JP2008100535A - Axle shaft and axle unit and manufacturing thereof - Google Patents

Axle shaft and axle unit and manufacturing thereof Download PDF

Info

Publication number
JP2008100535A
JP2008100535A JP2006282205A JP2006282205A JP2008100535A JP 2008100535 A JP2008100535 A JP 2008100535A JP 2006282205 A JP2006282205 A JP 2006282205A JP 2006282205 A JP2006282205 A JP 2006282205A JP 2008100535 A JP2008100535 A JP 2008100535A
Authority
JP
Japan
Prior art keywords
axle
differential gear
side shaft
shaft
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006282205A
Other languages
Japanese (ja)
Other versions
JP5042587B2 (en
Inventor
Hisanao Maruyama
久直 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Press Kogyo Co Ltd
Original Assignee
Press Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Press Kogyo Co Ltd filed Critical Press Kogyo Co Ltd
Priority to JP2006282205A priority Critical patent/JP5042587B2/en
Publication of JP2008100535A publication Critical patent/JP2008100535A/en
Application granted granted Critical
Publication of JP5042587B2 publication Critical patent/JP5042587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axle shaft having sufficient rigidity and capable of reducing weight. <P>SOLUTION: The axial shaft 20 is composed of a solid (rod shape) hub side shaft 30 and a cylindrical (a hollow part 40a is formed) differential gear side shaft 40. These two shafts 30, 40 have almost the same length. A flange 32 is formed at one end part in the longitudinal direction of the hub side shaft 30. A spline 34 for integrally coupling the hub side shaft 30 and the differential gear side shaft 40 on the outer peripheral surface of the other end part (the end part at the opposite side to the one end part in the longitudinal direction) of the hub side shaft 30. The portion from the one end part in the longitudinal direction to the other end part in the longitudinal direction of the differential gear side shaft 40 is a cylindrical shape (hollow) (over a whole length), and a spline 44 for engaging with the spline 34 of the hub side shaft 30 is formed on the inner peripheral surface 42 of the end part in the longitudinal direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、駆動力を駆動輪に伝達するためのアクスルシャフト並びにアクスルユニット及びアクスルユニット製造方法に関する。   The present invention relates to an axle shaft for transmitting driving force to driving wheels, an axle unit, and an axle unit manufacturing method.

ハブに固定されるフランジが長手方向一端部に形成されると共に、長手方向他端部が差動ギアに連結されるアクスルシャフトがトラックなどの車両で広く使用されている。従来のトラック用全浮動式アクスルシャフトについて図5を参照して説明する。   Axle shaft, in which a flange fixed to a hub is formed at one end in the longitudinal direction and the other end in the longitudinal direction is connected to a differential gear, is widely used in vehicles such as trucks. A conventional fully floating axle shaft for trucks will be described with reference to FIG.

図5は、従来のトラック用全浮動式アクスルシャフトを示す斜視図である。   FIG. 5 is a perspective view showing a conventional fully floating axle shaft for a truck.

従来のトラック用全浮動式アクスルシャフト10は、ハブに連結するための孔付フランジ12をその長手方向一端に有し、反対側の長手方向他端には、差動ギヤの接続口に嵌合する、例えばスプラインのような周り止め14が形成されている。このアクスルシャフト10はプロペラシャフトと同様に、エンジンからの回転運動と回転トルクをハブを介して車輪に伝達するものである。一般的なプロペラシャフトは中空の円筒形状部材を使用しているのに対し、アクスルシャフトとしては中実の丸棒が使用されている。   The conventional all-floating axle shaft 10 for trucks has a flange 12 with a hole for connecting to a hub at one end in the longitudinal direction, and the other end in the longitudinal direction on the opposite side is fitted to a connection port of a differential gear. For example, a detent 14 such as a spline is formed. Similar to the propeller shaft, the axle shaft 10 transmits the rotational motion and rotational torque from the engine to the wheels via the hub. A general propeller shaft uses a hollow cylindrical member, whereas a solid round bar is used as an axle shaft.

上記した従来のアクスルシャフトは、左右(左車輪用と右車輪用)一対のものとして使用される。各アクスルシャフトとして一体品が使用されているので、軽量化のために中空部材を使用した場合、アクスルシャフトの軸部の径が増加し、アクスルケース(アクスルハウジング)の長手方向両端部に形成されているハブベアリング用スピンドルの内径部にアクスルシャフトの軸部が干渉して組み付けができない、という問題がある。   The above-described conventional axle shaft is used as a pair of left and right (for left and right wheels). Since a single unit is used for each axle shaft, when a hollow member is used for weight reduction, the diameter of the shaft portion of the axle shaft is increased and formed at both ends in the longitudinal direction of the axle case (axle housing). There is a problem that the shaft portion of the axle shaft interferes with the inner diameter portion of the hub bearing spindle, which cannot be assembled.

アクスルシャフトの軽量化を図るために、アクスルシャフトをハブ取付用フランジ部と軸部とに分割し、軸部を円筒部材から成形することによって、軸部を中空・軽量化する技術が提案されている(例えば、特許文献1参照。)。この技術では、軸部の強度が過大である(十分に大きい、余裕がある)ことを前提としている。この技術では、アクスルシャフトの軸部の外径を増加させずに中空としている上、軸部は全長に渡って一体部材である。ところで、アクスルシャフトをアクスルケースに組み付ける際は、アクスルケースの内周部のうち最小径となるハブ取り付け用スピンドルの内周部を貫通してアクスルシャフトを組付ける。このため、アクスルシャフトをさらに軽量化するための薄肉化に当って、外径を増やしたときはアクスルシャフトがスピンドルの内周面と干渉して組み付けができない、という問題が生じる。   In order to reduce the weight of the axle shaft, a technology has been proposed in which the axle shaft is divided into a hub mounting flange portion and a shaft portion, and the shaft portion is formed from a cylindrical member, thereby hollowing and reducing the weight of the shaft portion. (For example, refer to Patent Document 1). This technique is premised on the strength of the shaft portion being excessively large (sufficiently large and having a margin). In this technique, the shaft portion of the axle shaft is hollow without increasing the outer diameter, and the shaft portion is an integral member over the entire length. By the way, when the axle shaft is assembled to the axle case, the axle shaft is assembled through the inner peripheral portion of the hub mounting spindle having the smallest diameter among the inner peripheral portions of the axle case. For this reason, when the outer diameter is increased in reducing the thickness of the axle shaft, the axle shaft interferes with the inner peripheral surface of the spindle and cannot be assembled.

また、自動二輪車用プロペラシャフトの例では、その軸部を駆動側部材と従動側部材とに分割して二部品化し、従動側部材を円筒部材としてその内周面に、駆動側部材の外周面に形成された歯と噛合うトルク伝達用スプライン歯等を形成する技術が提案されている(例えば、特許文献2参照。)。この技術では、従動側部材は、その長さ方向において駆動側部材に完全に重なる位置に配置されている。また、従動側部材の作用は、プロペラシャフトの長さ方向の変位を吸収することである。この技術では、駆動側部材の半径方向外側に従動側部材を配置して円筒部材(中空部材)としたので、プロペラシャフトの重量を増加することはあっても軽減する効果はない。   Further, in the example of the propeller shaft for a motorcycle, the shaft portion is divided into a drive side member and a driven side member to form two parts, the driven side member is a cylindrical member on the inner peripheral surface, and the outer peripheral surface of the drive side member is There has been proposed a technique for forming spline teeth for torque transmission that mesh with the teeth formed on (see, for example, Patent Document 2). In this technique, the driven member is disposed at a position that completely overlaps the driving member in the length direction thereof. The action of the driven member is to absorb the displacement in the length direction of the propeller shaft. In this technique, since the driven side member is arranged on the radially outer side of the driving side member to form a cylindrical member (hollow member), there is no effect of reducing the weight of the propeller shaft even though it increases.

さらに、四輪車前軸用のアクスルシャフトの例では、アクスルシャフトを分割して3部品化し、左右の部材(中実)の外径と略等しい内径をもつ円筒状のカラーを長手方向中央部に配置して左右の部材を結合する技術が知られている(例えば、特許文献3参照。)。この技術では、円筒状のカラーは左右の部材を分割可能に連結するために用いられており、円筒状カラーの長手方向においては円筒状カラーが左右部材のいずれかと完全に重なっている。このため、円筒状カラーは、左右部材の長さを短縮する役割を果たすことなく、分割によってアクスルシャフトの重量が増加することはあっても軽減することはない。
特開2003‐11608号公報 特開2004−34777号公報 特開平9−39508号公報
Furthermore, in the example of the axle shaft for the front axle of a four-wheel vehicle, the axle shaft is divided into three parts, and a cylindrical collar having an inner diameter substantially equal to the outer diameter of the left and right members (solid) is formed in the central portion in the longitudinal direction. There is known a technique in which the left and right members are joined to each other (see, for example, Patent Document 3). In this technique, the cylindrical collar is used to connect the left and right members in a detachable manner, and the cylindrical collar completely overlaps either of the left and right members in the longitudinal direction of the cylindrical collar. For this reason, the cylindrical collar does not play the role of shortening the length of the left and right members, and does not reduce the weight of the axle shaft even if it increases due to the division.
Japanese Patent Laid-Open No. 2003-11608 JP 2004-34777 A JP-A-9-39508

本発明は、上記事情に鑑み、十分な剛性をもつと共に軽量化を図ることのできるアクスルシャフト並びにアクスルユニット及びアクスルユニット製造方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an axle shaft, an axle unit, and an axle unit manufacturing method that have sufficient rigidity and can be reduced in weight.

上記目的を達成するための本発明のアクスルシャフトは、ハブに固定されるフランジが長手方向一端部に形成されると共に、長手方向他端部が差動ギアに連結されるアクスルシャフトにおいて、
(1)長手方向一端部に前記フランジが形成された中実のハブ側シャフトと、
(2)該ハブ側シャフトのうち前記長手方向一端部とは反対側の端部が差し込まれる円筒部が形成された、その長手方向他端部が前記差動ギアに連結される差動ギア側シャフトとからなり、
(3) 該差動ギア側シャフトのうち前記円筒部及び前記長手方向他端部を除く部分は、該円筒部以上の太さをもつものであることを特徴とするものである。
The axle shaft of the present invention for achieving the above object is an axle shaft in which a flange fixed to a hub is formed at one end in the longitudinal direction and the other end in the longitudinal direction is connected to a differential gear.
(1) a solid hub-side shaft having the flange formed at one end in the longitudinal direction;
(2) A differential gear side in which the other end in the longitudinal direction is connected to the differential gear is formed with a cylindrical portion into which the end opposite to the one end in the longitudinal direction is inserted. Consisting of a shaft,
(3) A portion of the differential gear side shaft excluding the cylindrical portion and the other end in the longitudinal direction has a thickness equal to or larger than the cylindrical portion.

ここで、
(4)前記ハブ側シャフトの前記端部と、該端部が差し込まれた前記差動ギア側シャフトの前記円筒部は、それらの周方向に相対的に摺動しないものであってもよい。
here,
(4) The end portion of the hub side shaft and the cylindrical portion of the differential gear side shaft into which the end portion is inserted may not slide relative to each other in the circumferential direction.

また、
(5)前記ハブ側シャフトの前記端部の外周面、及び、前記差動ギア側シャフトの前記円筒部の内周面は、互いに噛み合う回り止めが形成されたものであってもよい。
Also,
(5) The outer peripheral surface of the end portion of the hub-side shaft and the inner peripheral surface of the cylindrical portion of the differential gear-side shaft may be formed with detents that mesh with each other.

さらに、
(6)前記差動ギア側シャフトのうち前記円筒部及び前記長手方向他端部を除く部分は、前記円筒部及び前記長手方向他端部よりも太いものであってもよい。
further,
(6) A portion of the differential gear side shaft excluding the cylindrical portion and the other end portion in the longitudinal direction may be thicker than the cylindrical portion and the other end portion in the longitudinal direction.

さらにまた、
(7)前記ハブ側シャフト及び前記差動ギア側シャフトは、それらのねじり断面係数が等しいものであってもよい。
Furthermore,
(7) The hub side shaft and the differential gear side shaft may have the same torsional section modulus.

上記目的を達成するための本発明のアクスルユニットは、差動ギアに長手方向一端部が連結されると共にハブに固定されるフランジが長手方向他端部に形成された、一直線上に並んで配置された一対のアクスルシャフトと、その長手方向中央部に差動ギアが組み込まれる差動ギア用空洞が形成された、前記一対のアクスルシャフトを覆う筒状のアクスルケースとを備えたアクスルユニットにおいて、
(8)前記一対のアクスルシャフトは、上記したいずれかのアクスルシャフトであることを特徴とするものである。
In order to achieve the above object, the axle unit of the present invention is arranged in a straight line in which one end portion in the longitudinal direction is connected to the differential gear and a flange fixed to the hub is formed in the other end portion in the longitudinal direction. An axle unit comprising: a pair of axle shafts formed therein; and a cylindrical axle case covering the pair of axle shafts, in which a differential gear cavity into which a differential gear is incorporated is formed at a central portion in a longitudinal direction thereof.
(8) The pair of axle shafts is any of the axle shafts described above.

上記目的を達成するための本発明のアクスルユニット製造方法は、差動ギアが組み込まれる差動ギア用空洞がその長手方向中央部に形成された筒状のアクスルケースにアクスルシャフトを組み込んでアクスルユニットを製造するアクスルユニット製造方法において、
(9)前記請求項1から5までに記載されたいずれかのアクスルシャフトを作製しておき、
(10)前記差動ギア用空洞から前記アクスルケースの内部に前記差動ギア側シャフトを挿入して仮置きし、
(11)差動ギア及びハブを前記アクスルケースに組み付け、
(12)前記ハブ側シャフトをアクスルケースの長手方向両端から挿入し、
(13)前記ハブ側シャフトの前記端部を前記差動ギア側シャフトの前記円筒部に差し込んで、前記端部と前記円筒部を嵌合させ、
(14)前記ハブ側シャフトの前記フランジを前記ハブに固定させることを特徴とするものである。
In order to achieve the above object, an axle unit manufacturing method according to the present invention includes an axle shaft incorporated in a cylindrical axle case in which a differential gear cavity into which a differential gear is incorporated is formed in the center in the longitudinal direction. In the axle unit manufacturing method for manufacturing
(9) Axle shaft according to any one of claims 1 to 5 is prepared,
(10) The differential gear side shaft is inserted into the axle case from the differential gear cavity and temporarily placed,
(11) A differential gear and a hub are assembled to the axle case,
(12) Insert the hub side shaft from both longitudinal ends of the axle case,
(13) The end portion of the hub side shaft is inserted into the cylindrical portion of the differential gear side shaft, and the end portion and the cylindrical portion are fitted,
(14) The flange of the hub side shaft is fixed to the hub.

本発明によれば、一つのアクスルシャフトを、中実のハブ側シャフトと、円筒部が形成された差動ギア側シャフトとに分割しており、差動ギア側シャフトには円筒部(即ち、中空部)が形成されているので、その中空の分、軽量化を図ることができる。また、ハブ側シャフトは中実であり、差動ギア側シャフトの外径は、ハブ側シャフトの外径よりも大きいので、全体として十分な剛性をもつことができる。   According to the present invention, one axle shaft is divided into a solid hub side shaft and a differential gear side shaft in which a cylindrical portion is formed. Since the hollow portion is formed, the hollow portion can be reduced in weight. Further, since the hub side shaft is solid and the outer diameter of the differential gear side shaft is larger than the outer diameter of the hub side shaft, it can have sufficient rigidity as a whole.

本発明は、トラック用の全浮動式アクスルシャフトに実現された。   The present invention has been realized in a fully floating axle shaft for trucks.

図1を参照して、本発明のアクスルシャフトの一例を説明する。   An example of the axle shaft of the present invention will be described with reference to FIG.

図1は、本発明のアクスルシャフトの一例を示す斜視図である。   FIG. 1 is a perspective view showing an example of an axle shaft of the present invention.

アクスルシャフト20は、中実(棒状)のハブ側シャフト30と、円筒状の(中空部40aが形成された)差動ギア側シャフト40とからなる。これら2つのシャフト30,40はほぼ同じ長さである。ハブ側シャフト30の長手方向一端部には、ハブ70(図3参照)に固定されるフランジ32が形成されている。フランジ32には、ボルト等でハブ70(図3参照)を固定するための孔32aが形成されている。また、ハブ側シャフト30の長手方向他端部(長手方向一端部とは反対側の端部)の外周面には、ハブ側シャフト30と差動ギア側シャフト40を一体的に結合するためのスプライン34が形成されている。   The axle shaft 20 includes a solid (rod-shaped) hub-side shaft 30 and a cylindrical gear-shaped shaft 40 (having a hollow portion 40a). These two shafts 30, 40 are approximately the same length. A flange 32 that is fixed to the hub 70 (see FIG. 3) is formed at one longitudinal end of the hub-side shaft 30. The flange 32 is formed with a hole 32a for fixing the hub 70 (see FIG. 3) with a bolt or the like. Further, the hub side shaft 30 and the differential gear side shaft 40 are integrally coupled to the outer peripheral surface of the other end portion in the longitudinal direction of the hub side shaft 30 (the end portion opposite to the one end portion in the longitudinal direction). Splines 34 are formed.

差動ギア側シャフト40の長手方向一端部から長手方向他端部までは(全長にわたって)円筒状(中空)になっており、その長手方向一端部の内周面42には、ハブ側シャフト30のスプライン34に噛み合うスプライン44(図2参照)が形成されている。ハブ側シャフト30のスプライン34が形成された部分の外径と、差動ギア側シャフト40のスプライン44が形成された部分の内径はほぼ等しい。また、差動ギア側シャフト40の長手方向他端部(長手方向一端部とは反対側の端部)は他の部分よりも細くなっており(シュリンク、縮径されており)、この部分には、差動ギア80(図3参照)に連結するためのスプライン46が形成されている。   The differential gear side shaft 40 has a cylindrical shape (hollow) from one end in the longitudinal direction to the other end in the longitudinal direction. The hub side shaft 30 is formed on the inner peripheral surface 42 of the one end in the longitudinal direction. A spline 44 (see FIG. 2) that meshes with the spline 34 is formed. The outer diameter of the portion where the spline 34 of the hub side shaft 30 is formed is substantially equal to the inner diameter of the portion where the spline 44 of the differential gear side shaft 40 is formed. Further, the other end portion in the longitudinal direction of the differential gear side shaft 40 (the end portion on the opposite side to the one end portion in the longitudinal direction) is thinner than the other portions (shrink and reduced in diameter). Is formed with a spline 46 for connection to a differential gear 80 (see FIG. 3).

ハブ側シャフト30の長手方向他端部を差動ギア側シャフト40の長手方向一端部の中空部分(円筒部)に嵌め込んでハブ側シャフト30のスプライン34と差動ギア側シャフト40のスプライン44とを噛み合わせる。これにより、ハブ側シャフト30の長手方向他端部と差動ギア側シャフト40の長手方向一端部とはそれらの周方向に相対的に摺動しないので、ハブ側シャフト30及び差動ギア側シャフト40は一体的に結合されて回転する。なお、スプライン34,44,46の加工に際しては、強度確保のために切削加工で形成せずに、転造加工で形成することが好ましい。また、上記のスプライン34,44は、本発明にいう回り止めの一例であり、ハブ側シャフト30及び差動ギア側シャフト40を一体的に結合して回転させるためには、スプライン34,44に代えて、ハブ側シャフト30の長手方向他端部の外形を多角形状とし、差動ギア側シャフト40の長手方向一端部の内側形状も多角形にしてもよい。   The other end portion in the longitudinal direction of the hub side shaft 30 is fitted into a hollow portion (cylindrical portion) at one end portion in the longitudinal direction of the differential gear side shaft 40, and the spline 34 of the hub side shaft 30 and the spline 44 of the differential gear side shaft 40. And bite. As a result, the other end in the longitudinal direction of the hub side shaft 30 and the one end in the longitudinal direction of the differential gear side shaft 40 do not slide relative to each other in the circumferential direction. 40 is integrally coupled and rotates. In addition, when processing the splines 34, 44, 46, it is preferable that the splines 34, 44, 46 are formed by rolling, not by cutting to ensure strength. The splines 34 and 44 are an example of the anti-rotation referred to in the present invention. In order to integrally couple and rotate the hub side shaft 30 and the differential gear side shaft 40, the splines 34 and 44 are connected to the splines 34 and 44. Instead, the outer shape of the other end portion in the longitudinal direction of the hub side shaft 30 may be a polygonal shape, and the inner shape of the one end portion in the longitudinal direction of the differential gear side shaft 40 may also be a polygonal shape.

ハブ側シャフト30及び差動ギア側シャフト40双方のねじり(極)断面係数は等しい。この点について説明する。   Both the hub side shaft 30 and the differential gear side shaft 40 have the same torsion (polar) section modulus. This point will be described.

ハブ側シャフト30の外径(フランジ32以外の部分の外径)及び差動ギア側シャフト40の内径(スプライン46以外の部分の内径)を等しくD1とし、差動ギア側シャフト40の外径をD2とする。ハブ側シャフト30のねじり断面係数をZ1とし、差動ギア側シャフト40のねじり断面係数をZ2とした場合、
Z1=π×D1/16 Z2=π×(D2−D1)/(16×D2) となる。
The outer diameter of the hub side shaft 30 (the outer diameter of the portion other than the flange 32) and the inner diameter of the differential gear side shaft 40 (the inner diameter of the portion other than the spline 46) are set to D1, and the outer diameter of the differential gear side shaft 40 is Let D2. When the torsional section modulus of the hub side shaft 30 is Z1, and the torsional section coefficient of the differential gear side shaft 40 is Z2,
Z1 = π × D1 3/16 Z2 = π × (D2 4 -D1 4) / a (16 × D2).

ここで、ハブ側シャフト30及び差動ギア側シャフト40双方のねじり断面係数を等しいとして、Z1=Z2とした場合、 D2≒1.22×D1となる。   Here, assuming that the torsional section coefficients of both the hub side shaft 30 and the differential gear side shaft 40 are equal, and Z1 = Z2, D2≈1.22 × D1.

ハブ側シャフト30の断面積をA1、差動ギア側シャフト40の断面積をA2とし、ハブ側シャフト30のねじり(極)断面二次モーメントをI1、差動ギア側シャフト40の断面二次モーメントをI2としたとき、これらの関係は、
A2≒0.49×A1 I2≒1.22×I1 となる。以上をまとめて表1に示す。

Figure 2008100535
The cross-sectional area of the hub-side shaft 30 is A1, the cross-sectional area of the differential gear-side shaft 40 is A2, the torsional (polar) cross-sectional secondary moment of the hub-side shaft 30 is I1, and the cross-sectional secondary moment of the differential gear-side shaft 40 is When I2 is I2, these relationships are
A2≈0.49 × A1 I2≈1.22 × I1 The above is summarized in Table 1.

Figure 2008100535

上記のように、ハブ側シャフト30及び差動ギア側シャフト40双方のねじり断面係数Z1、Z2を略等しくする場合、アクスルシャフト20全長の約半分を占める差動ギア側シャフト40の断面積A2はハブ側シャフト30の断面積A1の約半分となる。このため、アクスルシャフト20のシャフトの強度を維持しながらアクスルシャフト20全体の重量を全長がハブ側シャフト30と同じ中実断面で構成される従来のアクスルシャフト10と比較して約25%低減できる。また同様に、差動ギア側シャフト40の断面二次モーメントI2がハブ側シャフト30の断面二次モーメントI1よりも約20%向上するので、アクスルシャフト20全体のねじり剛性が10%向上してトルクの伝達応答が向上する。以上をまとめて表2に示す。なお、表2には、図4を参照して後述する変形例の場合も示されている。

Figure 2008100535
As described above, when the torsional section coefficients Z1 and Z2 of both the hub side shaft 30 and the differential gear side shaft 40 are substantially equal, the cross sectional area A2 of the differential gear side shaft 40 occupying about half of the total length of the axle shaft 20 is This is about half of the cross-sectional area A1 of the hub-side shaft 30. Therefore, the weight of the axle shaft 20 as a whole can be reduced by about 25% compared to the conventional axle shaft 10 having the same solid cross section as the hub side shaft 30 while maintaining the strength of the axle shaft 20. . Similarly, since the sectional secondary moment I2 of the differential gear side shaft 40 is improved by about 20% compared to the sectional secondary moment I1 of the hub side shaft 30, the torsional rigidity of the axle shaft 20 as a whole is improved by 10%. The transmission response is improved. The above is summarized in Table 2. Table 2 also shows a case of a modification example to be described later with reference to FIG.

Figure 2008100535

図2と図3を参照して、アクスルユニットとその製造方法を説明する。   With reference to FIG. 2 and FIG. 3, the axle unit and the manufacturing method thereof will be described.

図2は、差動ギア側シャフトが差動ギア用空洞から挿入されているアクスルケースの長手方向の約半分を示す断面図である。図3は、アクスルシャフトや差動ギアなどが組み込まれたアクスルケースの長手方向の約半分を示す断面図である。これらの図では、図1に示す構成要素と同じ構成要素には同じ符号が付されている。   FIG. 2 is a cross-sectional view showing about half of the longitudinal direction of the axle case in which the differential gear side shaft is inserted from the differential gear cavity. FIG. 3 is a cross-sectional view showing about half of the longitudinal direction of an axle case in which an axle shaft, a differential gear, and the like are incorporated. In these drawings, the same components as those shown in FIG. 1 are denoted by the same reference numerals.

アクスルユニット100は、アクスルケース60に一対のアクスルシャフト20や差動ギア80を組み込み、さらに、アクスルケース60の長手方向両端部に軸受72を介してハブ70を組み込んだものである。アクスルケース60の長手方向中央部には、差動ギア80が組み込まれる差動ギア用空洞62が形成されている。また、アクスルケース60の長手方向両端部それぞれには、軸受72が外周面に嵌め込まれるハブベアリング用スピンドル64が形成されている(図2と図3には長手方向一端部のみを示す)。ハブベアリング用スピンドル64の内径は、これよりも差動ギア用空洞62の側の部分の内径よりも小さくなっており、その境界部分の内周面には、差動ギア側シャフト40の外径よりも僅かに大きい内径をもつガイド孔60aが形成されている。   The axle unit 100 includes a pair of axle shafts 20 and a differential gear 80 incorporated in the axle case 60, and a hub 70 incorporated in both longitudinal ends of the axle case 60 via bearings 72. A differential gear cavity 62 into which the differential gear 80 is incorporated is formed at the longitudinal center of the axle case 60. Further, a hub bearing spindle 64 into which a bearing 72 is fitted on the outer peripheral surface is formed at both longitudinal ends of the axle case 60 (only one longitudinal end portion is shown in FIGS. 2 and 3). The inner diameter of the hub bearing spindle 64 is smaller than the inner diameter of the portion on the differential gear cavity 62 side, and the outer diameter of the differential gear side shaft 40 is formed on the inner peripheral surface of the boundary portion. A guide hole 60a having an inner diameter slightly larger than that is formed.

アクスルユニット100を製造するには、先ず、2本のアクスルシャフト20(図1参照)を作製しておき、アクスルケース60の差動ギア用空洞62から2本の差動ギア側シャフト40をアクスルケース60の左側部分と右側部分それぞれに挿入する。挿入された2本の差動ギア側シャフト40をガイド孔60aに差し込んで仮置きしておく。このように差動ギア側シャフト40は差動ギア用空洞62から挿入されるので、その長さは、この挿入が可能な範囲内の長さであり、且つ、差動ギア用空洞62に差動ギア80を組み付ける際に、ガイド孔60aに仮置きされた差動ギア側シャフト40が差動ギア80に干渉しない(邪魔にならない)範囲内の長さである。   To manufacture the axle unit 100, first, two axle shafts 20 (see FIG. 1) are prepared, and the two differential gear side shafts 40 are connected to the axles 60 from the differential gear cavity 62 of the axle case 60. The case 60 is inserted into each of the left part and the right part. The two inserted differential gear side shafts 40 are inserted into the guide holes 60a and temporarily placed. Since the differential gear side shaft 40 is inserted from the differential gear cavity 62 in this way, the length is within a range in which the differential gear can be inserted, and the differential gear side shaft 40 is different from the differential gear cavity 62. When the moving gear 80 is assembled, the differential gear side shaft 40 temporarily placed in the guide hole 60a has a length within a range in which the differential gear 80 does not interfere (does not obstruct).

差動ギア側シャフト40をガイド孔60aに仮置きした後、差動ギア80を差動ギア用空洞62に組み付けると共に、ハブベアリング用スピンドル64の外周面に軸受72を嵌め込んでハブ70を組み付ける。続いて、2本のハブ側シャフト30をアクスルケース60の長手方向両端からそれぞれ挿入する。このように挿入したハブ側シャフト30の長手方向他端部を差動ギア側シャフト40の長手方向一端部に差し込んでスプライン34とスプライン44を噛み合わせる。これによりハブ側シャフト30と差動ギア側シャフト40が一体的に結合される。また、差動ギア側シャフト40のスプラインン46を差動ギア80のスプライン(図示せず)に噛み合わせる。その後、ハブ側シャフト30のフランジ32をハブ70に固定させる。このようにしてアクスルユニット100が製造される。   After the differential gear side shaft 40 is temporarily placed in the guide hole 60a, the differential gear 80 is assembled to the differential gear cavity 62, and the hub 70 is assembled by fitting the bearing 72 into the outer peripheral surface of the hub bearing spindle 64. . Subsequently, the two hub-side shafts 30 are inserted from both ends of the axle case 60 in the longitudinal direction. The other end portion in the longitudinal direction of the hub side shaft 30 thus inserted is inserted into one end portion in the longitudinal direction of the differential gear side shaft 40 so that the spline 34 and the spline 44 are engaged with each other. Thereby, the hub side shaft 30 and the differential gear side shaft 40 are integrally coupled. Further, the spline 46 of the differential gear side shaft 40 is engaged with a spline (not shown) of the differential gear 80. Thereafter, the flange 32 of the hub side shaft 30 is fixed to the hub 70. In this way, the axle unit 100 is manufactured.

図4を参照して、アクスルシャフトの変形例を説明する。   A modification of the axle shaft will be described with reference to FIG.

図4は、差動ギア側シャフトの変形例を示す斜視図である。   FIG. 4 is a perspective view showing a modification of the differential gear side shaft.

変形例のアクスルシャフトのハブ側シャフトは、図1に示すハブ側シャフト30と同じものであるので省略する。変形例のアクスルシャフトは差動ギア側シャフト140に特徴がある。差動ギア側シャフト140のうち円筒部142及び長手方向他端部(スプライン146が形成された部分)を除く中央部分148は、円筒部142及び長手方向他端部よりも太い(外径が大きい)。この中央部分148の太さ(外径)はハブ側シャフト30の約1.5倍であり、アクスルケース60(図3参照)に挿入できる太さである。このように中央部分148の外径を大きくすることにより、ねじり強度を維持してさらにこの中央部分148の板厚を減少させることができ、アクスルシャフト全体の軽量化と剛性向上を実現できる。   The hub side shaft of the axle shaft of the modification is the same as the hub side shaft 30 shown in FIG. The modified axle shaft is characterized by the differential gear side shaft 140. The central portion 148 of the differential gear side shaft 140 excluding the cylindrical portion 142 and the other longitudinal end portion (the portion where the spline 146 is formed) is thicker (the outer diameter is larger) than the cylindrical portion 142 and the other longitudinal end portion. ). The thickness (outer diameter) of the central portion 148 is about 1.5 times that of the hub-side shaft 30 and can be inserted into the axle case 60 (see FIG. 3). By increasing the outer diameter of the central portion 148 in this way, the torsional strength can be maintained and the plate thickness of the central portion 148 can be further reduced, and the weight and rigidity of the entire axle shaft can be reduced.

本発明のアクスルシャフトの一例を示す斜視図である。It is a perspective view which shows an example of the axle shaft of this invention. 差動ギア側シャフトが差動ギア用空洞から挿入されているアクスルケースの長手方向の約半分を示す断面図である。It is sectional drawing which shows about half of the longitudinal direction of the axle case in which the differential gear side shaft is inserted from the cavity for differential gears. アクスルシャフトや差動ギアなどが組み込まれたアクスルケースの長手方向の約半分を示す断面図である。It is sectional drawing which shows about half of the longitudinal direction of the axle case in which an axle shaft, a differential gear, etc. were incorporated. 差動ギア側シャフトの変形例を示す斜視図である。It is a perspective view which shows the modification of a differential gear side shaft. 従来のトラック用全浮動式アクスルシャフトを示す斜視図である。It is a perspective view which shows the conventional all-floating axle shaft for trucks.

符号の説明Explanation of symbols

20 アクスルシャフト
30 ハブ側シャフト
32 フランジ
34、44、46 スプライン
40、140 差動ギア側シャフト
70 ハブ
80 差動ギア
20 Axle shaft 30 Hub side shaft 32 Flange 34, 44, 46 Spline 40, 140 Differential gear side shaft 70 Hub 80 Differential gear

Claims (7)

ハブに固定されるフランジが長手方向一端部に形成されると共に、長手方向他端部が差動ギアに連結されるアクスルシャフトにおいて、
長手方向一端部に前記フランジが形成された中実のハブ側シャフトと、
該ハブ側シャフトのうち前記長手方向一端部とは反対側の端部が差し込まれる円筒部が形成された、その長手方向他端部が前記差動ギアに連結される差動ギア側シャフトとからなり、
該差動ギア側シャフトのうち前記円筒部及び前記長手方向他端部を除く部分は、該円筒部以上の太さをもつものであることを特徴とするアクスルシャフト。
In the axle shaft in which the flange fixed to the hub is formed at one end in the longitudinal direction and the other end in the longitudinal direction is connected to the differential gear,
A solid hub-side shaft having the flange formed at one end in the longitudinal direction;
A cylindrical portion into which an end of the hub side shaft opposite to the one end portion in the longitudinal direction is inserted is formed. The other end portion in the longitudinal direction is connected to the differential gear side shaft connected to the differential gear. Become
A portion of the differential gear side shaft excluding the cylindrical portion and the other end in the longitudinal direction has a thickness greater than that of the cylindrical portion.
前記ハブ側シャフトの前記端部と、該端部が差し込まれた前記差動ギア側シャフトの前記円筒部は、それらの周方向に相対的に摺動しないものであることを特徴とする請求項1に記載のアクスルシャフト。 The end portion of the hub side shaft and the cylindrical portion of the differential gear side shaft into which the end portion is inserted do not slide relative to each other in the circumferential direction. The axle shaft according to 1. 前記ハブ側シャフトの前記端部の外周面、及び、前記差動ギア側シャフトの前記円筒部の内周面は、互いに噛み合う回り止めが形成されたものであることを特徴とする請求項1又は2に記載のアクスルシャフト。 The outer peripheral surface of the said end part of the said hub side shaft and the inner peripheral surface of the said cylindrical part of the said differential gear side shaft are formed with the rotation stopper which mutually meshes | engages. 2. The axle shaft according to 2. 前記差動ギア側シャフトのうち前記円筒部及び前記長手方向他端部を除く部分は、前記円筒部及び前記長手方向他端部よりも太いものであることを特徴とする請求項1,2,又は3に記載のアクスルシャフト。 The portion of the differential gear side shaft excluding the cylindrical portion and the other end portion in the longitudinal direction is thicker than the cylindrical portion and the other end portion in the longitudinal direction. Or the axle shaft according to 3. 前記ハブ側シャフト及び前記差動ギア側シャフトは、それらのねじり断面係数が等しいものであることを特徴とする請求項1から4までのうちのいずれか一項に記載のアクスルシャフト。 The axle shaft according to any one of claims 1 to 4, wherein the hub side shaft and the differential gear side shaft have the same torsional section modulus. 差動ギアに長手方向一端部が連結されると共にハブに固定されるフランジが長手方向他端部に形成された、一直線上に並んで配置された一対のアクスルシャフトと、その長手方向中央部に差動ギアが組み込まれる差動ギア用空洞が形成された、前記一対のアクスルシャフトを覆う筒状のアクスルケースとを備えたアクスルユニットにおいて、
前記一対のアクスルシャフトは、前記請求項1から5までに記載されたいずれかのアクスルシャフトであることを特徴とするアクスルユニット。
A pair of axle shafts arranged in a straight line with one end in the longitudinal direction connected to the differential gear and a flange fixed to the hub formed at the other end in the longitudinal direction, and in the center in the longitudinal direction An axle unit including a cylindrical axle case that covers the pair of axle shafts, in which a differential gear cavity into which the differential gear is incorporated is formed.
The axle unit is characterized in that the pair of axle shafts is any axle shaft described in claims 1 to 5.
差動ギアが組み込まれる差動ギア用空洞がその長手方向中央部に形成された筒状のアクスルケースにアクスルシャフトを組み込んでアクスルユニットを製造するアクスルユニット製造方法において、
前記請求項1から5までに記載されたいずれかのアクスルシャフトを作製しておき、
前記差動ギア用空洞から前記アクスルケースの内部に前記差動ギア側シャフトを挿入して仮置きし、
差動ギア及びハブを前記アクスルケースに組み付け、
前記ハブ側シャフトをアクスルケースの長手方向両端から挿入し、
前記ハブ側シャフトの前記端部を前記差動ギア側シャフトの前記円筒部に差し込んで、前記端部と前記円筒部を嵌合させ、
前記ハブ側シャフトの前記フランジを前記ハブに固定させることを特徴とするアクスルユニット製造方法。
In an axle unit manufacturing method for manufacturing an axle unit by incorporating an axle shaft into a cylindrical axle case in which a differential gear cavity into which a differential gear is incorporated is formed in the longitudinal center portion thereof,
The axle shaft according to any one of claims 1 to 5 is prepared,
Inserting the differential gear side shaft from the differential gear cavity into the axle case and temporarily placing it,
Assemble the differential gear and hub to the axle case,
Insert the hub side shaft from both longitudinal ends of the axle case,
By inserting the end of the hub side shaft into the cylindrical portion of the differential gear side shaft, the end and the cylindrical portion are fitted,
A method of manufacturing an axle unit, comprising fixing the flange of the hub side shaft to the hub.
JP2006282205A 2006-10-17 2006-10-17 Axle shaft, axle unit, and axle unit manufacturing method Active JP5042587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282205A JP5042587B2 (en) 2006-10-17 2006-10-17 Axle shaft, axle unit, and axle unit manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282205A JP5042587B2 (en) 2006-10-17 2006-10-17 Axle shaft, axle unit, and axle unit manufacturing method

Publications (2)

Publication Number Publication Date
JP2008100535A true JP2008100535A (en) 2008-05-01
JP5042587B2 JP5042587B2 (en) 2012-10-03

Family

ID=39435206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282205A Active JP5042587B2 (en) 2006-10-17 2006-10-17 Axle shaft, axle unit, and axle unit manufacturing method

Country Status (1)

Country Link
JP (1) JP5042587B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267338A (en) * 2011-05-09 2011-12-07 徐州广厦机电科技制造厂 Differential hollow half axis for electric tricycle
JP2012232637A (en) * 2011-04-28 2012-11-29 Suzuki Motor Corp Vehicle
CN104163076A (en) * 2013-05-20 2014-11-26 张家港市九鼎机械有限公司 Back shaft assembly of three-wheel or four-wheel vehicle driven by manpower or other power
CN104228463A (en) * 2013-06-08 2014-12-24 陕西汉德车桥有限公司 Wheel-side two-stage speed reducer drive axle half shaft of heavy truck and wheel-side assembly
CN106347026A (en) * 2016-10-24 2017-01-25 韩传怀 Wear-resisting and noise-reducing automobile semi-axle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869506U (en) * 1981-11-04 1983-05-11 三菱自動車工業株式会社 Automobile rear axle structure
JPS60149404U (en) * 1984-03-16 1985-10-04 株式会社クボタ Vehicle wheel distance adjustment device
JPS6142331U (en) * 1984-08-24 1986-03-18 三菱自動車工業株式会社 Fully floating rigid axle with freewheel hub
JPS63222903A (en) * 1987-03-13 1988-09-16 Honda Motor Co Ltd Wheel device
JPH0939508A (en) * 1995-07-31 1997-02-10 Isuzu Motors Ltd Power transmission
JP2003011608A (en) * 2001-06-21 2003-01-15 American Axle & Manufacturing Inc Axle shaft
JP2004034777A (en) * 2002-07-01 2004-02-05 Suzuki Motor Corp Propeller shaft of motorcycle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869506U (en) * 1981-11-04 1983-05-11 三菱自動車工業株式会社 Automobile rear axle structure
JPS60149404U (en) * 1984-03-16 1985-10-04 株式会社クボタ Vehicle wheel distance adjustment device
JPS6142331U (en) * 1984-08-24 1986-03-18 三菱自動車工業株式会社 Fully floating rigid axle with freewheel hub
JPS63222903A (en) * 1987-03-13 1988-09-16 Honda Motor Co Ltd Wheel device
JPH0939508A (en) * 1995-07-31 1997-02-10 Isuzu Motors Ltd Power transmission
JP2003011608A (en) * 2001-06-21 2003-01-15 American Axle & Manufacturing Inc Axle shaft
JP2004034777A (en) * 2002-07-01 2004-02-05 Suzuki Motor Corp Propeller shaft of motorcycle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232637A (en) * 2011-04-28 2012-11-29 Suzuki Motor Corp Vehicle
CN102267338A (en) * 2011-05-09 2011-12-07 徐州广厦机电科技制造厂 Differential hollow half axis for electric tricycle
CN104163076A (en) * 2013-05-20 2014-11-26 张家港市九鼎机械有限公司 Back shaft assembly of three-wheel or four-wheel vehicle driven by manpower or other power
CN104228463A (en) * 2013-06-08 2014-12-24 陕西汉德车桥有限公司 Wheel-side two-stage speed reducer drive axle half shaft of heavy truck and wheel-side assembly
CN106347026A (en) * 2016-10-24 2017-01-25 韩传怀 Wear-resisting and noise-reducing automobile semi-axle

Also Published As

Publication number Publication date
JP5042587B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
US7306536B2 (en) Tandem axle system
JP5042587B2 (en) Axle shaft, axle unit, and axle unit manufacturing method
JP6237883B2 (en) Power transmission device and manufacturing method thereof
CN102712335A (en) Electrical power-steering apparatus
JP4770788B2 (en) Differential gear device for vehicle
US6689009B1 (en) Compact differential assembly
JP4245106B2 (en) Manufacturing method and fitting structure of spline shaft for constant velocity joint
JP2011190880A (en) Power transmission apparatus
JP2001171375A (en) 4wd driving force deriving structure
US20070066438A1 (en) Drive axle for a light vehicle
US20160265639A1 (en) Double disconnect front differential
US7214158B2 (en) Drive mechanism for a four wheel drive transverse engine-mounted vehicle
JP2007285474A (en) Spline connection structure
JP4549483B2 (en) Gear transmission device
JP4501384B2 (en) Drive pinion support structure of final reduction gear
CN215257736U (en) Input shaft assembly for transfer case, transfer case and vehicle
JP2006199054A (en) Motor-driven power steering device
JP4531678B2 (en) Shaft drive type vehicle
JP7456243B2 (en) power transmission device
JP2011094738A (en) Shaft connecting structure to power transmission device
JP2597781Y2 (en) Bulldozer final reducer
JP2021160615A (en) Power transmission device
JP2008208947A (en) Gear device
JP2006199222A (en) Power transmitting device for vehicle
JP6384407B2 (en) Damper arrangement structure of final reduction gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Ref document number: 5042587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250