JP2008101674A - Rolling bearing device - Google Patents

Rolling bearing device Download PDF

Info

Publication number
JP2008101674A
JP2008101674A JP2006283759A JP2006283759A JP2008101674A JP 2008101674 A JP2008101674 A JP 2008101674A JP 2006283759 A JP2006283759 A JP 2006283759A JP 2006283759 A JP2006283759 A JP 2006283759A JP 2008101674 A JP2008101674 A JP 2008101674A
Authority
JP
Japan
Prior art keywords
outer ring
tapered roller
bag
bearing
elastic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006283759A
Other languages
Japanese (ja)
Inventor
Kazuyuki Kotani
一之 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2006283759A priority Critical patent/JP2008101674A/en
Publication of JP2008101674A publication Critical patent/JP2008101674A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent losing pre-load due to temperature rise of a rolling bearing device by impelling an outer ring of at least one rolling bearing axially inward by a bag shape elastic member communicating to a pressure supply means and including a sealed bag shape part. <P>SOLUTION: When axial pre-load is applied to a tapered roller bearing 9, the outer ring 42 receives a component of force on a tilted rolling contact surface of a tapered roller 43 and displaces in a radial direction, and the outer circumference surface 42b is pressed against an inner circumference surface 40a of a bearing housing 40 to support the pre-load. If the temperature of the tapered roller bearing 9 rises, light metal bearing housing 40 expands more greatly than a steel main rotary shaft 4 having the tapered roller bearing 9 attached thereto. However, since hydraulic pressure is applied axially inward on the outer ring from the bag shape elastic member 53, an inner circumference raceway surface 42a of the outer ring 42 does not separate from a rolling contact surface of the tapered roller 43. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は転がり軸受装置に関し、特に円錐ころ軸受,アンギュラ玉軸受などの予圧をかけて使用される転がり軸受装置に関する。 The present invention relates to a rolling bearing device, and more particularly to a rolling bearing device that is used with a preload such as a tapered roller bearing or an angular ball bearing.

円錐ころ軸受,アンギュラ玉軸受などの予圧をかけて使用される転がり軸受装置では、内輪および外輪をそれぞれ軸および軸受ハウジングに嵌合し、その後に予圧を調整する。軸と軸受ハウジングとが同じ材料であれば、温度変化による寸法変化も同じで大きな予圧の変化はなく、組み込み時に設定した予圧で運転される。 In a rolling bearing device that is used with a preload, such as a tapered roller bearing or an angular ball bearing, an inner ring and an outer ring are fitted into a shaft and a bearing housing, respectively, and then the preload is adjusted. If the shaft and the bearing housing are made of the same material, the dimensional change due to temperature change is the same, there is no significant change in preload, and operation is performed with the preload set at the time of assembly.

例えば、自動車用のトランスミッションにおいては、その要所(例えば終減速装置部分)に円錐ころ軸受が採用されている。円錐ころ軸受は、コンパクトでありながら大容量で使用可能な利点があり、また、ギアチェンジ時等における衝撃荷重への耐久性にも優れている利点がある。しかし、円錐ころ軸受は、円錐ころの転動面が傾斜しているため、アキシャル隙間規制用の予圧が必要である。予圧により、円錐ころ軸受のアキシャル隙間を負に設定することで、ギアの噛合い精度も向上する。 For example, in a transmission for an automobile, a tapered roller bearing is adopted at its main point (for example, a final reduction gear portion). The tapered roller bearing has an advantage that it can be used with a large capacity while being compact, and also has an advantage of excellent durability against an impact load at the time of gear change or the like. However, the tapered roller bearing requires a preload for regulating the axial gap because the rolling surface of the tapered roller is inclined. By setting the axial clearance of the tapered roller bearing to be negative by preloading, the gear meshing accuracy is also improved.

ところで、近年は軽量化の一環として、トランスミッションのケースをAl合金などの軽金属で構成することが行われている。Alは構成材料中でも線膨張係数が最も高く(室温で約23.5×10−6/℃:以下、線膨張係数の単位はppm/℃と略記する)、回転軸を構成する鋼(Fe系材料)の線膨張係数(室温で約12ppm/℃)とは相当の差がある。自動車の使用環境上の可能性を考慮すると、トランスミッションひいては回転軸を支持する円錐ころ軸受がさらされる温度環境は、最大で−40℃以上150℃以下にも及び、軽金属製のケースの回転軸に対する相対的な寸法変化範囲も相当に大きい。この場合、寒冷地以外の通常の使用環境では、走行中にトランスミッションの温度は室温よりも高い、例えば50℃以上80℃以下の温度域に昇温する。運転されると、組み込み時から温度が上昇することになり、運転中の温度上昇により回転軸に比べて円錐ころ軸受の軸受ハウジングの寸法変化が大きく、予圧が抜けてしまうおそれがある。 By the way, in recent years, as a part of weight reduction, a transmission case is made of a light metal such as an Al alloy. Al has the highest linear expansion coefficient among the constituent materials (about 23.5 × 10 −6 / ° C. at room temperature: hereinafter, the unit of linear expansion coefficient is abbreviated as ppm / ° C.), and steel constituting the rotating shaft (Fe-based) There is a considerable difference from the linear expansion coefficient of the material (about 12 ppm / ° C. at room temperature). Considering the possibility of usage environment of automobiles, the temperature environment to which the tapered roller bearings supporting the transmission and the rotating shaft are exposed is -40 ° C or more and 150 ° C or less at the maximum. The relative dimensional change range is also quite large. In this case, in a normal use environment other than a cold region, the temperature of the transmission is raised to a temperature range higher than room temperature, for example, 50 ° C. or higher and 80 ° C. or lower during traveling. When it is operated, the temperature rises from the time of installation, and due to the temperature increase during operation, the dimensional change of the bearing housing of the tapered roller bearing is larger than that of the rotating shaft, and the preload may be lost.

例えば、図5に示すように、従来の転がり軸受装置における円錐ころ軸受109では、円錐ころ軸受109の外輪142は、外周面142bが、主回転軸104の構成材料よりも線膨張係数の大きい材料よりなる軸受ハウジング140の内周面140aと当接している。具体的には、主回転軸104が鋼製(例えば、機械構造用低合金鋼)であり、軸受ハウジング140が軽金属製(例えば、ダイキャスト用Al合金)である。 For example, as shown in FIG. 5, in the tapered roller bearing 109 in the conventional rolling bearing device, the outer ring 142 of the tapered roller bearing 109 has a material having a larger linear expansion coefficient than the constituent material of the main rotating shaft 104. The inner surface 140a of the bearing housing 140 is contacted. Specifically, the main rotating shaft 104 is made of steel (for example, low alloy steel for machine structure), and the bearing housing 140 is made of light metal (for example, die cast Al alloy).

図5に示すように、円錐ころ軸受109にアキシャル方向(矢印a方向)の予圧を加えると、外輪142は、円錐ころ143の傾斜した転動面上での分力を受けてアキシャル方向およびラジアル方向に変位し、ラジアル方向の予圧は、外周面142bが軸受ハウジング140の内周面140aに押し付けられて支持される。しかし、上記のごとく軸受ハウジング140を軽金属で構成する場合、図6に示すように、トランスミッションが昇温すると、軽金属製の軸受ハウジング140は、円錐ころ軸受109が取り付けられた主回転軸104よりも大きく膨張するから、外輪142の内周軌道面142aが円錐ころ143の転動面から矢印b方向に離間する。つまり、予圧状態での円錐ころ軸受109のアキシャル隙間およびラジアル隙間の温度変化が大きく、昇温時に予圧不足となってギアのがたつきによる騒音等も生じやすくなる問題がある。 As shown in FIG. 5, when a preload in the axial direction (arrow a direction) is applied to the tapered roller bearing 109, the outer ring 142 receives a component force on the inclined rolling surface of the tapered roller 143, and moves in the axial direction and radial direction. The preload in the radial direction is supported by pressing the outer peripheral surface 142b against the inner peripheral surface 140a of the bearing housing 140. However, when the bearing housing 140 is made of light metal as described above, as shown in FIG. 6, when the transmission is heated, the light metal bearing housing 140 is more than the main rotating shaft 104 to which the tapered roller bearing 109 is attached. Since it expands greatly, the inner circumferential raceway surface 142a of the outer ring 142 is separated from the rolling surface of the tapered roller 143 in the direction of arrow b. That is, there is a problem that the temperature change of the axial gap and the radial gap of the tapered roller bearing 109 in the preload state is large, and the preload is insufficient at the time of temperature rise, and noise due to rattling of the gear tends to occur.

このため、特許文献1では、軸受ハウジングまたは軸受ハウジング内に設けられて軸方向に当接した部材の内部に配設された複数のピストンからなる予圧機構を備える転がり軸受装置が提案されている。
特開昭57−33216号(第16頁、図6)
For this reason, Patent Document 1 proposes a rolling bearing device including a preload mechanism including a plurality of pistons disposed in a bearing housing or a member provided in the bearing housing and abutted in the axial direction.
JP-A-57-33216 (page 16, FIG. 6)

特許文献1に記載の転がり軸受装置は、軸の軸方向長さの温度変化が軸受ハウジングの軸方向長さの温度変化よりも小さい用途で用いた場合、ピストンで外輪を押すため、油圧が抜け、再度油圧がかかるときにピストンと外輪との当接点が変わることが生じ、そのまま油圧により軸方向に押すと、外輪が傾きやすく、外輪の内周軌道面と円錐ころとが傾いて接触し、外輪の内周軌道面と円錐ころとが傷つくおそれがある。 When the rolling bearing device described in Patent Document 1 is used in an application in which the temperature change of the axial length of the shaft is smaller than the temperature change of the axial length of the bearing housing, the outer ring is pushed by the piston, so that the hydraulic pressure is lost. When the hydraulic pressure is applied again, the contact point between the piston and the outer ring may change, and if it is pushed in the axial direction by the hydraulic pressure as it is, the outer ring tends to tilt, and the inner raceway surface of the outer ring and the tapered roller come into contact with each other, The inner raceway surface of the outer ring and the tapered roller may be damaged.

本発明の課題は、転がり軸受の外輪を袋状弾性部材を利用して予圧付与方向に付勢することにより、運転中の温度上昇による予圧抜けを防止するようにした転がり軸受装置を提供することにある。 An object of the present invention is to provide a rolling bearing device that prevents preload loss due to temperature rise during operation by urging the outer ring of the rolling bearing in the preloading direction using a bag-like elastic member. It is in.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

請求項1記載の転がり軸受装置は、第1の線膨張係数を有するハウジング,第1の線膨張係数よりも小さい第2の線膨張係数を有する軸,前記軸に嵌合される内輪,第1の線膨張係数よりも小さい第3の線膨張係数を有し前記ハウジングに嵌合される外輪,および前記内輪と前記外輪との間に介挿されて転動する転動体を備えた転がり軸受を、前記転動体と前記外輪との接触角が軸方向内方から軸方向外方に向けて拡径するように2つ配設する転がり軸受装置であって、圧力供給手段に連通するとともに密閉された袋状部を有する袋状弾性部材を備え、前記袋状弾性部材は少なくとも一方の転がり軸受の外輪を軸方向内方向きに付勢するように前記外輪に当接されることを特徴とする。請求項1記載の転がり軸受装置によれば、外輪に当接する袋状弾性部材の内部に圧力供給手段(油圧ポンプ)から液状圧力媒体(オイル)を注入することにより、外輪を予圧付与方向に付勢して、温度上昇により軸受ハウジングが熱膨張しても予圧抜けを防止することができる。また、袋状弾性部材を使用することにより、オイルが漏れることがなく、シールが不要であり、圧力供給手段の余分な圧力損失が生じないという利点がある。さらに、袋状弾性部材であるため、軸の軸線方向の衝撃荷重等に対して袋状弾性部材が変形することで、衝撃を吸収することができる。なお、接触角は、日本工業規格JISB0104−1991「転がり軸受用語」に記載の接触角[呼び接触角]で定義する。 The rolling bearing device according to claim 1 includes a housing having a first linear expansion coefficient, a shaft having a second linear expansion coefficient smaller than the first linear expansion coefficient, an inner ring fitted to the shaft, a first A rolling bearing having a third linear expansion coefficient smaller than that of the outer ring fitted into the housing, and a rolling element interposed between the inner ring and the outer ring to roll. The rolling bearing device includes two rolling bearing devices arranged such that a contact angle between the rolling element and the outer ring is increased from the inner side in the axial direction toward the outer side in the axial direction. The rolling bearing device communicates with the pressure supply means and is sealed. A bag-like elastic member having a bag-like portion, wherein the bag-like elastic member is brought into contact with the outer ring so as to urge the outer ring of at least one rolling bearing inward in the axial direction. . According to the rolling bearing device of the first aspect, the outer ring is attached in the preload application direction by injecting a liquid pressure medium (oil) from the pressure supply means (hydraulic pump) into the bag-like elastic member in contact with the outer ring. Thus, even if the bearing housing is thermally expanded due to a temperature rise, it is possible to prevent preload loss. Further, the use of the bag-like elastic member has an advantage that oil does not leak, a seal is unnecessary, and an extra pressure loss of the pressure supply means does not occur. Furthermore, since it is a bag-like elastic member, an impact can be absorbed when the bag-like elastic member is deformed with respect to an impact load or the like in the axial direction of the shaft. The contact angle is defined by the contact angle [nominal contact angle] described in Japanese Industrial Standards JISB 0104-1991 “Rolling Bearing Terms”.

請求項2記載の転がり軸受装置は、前記外輪には、軸方向内方に窪む凹部が形成され、前記凹部に前記袋状弾性部材が嵌入することを特徴とする。請求項2記載の転がり軸受装置によれば、低温時には軸受ハウジングと外輪とのラジアル隙間およびアキシャル隙間は小さいが、高温時には軸受ハウジングと外輪とのラジアル隙間およびアキシャル隙間は大きくなるので、高温時に袋状弾性部材の内部のオイルの圧力を低温時と同じにすることにより、袋状弾性部材は軸方向に伸び、径方向に振れにくくなるので、外輪が転動体と傾いて接触することを抑制することができる。 The rolling bearing device according to claim 2 is characterized in that a concave portion recessed inward in the axial direction is formed in the outer ring, and the bag-like elastic member is fitted into the concave portion. According to the rolling bearing device of the second aspect, the radial gap and the axial gap between the bearing housing and the outer ring are small at a low temperature, but the radial gap and the axial gap between the bearing housing and the outer ring are increased at a high temperature. Since the bag-like elastic member extends in the axial direction and hardly shakes in the radial direction by making the oil pressure inside the elastic member the same as when the temperature is low, the outer ring is prevented from tilting and contacting the rolling element. be able to.

転がり軸受の運転中の温度上昇により軸に比べて軸受ハウジングの寸法変化が大きくて予圧が抜けてしまうという問題を、圧力供給手段に連通するとともに密閉された袋状部を有する袋状弾性部材により、少なくとも一方の転がり軸受の外輪を軸方向内方向きに付勢することによって解消した。 The problem that the dimensional change of the bearing housing is larger than that of the shaft due to the temperature rise during the operation of the rolling bearing and the preload is released is caused by the bag-like elastic member communicating with the pressure supply means and having a sealed bag-like portion. The problem was solved by urging the outer ring of at least one of the rolling bearings inward in the axial direction.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1に係る転がり軸受装置が配設されたトランスミッション1の一例を示す要部断面図である。このトランスミッション1は、ケース1Mを有し、その内部にギアボックス7が配置されている。ケース1M内において、入力軸(回転軸線O2)3と主回転軸(出力軸:回転軸線O1)4とが、それぞれギアボックス7を貫通する形で配置され、該ギアボックス7内において各々の軸上に配置されたギア30,31が噛み合っている。そして、入力軸3の回転は、ギア30,31を介して主回転軸4に正逆両方向に伝達される。入力軸3の両端は、ケース1Mの内側に固定された円筒ころ軸受5および玉軸受6によりそれぞれ支持されている。一方、主回転軸4の両端は、いずれも円錐ころ軸受8,9により支持されている。このうち、軸方向一方側の円錐ころ軸受8は、ケース1Mと一体の軸受ハウジング20に当て止めされて固定されている。他方、軸方向他方側の円錐ころ軸受9は、ケース1Mと一体の軸受ハウジング40に挿入され、かつ、外輪42において、上記軸方向一方側に向けて予圧付勢されている。軸受ハウジング40は、トランスミッション1のケース1Mと一体である結果、軸受ハウジング20とも一体である。 FIG. 1 is a cross-sectional view of an essential part showing an example of a transmission 1 in which a rolling bearing device according to Embodiment 1 of the present invention is arranged. The transmission 1 has a case 1M in which a gear box 7 is disposed. In the case 1M, an input shaft (rotation axis O2) 3 and a main rotation shaft (output shaft: rotation axis O1) 4 are arranged so as to penetrate the gear box 7, and the respective axes in the gear box 7 are arranged. Gears 30 and 31 arranged on the top mesh with each other. The rotation of the input shaft 3 is transmitted to the main rotating shaft 4 in both forward and reverse directions via gears 30 and 31. Both ends of the input shaft 3 are respectively supported by a cylindrical roller bearing 5 and a ball bearing 6 fixed inside the case 1M. On the other hand, both ends of the main rotating shaft 4 are supported by tapered roller bearings 8 and 9. Among these, the tapered roller bearing 8 on the one axial side is fixed to a bearing housing 20 integrated with the case 1M. On the other hand, the tapered roller bearing 9 on the other side in the axial direction is inserted into a bearing housing 40 integral with the case 1M, and is pre-biased in the outer ring 42 toward the one side in the axial direction. The bearing housing 40 is also integrated with the bearing housing 20 as a result of being integrated with the case 1M of the transmission 1.

トランスミッション1では、ギアボックス7内に配置されるギアは、入力軸3上に配置される歯数の異なる複数枚の入力側ギア(符号31側)と、主回転軸4上の同様の複数枚の出力側ギア(符号30側)とであり、得るべき変速比ないし前進/後退の区別に応じて、噛合いの組み合わせが切替え可能に構成されている(例えば、マニュアルトランスミッション車の場合。他方、オートマチック車の場合は、ギア30,31が遊星ギア機構の遊星ギアと太陽ギアとに振り分けられた構造となる場合がある)。 In the transmission 1, the gears arranged in the gear box 7 are a plurality of input-side gears (reference numeral 31 side) arranged on the input shaft 3 and having the same number of teeth on the main rotating shaft 4. Output side gear (reference numeral 30 side), and the combination of meshes can be switched in accordance with the speed ratio to be obtained or the forward / reverse distinction (for example, in the case of a manual transmission vehicle, on the other hand). In the case of an automatic vehicle, the gears 30 and 31 may be divided into a planetary gear and a sun gear of a planetary gear mechanism).

円錐ころ軸受8は、トランスミッション1のケース1Mと一体の軸受ハウジング20と、主回転軸4と、主回転軸4に嵌合される内輪14と、軸受ハウジング20に嵌合される外輪15と、内輪14と外輪15との間に転動するように介挿された複数の円錐ころ16とから、その主要部が構成されている。円錐ころ軸受8は、円錐ころ16と外輪15との接触角が軸方向内方から軸方向外方に向けて拡径するように配設されている。 The tapered roller bearing 8 includes a bearing housing 20 integral with the case 1M of the transmission 1, a main rotating shaft 4, an inner ring 14 fitted to the main rotating shaft 4, an outer ring 15 fitted to the bearing housing 20, The main part is composed of a plurality of tapered rollers 16 inserted so as to roll between the inner ring 14 and the outer ring 15. The tapered roller bearing 8 is disposed such that the contact angle between the tapered roller 16 and the outer ring 15 increases from the axially inner side toward the axially outer side.

円錐ころ軸受8は、外輪15の外周面が、主回転軸4の構成材料よりも線膨張係数の大きい材料よりなる軸受ハウジング20の内周面と当接している。具体的には、主回転軸4が鋼(例えば、機械構造用低合金鋼)製であり、軸受ハウジング20が軽金属製である。軽金属はAlまたはMgのいずれかを主成分(含有率にて50質量%以上)とする金属であるが、加工性および耐食性の観点からAlまたはAl合金が使用される。Al合金としては、具体的にはダイキャスト用Al合金が使用される。本実施例1では、ケース1MもAl合金製であり、軸受ハウジング20は該ケース1Mの内面に一体化されてなる。また、円錐ころ軸受8は、転動体(円錐ころ16)および軌道輪(外輪15/内輪14)が、いずれも鋼(例えば、軸受鋼,はだ焼き鋼,浸炭鋼)製にて構成されている。自動車用のトランスミッション1における軸受使用環境温度は−40℃以上150℃以下の範囲(寒冷地および高速連続運転等を除いた通常到達温度は、50℃以上80℃以下)であり、軸受ハウジング20の構成主成分であるAlの線膨張係数(第1の線膨張係数)は23〜24ppm/℃、主回転軸4および円錐ころ軸受8の構成主成分であるFeの線膨張係数(第2の線膨張係数)は12〜13ppm/℃である。 In the tapered roller bearing 8, the outer peripheral surface of the outer ring 15 is in contact with the inner peripheral surface of the bearing housing 20 made of a material having a larger linear expansion coefficient than the constituent material of the main rotary shaft 4. Specifically, the main rotating shaft 4 is made of steel (for example, low alloy steel for machine structure), and the bearing housing 20 is made of light metal. The light metal is a metal containing either Al or Mg as a main component (content of 50% by mass or more), but Al or Al alloy is used from the viewpoint of workability and corrosion resistance. Specifically, an Al alloy for die casting is used as the Al alloy. In the first embodiment, the case 1M is also made of an Al alloy, and the bearing housing 20 is integrated with the inner surface of the case 1M. In the tapered roller bearing 8, the rolling elements (the tapered rollers 16) and the races (the outer ring 15 / the inner ring 14) are both made of steel (for example, bearing steel, case-hardened steel, carburized steel). Yes. The environmental temperature of the bearing in the automobile transmission 1 is in the range of −40 ° C. or higher and 150 ° C. or lower (normally reached temperature excluding cold regions and high-speed continuous operation is 50 ° C. or higher and 80 ° C. or lower). The linear expansion coefficient (first linear expansion coefficient) of Al which is a constituent main component is 23 to 24 ppm / ° C., and the linear expansion coefficient of Fe which is a main constituent constituent of the main rotary shaft 4 and the tapered roller bearing 8 (second linear expansion coefficient). (Expansion coefficient) is 12-13 ppm / ° C.

図2および図3は、本実施例1に係る転がり軸受装置における円錐ころ軸受9の要部拡大断面図である。 2 and 3 are enlarged cross-sectional views of a main part of the tapered roller bearing 9 in the rolling bearing device according to the first embodiment.

円錐ころ軸受9は、第1の線膨張係数を有する軽金属(例えば、ダイキャスト用Al合金)製の軸受ハウジング40と、第1の線膨張係数よりも小さい第2の線膨張係数を有する鋼(例えば、機械構造用低合金鋼)製の主回転軸4と、主回転軸4に嵌合される内輪41と、軸受ハウジング40に嵌合される第1の線膨張係数よりも小さい第3の線膨張係数を有する鋼(例えば、軸受鋼,はだ焼き鋼,浸炭鋼)製の外輪42と、内輪41と外輪42との間に介挿されて転動する複数の円錐ころ43とから、その主要部が構成されている。円錐ころ軸受9は、円錐ころ43と外輪42との接触角が軸方向内方から軸方向外方に向けて拡径するように配設されている。 The tapered roller bearing 9 includes a bearing housing 40 made of a light metal (for example, an aluminum alloy for die casting) having a first linear expansion coefficient, and a steel having a second linear expansion coefficient smaller than the first linear expansion coefficient ( For example, a main rotating shaft 4 made of a low alloy steel for machine structure), an inner ring 41 fitted to the main rotating shaft 4, and a third coefficient smaller than the first linear expansion coefficient fitted to the bearing housing 40. From an outer ring 42 made of steel having a linear expansion coefficient (for example, bearing steel, case-hardened steel, carburized steel), and a plurality of tapered rollers 43 that are inserted between the inner ring 41 and the outer ring 42 and roll. Its main part is composed. The tapered roller bearing 9 is arranged so that the contact angle between the tapered roller 43 and the outer ring 42 increases from the axially inner side toward the axially outer side.

外輪42は、円錐ころ43の転動面と当接する内周軌道面42aと、軸受ハウジング40の内周面40aと当接する外周面42bと、軸受ハウジング40の内壁面40bと対向する右端面42cとを備えている。右端面42cには、環状の凹部42dが形成され、凹部42d内には第3の線膨張係数より大きい第4の線膨張係数を有するゴム製の袋状弾性部材53における環状の袋状部53aが嵌合されている。なお、凹部42dは、必ずしも必須の構成要件ではない。すなわち、外輪42の右端面42cと軸受ハウジング40の内壁面40bとの間に袋状弾性部材53の袋状部53aを直接介在させるようにしても、本発明を実現することができる。ただし、主回転軸4に予圧付与方向とは逆方向(図3の矢印c参照)の衝撃荷重等が加えられた場合に、袋状弾性部材53の袋状部53aに破裂しないだけの強度が要求される。また、袋状弾性部材53は、油圧ポンプ52(図1参照)に連通する油圧パイプ54の開口端に結合される。油圧ポンプ52,袋状弾性部材53,および油圧パイプ54は、圧力供給手段50を構成している。袋状弾性部材53内の油圧が上昇して袋状部53aが膨張したときに、袋状部53aは、外輪42の凹部42dを押圧することになる。袋状弾性部材53に使用するゴムの材質は、オイルFとの接触を考慮して、機械的強度と耐油性とを両立できるゴム、例えばニトリルゴム(特に、水素化ニトリルゴム),アクリルゴム,シリコンゴムおよびフッ素ゴム等が好適である。 The outer ring 42 includes an inner peripheral raceway surface 42 a that contacts the rolling surface of the tapered roller 43, an outer peripheral surface 42 b that contacts the inner peripheral surface 40 a of the bearing housing 40, and a right end surface 42 c that faces the inner wall surface 40 b of the bearing housing 40. And. An annular recess 42d is formed in the right end surface 42c, and the annular bag-like portion 53a in the rubber-like bag-like elastic member 53 having a fourth linear expansion coefficient larger than the third linear expansion coefficient is formed in the recess 42d. Is fitted. Note that the recess 42d is not necessarily an essential component. That is, the present invention can also be realized by directly interposing the bag-shaped portion 53 a of the bag-shaped elastic member 53 between the right end surface 42 c of the outer ring 42 and the inner wall surface 40 b of the bearing housing 40. However, when an impact load or the like in the direction opposite to the preload application direction (see arrow c in FIG. 3) is applied to the main rotating shaft 4, the strength enough to prevent the bag-like portion 53a of the bag-like elastic member 53 from bursting. Required. The bag-like elastic member 53 is coupled to the open end of a hydraulic pipe 54 that communicates with the hydraulic pump 52 (see FIG. 1). The hydraulic pump 52, the bag-like elastic member 53, and the hydraulic pipe 54 constitute a pressure supply unit 50. When the oil pressure in the bag-like elastic member 53 rises and the bag-like portion 53a expands, the bag-like portion 53a presses the recess 42d of the outer ring 42. The material of the rubber used for the bag-like elastic member 53 is a rubber capable of achieving both mechanical strength and oil resistance in consideration of contact with the oil F, such as nitrile rubber (particularly hydrogenated nitrile rubber), acrylic rubber, Silicon rubber, fluorine rubber and the like are preferable.

軸受ハウジング40は、軸方向外方側に形成され外輪42の外周面42bに径方向に対向する内周面40aと、内壁面40bと、凹部42dに対向する孔40cとを備える。軸受ハウジング40は、Al合金製のケース1Mの内面に一体化されている結果、軸受ハウジング20とも一体である。 The bearing housing 40 includes an inner circumferential surface 40a that is formed on the outer side in the axial direction and radially faces the outer circumferential surface 42b of the outer ring 42, an inner wall surface 40b, and a hole 40c that faces the concave portion 42d. The bearing housing 40 is also integrated with the bearing housing 20 as a result of being integrated with the inner surface of the Al alloy case 1M.

また、軸受ハウジング40は、袋状弾性部材53にオイルFを注入するために、軸受ハウジング40(図1で見て右側壁)を貫通させる形で、オイルFの注入経路の一部をなす孔40cが形成されている。なお、孔40cは、周方向所定間隔に複数形成されていてもよい。袋状弾性部材53は、孔40cを介して油圧ポンプ52(図1参照)に連通されている。油圧ポンプ52による袋状弾性部材53へのオイルFの注入圧力(油圧)が、外輪42に加わる予圧となり、予圧荷重のレベルは油圧ポンプ52の圧送圧力に応じて調整可能である。袋状弾性部材53,孔40c,および油圧ポンプ52は、圧力供給手段50を構成している。 Further, the bearing housing 40 is a hole that forms part of the injection path of the oil F so as to penetrate the bearing housing 40 (the right side wall in FIG. 1) in order to inject the oil F into the bag-like elastic member 53. 40c is formed. A plurality of holes 40c may be formed at predetermined intervals in the circumferential direction. The bag-like elastic member 53 is communicated with the hydraulic pump 52 (see FIG. 1) through the hole 40c. The injection pressure (hydraulic pressure) of the oil F to the bag-like elastic member 53 by the hydraulic pump 52 becomes a preload applied to the outer ring 42, and the level of the preload can be adjusted according to the pumping pressure of the hydraulic pump 52. The bag-like elastic member 53, the hole 40 c, and the hydraulic pump 52 constitute a pressure supply means 50.

軸受ハウジング40がAl合金で構成される一方、外輪42が鋼で構成されているため、温度が上昇すると、軸受ハウジング40と外輪42との間の線膨張係数差により、軸受ハウジング40の内周面40aと外輪42の外周面42bとのアキシャル隙間およびラジアル隙間が増加することになる。 Since the bearing housing 40 is made of an Al alloy and the outer ring 42 is made of steel, when the temperature rises, the inner circumference of the bearing housing 40 is caused by a difference in linear expansion coefficient between the bearing housing 40 and the outer ring 42. The axial gap and the radial gap between the surface 40a and the outer peripheral surface 42b of the outer ring 42 are increased.

圧力供給手段50では、温度履歴が原因となって外輪42の過予圧が生ずることもある。具体的には、軸受ハウジング40の内周面40aによる外輪42の外周面42bの支持位置が昇温により拡径方向に移動すると、そのままでは予圧不足となって円錐ころ軸受9のアキシャル隙間およびラジアル隙間が増加してしまう。そこで、前述のごとく、袋状弾性部材53へのオイルFの注入により、外輪42を、該アキシャル隙間およびラジアル隙間が減少する向き、つまり袋状弾性部材53が拡大する向きに変位させる。しかし、その状態で温度が低下すると、線膨張係数が主回転軸4よりも小さい軸受ハウジング40は収縮し、オイルFで満たされた袋状弾性部材53の体積も減少する。 In the pressure supply means 50, an excessive preload of the outer ring 42 may occur due to the temperature history. Specifically, if the support position of the outer peripheral surface 42b of the outer ring 42 is moved in the diameter-expanding direction due to the temperature rise by the inner peripheral surface 40a of the bearing housing 40, the preload is insufficient as it is, and the axial gap and radial of the tapered roller bearing 9 are reduced. The gap will increase. Therefore, as described above, the outer ring 42 is displaced in the direction in which the axial gap and the radial gap are reduced, that is, in the direction in which the bag-like elastic member 53 is enlarged, by the injection of the oil F into the bag-like elastic member 53. However, when the temperature decreases in this state, the bearing housing 40 having a linear expansion coefficient smaller than that of the main rotating shaft 4 contracts, and the volume of the bag-like elastic member 53 filled with the oil F also decreases.

そこで、圧力供給手段50では、油圧ポンプ52と袋状弾性部材53との間の注入経路から圧力排出手段55が分岐している。圧力排出手段55は、油圧ポンプ52に供給するオイルFを貯留するタンクまたは排出容器(図示せず)につながっている。袋状弾性部材53に供給するオイルFがトランスミッション1内で使用される潤滑油と同じ場合には、オイルFをトランスミッション1内に排出することもできる。圧力排出手段55としては、例えば、電磁弁や逆止弁等の開閉手段や、オリフィスやニードル等の差圧を保持する手段が用いられる。電磁弁の場合には、圧力供給手段50内の内圧(袋状弾性部材53や孔40cの内圧,油圧ポンプ52の圧送圧力)を監視する圧力センサ(図示せず)をさらに備え、内圧が過剰に上昇した際に、圧力センサの出力により電磁弁を開くことで、オイルFを排出し、内圧を適正なものとする。逆止弁の場合、圧力供給手段50内の内圧が一定圧力を超えると開くように、前もって設定する。オリフィスやニードルの場合には、適正な内圧が得られるように設定する。また、逆止弁に代えて、電磁バルブ等で構成されたストップバルブを設け、他方、袋状弾性部材53内に圧力センサを配置し、圧力センサが検出する袋状弾性部材53の内圧により、逆方向スラストの発生を検知し、ストップバルブを作動させてオイルFの注入経路からの流出を遮断するようにしてもよい。さらに、圧力センサが検出する袋状弾性部材53の内圧に追従して、油圧ポンプ52によるオイルFの圧送圧力を変化させる方式も可能である。この場合、逆方向スラストが発生した場合は、オイルFの圧送圧力を増加させることで、オイルFの注入経路からの流出が遮断される。従って、逆止弁やストップバルブなどが不要となる。 Therefore, in the pressure supply means 50, the pressure discharge means 55 branches off from the injection path between the hydraulic pump 52 and the bag-like elastic member 53. The pressure discharge means 55 is connected to a tank or a discharge container (not shown) for storing the oil F supplied to the hydraulic pump 52. When the oil F supplied to the bag-like elastic member 53 is the same as the lubricating oil used in the transmission 1, the oil F can be discharged into the transmission 1. As the pressure discharge means 55, for example, an opening / closing means such as an electromagnetic valve or a check valve, or a means for holding a differential pressure such as an orifice or a needle is used. In the case of a solenoid valve, a pressure sensor (not shown) for monitoring the internal pressure in the pressure supply means 50 (the internal pressure of the bag-like elastic member 53 and the hole 40c, the pressure of the hydraulic pump 52) is further provided, and the internal pressure is excessive. When the pressure rises, the solenoid valve is opened by the output of the pressure sensor to discharge the oil F and make the internal pressure appropriate. In the case of a check valve, it is set in advance so that it opens when the internal pressure in the pressure supply means 50 exceeds a certain pressure. In the case of an orifice or a needle, it is set so that an appropriate internal pressure can be obtained. Further, instead of the check valve, a stop valve constituted by an electromagnetic valve or the like is provided, and on the other hand, a pressure sensor is arranged in the bag-like elastic member 53, and the internal pressure of the bag-like elastic member 53 detected by the pressure sensor The occurrence of reverse thrust may be detected, and a stop valve may be operated to block outflow of oil F from the injection path. Furthermore, a method of changing the pressure of oil F fed by the hydraulic pump 52 by following the internal pressure of the bag-like elastic member 53 detected by the pressure sensor is also possible. In this case, when reverse thrust is generated, the pumping pressure of the oil F is increased to block outflow of the oil F from the injection path. Therefore, a check valve or a stop valve is not necessary.

なお、圧力排出手段55の配置場所は、当然、油圧ポンプ52と袋状弾性部材53とを結ぶオイルFの注入経路上に設けることも可能であるし、油圧ポンプ52自身が逆止弁を内蔵している場合は、それを流用することもできる。しかし、オイルFの注入経路や油圧ポンプ52のオイル圧送空間の弾性変形代が大きいと、その変形代の分だけオイルFの逆流が許容されてしまい、外輪42の定位置化効果が損なわれる懸念もある。従って、圧力排出手段55は、袋状弾性部材53になるべく近い位置に設けることが望ましいといえる。 Of course, the location of the pressure discharge means 55 can be provided on the injection path of the oil F connecting the hydraulic pump 52 and the bag-like elastic member 53, or the hydraulic pump 52 itself has a built-in check valve. If it is, you can divert it. However, if the elastic deformation allowance of the injection path of the oil F and the oil pumping space of the hydraulic pump 52 is large, the backflow of the oil F is allowed by the deformation allowance, and the effect of positioning the outer ring 42 may be impaired. There is also. Therefore, it can be said that the pressure discharge means 55 is desirably provided at a position as close as possible to the bag-like elastic member 53.

次に、このように構成された実施例1に係る転がり軸受装置の動作について説明する。 Next, operation | movement of the rolling bearing apparatus based on Example 1 comprised in this way is demonstrated.

油圧ポンプ52による油圧により袋状弾性部材53を介して外輪42にアキシャル方向の予圧が加えられている状態では、図2に示すように、外輪42は、円錐ころ43の傾斜した転動面上での分力を受けてアキシャル方向およびラジアル方向に変位し、ラジアル方向の予圧は、外輪42の外周面42bが軸受ハウジング40の内周面40aにそれぞれ押し付けられて支持される。 In the state where the axial ring preload is applied to the outer ring 42 via the bag-like elastic member 53 by the hydraulic pressure from the hydraulic pump 52, the outer ring 42 is on the inclined rolling surface of the tapered roller 43 as shown in FIG. The radial preload is supported by pressing the outer peripheral surface 42b of the outer ring 42 against the inner peripheral surface 40a of the bearing housing 40, respectively.

主回転軸4は、前進駆動時には正方向に、後退駆動時には逆方向に回転する。軸受ハウジング40からの外輪42への予圧付与方向は、正方向回転時のギア30,31のスラストの向きに一致させてある。その結果、外輪42は、主回転軸4の正転時には、ギア30,31からのスラストを予圧付与方向と一致した正方向スラストとして受ける一方、主回転軸4の逆転時には、ギア30,31からのスラストを予圧付与方向と逆向きの逆方向スラストとして受ける。このため、自動車の後退時のように主回転軸4が逆転する場合は、ギア30,31のスラストが予圧付与方向に対し逆向きにかかることになる。すると、この逆方向スラストにより外輪42が予圧付与方向と逆向きに押し戻される。外輪42が後退するためには、袋状弾性部材53の体積が減少しなければならず、袋状弾性部材53内のオイルFは孔40cから油圧ポンプ52側へ流出する必要が生じる。油圧ポンプ52に逆流しようとするオイルFは、注入経路から圧力排出手段55を介してタンクまたは排出容器(図示せず)に貯留される。 The main rotating shaft 4 rotates in the forward direction during forward driving and in the reverse direction during backward driving. The direction in which the preload is applied from the bearing housing 40 to the outer ring 42 is made to coincide with the thrust direction of the gears 30 and 31 when rotating in the forward direction. As a result, the outer ring 42 receives the thrust from the gears 30 and 31 as a forward thrust that coincides with the preload application direction when the main rotating shaft 4 is rotated forward, while the outer ring 42 receives from the gears 30 and 31 when the main rotating shaft 4 is rotated reversely. This thrust is received as a reverse thrust opposite to the preload application direction. For this reason, when the main rotating shaft 4 rotates reversely, such as when the automobile is moving backward, the thrust of the gears 30 and 31 is applied in the opposite direction to the preload application direction. Then, the outer ring 42 is pushed back in the direction opposite to the preload application direction by the reverse direction thrust. In order for the outer ring 42 to move backward, the volume of the bag-like elastic member 53 must be reduced, and the oil F in the bag-like elastic member 53 needs to flow out from the hole 40c to the hydraulic pump 52 side. The oil F which is going to flow backward to the hydraulic pump 52 is stored in a tank or a discharge container (not shown) through the pressure discharge means 55 from the injection path.

トランスミッション1の温度が比較的低温で一定に保たれていれば、外輪42の予圧付与方向の位置はあまり変化せず、油圧ポンプ52による油圧によって外輪42に与えられる予圧荷重のレベルもほぼ一定に保たれる。 If the temperature of the transmission 1 is kept relatively constant at a relatively low temperature, the position of the outer ring 42 in the preload application direction does not change much, and the level of the preload applied to the outer ring 42 by the hydraulic pressure from the hydraulic pump 52 is also substantially constant. Kept.

トランスミッション1が昇温すると、主回転軸4の線膨張係数よりも軸受ハウジング40の線膨張係数のほうが大きいため、軸受ハウジング40の内周面40aが拡径し、円錐ころ軸受9の軸受外径面である外輪42の外周面42bから離間しようとする。つまり、軸受ハウジング40の内周面40aによる外輪42の外周面42bの支持位置がラジアル方向外向きに変化し、軸受ハウジング40による外輪42への反力が減少する。すると、外輪42は、油圧ポンプ52による油圧である予圧と軸受ハウジング40からの反力とがバランスする位置まで移動する。その結果、温度上昇によって外輪42の外周面42bの支持位置が移動しても、外輪42に対する予圧はほぼ一定に保たれる。このため、軸受ハウジング40と主回転軸4との線膨張係数差に由来した、軸受ハウジング40の内周面40aによる外輪42の外周面42bの支持位置の温度変化が吸収される。つまり、予圧状態での円錐ころ軸受9のアキシャル隙間およびラジアル隙間の温度変化が大きくても、昇温時に予圧不足になることはなく、外輪42の内周軌道面42aは円錐ころ43の転動面から離間することはなく、ギア30,31のがたつきによる騒音等も抑制される。 When the temperature of the transmission 1 rises, the linear expansion coefficient of the bearing housing 40 is larger than the linear expansion coefficient of the main rotating shaft 4, so that the inner peripheral surface 40 a of the bearing housing 40 is expanded and the outer diameter of the tapered roller bearing 9 is increased. It is going to separate from the outer peripheral surface 42b of the outer ring | wheel 42 which is a surface. That is, the support position of the outer peripheral surface 42b of the outer ring 42 by the inner peripheral surface 40a of the bearing housing 40 changes outward in the radial direction, and the reaction force to the outer ring 42 by the bearing housing 40 decreases. Then, the outer ring 42 moves to a position where the preload that is the hydraulic pressure by the hydraulic pump 52 and the reaction force from the bearing housing 40 are balanced. As a result, even if the support position of the outer peripheral surface 42b of the outer ring 42 is moved due to a temperature rise, the preload on the outer ring 42 is kept substantially constant. For this reason, the temperature change of the support position of the outer peripheral surface 42b of the outer ring 42 by the inner peripheral surface 40a of the bearing housing 40 due to the difference in linear expansion coefficient between the bearing housing 40 and the main rotary shaft 4 is absorbed. That is, even if the temperature change of the axial gap and the radial gap of the tapered roller bearing 9 in the preload state is large, the preload does not become insufficient when the temperature rises, and the inner circumferential raceway surface 42a of the outer ring 42 rolls the tapered roller 43. There is no separation from the surface, and noise caused by rattling of the gears 30 and 31 is also suppressed.

なお、図2に示す状態から、主回転軸4に予圧付与方向とは逆方向(図3の矢印c参照)の衝撃荷重等が加えられた場合には、内輪41,円錐ころ43を介して外輪42が油圧ポンプ52による油圧に抗してアキシャル方向に移動することにより、衝撃荷重等が緩衝されて抑制される。この際、袋状弾性部材53内のオイルFは、孔40cから油圧ポンプ52側に流出し、注入経路から圧力排出手段55を介してタンクまたは排出容器(図示せず)に貯留される。また、外輪42の移動範囲を越える過大な衝撃荷重等が加えられるような最悪の場合でも、図3に示すように、外輪42の右端面42cが軸受ハウジング40(ケース1M)の内壁面40bに当接して衝撃荷重等が受け止められることになる。 2, when an impact load or the like in the direction opposite to the preload application direction (see arrow c in FIG. 3) is applied to the main rotating shaft 4 via the inner ring 41 and the tapered roller 43. When the outer ring 42 moves in the axial direction against the hydraulic pressure by the hydraulic pump 52, an impact load or the like is buffered and suppressed. At this time, the oil F in the bag-like elastic member 53 flows out from the hole 40c to the hydraulic pump 52 side, and is stored in a tank or a discharge container (not shown) through the pressure discharge means 55 from the injection path. Further, even in the worst case where an excessive impact load exceeding the moving range of the outer ring 42 is applied, as shown in FIG. 3, the right end surface 42c of the outer ring 42 is formed on the inner wall surface 40b of the bearing housing 40 (case 1M). The impact load or the like is received by contact.

実施例1によれば、外輪42に当接する袋状弾性部材53の内部に油圧ポンプ52からオイルFを注入することにより、外輪42を予圧付与方向に付勢して、温度上昇により軸受ハウジング40が熱膨張しても予圧抜けを防止することができる。また、袋状弾性部材53を使用することにより、オイルFが漏れずに、シールが不要であり、圧力供給手段50の余分な圧力損失が生じないという利点がある。さらに、袋状弾性部材53であるため、軸の軸線方向の衝撃荷重等に対して袋状弾性部材53が変形することで、衝撃を吸収することができる。 According to the first embodiment, the oil F is injected from the hydraulic pump 52 into the bag-like elastic member 53 in contact with the outer ring 42 to urge the outer ring 42 in the preload application direction, and the bearing housing 40 is increased due to a temperature rise. Even if thermal expansion occurs, preload loss can be prevented. Further, the use of the bag-like elastic member 53 has an advantage that the oil F does not leak, a seal is unnecessary, and an extra pressure loss of the pressure supply means 50 does not occur. Furthermore, since it is the bag-like elastic member 53, the bag-like elastic member 53 is deformed with respect to an impact load or the like in the axial direction of the shaft, so that an impact can be absorbed.

また、低温時には軸受ハウジング40と外輪42とのラジアル隙間およびアキシャル隙間が小さいが、高温時には軸受ハウジング40と外輪42とのラジアル隙間およびアキシャル隙間が大きくなるので、高温時に袋状弾性部材53の内部のオイルFの圧力を低温時と同じにすることにより、袋状弾性部材53は軸方向に伸び、径方向に振れにくくなるので、外輪42が円錐ころ43と傾いて接触することを抑制することができる。 Further, the radial gap and the axial gap between the bearing housing 40 and the outer ring 42 are small at a low temperature, but the radial gap and the axial gap between the bearing housing 40 and the outer ring 42 are increased at a high temperature. By making the pressure of the oil F the same as that at low temperature, the bag-like elastic member 53 extends in the axial direction and hardly shakes in the radial direction, so that the outer ring 42 is prevented from inclining and contacting with the tapered rollers 43. Can do.

なお、上記実施例1では、転がり軸受装置の軸方向一方側の円錐ころ軸受9にのみ圧力供給手段50を設けるようにしたが、図4に示すように、円錐ころ軸受8にも同様の圧力供給手段50を設けることができる。この場合、油圧ポンプ52と圧力排出手段55とは、円錐ころ軸受8の圧力供給手段50と円錐ころ軸受9の圧力供給手段50とにそれぞれ設けることも、一つのものを共通に使用することも、一方を共通に、他方を別々にすることもできる。 In the first embodiment, the pressure supply means 50 is provided only in the tapered roller bearing 9 on one side in the axial direction of the rolling bearing device. However, as shown in FIG. Supply means 50 can be provided. In this case, the hydraulic pump 52 and the pressure discharge means 55 may be provided in the pressure supply means 50 of the tapered roller bearing 8 and the pressure supply means 50 of the tapered roller bearing 9, respectively, or one may be used in common. , One can be common and the other can be separate.

また、上記実施例1では、袋状部53aを環状に形成したが、袋状部53aは環状でなくてもよく、例えば、円弧状であってもよく、さらに孔40cが周方向所定間隔に複数形成される場合には、所定の形状で孔40cと同じ数だけ形成することもできる。 Moreover, in the said Example 1, although the bag-shaped part 53a was formed in cyclic | annular form, the bag-shaped part 53a does not need to be cyclic | annular, for example, it may be circular arc shape and also the hole 40c is the circumferential direction predetermined space | interval. When a plurality of holes are formed, the same number as the holes 40c can be formed in a predetermined shape.

以上、本発明の実施例について説明したが、これはあくまでも例示にすぎず、本発明はこれに限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、当業者の知識に基づく種々の変更が可能である。 As mentioned above, although the Example of this invention was described, this is only an illustration and this invention is not limited to this, Based on the knowledge of those skilled in the art, unless it deviates from the meaning of a Claim Various changes are possible.

例えば、実施例では、トランスミッションに用いられる転がり軸受装置を例にとって説明したが、四輪駆動車の各輪への駆動分配軸用ギアユニット等の他の装置に用いられる転がり軸受装置にも、本発明を同様に適用できることはいうまでもない。 For example, in the embodiment, the description has been made by taking the rolling bearing device used for the transmission as an example, but the rolling bearing device used for other devices such as a gear unit for a drive distribution shaft to each wheel of a four-wheel drive vehicle is also described. It goes without saying that the invention can be similarly applied.

また、各実施例では、転がり軸受装置に使用される転がり軸受を円錐ころ軸受としたが、アンギュラ玉軸受,深みぞ玉軸受等の予圧をかけて使用される他の転がり軸受であっても、本発明を同様に適用できることはいうまでもない。 In each embodiment, the rolling bearing used in the rolling bearing device is a tapered roller bearing, but other rolling bearings that are used with a preload such as an angular ball bearing, a deep groove ball bearing, Needless to say, the present invention can be similarly applied.

本発明の実施例1に係る転がり軸受装置が配設されたトランスミッションの一例を示す要部断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an essential part cross-sectional view illustrating an example of a transmission in which a rolling bearing device according to a first embodiment of the present invention is disposed. 本実施例1における円錐ころ軸受の要部断面図。FIG. 3 is a cross-sectional view of a main part of the tapered roller bearing in the first embodiment. 本実施例1における円錐ころ軸受の要部断面図。FIG. 3 is a cross-sectional view of a main part of the tapered roller bearing in the first embodiment. 本発明の実施例1に係る転がり軸受装置が配設されたトランスミッションの変形例を示す要部断面図。The principal part sectional drawing which shows the modification of the transmission by which the rolling bearing apparatus which concerns on Example 1 of this invention was arrange | positioned. 従来の転がり軸受装置における円錐ころ軸受の要部断面図。Sectional drawing of the principal part of the tapered roller bearing in the conventional rolling bearing apparatus. 従来の転がり軸受装置における円錐ころ軸受の要部断面図。Sectional drawing of the principal part of the tapered roller bearing in the conventional rolling bearing apparatus.

符号の説明Explanation of symbols

1 トランスミッション
3 入力軸
4 主回転軸
8,9 円錐ころ軸受(転がり軸受)
40 軸受ハウジング(ハウジング)
40a 内周面
40b 内壁面
40c 孔
41 内輪
42 外輪
42a 内周軌道面
42b 外周面
42c 右端面
42d 凹部
43 円錐ころ(転動体)
50 圧力供給手段
52 油圧ポンプ
53 袋状弾性部材
53a 袋状部
54 油圧パイプ
F オイル(液状圧力媒体)
1 Transmission 3 Input shaft 4 Main rotating shaft 8, 9 Tapered roller bearing (rolling bearing)
40 Bearing housing (housing)
40a inner peripheral surface 40b inner wall surface 40c hole 41 inner ring 42 outer ring 42a inner peripheral raceway surface 42b outer peripheral surface 42c right end surface 42d recess 43 tapered roller (rolling element)
50 Pressure supply means 52 Hydraulic pump 53 Bag-like elastic member 53a Bag-like portion 54 Hydraulic pipe F Oil (liquid pressure medium)

Claims (2)

第1の線膨張係数を有するハウジング,第1の線膨張係数よりも小さい第2の線膨張係数を有する軸,前記軸に嵌合される内輪,第1の線膨張係数よりも小さい第3の線膨張係数を有し前記ハウジングに嵌合される外輪,および前記内輪と前記外輪との間に介挿されて転動する転動体を備えた転がり軸受を、前記転動体と前記外輪との接触角が軸方向内方から軸方向外方に向けて拡径するように2つ配設する転がり軸受装置であって、
圧力供給手段に連通するとともに密閉された袋状部を有する袋状弾性部材を備え、
前記袋状弾性部材は少なくとも一方の転がり軸受の前記外輪を軸方向内方向きに付勢するように前記外輪に当接されることを特徴とする転がり軸受装置。
A housing having a first linear expansion coefficient, a shaft having a second linear expansion coefficient smaller than the first linear expansion coefficient, an inner ring fitted to the shaft, and a third smaller than the first linear expansion coefficient A rolling bearing provided with an outer ring having a linear expansion coefficient and fitted into the housing, and a rolling element that is inserted and rolled between the inner ring and the outer ring, and a contact between the rolling element and the outer ring. A rolling bearing device in which two corners are arranged so that the diameter increases from the inside in the axial direction toward the outside in the axial direction,
A bag-like elastic member that communicates with the pressure supply means and has a sealed bag-like portion;
The rolling bearing device according to claim 1, wherein the bag-like elastic member is in contact with the outer ring so as to urge the outer ring of at least one of the rolling bearings in an axially inward direction.
前記外輪には、軸方向内方に窪む凹部が形成され、前記凹部に前記袋状弾性部材が嵌入することを特徴とする請求項1記載の転がり軸受装置。 The rolling bearing device according to claim 1, wherein the outer ring is formed with a recess recessed inward in the axial direction, and the bag-like elastic member is fitted into the recess.
JP2006283759A 2006-10-18 2006-10-18 Rolling bearing device Pending JP2008101674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283759A JP2008101674A (en) 2006-10-18 2006-10-18 Rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283759A JP2008101674A (en) 2006-10-18 2006-10-18 Rolling bearing device

Publications (1)

Publication Number Publication Date
JP2008101674A true JP2008101674A (en) 2008-05-01

Family

ID=39436157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283759A Pending JP2008101674A (en) 2006-10-18 2006-10-18 Rolling bearing device

Country Status (1)

Country Link
JP (1) JP2008101674A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012097962A3 (en) * 2011-01-17 2012-09-13 Fm Energie Gmbh & Co.Kg Anti-friction bearing which can be prestressed hydraulically
CN108167323A (en) * 2016-12-07 2018-06-15 斯凯孚公司 Bearing assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012097962A3 (en) * 2011-01-17 2012-09-13 Fm Energie Gmbh & Co.Kg Anti-friction bearing which can be prestressed hydraulically
CN108167323A (en) * 2016-12-07 2018-06-15 斯凯孚公司 Bearing assembly
CN108167323B (en) * 2016-12-07 2021-10-29 斯凯孚公司 Bearing assembly

Similar Documents

Publication Publication Date Title
JP5488296B2 (en) Rolling bearing and camshaft device
US7997804B2 (en) Rolling bearing apparatus
US8739931B2 (en) Lubricating structure of differential gear unit
EP2085626B1 (en) Rolling bearing and rolling bearing device
JP4449716B2 (en) Bearing preload mechanism
JP2006234100A (en) Double-row angular ball bearing and pinion shaft supporting device for vehicle
JP2016014437A (en) Electric actuator
JP2008101674A (en) Rolling bearing device
JP5005207B2 (en) Tapered roller bearing
JP2008196570A (en) Rolling bearing device
JP5034531B2 (en) Rolling bearing device
US20050064979A1 (en) Bevel gear transmission
JP2008121788A (en) Roller bearing and roller bearing device
JP2008101673A (en) Rolling bearing and rolling bearing device
JP4905220B2 (en) Rolling bearing device
JP4370907B2 (en) Ball bearing
JP2008185191A (en) Rolling bearing device
JP2008121787A (en) Roller bearing and roller bearing device
JP4935340B2 (en) Rolling bearing device
JP2005163928A (en) Bearing device and differential device
JP2007078147A (en) Tapered roller bearing
CN110030276A (en) The lubrication system of rolling bearing
JP4994637B2 (en) Roller bearing
JP4748076B2 (en) Rolling bearing device
JP4994636B2 (en) Tapered roller bearing