JP2008100854A - Apparatus and method of manufacturing sic single crystal - Google Patents

Apparatus and method of manufacturing sic single crystal Download PDF

Info

Publication number
JP2008100854A
JP2008100854A JP2006282405A JP2006282405A JP2008100854A JP 2008100854 A JP2008100854 A JP 2008100854A JP 2006282405 A JP2006282405 A JP 2006282405A JP 2006282405 A JP2006282405 A JP 2006282405A JP 2008100854 A JP2008100854 A JP 2008100854A
Authority
JP
Japan
Prior art keywords
sic
single crystal
shaft
seed crystal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006282405A
Other languages
Japanese (ja)
Inventor
Ryochi Shintani
良智 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006282405A priority Critical patent/JP2008100854A/en
Publication of JP2008100854A publication Critical patent/JP2008100854A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an SiC single crystal stably obtaining an SiC single crystal having a flat growing surface without occurrence of polycrystallization. <P>SOLUTION: In an apparatus for growing the SiC single crystal from an undersurface B as a starting point by bringing the undersurface B of an SiC seed crystal 110 supported at the lower end of a pulling axis 108 into contact with a molten liquid L while maintaining a temperature gradient in the Si molten liquid L in a graphite crucible 102 so that a temperature lowers from the inner toward the surface of the molten liquid, the apparatus of manufacturing the SiC single crystal is characterized in that the pulling axis 108 is rotatable about the axis center X of itself, and has an upper half part P along the axis center X and a lower half part Q including a part deviated from the axis center X, an SiC seed crystal supporting part at the lower end of the lower half part Q of the pulling axis 108 is supporting the SiC seed crystal 110 at the eccentric position which does not intersect the axis center X, and of orbiting on a horizontal circle whose center is the axis center X by the rotation of the pulling axis 108 around the axis center X. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶液法によるSiC単結晶の製造装置および製造方法に関する。   The present invention relates to an apparatus and a method for producing an SiC single crystal by a solution method.

SiCはSiに比べてエネルギーバンドギャップが大きいため、半導体材料等として適した高品位のSiC単結晶の製造技術が種々提案されている。SiC単結晶の製造方法としてはこれまでに多種多様な方法が試行されているが、昇華法と溶液法が現在最も一般的である。昇華法は成長速度は大きいがマイクロパイプ等の欠陥や結晶多形の変態が生じ易いという欠点があり、これに対して成長速度は比較的遅いがこれらの欠点の無い溶液法が有望視されている。   Since SiC has a larger energy band gap than Si, various techniques for producing high-quality SiC single crystals suitable as semiconductor materials have been proposed. A wide variety of SiC single crystal production methods have been tried so far, but the sublimation method and the solution method are currently most common. Although the sublimation method has a high growth rate, it has a defect that defects such as micropipes and transformation of crystal polymorphism are likely to occur. On the other hand, a solution method without these defects is considered promising, although the growth rate is relatively slow. Yes.

溶液法によるSiC単結晶の製造方法は、黒鉛るつぼ内のSi融液内に内部から融液面へ向けて温度低下する温度勾配を維持する。下方の高温部で黒鉛るつぼからSi融液内に溶解したCは主として融液の対流に乗って上昇し融液面近傍の低温部に達して過飽和になる。融液面の直下には黒鉛棒の先端にSiC種結晶が保持されており、過飽和となったCがSiC種結晶上でエピタキシャル成長によりSiC単結晶として結晶化する。   The manufacturing method of the SiC single crystal by the solution method maintains a temperature gradient in which the temperature decreases from the inside toward the melt surface in the Si melt in the graphite crucible. C dissolved in the Si melt from the graphite crucible in the lower high temperature part rises mainly by the convection of the melt, reaches the low temperature part near the melt surface, and becomes supersaturated. An SiC seed crystal is held at the tip of the graphite rod immediately below the melt surface, and supersaturated C is crystallized as an SiC single crystal by epitaxial growth on the SiC seed crystal.

溶液法では、結晶成長表面に多数の成長丘が生成し、各成長丘からばらばらに単結晶が成長して多結晶化が起き易いため、これを防止して平坦な成長表面を持つ単一の単結晶を安定して得るために、特別な配慮が必要である。   In the solution method, a large number of growth hills are formed on the surface of crystal growth, and single crystals grow from each growth hill to be easily polycrystallized. Special consideration is necessary to obtain a single crystal stably.

多結晶化の主な原因の一つとして、結晶成長表面での過剰なC過飽和度が考えられる。結晶成長表面でのC過飽和はSiC結晶が生成するための駆動力として必要である。しかし、C過飽和度が高くなり過ぎると、結晶の核発生が不安定になり多結晶化が起きる。   One of the main causes of polycrystallization is an excessive degree of C supersaturation on the crystal growth surface. C supersaturation on the crystal growth surface is necessary as a driving force for generating SiC crystals. However, if the C supersaturation degree becomes too high, the nucleation of crystals becomes unstable and polycrystallization occurs.

その対策として特許文献1には、溶液法によりSiC単結晶を成長させる際に、融液内に下方へ向かう縦磁場を印加することにより融液内の対流を抑制し、対流により種結晶付近へ過剰なCが供給されるのを防止することが提案されている。   As a countermeasure, Patent Document 1 discloses that when a SiC single crystal is grown by a solution method, a convection in the melt is suppressed by applying a downward vertical magnetic field into the melt, and the convection moves to the vicinity of the seed crystal. It has been proposed to prevent excessive C from being supplied.

しかし上記提案の方法は、磁場コイルを設置する等の大掛かりな設備改造が必要であるため、コストが高くなるばかりでなく、改良のための設備改修も困難になる、という問題があった。   However, the proposed method has a problem that not only the cost increases but also the repair of the equipment for improvement becomes difficult because a large-scale equipment modification such as the installation of the magnetic field coil is necessary.

特開2004−323247号公報JP 2004-323247 A

本発明は、多結晶化を起こすことなく、平坦な成長表面を持つSiC単結晶が安定して得られるSiC単結晶の製造装置および製造方法を提供することを目的とする。   An object of the present invention is to provide a SiC single crystal manufacturing apparatus and a manufacturing method capable of stably obtaining a SiC single crystal having a flat growth surface without causing polycrystallization.

上記の目的を達成するために、本発明のSiC単結晶の製造装置は、黒鉛るつぼ内のSi融液内に内部から融液面に向けて温度低下する温度勾配を維持しつつ、引き上げ軸の下端に保持したSiC種結晶の下面を該融液に接触させ、該下面を起点としてSiC単結晶を成長させる装置において、
引き上げ軸は、自己の軸心周りに回転可能であり、該軸心に沿う上半部と該軸心から偏向した部分を含む下半部とを有し、
上記引き上げ軸の下半部の下端にあるSiC種結晶保持部は、該SiC種結晶を上記軸心と交差しない偏心位置に保持可能であり且つ上記引き上げ軸の軸心周りの回転により該軸心を中心とする水平な円周上を周回可能であることを特徴とする。
In order to achieve the above-mentioned object, the SiC single crystal manufacturing apparatus of the present invention maintains a temperature gradient in the Si melt in the graphite crucible that decreases in temperature from the inside toward the melt surface. In an apparatus for bringing a lower surface of a SiC seed crystal held at the lower end into contact with the melt and growing a SiC single crystal starting from the lower surface,
The lifting shaft is rotatable around its own axis, and has an upper half along the axis and a lower half including a portion deflected from the axis,
The SiC seed crystal holding portion at the lower end of the lower half of the pulling shaft can hold the SiC seed crystal in an eccentric position that does not intersect the shaft center, and the shaft center is rotated by rotation around the shaft center of the pulling shaft. It is possible to circulate on a horizontal circumference centered on

本発明のSiC単結晶の製造方法は、上記本発明の装置を用いて、上記引き上げ軸を回転させることにより、上記保持部に保持したSiC種結晶の下面を上記融液に接触した状態で水平な円周上を周回させつつ上記SiC単結晶を成長させることを特徴とする。   The method for producing an SiC single crystal of the present invention uses the apparatus of the present invention to rotate the pulling shaft so that the lower surface of the SiC seed crystal held by the holding part is in a horizontal state in contact with the melt. It is characterized in that the SiC single crystal is grown while circulating on a circular circumference.

本発明の方法は、SiC種結晶の下面(結晶成長表面)をSi融液(CのSi溶液)に接触した状態で水平な円周上を周回させることにより、SiC結晶成長に伴い結晶成長表面に隣接して時々刻々連続して生成する過剰なC過飽和度の融液領域から結晶成長表面が常に引き離されて適正なC過飽和度の融液との接触が維持されるので、結晶成長表面近傍での過剰なC過飽和に起因する結晶核の多発による多結晶化が防止され、平坦性の優れた成長表面を持つSiC単結晶が安定して得られる。   According to the method of the present invention, the lower surface (crystal growth surface) of the SiC seed crystal is circulated on a horizontal circumference in a state where the lower surface (crystal growth surface) is in contact with the Si melt (C Si solution). Since the crystal growth surface is always separated from the melt region of the excessive C supersaturation degree that is continuously generated from time to time adjacent to the surface of the crystal, the contact with the melt of the appropriate C supersaturation level is maintained. Thus, polycrystallization due to the frequent occurrence of crystal nuclei due to excessive C supersaturation is prevented, and a SiC single crystal having a growth surface with excellent flatness can be stably obtained.

本明細書中において「結晶成長表面」とは、単結晶成長開始時点では種結晶の下面であり、それ以降は成長中の単結晶の下面(成長前面)である。   In this specification, the “crystal growth surface” is the lower surface of the seed crystal at the start of single crystal growth, and the lower surface (growth front surface) of the growing single crystal thereafter.

既に述べたように、溶液法で発生し易い多結晶化の原因は、結晶成長表面に多数の成長丘が発生し、各成長丘からばらばらに単結晶が成長することである。本発明者はその原因になる機構として、結晶成長表面近傍での融液(CのSi溶液)のC過飽和度の観点から、下記のように考えた。   As already described, the cause of polycrystallization that is likely to occur in the solution method is that a large number of growth hills are generated on the surface of the crystal growth, and single crystals grow from the growth hills in a discrete manner. The present inventor considered the following mechanism from the viewpoint of the degree of C supersaturation of the melt (C Si solution) near the crystal growth surface.

SiC結晶の生成の駆動力として結晶成長表面近傍で融液(CのSi溶液)のC過飽和度は十分に高い必要がある。ここで十分とは、実際の結晶成長を安定して持続させるために、新たに生成するSiC結晶に組み込まれる化学量論組成のC量ではなく、これに対して必ず過剰なC量を融液中に維持する必要があることを意味する。過飽和度が十分かつ適切な範囲内で維持されていれば、多結晶化せずに安定に単結晶成長が持続する。しかし過飽和度が十分ではあるが過剰になると、いわゆる組成的過冷が大きくなり、結晶核が多発して多結晶化が起きる。   As a driving force for the generation of the SiC crystal, the C supersaturation degree of the melt (C Si solution) needs to be sufficiently high in the vicinity of the crystal growth surface. The term “sufficient” herein refers to the amount of C which is excessive in comparison with the amount of C, which is not the stoichiometric composition incorporated in the newly formed SiC crystal in order to stably maintain the actual crystal growth. Means that it needs to be kept inside. If the degree of supersaturation is maintained within a sufficient and appropriate range, single crystal growth can be stably maintained without polycrystallization. However, when the degree of supersaturation is sufficient but excessive, so-called compositional supercooling increases, resulting in frequent crystal nuclei and polycrystallization.

本発明者は、このように結晶成長表面近傍でのC過飽和度の過剰が極めて限定された領域である点に着目した。   The present inventor has paid attention to the fact that the excessive amount of C supersaturation in the vicinity of the crystal growth surface is a very limited region.

本発明の特徴は、SiC種結晶の下面(結晶成長表面)をSi融液(CのSi溶液)に接触した状態で水平な円周上を周回させることにより、SiC結晶成長に伴い時々刻々連続して生成する過剰なC過飽和度の融液領域から結晶成長表面を常に引き離して適正なC過飽和度の融液との接触を維持する。その結果、組成的過冷の進行が防止されるので、結晶成長表面近傍での過剰なC過飽和に起因する結晶核の多発による多結晶化が防止され、平坦性の優れた成長表面を持つSiC単結晶が安定して得られる。   A feature of the present invention is that the SiC seed crystal is continuously continuous with the growth of the SiC crystal by rotating the lower surface of the SiC seed crystal (crystal growth surface) on a horizontal circumference in contact with the Si melt (C Si solution). The crystal growth surface is always pulled away from the excess C supersaturated melt region generated in this manner, and the contact with the melt having the proper C supersaturation level is maintained. As a result, the progress of compositional supercooling is prevented, so that polycrystallization due to the frequent occurrence of crystal nuclei due to excessive C supersaturation in the vicinity of the crystal growth surface is prevented, and SiC having a growth surface with excellent flatness. A single crystal can be obtained stably.

図1を参照して、本発明の一実施形態を説明する。   An embodiment of the present invention will be described with reference to FIG.

図1(1)に、本発明のSiC単結晶の製造方法を行なうための溶液法単結晶成長装置の縦断面を模式的に示す。   FIG. 1 (1) schematically shows a longitudinal section of a solution method single crystal growth apparatus for carrying out the method for producing a SiC single crystal of the present invention.

成長装置100は、黒鉛るつぼ102の周囲を取り巻く加熱手段104によりるつぼ102内にSi融液Lを形成・維持し、引き上げ軸108の下端にSiC種結晶110を保持する。加熱手段104は上下方向の複数部位の加熱パワーをそれぞれ独立に制御できるようになっており、これにより黒鉛るつぼ102内のSi融液内に内部から融液面Sに向けて温度低下する温度勾配を維持する。加熱手段104は、電気抵抗加熱方式または高周波誘導加熱方式であってよい。原料のSiを黒鉛るつぼ102に装入し、加熱手段104により1700〜2000℃の範囲の所定温度に加熱してSiを溶融させる。以上の各構成要素から成るアセンブリ全体が断熱性の密封容器112内に収容されており、容器112内の空間114はArガス等の不活性雰囲気で満たされている。   The growth apparatus 100 forms and maintains the Si melt L in the crucible 102 by the heating means 104 surrounding the graphite crucible 102, and holds the SiC seed crystal 110 at the lower end of the pulling shaft 108. The heating means 104 can independently control the heating power of a plurality of parts in the vertical direction, and thereby, the temperature gradient in which the temperature decreases from the inside toward the melt surface S in the Si melt in the graphite crucible 102. To maintain. The heating means 104 may be an electric resistance heating method or a high frequency induction heating method. The raw material Si is charged into the graphite crucible 102 and heated to a predetermined temperature in the range of 1700 to 2000 ° C. by the heating means 104 to melt Si. The entire assembly composed of the above components is housed in a heat-insulating sealed container 112, and the space 114 in the container 112 is filled with an inert atmosphere such as Ar gas.

ここで本発明の特徴は、引き上げ軸108の構造および作動にある。引き上げ軸108は、図1(1)、(2)に示すように、軸心Xに沿った上半部Pと、軸心Xから偏向した下半部Qとから成る。下半部Qの下端にはSiC種結晶の保持部(図示せず)があって、SiC種結晶110を軸心Xと交差しない偏心位置Y(図1(2))に保持する。   The feature of the present invention lies in the structure and operation of the lifting shaft 108. As shown in FIGS. 1A and 1B, the pulling shaft 108 includes an upper half P along the axis X and a lower half Q deflected from the axis X. There is a SiC seed crystal holding portion (not shown) at the lower end of the lower half Q, and the SiC seed crystal 110 is held at an eccentric position Y (FIG. 1 (2)) that does not intersect the axis X.

SiC単結晶の成長を開始するには、図1(1)中に示した矢印dのように引き上げ軸108を下降させて、図1(2)のように種結晶110の下面Bを融液面Sに接触させる。詳しくは、種結晶110の下面Bは融液面Sから融液L内に僅かに浸漬した状態にして接触を安定に確保する。   In order to start the growth of the SiC single crystal, the pulling shaft 108 is lowered as indicated by the arrow d shown in FIG. 1 (1), and the lower surface B of the seed crystal 110 is melted as shown in FIG. 1 (2). Contact surface S. Specifically, the lower surface B of the seed crystal 110 is slightly immersed in the melt L from the melt surface S to ensure stable contact.

この状態で引き上げ軸108が軸心X周りに回転することにより、下半部Qは軸心Xを回転中心とする円錐面上を形成しながら回転し、下半部Qの下端に保持された種結晶110は融液Sとの接触を維持しつつ軸心Xを中心とする水平な円周上を周回する。   In this state, when the lifting shaft 108 rotates around the axis X, the lower half Q rotates while forming a conical surface with the axis X as the rotation center, and is held at the lower end of the lower half Q. The seed crystal 110 circulates on a horizontal circumference around the axis X while maintaining contact with the melt S.

結晶成長表面の直近領域の融液L中には、SiC単結晶の成長に伴って化学量論組成に対して過剰なCが結晶に組み込まれずに取り残されるので、元々結晶成長の駆動力として必要なC過飽和度に加えて、意図しない過剰なCが常に時々刻々加入されており、それによってC過飽和度が適正範囲を超えて過剰になり易い。   In the melt L in the immediate region of the crystal growth surface, excessive C with respect to the stoichiometric composition is left without being incorporated into the crystal as the SiC single crystal grows, so it is originally necessary as a driving force for crystal growth. In addition to the degree of C supersaturation, unintentional excess C is constantly added from time to time, so that the degree of C supersaturation tends to exceed the proper range and become excessive.

従来装置では、図2(1)に示すように引き上げ軸108Aが単純な直線形状であり、図2(2)に示すようにそのまま下降させて種結晶110の下面Bを融液Lの表面Sに接触させて静置し、SiC単結晶の成長を行なっていた。そのため、上述した過剰なC過飽和度(組成的過冷)の直近領域が形成されると、結晶成長表面は直ちにその影響を受けて、SiC結晶核の多発が誘起され、多結晶化が容易に起きていた。   In the conventional apparatus, the pulling shaft 108A has a simple linear shape as shown in FIG. 2 (1), and the lower surface B of the seed crystal 110 is lowered as it is as shown in FIG. The SiC single crystal was grown by leaving it in contact with the substrate. For this reason, when the above-mentioned immediate region of excessive C supersaturation (compositional supercooling) is formed, the crystal growth surface is immediately affected, and the occurrence of SiC crystal nuclei is induced, making polycrystallization easy. It had occurred.

これに対して図1に示した本発明の装置によれば、結晶成長表面(種結晶下面B)は、融液Lの表面Sを周回することにより、C過飽和度が過剰になっている直近領域から常に引き離され、C過飽和度が適正範囲内にある新鮮な融液Lとの接触が維持されるので、過剰なC過飽和度(組成的過冷)の影響を受けることがなく、SiC結晶核の多発による多結晶化が起きることがない。   On the other hand, according to the apparatus of the present invention shown in FIG. 1, the crystal growth surface (the seed crystal lower surface B) is around the surface S of the melt L, so that the C supersaturation degree is excessive. Since the contact with the fresh melt L that is always separated from the region and the C supersaturation is within the proper range is maintained, the SiC crystal is not affected by the excessive C supersaturation (compositional supercooling). There is no occurrence of polycrystallization due to the frequent occurrence of nuclei.

なお、Si―C系におけるSiC結晶の生成は包晶反応によるため、結晶成長表面近傍の融液LではC欠乏が起きて逆にC過飽和度の低下が起きる可能性もある。本発明により種結晶を周回させることにより、常に結晶成長表面近傍のC濃度を適正な過飽和度に維持できるので、平坦成長を維持しつつ高速成長を実現することも可能である。   In addition, since the production | generation of the SiC crystal in a Si-C type | system | group is based on a peritectic reaction, in the melt L near the crystal growth surface, C deficiency may occur, and conversely, the C supersaturation degree may decrease. By rotating the seed crystal according to the present invention, the C concentration in the vicinity of the crystal growth surface can always be maintained at an appropriate degree of supersaturation, so that high-speed growth can be realized while maintaining flat growth.

SiC種結晶110の下面Bを起点とするSiC単結晶の成長原理自体は、従来技術も本発明も違いはない。黒鉛るつぼ102は、本来のるつぼとしての機能に加えて、Si融液L中へのCの供給源としての機能をも併せ持っている。融液Lの高温部(下方寄り部分)でるつぼ102から溶け込んだCは、るつぼ102内で対流および拡散によって融液Lの低温部(融液面S寄り部分)に達すると過飽和となる。引き上げ軸108を矢印dのように下降させてSiC種結晶110を融液Lに接触させた状態に保持しておくと、Cが過飽和となっている融液面Sに接触しているSiC種結晶110の下面B上にSiCが晶出し、晶出したSiC単結晶の下面に更にSiC単結晶が引き続き晶出することにより、SiC単結晶が種結晶110の下面Bから下方へ成長する。実際には、この下方への成長と同期する速度で引き上げ軸108を矢印gのように上昇させ、SiC単結晶の下面(結晶成長表面)を常に融液L内上下方向の一定位置に維持する。なお、るつぼ102内にはSi融液Lを溶媒としCを溶質とする溶液が形成されているが、この溶液には種々の目的でC以外の元素を少量添加することもできる。   The growth principle itself of the SiC single crystal starting from the lower surface B of the SiC seed crystal 110 is the same between the conventional technique and the present invention. The graphite crucible 102 has a function as a supply source of C into the Si melt L in addition to the function as an original crucible. C that has melted from the crucible 102 at the high temperature portion (lower portion) of the melt L becomes supersaturated when it reaches the low temperature portion (the portion near the melt surface S) of the melt L by convection and diffusion within the crucible 102. When the pulling shaft 108 is lowered as indicated by an arrow d and the SiC seed crystal 110 is held in contact with the melt L, the SiC seed in contact with the melt surface S in which C is supersaturated. SiC crystallizes on the lower surface B of the crystal 110, and the SiC single crystal continues to crystallize on the lower surface of the crystallized SiC single crystal, so that the SiC single crystal grows downward from the lower surface B of the seed crystal 110. Actually, the pulling shaft 108 is raised as indicated by an arrow g at a speed synchronized with the downward growth, and the lower surface (crystal growth surface) of the SiC single crystal is always maintained at a fixed position in the vertical direction in the melt L. . A solution containing Si melt L as a solvent and C as a solute is formed in the crucible 102, but a small amount of elements other than C can be added to the solution for various purposes.

以下、実施例により本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

〔実施例1〕
図1(1)に示した成長装置100を用い、図1(2)に示したように種結晶110を周回させて、SiC単結晶の成長を行なった。軸心Xからの偏心量hは12.5mmとし、周回の周速度は0.78m/minとした。加熱温度は1750℃とし、成長時間5時間とした。なお、加熱温度は浸漬深さ0mmの位置で測定した温度である。
[Example 1]
Using the growth apparatus 100 shown in FIG. 1 (1), the SiC single crystal was grown by rotating the seed crystal 110 as shown in FIG. 1 (2). The amount of eccentricity h from the axis X was 12.5 mm, and the circumferential speed was 0.78 m / min. The heating temperature was 1750 ° C. and the growth time was 5 hours. The heating temperature is a temperature measured at a position where the immersion depth is 0 mm.

得られた結果を図3に種結晶110付近の外観写真で示す。本発明により周回させつつ成長を行なったことにより、平坦な結晶成長表面を有するSiC単結晶が得られた。   The obtained results are shown in FIG. By carrying out the growth while rotating according to the present invention, an SiC single crystal having a flat crystal growth surface was obtained.

比較のために、図2に示す従来装置により種結晶の周回を行なわずに静置させて成長を行なったが、多結晶化が起きてしまった。C過飽和度を低くして成長を行なったところ、多結晶化は防止できたが、成長速度は本発明に比べて50%程度低下してしまった。   For comparison, the conventional apparatus shown in FIG. 2 was used for growth without allowing the seed crystal to circulate, but polycrystallization occurred. When growth was carried out at a low C supersaturation degree, polycrystallization could be prevented, but the growth rate was reduced by about 50% compared to the present invention.

なお、本実施例において用いた引き上げ軸108の形態は、図1(2)のように軸心Xに沿った直線状の上半部Pと軸心Xから直線状に偏向した下半部Qとから成る形態であった。しかし、下半部Qはそれ自体が軸心Xから偏向している必要はなく、軸心Xから偏向している部分を含んでいれば良い。   The form of the lifting shaft 108 used in the present embodiment is a linear upper half P along the axis X and a lower half Q deflected linearly from the axis X as shown in FIG. It was a form consisting of. However, the lower half Q does not need to be deflected from the axis X itself as long as it includes a portion deflected from the axis X.

図4に、引き上げ軸108の形態上のバリエーションを示す。   FIG. 4 shows variations in form of the lifting shaft 108.

図4(2)に示した形態が、本実施例で用いた形態であり、下半部Q自体が軸心Xから直線状に偏向した形態である。SiC種結晶110の保持部Hは軸心Xからの偏心量hの偏心位置Yにあり、保持されたSiC種結晶110は軸心Xと交差しない。   The form shown in FIG. 4 (2) is the form used in this example, and the lower half Q itself is a form deflected linearly from the axis X. The holding part H of the SiC seed crystal 110 is at an eccentric position Y with an eccentricity amount h from the axis X, and the held SiC seed crystal 110 does not intersect the axis X.

図4(1)に示した形態は、下半部Qは上半部Pと直線状に連なっており、それ自体は軸心Xから偏向していないが、下端の外周寄りにある種結晶110の保持部が軸心Xから偏心量zだけ偏向した位置にある。この形態の場合の下半部Qは、実際上は下端の保持部Hのみを指すことになる。SiC種結晶110の保持部Hは軸心Xからの偏心量hの偏心位置Yにあり、保持されたSiC種結晶110は軸心Xと交差しない。   In the form shown in FIG. 4A, the lower half Q is connected to the upper half P in a straight line and is not deflected from the axis X itself, but is located near the outer periphery of the lower end. Is held at a position deviated from the axis X by the amount of eccentricity z. In the case of this form, the lower half portion Q actually indicates only the holding portion H at the lower end. The holding part H of the SiC seed crystal 110 is at an eccentric position Y with an eccentricity amount h from the axis X, and the held SiC seed crystal 110 does not intersect the axis X.

図4(3)に示した形態は、下半部Q自体が軸心Xから偏向した屈曲形状をしている形態である。SiC種結晶110の保持部Hは軸心Xからの偏心量hの偏心位置Yにあり、保持されたSiC種結晶110は軸心Xと交差しない。   The form shown in FIG. 4 (3) is a form in which the lower half Q itself is bent from the axis X. The holding part H of the SiC seed crystal 110 is at an eccentric position Y with an eccentricity amount h from the axis X, and the held SiC seed crystal 110 does not intersect the axis X.

図4(1)(2)(3)の引き上げ軸108を縦貫する孔は熱電対などのセンサーを挿入するためのものである。   4 (1), (2), and (3), the hole that passes through the pulling shaft 108 is for inserting a sensor such as a thermocouple.

更に別の形態として、図5に示すように、引き上げ軸108は、加工上の便宜などの理由により、偏向下半部Qが円錐状であってもよい。SiC種結晶110の保持部Hは軸心Xからの偏心量hの偏心位置Yにあり、保持されたSiC種結晶110は軸心Xと交差しない。
〔実施例2〕
本発明のSiC単結晶製造装置は、融液Lおよびその上部の空間を含む黒鉛るつぼ102内の温度を狙い通りに保持するために、黒鉛るつぼ102の上端を覆う断熱用の蓋を用いることが一般的である。
As yet another form, as shown in FIG. 5, the lower half Q of the deflection shaft 108 may be conical for reasons of processing convenience. The holding part H of the SiC seed crystal 110 is at an eccentric position Y with an eccentricity amount h from the axis X, and the held SiC seed crystal 110 does not intersect the axis X.
[Example 2]
In the SiC single crystal manufacturing apparatus of the present invention, in order to keep the temperature in the graphite crucible 102 including the melt L and the space above it as intended, a heat insulating lid that covers the upper end of the graphite crucible 102 is used. It is common.

本実施例では、引き上げ軸108の形態が図4(2)(3)、図5に示したように軸心Xから種結晶保持部Hまでの偏心量hが大きい形態の場合に適した蓋を組み合せた実施形態を説明する。   In the present embodiment, a lid suitable for a case where the form of the pulling shaft 108 is such that the eccentric amount h from the axis X to the seed crystal holding part H is large as shown in FIGS. An embodiment combining the above will be described.

図6は、本発明の望ましい実施形態によるSiC単結晶製造装置200の運転中の状態を示しており、引き上げ軸および蓋のアセンブリ以外は図1に示した実施例1の装置100と同じ構造である。図示を簡潔にするために、図6においては加熱手段104、密封容器112は省略した。   FIG. 6 shows a state during operation of the SiC single crystal manufacturing apparatus 200 according to a preferred embodiment of the present invention. The apparatus has the same structure as that of the apparatus 100 of Example 1 shown in FIG. 1 except for the lifting shaft and the lid assembly. is there. In order to simplify the illustration, the heating means 104 and the sealed container 112 are omitted in FIG.

図6のSiC単結晶製造装置200は、引き上げ軸108が、軸心Xに沿う上半部Pの下端に放射状に張り出したフランジ部118を有している。フランジ118は外縁に段付き部119がある。   In SiC single crystal manufacturing apparatus 200 in FIG. 6, pulling shaft 108 has a flange portion 118 projecting radially at the lower end of upper half portion P along axis X. The flange 118 has a stepped portion 119 at the outer edge.

黒鉛るつぼ102の上端を覆う段付きの蓋120は、引き上げ軸108の上半部Pを貫通させる中心孔122と、黒鉛るつぼ102の上端周縁上に着座して係合可能な外周係合部124と、貫通された状態で図7に示すようにフランジ118の段付き部119に着座して係合可能な中央係合部126とを備えている。   A stepped lid 120 covering the upper end of the graphite crucible 102 has a center hole 122 that penetrates the upper half P of the lifting shaft 108 and an outer peripheral engagement portion 124 that can be seated and engaged on the upper periphery of the graphite crucible 102. 7 and a central engaging portion 126 that can be engaged with the stepped portion 119 of the flange 118 as shown in FIG.

結晶成長を行なう際の引き上げ軸108および蓋120の作動は下記のとおりである。   The operation of the pulling shaft 108 and the lid 120 at the time of crystal growth is as follows.

引き上げ軸108の下半部Qの下端のSiC種結晶保持部HにSiC種結晶110を保持する。   The SiC seed crystal 110 is held in the SiC seed crystal holding part H at the lower end of the lower half Q of the pulling shaft 108.

蓋120の中心孔122に引き上げ軸108の上半部Pを貫通させた状態で蓋120を引き上げ軸108のフランジ118上に着座係合させる。この着座係合は、図7に示すように、フランジ118の外縁段付き部119(図6)に蓋120の貫通孔122の下端の中央係合部126(図6)を嵌め込むことにより行なう。   The lid 120 is seated and engaged on the flange 118 of the lifting shaft 108 with the upper half P of the lifting shaft 108 passing through the center hole 122 of the lid 120. As shown in FIG. 7, the seating engagement is performed by fitting the center engagement portion 126 (FIG. 6) at the lower end of the through hole 122 of the lid 120 into the outer edge stepped portion 119 (FIG. 6) of the flange 118. .

引き上げ軸108を黒鉛るつぼ102内へ下降させて、蓋120の外周係合部124を黒鉛るつぼ102の上端周縁上に着座係合させる。   The lifting shaft 108 is lowered into the graphite crucible 102, and the outer peripheral engagement portion 124 of the lid 120 is seated and engaged on the upper peripheral edge of the graphite crucible 102.

引き上げ軸108を更に下降させることにより、図6に示すように蓋120と引き上げ軸108のフランジ118との着座係合を解除して、蓋120を黒鉛るつぼ102の上端周縁上に着座係合した状態で残置する。   By further lowering the lifting shaft 108, the seating engagement between the lid 120 and the flange 118 of the lifting shaft 108 is released as shown in FIG. 6, and the lid 120 is seated and engaged on the upper edge of the graphite crucible 102. Leave in state.

引き上げ軸108を更に下降させることにより、引き上げ軸108の下半部Qの下端に保持したSiC種結晶110を融液Lに接触させて引き上げ軸108の下降を停止する。   By further lowering the pulling shaft 108, the SiC seed crystal 110 held at the lower end of the lower half Q of the pulling shaft 108 is brought into contact with the melt L to stop the lowering of the pulling shaft 108.

引き上げ軸108を回転させることにより、SiC種結晶110を融液Lに接触させた状態で水平な円周上を周回させつつSiC種結晶110の下面B(図1)を起点としてSiC単結晶を成長させる。   By rotating the pulling shaft 108, the SiC single crystal 110 is rotated from the lower surface B (FIG. 1) of the SiC seed crystal 110 with the SiC seed crystal 110 rotating around the horizontal circumference in contact with the melt L. Grow.

本実施例の引き上げ軸と蓋とのアセンブリを用いることにより、長手方向の途中で屈曲した引き上げ軸108を用いた操業を極めて円滑かつ効率的に進行させることができる。   By using the assembly of the lifting shaft and the lid of the present embodiment, the operation using the lifting shaft 108 bent in the middle in the longitudinal direction can be advanced extremely smoothly and efficiently.

本発明によれば、多結晶化を起こすことなく、平坦な成長表面を持つSiC単結晶が安定して得られるSiC単結晶の製造装置および製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing apparatus and manufacturing method of a SiC single crystal from which the SiC single crystal with a flat growth surface is obtained stably, without raise | generating polycrystallization are provided.

本発明の一実施形態によるSiC単結晶製造装置の縦断面図である。It is a longitudinal cross-sectional view of the SiC single crystal manufacturing apparatus by one Embodiment of this invention. 従来のSiC単結晶製造装置の縦断面図である。It is a longitudinal cross-sectional view of the conventional SiC single crystal manufacturing apparatus. 本発明の製造装置によって結晶成長を行なった後の種結晶付近の状態を示す外観写真である。It is an external appearance photograph which shows the state of the seed crystal vicinity after performing crystal growth with the manufacturing apparatus of this invention. 本発明の製造装置の引き上げ軸の種々の形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the various forms of the raising shaft of the manufacturing apparatus of this invention. 本発明の製造装置の引き上げ軸の他の形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other form of the raising shaft of the manufacturing apparatus of this invention. 本発明の製造装置の引き上げ軸とるつぼ蓋とのアセンブリを備えた形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the form provided with the assembly with the raising shaft and crucible lid of the manufacturing apparatus of this invention. 本発明の製造装置の引き上げ軸とるつぼ蓋とを係合させた状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which engaged the pulling-up shaft and the crucible lid of the manufacturing apparatus of this invention.

符号の説明Explanation of symbols

100 成長装置
102 黒鉛るつぼ
104 加熱手段
108 引き上げ軸
110 SiC種結晶
112 断熱性の密封容器
118 引き上げ軸のフランジ
120 黒鉛るつぼの断熱用の蓋
P 引き上げ軸の上半部
Q 引き上げ軸の下半部
L 融液
S 融液面
B 種結晶110の下面
DESCRIPTION OF SYMBOLS 100 Growth apparatus 102 Graphite crucible 104 Heating means 108 Lifting shaft 110 SiC seed crystal 112 Heat-insulating sealed container 118 Lifting shaft flange 120 Graphite crucible heat insulation lid P Upper half of the lifting shaft Q Lower half of the lifting shaft L Melt S Melt surface B Bottom surface of seed crystal 110

Claims (4)

黒鉛るつぼ内のSi融液内に内部から融液面に向けて温度低下する温度勾配を維持しつつ、引き上げ軸の下端に保持したSiC種結晶の下面を該融液に接触させ、該下面を起点としてSiC単結晶を成長させる装置において、
引き上げ軸は、自己の軸心周りに回転可能であり、該軸心に沿う上半部と該軸心から偏向した部分を含む下半部とを有し、
上記引き上げ軸の下半部の下端にあるSiC種結晶保持部は、該SiC種結晶を上記軸心と交差しない偏心位置に保持可能であり且つ上記引き上げ軸の軸心周りの回転により該軸心を中心とする水平な円周上を周回可能であることを特徴とするSiC単結晶の製造装置。
The lower surface of the SiC seed crystal held at the lower end of the pulling shaft is brought into contact with the melt while maintaining a temperature gradient in the Si melt in the graphite crucible that decreases in temperature from the inside toward the melt surface. In an apparatus for growing a SiC single crystal as a starting point,
The lifting shaft is rotatable around its own axis, and has an upper half along the axis and a lower half including a portion deflected from the axis,
The SiC seed crystal holding portion at the lower end of the lower half of the pulling shaft can hold the SiC seed crystal in an eccentric position that does not intersect the shaft center, and the shaft center is rotated by rotation around the shaft center of the pulling shaft. A SiC single crystal manufacturing apparatus characterized in that it can circulate on a horizontal circumference centering on the substrate.
請求項1において、
上記引き上げ軸は、上記軸心に沿う上半部から放射状に張り出したフランジ部を有し、
上記黒鉛るつぼの上端を覆う蓋は、上記引き上げ軸の上半部を貫通させる中心孔と、上記黒鉛るつぼの上端周縁上に着座して係合可能な外周係合部と、該貫通された状態で上記フランジ上に着座して係合可能な中央係合部とを備えていることを特徴とするSiC単結晶の製造装置。
In claim 1,
The lifting shaft has a flange portion projecting radially from the upper half portion along the axis,
The lid that covers the upper end of the graphite crucible has a center hole that penetrates the upper half of the lifting shaft, an outer peripheral engaging portion that can be engaged with the upper end periphery of the graphite crucible, and the penetrating state. A SiC single crystal manufacturing apparatus, comprising: a central engaging portion that can be engaged by being seated on the flange.
請求項1または2に記載の装置を用いてSiC単結晶を製造する方法であって、
上記引き上げ軸を回転させることにより、上記保持部に保持したSiC種結晶の下面を上記融液に接触した状態で水平な円周上を周回させつつ上記SiC単結晶を成長させることを特徴とするSiC単結晶の製造方法。
A method for producing a SiC single crystal using the apparatus according to claim 1,
By rotating the pulling shaft, the SiC single crystal is grown while the lower surface of the SiC seed crystal held in the holding part is circulated on a horizontal circumference in contact with the melt. A method for producing a SiC single crystal.
請求項3において、
上記引き上げ軸の下半部の下端の上記SiC種結晶保持部に該SiC種結晶を保持し、
上記蓋の中心孔に該引き上げ軸の上半部を貫通させた状態で該蓋を該引き上げ軸の上記フランジ上に着座係合させ、
該引き上げ軸を上記るつぼ内へ下降させて、上記蓋を上記外周係合部で該るつぼの上端周縁上に着座係合させ、
該引き上げ軸を更に下降させることにより、上記蓋と上記引き上げ軸のフランジとの着座係合を解除して、該蓋を該るつぼの上端周縁上に上記着座係合した状態で残置し、
該引き上げ軸を更に下降させることにより、該引き上げ軸の下半部の下端に保持した上記SiC種結晶の下面を上記融液に接触させて該引き上げ軸の下降を停止し、
該引き上げ軸を回転させることにより、該SiC種結晶を該融液に接触させた状態で水平な円周上を周回させつつ上記SiC種結晶の下面を起点として上記SiC単結晶を成長させることを特徴とするSiC単結晶の製造方法。
In claim 3,
Holding the SiC seed crystal in the SiC seed crystal holding part at the lower end of the lower half of the pulling shaft;
The lid is seated and engaged on the flange of the lifting shaft with the upper half of the lifting shaft penetrating through the center hole of the lid,
The lifting shaft is lowered into the crucible, and the lid is seated and engaged on the upper peripheral edge of the crucible at the outer peripheral engagement portion,
By further lowering the lifting shaft, the seating engagement between the lid and the flange of the lifting shaft is released, and the lid is left in the seating engagement state on the upper edge of the crucible,
By further lowering the pulling shaft, the lower surface of the SiC seed crystal held at the lower end of the lower half of the pulling shaft is brought into contact with the melt to stop the lowering of the pulling shaft.
By rotating the pulling shaft, the SiC single crystal is grown from the lower surface of the SiC seed crystal as a starting point while rotating around the horizontal circumference in a state where the SiC seed crystal is in contact with the melt. A method for producing a SiC single crystal, which is characterized.
JP2006282405A 2006-10-17 2006-10-17 Apparatus and method of manufacturing sic single crystal Withdrawn JP2008100854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282405A JP2008100854A (en) 2006-10-17 2006-10-17 Apparatus and method of manufacturing sic single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282405A JP2008100854A (en) 2006-10-17 2006-10-17 Apparatus and method of manufacturing sic single crystal

Publications (1)

Publication Number Publication Date
JP2008100854A true JP2008100854A (en) 2008-05-01

Family

ID=39435483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282405A Withdrawn JP2008100854A (en) 2006-10-17 2006-10-17 Apparatus and method of manufacturing sic single crystal

Country Status (1)

Country Link
JP (1) JP2008100854A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136388A (en) * 2010-12-27 2012-07-19 Sumitomo Metal Ind Ltd APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL AND CRUCIBLE USED FOR THE SAME
WO2013065204A1 (en) * 2011-10-31 2013-05-10 トヨタ自動車株式会社 SiC SINGLE CRYSTAL MANUFACTURING METHOD
EP2733239A1 (en) * 2011-07-04 2014-05-21 Toyota Jidosha Kabushiki Kaisha Sic single crystal and manufacturing process therefor
US20150167197A1 (en) * 2012-08-26 2015-06-18 National University Corporation Nagoya University CRYSTAL PRODUCING APPARATUS, SiC SINGLE CRYSTAL PRODUCING METHOD, AND SiC SINGLE CRYSTAL
US9080254B2 (en) 2009-03-12 2015-07-14 Toyota Jidosha Kabushiki Kaisha Method of producing SiC single crystal
US20160053402A1 (en) * 2013-04-09 2016-02-25 Nippon Steel & Sumitomo Metal Corporation METHOD FOR PRODUCING SiC SINGLE CRYSTAL
WO2016039415A1 (en) * 2014-09-11 2016-03-17 国立大学法人名古屋大学 Method for producing silicon carbide crystals and crystal production device
US9388508B2 (en) 2010-12-27 2016-07-12 Toyota Jidosha Kabushiki Kaisha Manufacturing apparatus of SiC single crystal, jig for use in the manufacturing apparatus, and method for manufacturing SiC single crystal
CN105970295A (en) * 2016-06-24 2016-09-28 山东天岳先进材料科技有限公司 Device and method of growing silicon carbide crystals through liquid phase method
JP2016196402A (en) * 2016-05-16 2016-11-24 京セラ株式会社 Supporter, crystal production apparatus, and production method of crystal
JP2019202925A (en) * 2018-05-25 2019-11-28 株式会社デンソー Apparatus and method for manufacturing silicon carbide single crystal

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080254B2 (en) 2009-03-12 2015-07-14 Toyota Jidosha Kabushiki Kaisha Method of producing SiC single crystal
US9388508B2 (en) 2010-12-27 2016-07-12 Toyota Jidosha Kabushiki Kaisha Manufacturing apparatus of SiC single crystal, jig for use in the manufacturing apparatus, and method for manufacturing SiC single crystal
JP2012136388A (en) * 2010-12-27 2012-07-19 Sumitomo Metal Ind Ltd APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL AND CRUCIBLE USED FOR THE SAME
EP2733239A1 (en) * 2011-07-04 2014-05-21 Toyota Jidosha Kabushiki Kaisha Sic single crystal and manufacturing process therefor
US10094041B2 (en) 2011-07-04 2018-10-09 Toyota Jidosha Kabushiki Kaisha SiC single crystal and method of producing same
EP2733239A4 (en) * 2011-07-04 2015-01-07 Toyota Motor Co Ltd Sic single crystal and manufacturing process therefor
KR101622858B1 (en) 2011-10-31 2016-05-19 도요타지도샤가부시키가이샤 SiC SINGLE CRYSTAL MANUFACTURING METHOD
JPWO2013065204A1 (en) * 2011-10-31 2015-04-02 トヨタ自動車株式会社 Method for producing SiC single crystal
WO2013065204A1 (en) * 2011-10-31 2013-05-10 トヨタ自動車株式会社 SiC SINGLE CRYSTAL MANUFACTURING METHOD
US9624599B2 (en) 2011-10-31 2017-04-18 Toyota Jidosha Kabushiki Kaisha SiC single crystal manufacturing method using alternating states of supersaturation
EP2889397A4 (en) * 2012-08-26 2016-04-27 Univ Nagoya Nat Univ Corp Crystal production device, production method for sic single crystals, and sic single crystal
US20150167197A1 (en) * 2012-08-26 2015-06-18 National University Corporation Nagoya University CRYSTAL PRODUCING APPARATUS, SiC SINGLE CRYSTAL PRODUCING METHOD, AND SiC SINGLE CRYSTAL
US20160053402A1 (en) * 2013-04-09 2016-02-25 Nippon Steel & Sumitomo Metal Corporation METHOD FOR PRODUCING SiC SINGLE CRYSTAL
KR101911455B1 (en) 2014-09-11 2018-10-24 고쿠리츠 다이가쿠 호우징 나고야 다이가쿠 Method for producing silicon carbide crystals and crystal production device
JP2016056071A (en) * 2014-09-11 2016-04-21 国立大学法人名古屋大学 Manufacturing method for silicon carbide crystal, and crystal manufacturing apparatus
US10151046B2 (en) 2014-09-11 2018-12-11 National University Corporation Nagoya University Method for producing crystal of silicon carbide, and crystal production device
WO2016039415A1 (en) * 2014-09-11 2016-03-17 国立大学法人名古屋大学 Method for producing silicon carbide crystals and crystal production device
JP2016196402A (en) * 2016-05-16 2016-11-24 京セラ株式会社 Supporter, crystal production apparatus, and production method of crystal
CN105970295A (en) * 2016-06-24 2016-09-28 山东天岳先进材料科技有限公司 Device and method of growing silicon carbide crystals through liquid phase method
JP7255089B2 (en) 2018-05-25 2023-04-11 株式会社デンソー Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
JP2019202925A (en) * 2018-05-25 2019-11-28 株式会社デンソー Apparatus and method for manufacturing silicon carbide single crystal
WO2019225697A1 (en) * 2018-05-25 2019-11-28 株式会社デンソー Apparatus for manufacturing silicon nitride single crystal, and method for manufacturing silicon nitride single crystal
CN112166210A (en) * 2018-05-25 2021-01-01 株式会社电装 Apparatus for producing silicon carbide single crystal and method for producing silicon carbide single crystal
CN112166210B (en) * 2018-05-25 2023-03-10 株式会社电装 Silicon carbide single crystal production apparatus and method for producing silicon carbide single crystal

Similar Documents

Publication Publication Date Title
JP2008100854A (en) Apparatus and method of manufacturing sic single crystal
JP5136970B2 (en) High quality silicon single crystal ingot growth equipment and growth method using the equipment
KR101708131B1 (en) SiC SINGLE CRYSTAL INGOT AND PRODUCTION METHOD THEREFOR
JP2008105896A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
KR20080100478A (en) Method of manufacturing silicon carbide single crystal
WO2016059788A1 (en) SiC SINGLE CRYSTAL PRODUCTION METHOD AND SiC SINGLE CRYSTAL PRODUCTION DEVICE
JP4810346B2 (en) Method for producing sapphire single crystal
WO2015063992A1 (en) Silicon single crystal puller
JP5131170B2 (en) Upper heater for single crystal production, single crystal production apparatus and single crystal production method
JP2007182373A (en) Method for producing high quality silicon single crystal and silicon single crystal wafer made by using the same
JP4830496B2 (en) Method for producing SiC single crystal
KR101983489B1 (en) Manufacturing method of SiC single crystal
KR101983491B1 (en) Manufacturing method of SiC single crystal
WO2018062224A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SEED CRYSTAL
WO2017135272A1 (en) Method for manufacturing sic single crystal and sic seed crystal
JP2011116600A (en) Apparatus for producing single crystal and method for producing single crystal
JP2010248003A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2758038B2 (en) Single crystal manufacturing equipment
JP2005298288A (en) Quartz crucible
JP2010030868A (en) Production method of semiconductor single crystal
JP5077299B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2010030847A (en) Production method of semiconductor single crystal
JP2009161395A (en) Method for manufacturing compound semiconductor single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH08333189A (en) Apparatus for pulling up crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A761 Written withdrawal of application

Effective date: 20110322

Free format text: JAPANESE INTERMEDIATE CODE: A761