JP2008098301A - Oscillation circuit - Google Patents

Oscillation circuit Download PDF

Info

Publication number
JP2008098301A
JP2008098301A JP2006276844A JP2006276844A JP2008098301A JP 2008098301 A JP2008098301 A JP 2008098301A JP 2006276844 A JP2006276844 A JP 2006276844A JP 2006276844 A JP2006276844 A JP 2006276844A JP 2008098301 A JP2008098301 A JP 2008098301A
Authority
JP
Japan
Prior art keywords
oscillation circuit
type diffusion
capacitance element
electrode
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006276844A
Other languages
Japanese (ja)
Other versions
JP5058551B2 (en
Inventor
Kazuo Sakamaki
和男 坂巻
Yoshio Hashimoto
美穂 橋本
Masatoshi Sato
正敏 佐藤
Katsuya Jinushi
活也 地主
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko NPC Corp
Original Assignee
Seiko NPC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko NPC Corp filed Critical Seiko NPC Corp
Priority to JP2006276844A priority Critical patent/JP5058551B2/en
Publication of JP2008098301A publication Critical patent/JP2008098301A/en
Application granted granted Critical
Publication of JP5058551B2 publication Critical patent/JP5058551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oscillation circuit which can extend the frequency variable width and can be miniaturized by reducing the area of the formation region for capacitor elements, moreover wherein a metal electrode is used for a fixed capacitor element to improve the function thereof as the capacitance, and further it is provided with the capacitor elements which do not have the fear of the occurrence of a silicon trench in the edge part of a polysilicon electrode due to overetching upon the patterning of the metal electrode. <P>SOLUTION: This oscillation circuit mounted on a semiconductor integrated circuit comprises an inverter for amplification, variable capacitor elements 101, 102 for controlling the oscillation frequency, fixed capacitor elements 71, 73, 74, 72 for cutting off a DC signal, a pair of terminals for an external vibrator, and terminals for inputting a frequency controlling signal. The variable capacitor elements 101, 102 are formed on the surface of the semiconductor substrate, and the fixed capacitor elements are formed by successively laminating the polysilicon electrode 72, insulating films 73 and 74, and the metal electrode 71 on a field oxide film 25a provided on the variable capacitor elements 101, 102. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発振回路に関し、特に、半導体集積回路に搭載する発振周波数制御用の可変容量素子と、直流信号遮断用の固定容量素子とを備えた発振回路に関する。   The present invention relates to an oscillation circuit, and more particularly to an oscillation circuit including a variable capacitance element for controlling an oscillation frequency and a fixed capacitance element for blocking a DC signal, which are mounted on a semiconductor integrated circuit.

従来のこの種の一般的な発振回路は、固定容量素子と可変容量素子とを、半導体基板上の別々の領域に形成している。ところが、このような構成によると、半導体基板上の別々の領域に固定容量素子と可変容量素子とを形成するので、半導体基板における面積の利用効率が劣るという不都合がある。また、固定容量素子は通常、フィールド酸化膜上に形成されるが、固定容量素子の下側の電極と半導体基板との間に寄生容量を生じてしまい、容量変化率が低下して、周波数可変幅が小さくなるという不都合もある。一方、導電性に優れた金属を固定容量素子の一つの電極に使用したいという要望がある。   In a conventional general oscillation circuit of this type, a fixed capacitance element and a variable capacitance element are formed in different regions on a semiconductor substrate. However, according to such a configuration, since the fixed capacitance element and the variable capacitance element are formed in different regions on the semiconductor substrate, there is an inconvenience that the use efficiency of the area in the semiconductor substrate is inferior. In addition, the fixed capacitance element is usually formed on the field oxide film, but parasitic capacitance is generated between the lower electrode of the fixed capacitance element and the semiconductor substrate, the capacitance change rate is lowered, and the frequency is variable. There is also a disadvantage that the width becomes small. On the other hand, there is a demand to use a metal having excellent conductivity for one electrode of a fixed capacitance element.

従来においても、上述の不都合を解消するものとして、固定容量素子と可変容量素子とを、半導体基板上のフィールド酸化膜が存在しない同一領域に上下に重ねて形成することが提案されているが、固定容量素子に金属電極は使用されていない。   Conventionally, as a means for solving the above-described inconvenience, it has been proposed to form a fixed capacitor element and a variable capacitor element so as to overlap each other in the same region where no field oxide film exists on the semiconductor substrate. A metal electrode is not used for the fixed capacitance element.

特開2000−323729号公報(図3)JP 2000-323729 A (FIG. 3)

上記改良提案においては、固定容量素子は可変容量素子の上に直接位置し、ほぼ同サイズ、同形状で形成されている。この場合、固定容量素子の第2の電極(下部電極)上に絶縁膜を介して設けられる第3の電極(上部電極)を金属膜で構成すると、半導体基板上の全面に金属膜を形成し、エッチングして前記第3の電極(金属電極)をパターニングする際に、前記第2の電極の段差部に前記第3の電極が残らないようにオーバーエッチングをするが、その時に下地の酸化膜もエッチングされ、しまいにはシリコン基板もエッチングされ、シリコントレンチが発生する。上部電極にポリシリコンなどのシリコン系材料が使われる場合には、下地の酸化膜と選択比が良い条件でエッチングを行い、シリコントレンチが発生しないように制御することは容易であるが、金属膜を使った場合には同様の方法ではこれを防ぐことは困難である。そして、シリコントレンチが発生した場合、それが半導体基板に形成した拡散領域である可変容量素子に達し、これによってリークが発生して可変容量素子の信頼性が低下するという問題があった。本発明は、この問題を解消した発振回路を提供することを目的とする。   In the above improvement proposal, the fixed capacitance element is located directly on the variable capacitance element, and is formed in substantially the same size and shape. In this case, if the third electrode (upper electrode) provided on the second electrode (lower electrode) of the fixed capacitance element via the insulating film is formed of a metal film, the metal film is formed on the entire surface of the semiconductor substrate. Then, when patterning the third electrode (metal electrode) by etching, overetching is performed so that the third electrode does not remain in the stepped portion of the second electrode. Are etched, eventually the silicon substrate is also etched to form silicon trenches. When a silicon-based material such as polysilicon is used for the upper electrode, it is easy to perform etching under conditions that have a good selection ratio with the underlying oxide film and to prevent the formation of silicon trenches. It is difficult to prevent this by using the same method. When a silicon trench is generated, it reaches a variable capacitance element that is a diffusion region formed in a semiconductor substrate, and this causes a problem that leakage occurs and the reliability of the variable capacitance element decreases. An object of the present invention is to provide an oscillation circuit that solves this problem.

すなわち、本発明の請求項1に係る発振回路は、増幅用のインバータと、前記インバータの入出力端それぞれに直列接続されて設けられた発振周波数制御用の可変容量素子および直流信号遮断用の固定容量素子と、振動子を外付けするための一対の端子と、前記可変容量素子の容量値を調整し発振周波数を制御する周波数制御用信号を入力するための端子とを備えた半導体集積回路に搭載する発振回路であって、半導体基板表面においてフィールド酸化膜により囲まれた領域にPN接合を有する可変容量素子を形成し、この可変容量素子の上に絶縁層を介してポリシリコン電極と、絶縁膜と、金属電極とを順次積層してなり、前記ポリシリコン電極のエッジ部分が前記フィールド酸化膜上に位置するように延在する固定容量素子を形成したものである。前記金属電極としては、モリブデン、タングステン、チタン等を用いることができる。   That is, an oscillation circuit according to claim 1 of the present invention includes an amplification inverter, an oscillation frequency control variable capacitor provided in series with each of the input and output terminals of the inverter, and a DC signal blocking fixed. A semiconductor integrated circuit including a capacitive element, a pair of terminals for externally attaching a vibrator, and a terminal for inputting a frequency control signal for adjusting a capacitance value of the variable capacitive element and controlling an oscillation frequency An oscillation circuit to be mounted, in which a variable capacitance element having a PN junction is formed in a region surrounded by a field oxide film on the surface of a semiconductor substrate, and insulated from a polysilicon electrode via an insulating layer on the variable capacitance element A fixed capacitance element is formed by sequentially laminating a film and a metal electrode, and extending so that an edge portion of the polysilicon electrode is positioned on the field oxide film. It is. As the metal electrode, molybdenum, tungsten, titanium, or the like can be used.

また、本発明の請求項2に係る発振回路は、上述した請求項1記載の構成において、固定容量素子を構成するポリシリコン電極は、側面がテーパ状に形成されている。   According to a second aspect of the present invention, in the oscillation circuit according to the first aspect described above, the side surface of the polysilicon electrode constituting the fixed capacitance element is tapered.

本発明の請求項3に係る発振回路は、上述した請求項1記載の構成において、半導体基板表面の各容量素子とは上下に重ならない位置に、破壊電圧保護用のスナップバックトランジスタを形成したものである。   According to a third aspect of the present invention, in the oscillation circuit according to the first aspect, a snap-back transistor for protecting a breakdown voltage is formed at a position that does not overlap with each capacitive element on the surface of the semiconductor substrate. It is.

本発明の請求項4に係る発振回路は、上述した請求項3記載の構成において、さらにフィールド酸化膜下の半導体基板表面に設けられた第1のN型拡散層と、前記フィールド酸化膜で区画された外側に形成された第2のN型拡散層とを有し、可変容量素子を構成するN型拡散層は、前記第1および第2のN型拡散層を介して外部端子に電気的に接続されるとともに、前記第2のN型拡散層はスナップバックトランジスタのコレクタ領域を構成するものである。   According to a fourth aspect of the present invention, there is provided an oscillation circuit according to the third aspect, further comprising a first N-type diffusion layer provided on the surface of the semiconductor substrate below the field oxide film and the field oxide film. A second N-type diffusion layer formed on the outer side, and the N-type diffusion layer constituting the variable capacitance element is electrically connected to an external terminal via the first and second N-type diffusion layers. And the second N-type diffusion layer constitutes a collector region of the snapback transistor.

本発明に係る発振回路によれば、容量素子の寄生容量を低減することで、容量変化率の低下を防止して周波数可変幅を拡大でき、また、容量素子の形成領域の面積を縮小して小型化に寄与できるほか、固定容量素子の電極に金属を用いるので、導電性に優れ、容量としての機能が向上し、さらには、固定容量素子の下部電極の端をフィールド酸化膜上に設けるので、金属電極のパターニングの際にポリシリコン電極のエッジ部でオーバーエッチングによるシリコントレンチ発生の虞がなくなる。また、ポリシリコン電極の側面をテーパ状に形成すると、金属電極のパターニングの際に、前記ポリシリコン電極の側壁に金属電極材料が残らないものである。さらに、外部から入力する破壊電圧から回路を保護するためのスナップバックトランジスタを設けた場合には、他の保護素子、例えば、ESD保護ダイオードを設けた場合と比較して占有面積を縮小することができ、小型化に寄与することができる。   According to the oscillation circuit of the present invention, by reducing the parasitic capacitance of the capacitive element, it is possible to prevent a decrease in the rate of change in capacitance and expand the frequency variable width, and to reduce the area of the capacitor element forming region. In addition to contributing to downsizing, metal is used for the electrode of the fixed capacitor element, so that the conductivity is excellent, the function as a capacitor is improved, and the end of the lower electrode of the fixed capacitor element is provided on the field oxide film. In the patterning of the metal electrode, there is no possibility that silicon trenches are generated due to over-etching at the edge of the polysilicon electrode. In addition, when the side surface of the polysilicon electrode is tapered, the metal electrode material does not remain on the side wall of the polysilicon electrode when the metal electrode is patterned. Furthermore, when a snapback transistor for protecting a circuit from a breakdown voltage input from the outside is provided, the occupied area can be reduced as compared with the case where another protection element, for example, an ESD protection diode is provided. Can contribute to downsizing.

以下、本発明の好適な実施形態を添付図面に基づいて説明する。ここにおいて、図1は水晶振動子を外付けした状態の発振回路の全体構成を示す回路図、図2は図1の鎖線Aで囲まれた部分における容量素子構造を示す断面図、図3は同じく平面図である。まず、回路の全体構成を図1に基づいて説明する。発振回路1は、水晶振動子2を外付けするための端子3,4と、増幅用のインバータ5及びその帰還抵抗6を設ける一方、インバータ5の入力端子と前記端子3との間には、直流遮断用の固定容量素子であるモリブデン電極(図2では71)とポリシリコン電極(図2では72)を備えてなるコンデンサ7を設け、インバータ5の出力端子と前記端子4との間には、直列接続されたダンピング抵抗8と直流遮断用の固定容量素子であるコンデンサ9を備えている。なお、前記モリブデン電極(図2では71)は前記端子3側、前記ポリシリコン電極(図2では72)は前記インバータ5側に位置している。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. Here, FIG. 1 is a circuit diagram showing the overall configuration of an oscillation circuit with an externally attached crystal resonator, FIG. 2 is a cross-sectional view showing a capacitive element structure in a portion surrounded by a chain line A in FIG. 1, and FIG. It is also a plan view. First, the overall configuration of the circuit will be described with reference to FIG. The oscillation circuit 1 is provided with terminals 3 and 4 for externally attaching the crystal resonator 2, an amplification inverter 5 and its feedback resistor 6, and between the input terminal of the inverter 5 and the terminal 3, A capacitor 7 including a molybdenum electrode (71 in FIG. 2) and a polysilicon electrode (72 in FIG. 2), which is a fixed capacitance element for DC blocking, is provided, and between the output terminal of the inverter 5 and the terminal 4 is provided. In addition, a damping resistor 8 connected in series and a capacitor 9 which is a fixed capacitance element for blocking DC are provided. The molybdenum electrode (71 in FIG. 2) is located on the terminal 3 side, and the polysilicon electrode (72 in FIG. 2) is located on the inverter 5 side.

また、端子3とコンデンサ7との間には、発振周波数制御用の可変容量素子であるPN接合ダイオード10のカソード側を接続している。このPN接合ダイオード10のカソード側(図2では102)は負荷抵抗12を介して、周波数制御用の外部電圧を入力するための制御電圧端子14にも接続する一方、アノード側(図2では101)は接地(VSS電位)している。同様に、端子4とコンデンサ9との間には、発振周波数制御用の可変容量素子であるPN接合ダイオード11のカソード側を接続している。そして、このPN接合ダイオード11のカソード側は負荷抵抗13を介して、周波数制御用の外部電圧を入力するための制御電圧端子14にも接続する一方、アノード側は接地(VSS電位)している。   Further, between the terminal 3 and the capacitor 7, the cathode side of a PN junction diode 10 which is a variable capacitance element for controlling the oscillation frequency is connected. The cathode side (102 in FIG. 2) of the PN junction diode 10 is also connected to a control voltage terminal 14 for inputting an external voltage for frequency control via a load resistor 12, while the anode side (101 in FIG. 2). ) Is grounded (VSS potential). Similarly, the cathode side of a PN junction diode 11 which is a variable capacitance element for controlling the oscillation frequency is connected between the terminal 4 and the capacitor 9. The cathode side of the PN junction diode 11 is also connected to a control voltage terminal 14 for inputting an external voltage for frequency control via a load resistor 13, while the anode side is grounded (VSS potential). .

さらに、PN接合ダイオード10のカソードには、破壊電圧保護用のNPN型スナップバックトランジスタ15のコレクタ端子(図2では151)を接続し、前記PN接合ダイオード10のアノードには、前記スナップバックトランジスタ15のエミッタ端子(図2では153)を接続している。そして、前記スナップバックトランジスタ15のゲート端子(図2では152)とエミッタ端子(図2では153)は接地(VSS電位)している。同様に、PN接合ダイオード11のカソードには、破壊電圧保護用のNPN型スナップバックトランジスタ16のコレクタ端子を接続し、前記PN接合ダイオード11のアノードには、前記スナップバックトランジスタ16のエミッタ端子を接続している。そして、前記スナップバックトランジスタ16のゲート端子とエミッタ端子は接地(VSS電位)している。   Further, a collector terminal (151 in FIG. 2) of an NPN-type snapback transistor 15 for protecting a breakdown voltage is connected to the cathode of the PN junction diode 10, and the snapback transistor 15 is connected to the anode of the PN junction diode 10. Emitter terminals (153 in FIG. 2) are connected. The gate terminal (152 in FIG. 2) and the emitter terminal (153 in FIG. 2) of the snapback transistor 15 are grounded (VSS potential). Similarly, the collector terminal of an NPN-type snapback transistor 16 for protecting a breakdown voltage is connected to the cathode of the PN junction diode 11, and the emitter terminal of the snapback transistor 16 is connected to the anode of the PN junction diode 11. is doing. The gate terminal and the emitter terminal of the snapback transistor 16 are grounded (VSS potential).

続いて、容量素子構造を説明する。図2に示すように、図1の鎖線Aで囲まれた部分に対応する半導体基板(図示せず)のP型ウェル層21には、このP型ウェル層21よりも拡散濃度の高いP型拡散領域22、このP型拡散領域22よりも拡散濃度の高いP型拡散領域152とN型拡散領域23,24を形成し、これらの上にはフィールド酸化膜25,25aを設けている。また、前記各領域22,152,23,24よりも浅い領域に、より拡散濃度の高いP型拡散領域27とN型拡散領域26,151,153を設けている。上述したように、前記各N型拡散領域151,153とP型拡散領域152によって、NPN型スナップバックトランジスタ(図1では15)を構成している。そして、前記N型拡散領域26,151,153は、発振回路を構成するN型MOSトランジスタのソースおよびドレイン拡散層の形成と同一工程で形成することができ、また、前記P型拡散領域27は、発振回路を構成するP型MOSトランジスタのソースおよびドレイン拡散層の形成と同一工程で形成することができるため、少ない工程でNPN型スナップバックトランジスタを設けることが可能である。   Subsequently, the capacitive element structure will be described. As shown in FIG. 2, a P-type well layer 21 of a semiconductor substrate (not shown) corresponding to a portion surrounded by a chain line A in FIG. A diffusion region 22, a P-type diffusion region 152 and N-type diffusion regions 23 and 24 having a higher diffusion concentration than the P-type diffusion region 22 are formed, and field oxide films 25 and 25 a are provided thereon. Further, a P-type diffusion region 27 and N-type diffusion regions 26, 151, and 153 having higher diffusion concentrations are provided in regions shallower than the respective regions 22, 152, 23, and 24. As described above, each of the N-type diffusion regions 151 and 153 and the P-type diffusion region 152 constitutes an NPN-type snapback transistor (15 in FIG. 1). The N-type diffusion regions 26, 151, and 153 can be formed in the same process as the formation of the source and drain diffusion layers of the N-type MOS transistor that constitutes the oscillation circuit. Since the source and drain diffusion layers of the P-type MOS transistor constituting the oscillation circuit can be formed in the same process, the NPN snap-back transistor can be provided with fewer processes.

フィールド酸化膜25aおよびその下の各N型拡散領域23,24で区画された領域には、高濃度のP型拡散領域101とN型拡散領域102からなるPN接合ダイオード(図1では10)で構成される可変容量素子を形成している。このPN接合ダイオード101,102に対応する領域上には、ポリシリコン電極72と、絶縁体であるシリコン酸化膜74及びシリコン窒化膜73と、モリブデン電極71を順次積層してなる固定容量素子であるコンデンサ(図1では7)を形成している。可変容量素子を構成するN型拡散領域102と、固定容量素子を構成するポリシリコン電極72との間には、絶縁膜75が形成されている。   A region partitioned by the field oxide film 25a and the respective N-type diffusion regions 23 and 24 below the field oxide film 25a is a PN junction diode (10 in FIG. 1) composed of a high-concentration P-type diffusion region 101 and an N-type diffusion region 102. A configured variable capacitance element is formed. On the region corresponding to the PN junction diodes 101 and 102, there is a fixed capacitance element in which a polysilicon electrode 72, a silicon oxide film 74 and a silicon nitride film 73 which are insulators, and a molybdenum electrode 71 are sequentially laminated. A capacitor (7 in FIG. 1) is formed. An insulating film 75 is formed between the N-type diffusion region 102 constituting the variable capacitance element and the polysilicon electrode 72 constituting the fixed capacitance element.

図3でより理解できるように、モリブデン電極71はポリシリコン電極72よりも平面上小さく形成されている。ポリシリコン電極72は、図3の平面図上は明確に表されていないが、矩形状のシリコン窒化膜73とほぼ同じ形状にて、その下層に形成されている。フィールド酸化膜25aは、図3上鎖線で囲まれている絶縁膜75部分の外側で、環状に形成している。また、N型拡散領域26とN型拡散領域151は同電位となっている。   As can be understood from FIG. 3, the molybdenum electrode 71 is formed smaller than the polysilicon electrode 72 on the plane. The polysilicon electrode 72 is not clearly shown on the plan view of FIG. 3, but is formed in the lower layer in substantially the same shape as the rectangular silicon nitride film 73. The field oxide film 25a is formed in an annular shape outside the insulating film 75 surrounded by the upper chain line in FIG. The N-type diffusion region 26 and the N-type diffusion region 151 are at the same potential.

上述のように、モリブデン電極71はポリシリコン電極72よりも平面上小さく形成される(図2参照)が、ポリシリコン電極72のエッジ部分はフィールド酸化膜25a上に位置している(図2参照)ので、モリブデン電極71のパターニングに際して、モリブデン形成時のオーバーエッチングが起こっても、前記フィールド酸化膜25aの存在により、エッジ部の直下に位置するN型拡散領域23,24に達するまでエッチングされることはない。これによってN型拡散領域23,24でシリコントレンチが発生しないのでリークが生じる虞がなくなる。また、ポリシリコン電極72の側面をテーパ状に形成することで、モリブデン電極71のパターニングの際に、ポリシリコン電極72の側壁にモリブデン電極材料が残らないようにすることができる。   As described above, the molybdenum electrode 71 is formed on a plane smaller than the polysilicon electrode 72 (see FIG. 2), but the edge portion of the polysilicon electrode 72 is located on the field oxide film 25a (see FIG. 2). Therefore, when the molybdenum electrode 71 is patterned, even if over-etching occurs during the formation of molybdenum, the etching is performed until the N-type diffusion regions 23 and 24 located immediately below the edge portion are reached due to the presence of the field oxide film 25a. There is nothing. As a result, no silicon trench is generated in the N-type diffusion regions 23 and 24, so that there is no risk of leakage. Further, by forming the side surface of the polysilicon electrode 72 in a tapered shape, it is possible to prevent the molybdenum electrode material from remaining on the sidewall of the polysilicon electrode 72 when the molybdenum electrode 71 is patterned.

図2に金属配線の取出部a〜fを示したが、金属配線による接続関係を説明すると、モリブデン電極71は、取出部aと取出部bを接続することで、N型拡散領域151とN型拡散領域102に接続される一方、前記取出部aを介して端子3に接続され、前記N型拡散領域151は、取出部bに接続する取出部aを介して端子3に接続される一方、取出部cを介してN型拡散領域26とともに端子14に接続される(図1参照)。このように、端子3,14と接続するための取出部b,cを容量素子形成領域の外部に設けたので、配線作業が容易となる。また、P型拡散領域27には、取出部dからP型ウェル層21を介して半導体基板に電位を与えるべく、VSS電位が付与され、N型拡散領域153にも取出部eからVSS電位が付与されている。さらに、ポリシリコン電極72は取出部fを介してインバータ5の入力端子に接続されている。このポリシリコン電極72における他素子との接続配線は、その上部のモリブデン電極71を小さく形成したことにより、平面上コンタクト部形成のためのスペースが確保され、容易になし得る。   FIG. 2 shows the extraction portions a to f of the metal wiring. The connection relationship between the metal wirings will be described. The molybdenum electrode 71 is connected to the N-type diffusion region 151 and the N-type diffusion region 151 by connecting the extraction portion a and the extraction portion b. While connected to the mold diffusion region 102, it is connected to the terminal 3 via the extraction portion a, and the N-type diffusion region 151 is connected to the terminal 3 via the extraction portion a connected to the extraction portion b. Then, it is connected to the terminal 14 together with the N-type diffusion region 26 through the extraction portion c (see FIG. 1). Thus, since the extraction portions b and c for connecting to the terminals 3 and 14 are provided outside the capacitor element formation region, the wiring work is facilitated. In addition, a VSS potential is applied to the P-type diffusion region 27 from the extraction part d through the P-type well layer 21 so as to apply a potential to the semiconductor substrate, and the VSS potential is also applied to the N-type diffusion region 153 from the extraction part e. Has been granted. Further, the polysilicon electrode 72 is connected to the input terminal of the inverter 5 through the extraction portion f. The connection wiring with the other elements in the polysilicon electrode 72 can be easily formed because the upper molybdenum electrode 71 is formed small so that a space for forming a contact portion on the plane is secured.

なお、図示していないが、コンデンサ9とPN接合ダイオード11についても、上述したコンデンサ7とPN接合ダイオード10と同様に形成されるものである。また、NPN型スナップバックトランジスタ15,16は、他の保護素子に換えてもよいし、保護素子を必ずしも設ける必要はない。   Although not shown, the capacitor 9 and the PN junction diode 11 are also formed in the same manner as the capacitor 7 and the PN junction diode 10 described above. Further, the NPN snapback transistors 15 and 16 may be replaced with other protective elements, and the protective elements are not necessarily provided.

水晶振動子を外付けした状態の発振回路の全体構成を示す回路図。The circuit diagram which shows the whole structure of the oscillation circuit of the state which attached the crystal oscillator externally. 図1の鎖線Aで囲まれた部分における容量素子構造を示す断面図。Sectional drawing which shows the capacitive element structure in the part enclosed with the chain line A of FIG. 同じく平面図。FIG.

符号の説明Explanation of symbols

1 発振回路
2 水晶振動子
3,4,14 端子
5 インバータ
7,9 コンデンサ(固定容量素子)
10,11 PN接合ダイオード(可変容量素子)
15,16 NPN型スナップバックトランジスタ
25,25a フィールド酸化膜
71 モリブデン電極
72 ポリシリコン電極
73 シリコン窒化膜
74 シリコン酸化膜
75 絶縁膜
101 P型拡散領域
102 N型拡散領域
151,153 N型拡散領域
152 P型拡散領域
DESCRIPTION OF SYMBOLS 1 Oscillation circuit 2 Crystal oscillator 3, 4, 14 Terminal 5 Inverter 7, 9 Capacitor (fixed capacity element)
10,11 PN junction diode (variable capacitor)
15, 16 NPN type snapback transistor 25, 25a Field oxide film 71 Molybdenum electrode 72 Polysilicon electrode 73 Silicon nitride film 74 Silicon oxide film 75 Insulating film 101 P-type diffusion region 102 N-type diffusion region 151, 153 N-type diffusion region 152 P-type diffusion region

Claims (4)

増幅用のインバータと、前記インバータの入出力端それぞれに直列接続されて設けられた発振周波数制御用の可変容量素子および直流信号遮断用の固定容量素子と、振動子を外付けするための一対の端子と、前記可変容量素子の容量値を調整し発振周波数を制御する周波数制御用信号を入力するための端子とを備えた半導体集積回路に搭載する発振回路であって、
半導体基板表面においてフィールド酸化膜により囲まれた領域にPN接合を有する可変容量素子を形成し、この可変容量素子の上に絶縁層を介してポリシリコン電極と、絶縁膜と、金属電極とを順次積層してなり、前記ポリシリコン電極のエッジ部分が前記フィールド酸化膜上に位置するように延在する固定容量素子を形成してなる
ことを特徴とする発振回路。
An inverter for amplification, a variable capacitance element for controlling oscillation frequency and a fixed capacitance element for blocking DC signal provided in series with each input / output terminal of the inverter, and a pair of external oscillators An oscillation circuit mounted on a semiconductor integrated circuit comprising a terminal and a terminal for inputting a frequency control signal for adjusting a capacitance value of the variable capacitance element and controlling an oscillation frequency;
A variable capacitor having a PN junction is formed in a region surrounded by a field oxide film on the surface of the semiconductor substrate, and a polysilicon electrode, an insulating film, and a metal electrode are sequentially formed on the variable capacitor via an insulating layer. An oscillation circuit comprising: a laminated capacitor, and a fixed capacitance element extending so that an edge portion of the polysilicon electrode is positioned on the field oxide film.
固定容量素子を構成するポリシリコン電極は、側面がテーパ状に形成されていることを特徴とする請求項1記載の発振回路。   2. The oscillation circuit according to claim 1, wherein a side surface of the polysilicon electrode constituting the fixed capacitance element is formed in a tapered shape. 半導体基板表面の各容量素子とは上下に重ならない位置に、破壊電圧保護用のスナップバックトランジスタを形成してなることを特徴とする請求項1記載の発振回路。   2. The oscillation circuit according to claim 1, wherein a snap-back transistor for protecting a breakdown voltage is formed at a position that does not overlap vertically with each capacitive element on the surface of the semiconductor substrate. 発振回路は、さらにフィールド酸化膜下の半導体基板表面に設けられた第1のN型拡散層と、前記フィールド酸化膜で区画された外側に形成された第2のN型拡散層とを有し、可変容量素子を構成するN型拡散層は、前記第1および第2のN型拡散層を介して外部端子に電気的に接続されるとともに、前記第2のN型拡散層はスナップバックトランジスタのコレクタ領域を構成することを特徴とする請求項3記載の発振回路。
The oscillation circuit further includes a first N-type diffusion layer provided on the surface of the semiconductor substrate below the field oxide film, and a second N-type diffusion layer formed on the outside partitioned by the field oxide film. The N-type diffusion layer constituting the variable capacitance element is electrically connected to an external terminal through the first and second N-type diffusion layers, and the second N-type diffusion layer is a snapback transistor. 4. The oscillation circuit according to claim 3, wherein the collector region is configured as follows.
JP2006276844A 2006-10-10 2006-10-10 Oscillator circuit Expired - Fee Related JP5058551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276844A JP5058551B2 (en) 2006-10-10 2006-10-10 Oscillator circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276844A JP5058551B2 (en) 2006-10-10 2006-10-10 Oscillator circuit

Publications (2)

Publication Number Publication Date
JP2008098301A true JP2008098301A (en) 2008-04-24
JP5058551B2 JP5058551B2 (en) 2012-10-24

Family

ID=39380852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276844A Expired - Fee Related JP5058551B2 (en) 2006-10-10 2006-10-10 Oscillator circuit

Country Status (1)

Country Link
JP (1) JP5058551B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220763A (en) * 1990-01-25 1991-09-27 Nec Corp Manufacture of semiconductor device
JPH09181268A (en) * 1995-12-08 1997-07-11 Samsung Electron Co Ltd Mos capacitor
JP2000307129A (en) * 1999-04-21 2000-11-02 Citizen Watch Co Ltd Variable capacitor circuit
JP2006202830A (en) * 2005-01-18 2006-08-03 Kawasaki Microelectronics Kk Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220763A (en) * 1990-01-25 1991-09-27 Nec Corp Manufacture of semiconductor device
JPH09181268A (en) * 1995-12-08 1997-07-11 Samsung Electron Co Ltd Mos capacitor
JP2000307129A (en) * 1999-04-21 2000-11-02 Citizen Watch Co Ltd Variable capacitor circuit
JP2006202830A (en) * 2005-01-18 2006-08-03 Kawasaki Microelectronics Kk Semiconductor device

Also Published As

Publication number Publication date
JP5058551B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
KR100976410B1 (en) Electrostatic Discharge Device
JP2009194301A (en) Semiconductor device
JPWO2012029652A1 (en) Semiconductor device
JP2007081206A (en) Semiconductor device and its manufacturing method
JP2008140824A (en) Semiconductor device
JP4961686B2 (en) Semiconductor device
JP2007201220A (en) Semiconductor device
JP2007201220A5 (en)
JP5285373B2 (en) Semiconductor device
JP2013089764A (en) Trench type pip capacitor and power integrated circuit device using the same and manufacturing method of power integrated circuit device
US7456440B2 (en) Electrostatic protection device
JP6385755B2 (en) Manufacturing method of semiconductor device
US9876006B2 (en) Semiconductor device for electrostatic discharge protection
JP2008085186A (en) Semiconductor device
JP2012238741A (en) Semiconductor device and manufacturing method for the same
JP2011176026A (en) Method of manufacturing semiconductor element
JP5058551B2 (en) Oscillator circuit
JP2006093229A (en) Semiconductor device and its manufacturing method
JP2009111044A (en) Semiconductor device
US7247925B2 (en) Semiconductor device and method for fabricating the same
JP5270882B2 (en) Semiconductor device
JP5282194B2 (en) Variable capacity device
JP2009065031A (en) Semiconductor device
JP4103631B2 (en) Semiconductor device having overvoltage protection function
JP5163212B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5058551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees