイルばね53を配設するようにしたので、油圧ポンプ52による油圧ばかりでなく、圧縮コイルばね53によるばね反発力が予圧として外輪42に加えられるため、強い逆方向スラストを受けた場合でも、予圧不足状態となることがないという効果が得られる。特に、油圧室46内に圧縮コイルばね53を追加して配設するようにしただけなので、極めて簡単な構造で外輪42に付与される予圧を強化することができるという利点がある。 According to the second embodiment, in addition to the effects obtained in the first embodiment, since the compression coil spring 53 is disposed in the hydraulic chamber 46, not only the hydraulic pressure by the hydraulic pump 52 but also the compression coil spring 53 is used. Since the spring repulsion force is applied to the outer ring 42 as a preload, even when a strong reverse thrust is applied, an effect that the preload is not insufficient is obtained. In particular, since only the compression coil spring 53 is additionally provided in the hydraulic chamber 46, there is an advantage that the preload applied to the outer ring 42 can be enhanced with a very simple structure.

なお、上記各実施例では、転がり軸受装置の軸方向一方側の円錐ころ軸受9,9’にのみ油圧ポンプ52および圧力排出手段55(加えて、圧縮コイルばね53)を含む圧力供給手段50を設けるようにしたが、図5に示すように、円錐ころ軸受8にも同様の圧力供給手段50を設けることができる。このようにしても、各実施例と同様の効果が得られることはいうまでもない。この場合、油圧ポンプ52と圧力排出手段55とは、円錐ころ軸受8の圧力供給手段50と円錐ころ軸受9の圧力供給手段50とにそれぞれ設けることも、一つのものを共通に使用することも、一方を共通に、他方を別々にすることもできる。 In each of the above-described embodiments, the pressure supply means 50 including the hydraulic pump 52 and the pressure discharge means 55 (in addition to the compression coil spring 53) is provided only on the tapered roller bearings 9 and 9 'on one axial side of the rolling bearing device. However, as shown in FIG. 5, the tapered roller bearing 8 can be provided with the same pressure supply means 50. Even if it does in this way, it cannot be overemphasized that the effect similar to each Example is acquired. In this case, the hydraulic pump 52 and the pressure discharge means 55 may be provided in the pressure supply means 50 of the tapered roller bearing 8 and the pressure supply means 50 of the tapered roller bearing 9, respectively, or one may be used in common. , One can be common and the other can be separate.

以上、本発明の各実施例について説明したが、これらはあくまでも例示にすぎず、本発明はこれらに限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、当業者の知識に基づく種々の変更が可能である。 As mentioned above, although each example of the present invention was described, these are only illustrations, the present invention is not limited to these, and the knowledge of those skilled in the art can be used without departing from the spirit of the claims. Various modifications based on this are possible.

例えば、各実施例では、トランスミッション1に用いられる転がり軸受装置を例にとって説明したが、四輪駆動車の各輪への駆動分配軸用ギアユニット等の他の装置に用いられる転がり軸受装置にも、本発明を同様に適用できることはいうまでもない。 For example, in each of the embodiments, the rolling bearing device used for the transmission 1 has been described as an example, but the rolling bearing device used for other devices such as a gear unit for a drive distribution shaft to each wheel of a four-wheel drive vehicle may also be used. Needless to say, the present invention can be similarly applied.

また、各実施例では、転がり軸受装置に使用される転がり軸受を円錐ころ軸受としたが、アンギュラ玉軸受,深みぞ玉軸受等の予圧をかけて使用される他の転がり軸受であっても、本発明を同様に適用できることはいうまでもない。 In each embodiment, the rolling bearing used in the rolling bearing device is a tapered roller bearing, but other rolling bearings that are used with a preload such as an angular ball bearing, a deep groove ball bearing, Needless to say, the present invention can be similarly applied.

本発明の実施例1に係る転がり軸受装置が配設されたトランスミッションの一例を示す要部断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an essential part cross-sectional view illustrating an example of a transmission in which a rolling bearing device according to a first embodiment of the present invention is disposed. 本実施例1における円錐ころ軸受の要部断面図。FIG. 3 is a cross-sectional view of a main part of the tapered roller bearing in the first embodiment. 本実施例1における円錐ころ軸受の要部断面図。FIG. 3 is a cross-sectional view of a main part of the tapered roller bearing in the first embodiment. 本発明の実施例2に係る転がり軸受装置における円錐ころ軸受の要部断面図。Sectional drawing of the principal part of the tapered roller bearing in the rolling bearing apparatus which concerns on Example 2 of this invention. 本発明の実施例1に係る転がり軸受装置が配設されたトランスミッションの変形例を示す要部断面図。The principal part sectional drawing which shows the modification of the transmission by which the rolling bearing apparatus which concerns on Example 1 of this invention was arrange | positioned. 従来の転がり軸受装置における円錐ころ軸受の要部断面図。Sectional drawing of the principal part of the tapered roller bearing in the conventional rolling bearing apparatus. 従来の転がり軸受装置における円錐ころ軸受の要部断面図。Sectional drawing of the principal part of the tapered roller bearing in the conventional rolling bearing apparatus.

符号の説明Explanation of symbols

1 トランスミッション
3 入力軸
4 主回転軸
8,9,9’ 円錐ころ軸受(転がり軸受)
40 軸受ハウジング(ハウジング)
40a 第1の内周面
40b 第2の内周面
40c 第2の連結面
40d 内壁面
41 内輪
42 外輪
42a 内周軌道面
42b 第1の外周面
42c 第2の外周面
42d 第1の連結面
42e 右端面
42f,42g 周溝
43 円錐ころ(転動体)
44,45 Oリング
46 油圧室(空間)
50 圧力供給手段
51 孔
52 油圧ポンプ
53 圧縮コイルばね
55 圧力排出手段
F オイル(液状圧力媒体)
1 Transmission 3 Input shaft 4 Main rotating shaft 8, 9, 9 'Tapered roller bearing (rolling bearing)
40 Bearing housing (housing)
40a First inner peripheral surface 40b Second inner peripheral surface 40c Second connecting surface 40d Inner wall surface 41 Inner ring 42 Outer ring 42a Inner peripheral raceway surface 42b First outer peripheral surface 42c Second outer peripheral surface 42d First connecting surface 42e Right end face 42f, 42g Circumferential groove 43 Tapered roller (rolling element)
44, 45 O-ring 46 Hydraulic chamber (space)
50 Pressure supply means 51 Hole 52 Hydraulic pump 53 Compression coil spring 55 Pressure discharge means F Oil (liquid pressure medium)

Claims (4)

内輪と、転動体と、前記転動体からの軸方向一方側向きの荷重を負荷可能な内周軌道面,軸方向他方側に形成された第1の外周面,軸方向一方側に形成され前記第1の外周面よりも小径の第2の外周面,および前記第1の外周面と前記第2の外周面とを繋ぐ第1の連結面を備えた外輪とを備え、
前記第1の外周面および前記第2の外周面に周溝が形成されていることを特徴とする転がり軸受。
An inner ring, a rolling element, an inner circumferential raceway surface capable of applying a load in one axial direction from the rolling element, a first outer circumferential surface formed on the other axial side, and formed on one axial side A second outer peripheral surface having a smaller diameter than the first outer peripheral surface, and an outer ring provided with a first connection surface connecting the first outer peripheral surface and the second outer peripheral surface;
A rolling bearing, wherein a circumferential groove is formed in the first outer peripheral surface and the second outer peripheral surface.
前記転動体は、円錐ころであり、前記円錐ころの両端面が前記外輪の内周軌道面に接触しないことを特徴とする請求項1記載の転がり軸受。 The rolling bearing according to claim 1, wherein the rolling element is a tapered roller, and both end surfaces of the tapered roller do not contact the inner circumferential raceway surface of the outer ring. 第1の線膨張係数を有するハウジング,第1の線膨張係数よりも小さい第2の線膨張係数を有する軸,前記軸に嵌合される内輪,第1の線膨張係数よりも小さい第3の線膨張係数を有し前記ハウジングに嵌合される外輪,および前記内輪と前記外輪との間に介挿されて転動する転動体を備えた転がり軸受を、接触角が軸方向内方から軸方向外方に向けて拡径するように2つ配設する転がり軸受装置であって、
少なくとも一方の転がり軸受の前記外輪は、軸方向内方側に形成される第1の外周面,軸方向外方側に前記第1の外周面よりも小径に形成される第2の外周面,および前記第1の外周面と前記第2の外周面とを繋ぐ第1の連結面を備え、前記第1の外周面および前記第2の外周面には周溝が形成され、前記第1の外周面の周溝および前記第2の外周面の周溝にはそれぞれ第3の線膨張係数より大きい第4の線膨張係数を有するOリングを嵌合しており、
前記ハウジングは、軸方向内方側に形成され前記第1の外周面に径方向に対向する第1の内周面,軸方向外方側に形成され前記第1の内周面より小径かつ前記第2の外周面に径方向に対向する第2の内周面,および前記第1の内周面と前記第2の内周面とを繋ぐ第2の連結面を備え、前記第1の内周面,前記第2の外周面,前記第1の連結面,および前記第2の連結面で形成可能な空間に開口し、圧力供給手段に連通する孔が形成されていることを特徴とする転がり軸受装置。
A housing having a first linear expansion coefficient, a shaft having a second linear expansion coefficient smaller than the first linear expansion coefficient, an inner ring fitted to the shaft, and a third smaller than the first linear expansion coefficient A rolling bearing provided with an outer ring having a linear expansion coefficient and fitted into the housing, and a rolling element that is inserted between the inner ring and the outer ring to roll, the contact angle of the rolling bearing from the inner side in the axial direction. Two rolling bearing devices arranged so as to expand toward the outside in the direction,
The outer ring of at least one rolling bearing has a first outer peripheral surface formed on the inner side in the axial direction, a second outer peripheral surface formed on the outer side in the axial direction with a smaller diameter than the first outer peripheral surface, And a first connecting surface that connects the first outer peripheral surface and the second outer peripheral surface, and a circumferential groove is formed in the first outer peripheral surface and the second outer peripheral surface, An O-ring having a fourth linear expansion coefficient larger than the third linear expansion coefficient is fitted in the peripheral groove on the outer peripheral surface and the peripheral groove on the second outer peripheral surface,
The housing is formed on the inner side in the axial direction and has a first inner peripheral surface facing the first outer peripheral surface in the radial direction, formed on the outer side in the axial direction and having a smaller diameter than the first inner peripheral surface. A second inner peripheral surface opposed to the second outer peripheral surface in the radial direction; and a second connecting surface connecting the first inner peripheral surface and the second inner peripheral surface; A hole that opens to a space that can be formed by a peripheral surface, the second outer peripheral surface, the first connection surface, and the second connection surface and that communicates with the pressure supply means is formed. Rolling bearing device.
前記転がり軸受は、円錐ころ軸受であり、前記転動体の両端面が前記外輪の内周軌道面に接触しないことを特徴とする請求項3記載の転がり軸受装置。 The rolling bearing device according to claim 3, wherein the rolling bearing is a tapered roller bearing, and both end surfaces of the rolling element do not contact an inner circumferential raceway surface of the outer ring.
JP2006283758A 2006-10-18 2006-10-18 Rolling bearing and rolling bearing device Pending JP2008101673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283758A JP2008101673A (en) 2006-10-18 2006-10-18 Rolling bearing and rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283758A JP2008101673A (en) 2006-10-18 2006-10-18 Rolling bearing and rolling bearing device

Publications (1)

Publication Number Publication Date
JP2008101673A true JP2008101673A (en) 2008-05-01

Family

ID=39436156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283758A Pending JP2008101673A (en) 2006-10-18 2006-10-18 Rolling bearing and rolling bearing device

Country Status (1)

Country Link
JP (1) JP2008101673A (en)

Similar Documents

Publication Publication Date Title
EP2050974B1 (en) Rolling bearing apparatus
JP5488296B2 (en) Rolling bearing and camshaft device
EP2085626B1 (en) Rolling bearing and rolling bearing device
JP2016022753A (en) Electric actuator
WO2013024676A1 (en) Planetary gear device
JP4449716B2 (en) Bearing preload mechanism
JP6111043B2 (en) Electric linear actuator
JP2008106923A (en) Planetary-roller-type transmission
JP2016014437A (en) Electric actuator
JP2008101674A (en) Rolling bearing device
JP2007292093A (en) Deep groove ball bearing
JP2008101673A (en) Rolling bearing and rolling bearing device
JP4905220B2 (en) Rolling bearing device
JP5034531B2 (en) Rolling bearing device
JP2008121788A (en) Roller bearing and roller bearing device
JP5005207B2 (en) Tapered roller bearing
JP2008196570A (en) Rolling bearing device
JP4935340B2 (en) Rolling bearing device
JP2008121787A (en) Roller bearing and roller bearing device
JP2006161991A (en) Thrust roller bearing
JP2008185191A (en) Rolling bearing device
WO2003046416A1 (en) Bevel gear transmission
CN2937619Y (en) Self-lubricating high temp resisting bearing
JP4745085B2 (en) Cylindrical roller bearing for transmission
JP4748076B2 (en) Rolling bearing device