JP2005298288A - Quartz crucible - Google Patents

Quartz crucible Download PDF

Info

Publication number
JP2005298288A
JP2005298288A JP2004118451A JP2004118451A JP2005298288A JP 2005298288 A JP2005298288 A JP 2005298288A JP 2004118451 A JP2004118451 A JP 2004118451A JP 2004118451 A JP2004118451 A JP 2004118451A JP 2005298288 A JP2005298288 A JP 2005298288A
Authority
JP
Japan
Prior art keywords
recess
single crystal
crucible
quartz crucible
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004118451A
Other languages
Japanese (ja)
Other versions
JP4466175B2 (en
Inventor
Soichiro Kondo
総一郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2004118451A priority Critical patent/JP4466175B2/en
Publication of JP2005298288A publication Critical patent/JP2005298288A/en
Application granted granted Critical
Publication of JP4466175B2 publication Critical patent/JP4466175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide such a quartz crucible in a silicon single crystal-lifting apparatus as is capable of fusing the oxygen uniformly into the silicon molten liquid during the lifting of a silicon single crystal. <P>SOLUTION: The quartz crucible 13 is provided in a chamber 11, supported with a graphite susceptor 14, and stored therein with a silicon molten liquid 12 for lifting a silicon single crystal 24, and formed inside the bottom part with recesses 13a for the silicon molten liquid 12 to settle. The recess is preferably either one or more of ringed grooves 13a having as the center a crucible revolving center A or a plurality of the bottomed holes arranged concentrically around the crucible revolving center A as the center. The recess also may be a ringed groove formed between a pair of such ringed convex stripes as having in the inside bottom part the crucible revolving center A as the center and as forming respectively a pair of convex stripes apart in a definite interval. Preferably, the recess 13a is formed so that the opening part B of the recess is smaller than the inside C of the recess and the recess is formed in the inside bottom part within the range of a diameter corresponding to the diameter D of a lifting silicon single crystal 24. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チョクラルスキー法(以下、CZ法という。)によりシリコン単結晶を引上げる装置に用いられ、そのシリコン単結晶を引上げるためのシリコン融液が貯留される石英ルツボに関するものである。   The present invention relates to a quartz crucible used in an apparatus for pulling up a silicon single crystal by the Czochralski method (hereinafter referred to as CZ method) and storing a silicon melt for pulling up the silicon single crystal. .

シリコン単結晶を育成する方法の一つとしてCZ法が用いられている。このCZ法は、先ず、多結晶シリコン原料を石英ルツボ内でシリコンの融点以上に加熱融解してシリコン融液とする。次いでこの石英ルツボに貯えられたシリコン融液に種結晶を浸す。種結晶が浸されその一部を融解した後に引上げを開始する。引上げ中、最初にネックと呼ばれる細い結晶部がインゴットへの転位成長を除くために育成される。次いでインゴットはネックから成長しその結晶径が徐々に増大する。最初にコーン部、続いて肩部が形成された後、一定の直径を有する直胴部が形成される。上記ステップを経ることにより円柱状のシリコン単結晶が育成される。   The CZ method is used as one method for growing a silicon single crystal. In this CZ method, first, a polycrystalline silicon raw material is heated and melted in a quartz crucible above the melting point of silicon to obtain a silicon melt. Next, the seed crystal is immersed in the silicon melt stored in the quartz crucible. Pulling is started after the seed crystal is immersed and a part thereof is melted. During pulling, a thin crystal part called a neck is first grown to eliminate dislocation growth into the ingot. The ingot then grows from the neck and its crystal diameter gradually increases. After the cone portion and then the shoulder portion are formed first, a straight body portion having a constant diameter is formed. A cylindrical silicon single crystal is grown through the above steps.

CZ法における結晶成長の間、石英ルツボの内壁部はシリコン融液に接し、そして次の式(1)に示す反応の結果、徐々に溶解する。
SiO2 + Si → 2SiO ………… (1)
シリコン融液に混入したSiOの大半は、シリコン融液の自由表面からSiOガスとして蒸発するが、一部がシリコン単結晶とシリコン融液の界面である固液界面からシリコン単結晶に取り込まれ不純物酸素の源となる。シリコン単結晶の引上げ初期段階では、シリコン融液と石英ルツボ内壁部が接触する面積が比較的広いため、シリコン融液に溶解する酸素濃度は非常に高い。しかし、結晶成長が進んで、シリコン単結晶が形成されるとシリコン融液の液面は下がり、シリコン融液と石英ルツボ内壁部の接触面積は引上げ初期段階と比べて小さくなる。融液とルツボの接触面積の減少は石英ルツボからシリコン融液に溶解する酸素量を減少させる。従って、十分に成長したシリコン単結晶は、その軸方向で不均一な酸素分布を示す。より詳しくは酸素濃度は、その測定が結晶のシード端部、結晶の中央部、又は結晶のテール端部でなされるかによって、変化する。
During crystal growth in the CZ method, the inner wall of the quartz crucible contacts the silicon melt and gradually dissolves as a result of the reaction shown in the following formula (1).
SiO 2 + Si → 2SiO (1)
Most of the SiO mixed into the silicon melt evaporates as SiO gas from the free surface of the silicon melt, but a part of it is taken into the silicon single crystal from the solid-liquid interface that is the interface between the silicon single crystal and the silicon melt. It becomes a source of oxygen. At the initial stage of pulling the silicon single crystal, the area where the silicon melt and the inner wall of the quartz crucible are in contact with each other is relatively large, so that the concentration of oxygen dissolved in the silicon melt is very high. However, as the crystal growth progresses and a silicon single crystal is formed, the liquid level of the silicon melt decreases, and the contact area between the silicon melt and the inner wall of the quartz crucible becomes smaller than the initial stage of pulling. The reduction of the contact area between the melt and the crucible reduces the amount of oxygen dissolved from the quartz crucible into the silicon melt. Therefore, a sufficiently grown silicon single crystal shows a non-uniform oxygen distribution in its axial direction. More specifically, the oxygen concentration varies depending on whether the measurement is made at the seed end of the crystal, the center of the crystal, or the tail end of the crystal.

一方、シリコン融液に高濃度のAs、PやSb等の元素をドープして得られるN型シリコン単結晶は、パワーディスクリート市場(power discrete market)で用いられるエピタキシャルウェーハ(以下、エピウェーハという。)の出発原料として好都合であり、その生産量は増加傾向にある。良好なエピウェーハ基板に求められる本質的な2つの特性はそのバルクの抵抗率とその内部ゲッタリング能力である。ウェーハの内部ゲッタリング能力はこの結晶内部に増大した固有の酸素濃度に密接に関係している。N型シリコン単結晶のバルクの抵抗率とこうしたN型シリコン単結晶の酸素濃度との間には直接の相関関係があることが知られている。特定の結晶の抵抗率が低くなればなるほど、結晶構造に自然に取り入れられる酸素濃度は低くなる。この挙動の理由の一部は、AsやSbのような元素が酸素化合物を形成しながら容易に融液表面から蒸発して融液中の酸素濃度を減少させることにある。例えば、融液中のSbは酸素と結合して酸素の溶解度を高め、一方で、Sb単体やSb2O等の形で蒸発する。その結果、Sbが高濃度で含まれると、溶液中では酸素濃度が減少し、Sbを高度にドープした結晶中に高度に酸素を取り込むことが難しくなる。このように、低抵抗率と高酸素濃度を同時に満たすN型シリコン単結晶を得ることが困難であった。 On the other hand, an N-type silicon single crystal obtained by doping a silicon melt with an element such as As, P, or Sb at a high concentration is an epitaxial wafer (hereinafter referred to as an epi wafer) used in the power discrete market. It is convenient as a starting material for the above, and its production amount tends to increase. Two essential properties required for a good epi-wafer substrate are its bulk resistivity and its internal gettering ability. The internal gettering capability of the wafer is closely related to the increased intrinsic oxygen concentration inside the crystal. It is known that there is a direct correlation between the bulk resistivity of an N-type silicon single crystal and the oxygen concentration of such an N-type silicon single crystal. The lower the resistivity of a particular crystal, the lower the oxygen concentration that is naturally incorporated into the crystal structure. Part of the reason for this behavior is that elements such as As and Sb readily evaporate from the melt surface while forming oxygen compounds, thereby reducing the oxygen concentration in the melt. For example, Sb in the melt is combined with oxygen to increase the solubility of oxygen, while evaporating in the form of Sb alone or Sb 2 O. As a result, when Sb is contained in a high concentration, the oxygen concentration in the solution decreases, and it becomes difficult to incorporate oxygen into the crystal highly doped with Sb. Thus, it has been difficult to obtain an N-type silicon single crystal that simultaneously satisfies a low resistivity and a high oxygen concentration.

この点を解消するために、図10に示すように、グラファイトサセプタ1により支持されて設けられた石英ルツボ3の内部に石英からなるリング部材4を挿入し、ヒータ7により加熱されたシリコン融液6をそのルツボ3に貯留し、そのシリコン融液6からシリコン単結晶2を引上げることが提案されている(例えば、特許文献1参照。)。これは、石英からなるリング部材4をシリコン融液6に浸漬させることにより、シリコン単結晶2の成長が進んでシリコン融液6の液面が下がった場合においても、そのリング部材4からシリコン融液6中に酸素を溶解させ、軸方向で均一な酸素分布を有するシリコン単結晶2を得ることができるものとしている。
米国特許第4,545,849号明細書
In order to solve this problem, as shown in FIG. 10, a silicon melt that is heated by a heater 7 by inserting a ring member 4 made of quartz into a quartz crucible 3 that is supported and provided by a graphite susceptor 1. It has been proposed to store 6 in the crucible 3 and pull up the silicon single crystal 2 from the silicon melt 6 (see, for example, Patent Document 1). This is because the ring member 4 made of quartz is immersed in the silicon melt 6, so that even when the growth of the silicon single crystal 2 proceeds and the liquid level of the silicon melt 6 is lowered, the silicon melt 6 is melted from the ring member 4. It is assumed that oxygen can be dissolved in the liquid 6 to obtain the silicon single crystal 2 having a uniform oxygen distribution in the axial direction.
U.S. Pat. No. 4,545,849

しかし、石英からなるリング部材4をシリコン融液6に浸漬させると、そのリング部材4はルツボ3の内底部に設置されシリコン融液6中にルツボ3の内底面から突出するような形となる。そして、このリング部材4からシリコン融液6中に融解する酸素の量はその温度に比例するけれども、ルツボ3の上昇に伴いヒータ7による加熱量が変化し、リング部材4からシリコン融液6中に融解する酸素の量も変化し、シリコン融液6中に酸素を均一に融解させることが困難であるという未だ解決すべき課題が残存していた。
本発明の目的は、シリコン単結晶引き上げ中のシリコン融液中に酸素を均一に融解させることのできるシリコン単結晶の引上げ装置における石英ルツボを提供することにある。
However, when the ring member 4 made of quartz is immersed in the silicon melt 6, the ring member 4 is installed at the inner bottom portion of the crucible 3, and is shaped to protrude from the inner bottom surface of the crucible 3 into the silicon melt 6. . The amount of oxygen melted from the ring member 4 into the silicon melt 6 is proportional to the temperature, but the amount of heating by the heater 7 changes as the crucible 3 rises, and the ring member 4 into the silicon melt 6 changes. The amount of oxygen to be melted also changed, and there still remained a problem to be solved that it was difficult to uniformly melt oxygen in the silicon melt 6.
An object of the present invention is to provide a quartz crucible in a silicon single crystal pulling apparatus capable of uniformly melting oxygen in a silicon melt being pulled.

請求項1に係る発明は、図4に示すように、チャンバ11内にグラファイトサセプタ14により支持されて設けられシリコン単結晶24を引上げるためのシリコン融液12が貯留される石英ルツボ13の改良である。
その特徴ある構成は、図1に示すように、内底部にシリコン融液12が澱む凹み13aが形成されたところにある。
この請求項1に記載された石英ルツボ13では、凹み13aに澱むシリコン融液12は特に加熱されて多くの酸素が溶け出すため、その酸素濃度は飽和状態となる。一方、図3に示すように、ルツボ13に貯留されたシリコン融液12にはテイラープラウドマン(Taylor-Proudman)循環流Pが発生し、凹み13aに澱みシリコン融液12はこの循環流Pにより上昇してシリコン単結晶24に取り込まれる。即ち、シリコン単結晶24の直胴部を形成する時に、酸素濃度の比較的高いシリコン融液12が凹み13aから循環流Pにより上昇してその単結晶24に取り込まれ、酸素濃度の低下を抑制する効果が得られる。
As shown in FIG. 4, the invention according to claim 1 is an improvement of a quartz crucible 13 provided in a chamber 11 by being supported by a graphite susceptor 14 and storing a silicon melt 12 for pulling up a silicon single crystal 24. It is.
As shown in FIG. 1, the characteristic configuration is that a recess 13a in which the silicon melt 12 is stagnation is formed in the inner bottom portion.
In the quartz crucible 13 described in claim 1, since the silicon melt 12 stagnating in the recess 13a is particularly heated and a large amount of oxygen is dissolved, the oxygen concentration becomes saturated. On the other hand, as shown in FIG. 3, a Taylor-Proudman circulation flow P is generated in the silicon melt 12 stored in the crucible 13, and the stagnation silicon melt 12 flows into the recess 13 a due to the circulation flow P. It rises and is taken into the silicon single crystal 24. That is, when the straight body portion of the silicon single crystal 24 is formed, the silicon melt 12 having a relatively high oxygen concentration rises from the recess 13a by the circulating flow P and is taken into the single crystal 24, thereby suppressing the decrease in the oxygen concentration. Effect is obtained.

請求項2に係る発明は、請求項1に係る発明であって、凹みがルツボ回転中心Aを中心とする1又は2以上のリング状の溝13aであることを特徴とする。
請求項3に係る発明は、請求項1に係る発明であって、図9に示すように、凹みが複数の有底穴13eであって、複数の有底穴13eがルツボ回転中心Aを中心とする同心円状に配列されたことを特徴とする。
この請求項2又は請求項3に記載された石英ルツボでは、凹みがリング状の溝13a又は複数の有底穴13eであるのでその加工が容易で、比較的安価に本発明の石英ルツボを得ることができる。
The invention according to claim 2 is the invention according to claim 1, characterized in that the recess is one or more ring-shaped grooves 13 a centering on the crucible rotation center A.
The invention according to claim 3 is the invention according to claim 1, wherein, as shown in FIG. 9, the recess is a plurality of bottomed holes 13e, and the plurality of bottomed holes 13e are centered on the crucible rotation center A. It is characterized by being arranged in a concentric circle.
In the quartz crucible described in claim 2 or claim 3, since the recess is the ring-shaped groove 13a or the plurality of bottomed holes 13e, the processing is easy, and the quartz crucible of the present invention is obtained at a relatively low cost. be able to.

請求項4に係る発明は、請求項1に係る発明であって、図6に示すように、内底部にルツボ回転中心Aを中心としかつ互いに所定の間隔を開けてそれぞれリング状の一対の凸条13b,13cが形成され、凹みが一対の凸条13b,13cの間に形成されたリング状の溝13dであることを特徴とする。
この請求項4に記載された石英ルツボでは、シリコン単結晶24の直胴部を形成する時に、酸素濃度の比較的高いシリコン融液12を凹み13dから単結晶24に取り込ませるとともに、その一対の凸条13b,13cからもシリコン融液12中に酸素を溶解させることができ、軸方向で均一な酸素分布を有するシリコン単結晶24を得ることが可能になる。
The invention according to claim 4 is the invention according to claim 1, wherein, as shown in FIG. 6, a pair of ring-shaped projections, each centering on the crucible rotation center A and spaced apart from each other at the inner bottom portion, are provided. Strips 13b and 13c are formed, and the recess is a ring-shaped groove 13d formed between the pair of projections 13b and 13c.
In the quartz crucible described in claim 4, when forming the straight body portion of the silicon single crystal 24, the silicon melt 12 having a relatively high oxygen concentration is taken into the single crystal 24 from the recess 13d, and the pair of Oxygen can be dissolved in the silicon melt 12 also from the ridges 13b and 13c, and a silicon single crystal 24 having a uniform oxygen distribution in the axial direction can be obtained.

請求項5に係る発明は、請求項1ないし4いずれか1項に係る発明であって、図1、図6及び図9に示すように、凹み13a,13d.13eは凹み開口部Bが凹み内部Cより小さくなるように形成されたことを特徴とする。
この請求項5に記載された石英ルツボでは、凹み開口部Bが凹み内部Cより小さくなるように形成するので、酸素濃度が飽和状態の凹み13aに澱みシリコン融液12を循環流Pより徐々に上昇させてシリコン単結晶24に取り込ませることができ、シリコン単結晶24の直胴部を形成する時の酸素濃度の低下を有効に抑制することができる。
The invention according to a fifth aspect is the invention according to any one of the first to fourth aspects, wherein the recesses 13a, 13d,. 13e is characterized in that the dent opening B is formed to be smaller than the dent inside C.
In the quartz crucible described in claim 5, the recess opening B is formed so as to be smaller than the recess C. Therefore, the silicon melt 12 is gradually added to the recess 13 a in which the oxygen concentration is saturated from the circulating flow P. The silicon single crystal 24 can be raised and taken in, and the decrease in oxygen concentration when the straight body portion of the silicon single crystal 24 is formed can be effectively suppressed.

請求項6に係る発明は、請求項1ないし5いずれか1項に係る発明であって、凹み13a,13d.13eが引き上げられるシリコン単結晶24の直径Dに相当する径の範囲内で内底部に形成されたことを特徴とする。
この請求項6に記載された石英ルツボでは、酸素濃度が飽和状態となる凹み13a,13d.13e内部のシリコン融液12を循環流Pに乗せてシリコン単結晶24に有効に取り込ませることができ、酸素濃度の低下を更に有効に抑制することができる。
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the recesses 13a, 13d. 13e is formed on the inner bottom within a diameter range corresponding to the diameter D of the silicon single crystal 24 to be pulled up.
In the quartz crucible described in claim 6, the recesses 13a, 13d. The silicon melt 12 inside 13e can be put on the circulating flow P and effectively taken into the silicon single crystal 24, and the decrease in oxygen concentration can be further effectively suppressed.

本発明の石英ルツボでは、内底部にシリコン融液が澱む凹みを形成したので、凹みに澱むシリコン融液は特に加熱されて多くの酸素が溶け出してその酸素濃度は飽和状態となり、酸素濃度が飽和状態のシリコン融液はテイラープラウドマン循環流により上昇してシリコン単結晶に取り込まれる。従って、シリコン単結晶の直胴部を形成する時に、酸素濃度の比較的高いシリコン融液をその凹みから単結晶に取り込ませて酸素濃度の低下を抑制することができる。この場合の凹みは、ルツボ回転中心Aを中心とする1又は2以上のリング状の溝であったり、複数の有底穴であってルツボ回転中心を中心とする同心円状に配列されたものであることが好ましい。或いは、内底部にルツボ回転中心を中心としかつ互いに所定の間隔を開けてそれぞれリング状の一対の凸条を形成し、この一対の凸条の間を凹みとしても良い。   In the quartz crucible of the present invention, a recess in which the silicon melt stagnates was formed in the inner bottom, so that the silicon melt stagnated in the recess was heated particularly so that a large amount of oxygen was dissolved and the oxygen concentration became saturated, and the oxygen concentration was The saturated silicon melt is raised by the Taylor Proudman circulating flow and taken into the silicon single crystal. Therefore, when forming the straight body portion of the silicon single crystal, a silicon melt having a relatively high oxygen concentration can be taken into the single crystal from the recess to suppress a decrease in the oxygen concentration. The dents in this case are one or more ring-shaped grooves centered on the crucible rotation center A, or a plurality of bottomed holes arranged concentrically around the crucible rotation center. Preferably there is. Alternatively, a pair of ring-shaped ridges may be formed on the inner bottom portion with the crucible rotation center as a center and a predetermined distance from each other, and a recess may be formed between the pair of ridges.

また、凹みは凹み開口部が凹み内部より小さくなるように形成すれば、酸素濃度が飽和状態の凹みに澱みシリコン融液をその循環流より徐々に上昇させてシリコン単結晶に取り込ませることができ、凹みが引き上げられるシリコン単結晶の直径に相当する径の範囲内に形成すれば、酸素濃度が飽和状態となる凹み内部のシリコン融液をその循環流に乗せてシリコン単結晶に有効に取り込ませることができる。   In addition, if the dent is formed so that the opening of the dent is smaller than the inside of the dent, the silicon melt can gradually rise from the circulating flow into the dent in which the oxygen concentration is saturated and can be taken into the silicon single crystal. If the dent is formed within the diameter range corresponding to the diameter of the silicon single crystal to be pulled up, the silicon melt inside the dent where the oxygen concentration is saturated is put on the circulating flow and effectively taken into the silicon single crystal. be able to.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
図4に示すように、シリコン単結晶引上げ装置10のチャンバ11内には、シリコン融液12を貯える石英ルツボ13が設けられ、この石英ルツボ13はグラファイトサセプタ14により外周面及び外底面を包囲されて支持される。サセプタ14は支軸16の上端に固定され、この支軸16の下部はルツボ駆動手段17に接続される。ルツボ駆動手段17は図示しないが石英ルツボ13を回転させる第1回転用モータと、石英ルツボ13を昇降させる昇降用モータとを有し、これらのモータにより石英ルツボ13が所定の方向に回転し、かつ上下方向に移動できるようになっている。サセプタ14の外周面はヒータ18により包囲され、このヒータ18は保温筒19により包囲される。ヒータ18は石英ルツボ13に充填された高純度の多結晶シリコン原料を加熱融解してシリコン融液12にする。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
As shown in FIG. 4, a quartz crucible 13 for storing a silicon melt 12 is provided in the chamber 11 of the silicon single crystal pulling apparatus 10, and this quartz crucible 13 is surrounded by a graphite susceptor 14 on the outer peripheral surface and the outer bottom surface. Supported. The susceptor 14 is fixed to the upper end of the support shaft 16, and the lower portion of the support shaft 16 is connected to the crucible driving means 17. Although not shown, the crucible driving means 17 has a first rotation motor that rotates the quartz crucible 13 and a lifting motor that raises and lowers the quartz crucible 13, and the quartz crucible 13 is rotated in a predetermined direction by these motors. And it can move up and down. The outer peripheral surface of the susceptor 14 is surrounded by a heater 18, and the heater 18 is surrounded by a heat insulating cylinder 19. The heater 18 heats and melts the high-purity polycrystalline silicon raw material filled in the quartz crucible 13 to form the silicon melt 12.

またチャンバ11の上端の円筒状のケーシング21には引上げ手段22が設けられる。引上げ手段22はケーシング21の上端部に水平状態で旋回可能に設けられた引上げヘッド(図示せず)と、このヘッドを回転させる第2回転用モータ(図示せず)と、ヘッドから石英ルツボ13の回転中心に向って垂下されたワイヤケーブル23と、上記ヘッド内に設けられワイヤケーブル23を巻取り又は繰出す引上げ用モータ(図示せず)とを有する。ワイヤケーブル23の下端には種結晶26が取付けられる。シリコン単結晶24の外周面と保温筒19の内周面との間にはシリコン単結晶24を包囲する円筒状の熱遮断部材27が設けられる。この熱遮断部材27はコーン部27aとフランジ部27bからなり、このフランジ部27bを保温筒19に取付けることにより熱遮蔽部材27が固定される。   A pulling means 22 is provided in a cylindrical casing 21 at the upper end of the chamber 11. The pulling means 22 is a pulling head (not shown) provided at the upper end of the casing 21 so as to be turnable in a horizontal state, a second rotating motor (not shown) for rotating the head, and the quartz crucible 13 from the head. And a pulling motor (not shown) that is provided in the head and winds or feeds the wire cable 23. A seed crystal 26 is attached to the lower end of the wire cable 23. A cylindrical heat blocking member 27 is provided between the outer peripheral surface of the silicon single crystal 24 and the inner peripheral surface of the heat retaining cylinder 19 to surround the silicon single crystal 24. The heat shield member 27 includes a cone portion 27a and a flange portion 27b, and the heat shield member 27 is fixed by attaching the flange portion 27b to the heat retaining cylinder 19.

この第1の実施の形態の特徴ある構成は、図1及ぶ図5に示すように、ルツボ13の内底部にシリコン融液12が澱む凹み12aが形成されたところにある。この実施の形態における凹み13aは、図1に詳しく示すように、ルツボ駆動手段17によりそのルツボ13が回転するルツボ回転中心Aを中心としてルツボ13の内底部に形成されたリング状の溝である。そしてこの凹み13aは、図1の拡大図に示すように、凹み開口部Bが凹み内部Cより小さくなるように形成され、引き上げられるシリコン単結晶の直径Dに相当する径の範囲内で内底部に形成される。   The characteristic configuration of the first embodiment is that a recess 12a in which the silicon melt 12 stagnates is formed at the inner bottom of the crucible 13, as shown in FIGS. As shown in detail in FIG. 1, the recess 13 a in this embodiment is a ring-shaped groove formed in the inner bottom portion of the crucible 13 around the crucible rotation center A around which the crucible 13 rotates by the crucible driving means 17. . As shown in the enlarged view of FIG. 1, the recess 13a is formed so that the recess opening B is smaller than the recess C, and the inner bottom portion is within a range corresponding to the diameter D of the silicon single crystal to be pulled up. Formed.

このような構成のルツボを用いたシリコン単結晶の引上げ方法について説明する。
先ず高純度の多結晶シリコン原料を石英ルツボ13に充填し、ヒータ18でシリコンの融点以上に加熱融解してシリコン融液12にする。次いで石英ルツボ13に貯えられたシリコン融液12に種結晶26を浸し、種結晶26そのものを融解した後にルツボ駆動手段17によりそのルツボ13を回転させ、その状態でワイヤケーブル23を回転させながら引上げることにより円柱状のシリコン単結晶24を育成する。このとき石英ルツボ13はワイヤケーブル23の回転と逆の回転をさせる。
A method for pulling a silicon single crystal using the crucible having such a structure will be described.
First, a high-purity polycrystalline silicon raw material is filled in a quartz crucible 13, and heated and melted to a melting point of silicon or higher by a heater 18 to obtain a silicon melt 12. Next, the seed crystal 26 is immersed in the silicon melt 12 stored in the quartz crucible 13, and after melting the seed crystal 26 itself, the crucible driving means 17 rotates the crucible 13, and the wire cable 23 is rotated while being pulled. The cylindrical silicon single crystal 24 is grown by raising. At this time, the quartz crucible 13 rotates in the direction opposite to the rotation of the wire cable 23.

融液12が形成されるとき及び単結晶24の直胴部が形成されるときに行うヒータ18による加熱は、先ず石英ルツボ13の温度がその加熱により上昇しその後シリコン融液12に伝達される。このときの温度分布状態を図2に示す。図2から明らかなように、石英ルツボ13がヒータ18により先ず加熱されることから、その加熱された石英ルツボ13の内底部に形成された凹み13aに澱むシリコン融液12は特に加熱されて多くの酸素が溶け出すため、その酸素濃度は飽和状態となる。   When the melt 12 is formed and when the straight body portion of the single crystal 24 is formed, the heating by the heater 18 first increases the temperature of the quartz crucible 13 by the heating, and then is transmitted to the silicon melt 12. . The temperature distribution state at this time is shown in FIG. As apparent from FIG. 2, the quartz crucible 13 is first heated by the heater 18, so that the silicon melt 12 stagnating in the recess 13a formed in the inner bottom portion of the heated quartz crucible 13 is heated particularly much. The oxygen concentration is saturated, so that the oxygen concentration is saturated.

一方、図3に示すように、ルツボ13に貯留されたシリコン融液12にはシリコン単結晶24とルツボ13が回転することから生じるテイラープラウドマン循環流P(以下、「循環流P」という。)が発生する。この循環流Pはシリコン単結晶24の直径に相当するルツボ底部から上昇してルツボ13の中央底部に向かって下降する対流である。一方、この循環流Pの外側におけるルツボ13の周囲では、その内周部分から上昇しシリコン単結晶24の径に相当する部分から下降する対流Gも生じる。従って、凹み13aに澱み酸素濃度が飽和状態にあるシリコン融液12は循環流Pより上昇してシリコン単結晶24に取り込まれることになる。即ち、シリコン単結晶24の直胴部を形成する時に、酸素濃度の比較的高いシリコン融液12が凹み13aから循環流Pにより上昇してその単結晶24に取り込まれ、酸素濃度の低下を抑制する効果が得られる。このルツボ13を用いて形成したシリコン単結晶24は、従来の方法の課題であったシード端部、直胴部及びテール端部それぞれの位置によって含まれる酸素濃度の不均一な分布を解消することができる。よって、AsやSbでドープされたシリコン融液12の酸素濃度の低下も抑制することができる。   On the other hand, as shown in FIG. 3, the Taylor-Plaudeman circulation flow P (hereinafter referred to as “circulation flow P”) generated from the rotation of the silicon single crystal 24 and the crucible 13 in the silicon melt 12 stored in the crucible 13. ) Occurs. This circulating flow P is a convection that rises from the bottom of the crucible corresponding to the diameter of the silicon single crystal 24 and descends toward the center bottom of the crucible 13. On the other hand, around the crucible 13 outside the circulating flow P, a convection G that rises from the inner circumferential portion and descends from a portion corresponding to the diameter of the silicon single crystal 24 also occurs. Accordingly, the silicon melt 12 in which the starch oxygen concentration is saturated in the recess 13 a rises from the circulating flow P and is taken into the silicon single crystal 24. That is, when the straight body portion of the silicon single crystal 24 is formed, the silicon melt 12 having a relatively high oxygen concentration rises from the recess 13a by the circulating flow P and is taken into the single crystal 24, thereby suppressing the decrease in the oxygen concentration. Effect is obtained. The silicon single crystal 24 formed using this crucible 13 eliminates the uneven distribution of the oxygen concentration contained depending on the positions of the seed end, the straight body, and the tail end, which was a problem of the conventional method. Can do. Therefore, a decrease in oxygen concentration of the silicon melt 12 doped with As or Sb can also be suppressed.

図6に本発明の第2の実施の形態を示す。図面中上述した実施の形態と同一符号は同一部品を示し、繰り返しての説明を省略する。
この第2の実施の形態の特徴ある構成は、図6に示すように、内底部にルツボ回転中心Aを中心としかつ互いに所定の間隔を開けてそれぞれリング状の一対の凸条13b、13cが形成されたところにある。そして、一対の凸条13b,13cの間に形成されたリング状の溝が、シリコン融液12が澱む凹み13dを形成する。そしてこの凹み13dは、図7及び図8に示すように、凹み開口部Bが凹み内部Cより小さくなるように形成され、引き上げられるシリコン単結晶の直径Dに相当する径の範囲内で内底部に形成される。
FIG. 6 shows a second embodiment of the present invention. In the drawings, the same reference numerals as those in the above-described embodiment denote the same parts, and repeated description will be omitted.
As shown in FIG. 6, the characteristic configuration of the second embodiment is that a pair of ring-shaped ridges 13b and 13c are formed at the inner bottom centered on the crucible rotation center A and spaced apart from each other. It is where it was formed. The ring-shaped groove formed between the pair of ridges 13b and 13c forms a recess 13d in which the silicon melt 12 is stagnated. As shown in FIGS. 7 and 8, the recess 13d is formed so that the recess opening B is smaller than the recess C, and the inner bottom portion is within a range corresponding to the diameter D of the silicon single crystal to be pulled up. Formed.

このような構成の石英ルツボ13では、融液12が形成されるとき及び単結晶24の直胴部が形成されるときに行うヒータ18による加熱は、先ず石英ルツボ13の温度がその加熱により上昇しその後シリコン融液12に伝達される。このときの温度分布状態を示す図7から、石英ルツボ13はヒータ18により先ず加熱され、その加熱された石英ルツボ13の内底部に形成された一対の凸条13b,13cが加熱される。従って、一対の凸条13b,13cの間に形成された凹み13dに澱むシリコン融液12は特に加熱されて多くの酸素が溶け出すため、その酸素濃度は飽和状態となる。   In the quartz crucible 13 having such a configuration, when the melt 12 is formed and when the straight body portion of the single crystal 24 is formed, the heating by the heater 18 first increases the temperature of the quartz crucible 13 by the heating. Then, it is transmitted to the silicon melt 12. From FIG. 7 showing the temperature distribution state at this time, the quartz crucible 13 is first heated by the heater 18, and the pair of ridges 13 b and 13 c formed on the inner bottom portion of the heated quartz crucible 13 is heated. Accordingly, the silicon melt 12 stagnating in the recess 13d formed between the pair of ridges 13b and 13c is particularly heated to dissolve a large amount of oxygen, so that the oxygen concentration is saturated.

一方、図8に示すように、ルツボ13に貯留されたシリコン融液12にはシリコン単結晶24とルツボ13が回転することから生じる循環流Pが発生する。従って、凹み13dに澱み酸素濃度が飽和状態にあるシリコン融液12は循環流Pより上昇してシリコン単結晶24に取り込まれ、酸素濃度の低下を抑制する。そして一対の凸条13b,13cはシリコン融液12中に突出するように形成されるため、一対の凸条13b,13cからもシリコン融液12中に酸素を溶解させることができ、軸方向で均一な酸素分布を有するシリコン単結晶24を得ることが可能になる。   On the other hand, as shown in FIG. 8, the silicon melt 12 stored in the crucible 13 generates a circulating flow P resulting from the rotation of the silicon single crystal 24 and the crucible 13. Accordingly, the silicon melt 12 in which the stagnation oxygen concentration is saturated in the recess 13d rises from the circulating flow P and is taken into the silicon single crystal 24, thereby suppressing the decrease in the oxygen concentration. And since a pair of protruding item | line 13b, 13c is formed so that it may protrude in the silicon melt 12, oxygen can be melt | dissolved in the silicon melt 12 also from a pair of protruding item | line 13b, 13c, and it is an axial direction. It is possible to obtain the silicon single crystal 24 having a uniform oxygen distribution.

なお、上述した実施の形態では、リング状の溝13aからなる凹み、及び一対の凸条13b,13cの間に形成されたリング状の溝13dからなる凹みを説明したが、図9に示すように、凹みは複数の有底穴13eであっても良い。この場合の複数の有底穴13eは、酸素濃度の比較的高いシリコン融液12を凹み13eから単結晶24に均一に取り込ませるため、ルツボ回転中心Aを中心とする同心円状に配列することが好ましい。   In the above-described embodiment, the dent composed of the ring-shaped groove 13a and the dent composed of the ring-shaped groove 13d formed between the pair of ridges 13b and 13c have been described. However, as shown in FIG. In addition, the recess may be a plurality of bottomed holes 13e. In this case, the plurality of bottomed holes 13e can be arranged concentrically around the crucible rotation center A in order to allow the silicon melt 12 having a relatively high oxygen concentration to be uniformly taken into the single crystal 24 from the recess 13e. preferable.

本発明第1実施形態の石英ルツボの断面図である。It is sectional drawing of the quartz crucible of 1st Embodiment of this invention. その石英ルツボがヒータにより加熱された場合の温度分布を示す断面図である。It is sectional drawing which shows temperature distribution when the quartz crucible is heated with the heater. その石英ルツボに貯留されたシリコン融液の対流を示す断面図である。It is sectional drawing which shows the convection of the silicon melt stored in the quartz crucible. その石英ルツボを有する引き上げ装置の構成図である。It is a block diagram of the raising apparatus which has the quartz crucible. その石英ルツボを半分にした場合の斜視図である。It is a perspective view at the time of halving the quartz crucible. 本発明第2実施形態の石英ルツボを半分にした場合の斜視図である。It is a perspective view at the time of halving the quartz crucible of 2nd Embodiment of this invention. その石英ルツボがヒータにより加熱された場合の温度分布を示す断面図である。It is sectional drawing which shows temperature distribution when the quartz crucible is heated with the heater. その石英ルツボに貯留されたシリコン融液の対流を示す断面図である。It is sectional drawing which shows the convection of the silicon melt stored in the quartz crucible. 本発明の別の石英ルツボを半分にした場合の斜視図である。It is a perspective view at the time of halving another quartz crucible of the present invention. 従来の石英ルツボを有する引き上げ装置の構成図である。It is a block diagram of the raising apparatus which has the conventional quartz crucible.

符号の説明Explanation of symbols

11 チャンバ
12 シリコン融液
13 石英ルツボ
13a 溝(凹み)
13b,13c 凸条
13d 溝(凹み)
13e 有底穴(凹み)
14 サセプタ
24 シリコン単結晶
A ルツボ回転中心
B 凹み開口部
C 凹み内部
D シリコン単結晶の直径

11 Chamber 12 Silicon melt 13 Quartz crucible 13a Groove (dent)
13b, 13c ridge 13d groove (dent)
13e Bottomed hole (dent)
14 susceptor 24 silicon single crystal A crucible rotation center B dent opening C dent inside D silicon single crystal diameter

Claims (6)

チャンバ(11)内にグラファイトサセプタ(14)により支持されて設けられシリコン単結晶(24)を引上げるためのシリコン融液(12)が貯留される石英ルツボ(13)において、
内底部に前記シリコン融液(12)が澱む凹み(13a,13d.13e)が形成されたことを特徴とする石英ルツボ。
In the quartz crucible (13) in which the silicon melt (12) for pulling up the silicon single crystal (24) provided to be supported by the graphite susceptor (14) is stored in the chamber (11).
A quartz crucible characterized in that a recess (13a, 13d.13e) in which the silicon melt (12) stagnates is formed in an inner bottom portion.
凹みがルツボ回転中心(A)を中心とする1又は2以上のリング状の溝(13a)である請求項1記載の石英ルツボ。   The quartz crucible according to claim 1, wherein the recess is one or more ring-shaped grooves (13a) centering on the crucible rotation center (A). 凹みが複数の有底穴(13e)であって、前記複数の有底穴(13e)がルツボ回転中心(A)を中心とする同心円状に配列された請求項1記載の石英ルツボ。   The quartz crucible according to claim 1, wherein the recess is a plurality of bottomed holes (13e), and the plurality of bottomed holes (13e) are arranged concentrically around the crucible rotation center (A). 内底部にルツボ回転中心(A)を中心としかつ互いに所定の間隔を開けてそれぞれリング状の一対の凸条(13b,13c)が形成され、凹みが前記一対の凸条(13b,13c)の間に形成されたリング状の溝(13d)である請求項1記載の石英ルツボ。   A pair of ring-shaped ridges (13b, 13c) are formed at the inner bottom portion around the crucible rotation center (A) and spaced apart from each other by a predetermined distance, and a recess is formed between the pair of ridges (13b, 13c). The quartz crucible according to claim 1, wherein the quartz crucible is a ring-shaped groove (13d) formed therebetween. 凹み(13a,13d.13e)は凹み開口部(B)が凹み内部(C)より小さくなるように形成された請求項1ないし4いずれか1項に記載の石英ルツボ。   The quartz crucible according to any one of claims 1 to 4, wherein the recess (13a, 13d.13e) is formed so that the recess opening (B) is smaller than the interior of the recess (C). 凹み(13a,13d.13e)が引き上げられるシリコン単結晶(24)の直径(D)に相当する径の範囲内で内底部に形成された請求項1ないし5いずれか1項に記載の石英ルツボ。
The quartz crucible according to any one of claims 1 to 5, wherein the recess (13a, 13d.13e) is formed on the inner bottom within a diameter range corresponding to the diameter (D) of the silicon single crystal (24) to be pulled up. .
JP2004118451A 2004-04-14 2004-04-14 Quartz crucible Expired - Lifetime JP4466175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004118451A JP4466175B2 (en) 2004-04-14 2004-04-14 Quartz crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004118451A JP4466175B2 (en) 2004-04-14 2004-04-14 Quartz crucible

Publications (2)

Publication Number Publication Date
JP2005298288A true JP2005298288A (en) 2005-10-27
JP4466175B2 JP4466175B2 (en) 2010-05-26

Family

ID=35330289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118451A Expired - Lifetime JP4466175B2 (en) 2004-04-14 2004-04-14 Quartz crucible

Country Status (1)

Country Link
JP (1) JP4466175B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008095594A1 (en) * 2007-01-19 2008-08-14 Vesuvius Crucible Company Crucible and method of filling a crucible for melting a non-ferrous product
EP2071059A1 (en) * 2007-12-14 2009-06-17 Japan Super Quartz Corporation High-purity vitreous silica crucible for pulling large-diameter single-crystal silicon ingot
EP2687623A1 (en) * 2011-12-12 2014-01-22 Shin-Etsu Quartz Products Co., Ltd. Silica container for pulling up single crystal silicon, and method for manufacturing same
WO2019116972A1 (en) * 2017-12-12 2019-06-20 信越石英株式会社 Mold and method for manufacturing quartz glass crucible
CN114347218A (en) * 2021-12-28 2022-04-15 宁夏盾源聚芯半导体科技股份有限公司 Preparation device and method of quartz crucible for improving tail oxygen content of czochralski single crystal silicon rod and quartz crucible

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008095594A1 (en) * 2007-01-19 2008-08-14 Vesuvius Crucible Company Crucible and method of filling a crucible for melting a non-ferrous product
EP2071059A1 (en) * 2007-12-14 2009-06-17 Japan Super Quartz Corporation High-purity vitreous silica crucible for pulling large-diameter single-crystal silicon ingot
KR101104674B1 (en) 2007-12-14 2012-01-13 쟈판 스파 쿼츠 가부시키가이샤 High-purity vitreous silica crucible used for pulling large-diameter single-crystal silicon ingot which enables reduction of pinhole defect among large-diameter single-crystal silicon ingot
US8172945B2 (en) 2007-12-14 2012-05-08 Japan Super Quartz Corporation High-purity vitreous silica crucible for pulling large-diameter single-crystal silicon ingot
EP2687623A1 (en) * 2011-12-12 2014-01-22 Shin-Etsu Quartz Products Co., Ltd. Silica container for pulling up single crystal silicon, and method for manufacturing same
EP2687623A4 (en) * 2011-12-12 2015-01-07 Shinetsu Quartz Prod Silica container for pulling up single crystal silicon, and method for manufacturing same
US9382640B2 (en) 2011-12-12 2016-07-05 Shin-Etsu Quartz Products Co., Ltd. Single crystal silicon pulling silica container and manufacturing method thereof
WO2019116972A1 (en) * 2017-12-12 2019-06-20 信越石英株式会社 Mold and method for manufacturing quartz glass crucible
JP2019104647A (en) * 2017-12-12 2019-06-27 信越石英株式会社 Mold and method for manufacturing quartz glass crucible
US11905196B2 (en) 2017-12-12 2024-02-20 Shin-Etsu Quartz Products Co., Ltd. Mold and method for manufacturing quartz glass crucible
CN114347218A (en) * 2021-12-28 2022-04-15 宁夏盾源聚芯半导体科技股份有限公司 Preparation device and method of quartz crucible for improving tail oxygen content of czochralski single crystal silicon rod and quartz crucible

Also Published As

Publication number Publication date
JP4466175B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
KR101105950B1 (en) Manufacturing device for crystal ingot
JP2008100854A (en) Apparatus and method of manufacturing sic single crystal
JP2755588B2 (en) Crystal pulling method
KR101048831B1 (en) Graphite heater for producing single crystal, single crystal manufacturing device and single crystal manufacturing method
CN107849728B (en) System and method for low oxygen crystal growth using a two-layer continuous Czochralsk method
JP3970580B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP5399212B2 (en) Method for producing silicon single crystal
KR100679135B1 (en) Thermal shield member of silicon single crystal pulling system
JP2017222551A (en) Production method of silicon single crystal
JP2006315869A (en) Method for manufacturing nitrogen-doped silicon single crystal
JP4466175B2 (en) Quartz crucible
JP2813592B2 (en) Single crystal manufacturing method
JP2010254487A (en) Method for growing single crystal
JPH11130592A (en) Production of silicon single crystal
KR101218664B1 (en) Semiconductor Single Crystal Ingot dopped by carbon and Method of manufacturing the same
CN109154101B (en) Method for producing single-crystal silicon semiconductor wafer, apparatus for producing single-crystal silicon semiconductor wafer, and single-crystal silicon semiconductor wafer
JP4218460B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
CN105887187B (en) Method for stably controlling concentration of dopant for silicon single crystal growth
KR100714215B1 (en) High quality silicon single crystal ingot and high quality silicon wafer manufactured from the same
JP4148060B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP2006199533A (en) Method for pulling silicon single crystal
JP4148059B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
KR101105526B1 (en) Heater used for manufacturing single crystal ingot and single crystal ingot manufacturing apparatus having the same
JP2017193469A (en) After-heater and sapphire single crystal production apparatus
KR100793371B1 (en) Growing method of silicon single crystal and apparatus for growing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4466175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250