JP2008098059A - Atmospheric pressure plasma generating device, plasma treating method, and device - Google Patents

Atmospheric pressure plasma generating device, plasma treating method, and device Download PDF

Info

Publication number
JP2008098059A
JP2008098059A JP2006280341A JP2006280341A JP2008098059A JP 2008098059 A JP2008098059 A JP 2008098059A JP 2006280341 A JP2006280341 A JP 2006280341A JP 2006280341 A JP2006280341 A JP 2006280341A JP 2008098059 A JP2008098059 A JP 2008098059A
Authority
JP
Japan
Prior art keywords
plasma
gas
head
processing
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006280341A
Other languages
Japanese (ja)
Other versions
JP4946339B2 (en
Inventor
Hiroyuki Tsuji
裕之 辻
Kazuhiro Inoue
和弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006280341A priority Critical patent/JP4946339B2/en
Publication of JP2008098059A publication Critical patent/JP2008098059A/en
Application granted granted Critical
Publication of JP4946339B2 publication Critical patent/JP4946339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To carry out treatment only to a treating part of a treating object stably, efficiently, and with good productivity with a simple structure and control. <P>SOLUTION: In a plasma head 10, a gas is supplied into a reaction space 11 and a high frequency electric field is impressed to generate a primary plasma 16, and preferably, by making this primary plasma 16 collide with a mixed gas region 20, secondary plasma 21 is generated, and the generated secondary plasma 21 is blown out from a blowing port. A suction port 22 is installed in the vicinity of the blowing port of the plasma head 10, and this suction port 22 is connected to a suction means 23 through an opening and closing control means 25 and thereby, blowing and stopping of the plasma is carried out by opening and closing control of the opening and closing control means 25. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被処理物の処理箇所のみの処理を簡単かつ生産性良く行うことができる大気圧プラズマ発生装置とプラズマ処理方法及び装置に関するものである。   The present invention relates to an atmospheric pressure plasma generator, a plasma processing method and an apparatus that can easily and efficiently process only a processing portion of an object to be processed.

従来、大気圧近傍(圧力では、500〜1500mmHgの範囲)で不活性ガスをプラズマ化し、発生した不活性ガスのラジカルによって反応性ガスをプラズマ化し、発生したプラズマを被処理物表面に照射して、表面のクリーニング、金属酸化物の還元、レジストの除去、表面改質、エッチング、成膜等のプラズマ処理を行うプラズマ処理装置は知られている。また、従来のプラズマ処理装置においては、最初から不活性ガスと反応性ガスを所定の割合で混合して筒状の反応容器の一端に供給し、その反応容器に高周波電界を印加することで混合ガスをプラズマ化し、発生したプラズマを反応容器の他端から吹き出し、被処理物に照射して処理を行うようにしたものが通例であった。   Conventionally, an inert gas is turned into plasma near atmospheric pressure (at a pressure in the range of 500 to 1500 mmHg), a reactive gas is turned into plasma by the generated inert gas radicals, and the surface of the workpiece is irradiated with the generated plasma. Plasma processing apparatuses that perform plasma processing such as surface cleaning, metal oxide reduction, resist removal, surface modification, etching, and film formation are known. In addition, in a conventional plasma processing apparatus, an inert gas and a reactive gas are mixed at a predetermined ratio from the beginning, supplied to one end of a cylindrical reaction vessel, and mixed by applying a high-frequency electric field to the reaction vessel. Typically, gas is turned into plasma, and the generated plasma is blown out from the other end of the reaction vessel to irradiate the object to be processed.

また、大気圧プラズマを発生させて吹き出し口からプラズマジェットを吹き出すプラズマヘッドを設けるとともに、このプラズマヘッドに被処理物の特定の処理箇所を対向させるように、被処理物とプラズマヘッドを相対移動させる移動手段を設け、被処理物の特定の処理箇所にプラズマジェットを吹き付けることでプラズマ処理する方法が知られている(例えば、特許文献1参照)。
特開平11−251304号公報
In addition, a plasma head that generates atmospheric pressure plasma and blows out a plasma jet from an outlet is provided, and the object to be processed and the plasma head are relatively moved so that a specific processing position of the object to be processed is opposed to the plasma head. There is known a method of performing a plasma process by providing a moving unit and spraying a plasma jet on a specific processing location of an object to be processed (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 11-251304

ところが、上記特許文献1に記載されたプラズマ処理方法では、被処理物の処理箇所にプラズマジェットを照射する時だけでなく、処理箇所の間を移動する間も不活性ガスと反応性ガスの混合ガス又は少なくとも不活性ガスを供給し続けてプラズマジェットを連続的に吹き出させておく必要がある。その理由は、プラズマジェットの発生を一旦停止してしまうと、再度プラズマを点火して安定したプラズマジェットを発生させるのに時間がかかって著しく生産性が低下するためである。   However, in the plasma processing method described in Patent Document 1, mixing of an inert gas and a reactive gas is performed not only when a plasma jet is applied to a processing portion of an object to be processed but also during movement between the processing portions. It is necessary to continuously supply the gas or at least the inert gas and continuously blow out the plasma jet. The reason is that once the generation of the plasma jet is stopped, it takes time to ignite the plasma again to generate a stable plasma jet, and the productivity is significantly reduced.

また、プラズマジェットが連続的に吹き出しているため、被処理物の処理箇所に対しては安定的にプラズマジェットを照射しながら、処理箇所以外に対してはプラズマジェットが照射されないようにするのが難しいという問題がある。すなわち、処理箇所に対して安定したプラズマジェットの照射状況を得、かつ処理箇所以外には全く照射されないようにするには、プラズマヘッドと被処理物の相対移動を複雑に制御する必要があり、設備及び制御機構の構成が複雑になるという問題がある。   In addition, since the plasma jet is continuously blown out, it is possible to stably irradiate the processing portion of the object to be processed with the plasma jet and prevent the plasma jet from being irradiated to other than the processing portion. There is a problem that it is difficult. That is, in order to obtain a stable plasma jet irradiation state for the processing location and not to be irradiated at all other than the processing location, it is necessary to control the relative movement of the plasma head and the object to be processed in a complicated manner. There exists a problem that the structure of an installation and a control mechanism becomes complicated.

また、上記特許文献1に記載されたプラズマヘッドの構成では、不活性ガスと反応性ガスの混合ガスに高周波電界を印加してプラズマを発生させるようにしているが、その場合不活性ガスのみをプラズマ化する場合に比して印加電力を大きくしないとプラズマが発生しないため、プラズマを発生するのに大きな入力電力が必要で、装置が大型化したり、処理効率が低下するという問題もある。   In the configuration of the plasma head described in Patent Document 1, plasma is generated by applying a high-frequency electric field to a mixed gas of an inert gas and a reactive gas. In that case, only the inert gas is used. Since the plasma is not generated unless the applied power is increased as compared with the case where the plasma is generated, a large input power is required to generate the plasma, and there is a problem that the apparatus is enlarged and the processing efficiency is lowered.

さらに、上記のように発生したプラズマ中のプラズマ化した反応性ガスの寿命は短いので、プラズマヘッドの吹き出し口から吹き出すと速やかにプラズマジェットが消失し、そのためプラズマヘッドの吹き出し口と被処理物の間の距離を短くしないと、プラズマ化した反応性ガスが有効に働かず、プラズマ処理の効率が悪くなるとともに、プラズマ処理できる距離範囲が小さく限定されてしまうため処理時の移動制御が複雑になるという問題もある。   Furthermore, since the lifetime of the plasma-ized reactive gas in the plasma generated as described above is short, the plasma jet disappears quickly when blown out from the blowout port of the plasma head. If the distance between them is not shortened, the plasmaized reactive gas will not work effectively, the efficiency of the plasma processing will deteriorate, and the distance range in which the plasma processing can be performed will be limited to a small size, so that the movement control during processing will be complicated. There is also a problem.

本発明は、上記従来の課題を解決するもので、被処理物の処理箇所のみに対して安定して効率的に処理でき、かつ簡単な構成及び制御にて生産性良く処理を行うことができる大気圧プラズマ発生装置とプラズマ処理方法及び装置を提供することを目的とする。   The present invention solves the above-described conventional problems, can stably and efficiently process only the processing portion of the object to be processed, and can perform processing with high productivity with a simple configuration and control. An object of the present invention is to provide an atmospheric pressure plasma generation apparatus, a plasma processing method, and an apparatus.

本発明の大気圧プラズマ発生装置は、反応空間内にガスを供給するとともに高周波電界を印加して大気圧プラズマを発生し、発生した大気圧プラズマを吹き出し口から吹き出すプラズマヘッドと、プラズマヘッドの吹き出し口近傍に設けられた吸引口に接続された吸引手段と、吸引口と吸引手段との間の吸引通路に配設された開閉制御手段とを備えたものである。   An atmospheric pressure plasma generator of the present invention supplies a gas into a reaction space and applies a high-frequency electric field to generate atmospheric pressure plasma, and blows out the generated atmospheric pressure plasma from an outlet, and an outlet of the plasma head. A suction unit connected to a suction port provided in the vicinity of the port, and an opening / closing control unit disposed in a suction passage between the suction port and the suction unit.

本発明者は、反応空間内にガスを供給するとともに高周波電界を印加して大気圧プラズマを発生させ、そのプラズマを被処理物に照射してプラズマ処理を行うに際して、プラズマ自体による処理の効率化とともに処理と非処理の切り替えを瞬時にかつ安定して行い、処理箇所のみのプラズマ処理を効率的に行うことを目指して鋭意研究を重ねる中で、プラズマヘッドのプラズマを吹き出している吹き出し口近傍を吸引してやると、プラズマの点火状態を維持したまま、プラズマの吹き出しが停止し、吸引を停止すると瞬時に安定したプラズマを吹き出すことを見出した。本発明は、この発見に基づいたもので、吹き出し口近傍に吸引口を設けて開閉制御手段を介して吸引手段に接続しているので、開閉制御手段を開くとプラズマの吹き出しが瞬時に停止し、閉じるとプラズマの点火状態が維持されているので瞬時に所要のプラズマが吹き出すことになり、開閉制御手段の開閉動作に伴って大気圧プラズマの吹き出しと停止を瞬時に切り替えることができる。   When the present inventors supply gas into the reaction space and apply a high-frequency electric field to generate atmospheric pressure plasma and irradiate the workpiece with the plasma to perform plasma processing, the processing efficiency by the plasma itself is improved. At the same time, the process of switching between treatment and non-treatment is performed instantaneously and stably, and while intensive research is being carried out with the aim of efficiently performing plasma treatment only at the treatment location, the vicinity of the blowout outlet where the plasma from the plasma head is blown out It has been found that when sucked, plasma blowing stops while maintaining the plasma ignition state, and when the suction is stopped, stable plasma is blown out instantly. The present invention is based on this discovery. Since the suction port is provided in the vicinity of the blowing port and connected to the suction unit via the opening / closing control unit, the plasma blowing is instantaneously stopped when the opening / closing control unit is opened. When closed, the plasma ignition state is maintained, so that the required plasma is blown out instantaneously, and the atmospheric pressure plasma blowing and stopping can be switched instantaneously in accordance with the opening / closing operation of the opening / closing control means.

また、プラズマヘッドが、反応空間内に第1の不活性ガスを供給して高周波電界を印加することで発生した一次プラズマを吹き出すプラズマ発生部と、第2の不活性ガスと反応性ガスの混合ガス領域に一次プラズマを衝突させることで発生した二次プラズマを吹き出し口から吹き出すプラズマ展開部とを有し、吸引口をプラズマ展開部の吹き出し口の近傍に開口したものであると、第1の不活性ガスがプラズマ化した一次プラズマを反応空間から吹き出させて第2の不活性ガスと反応性ガスの混合ガス領域に衝突させることで、一次プラズマが衝突した第2の不活性ガスが雪崩れ現象的にプラズマ化して混合ガス領域全体に展開し、プラズマ化した第2の不活性ガスのラジカルなどにて反応性ガスがプラズマ化した状態の二次プラズマが形成され、この二次プラズマを被処理物の処理箇所に吹き付けることで、処理箇所を効率的にプラズマ処理することができ、かつこの場合に吸引口をプラズマ展開部の吹き出し口の近傍に開口することで、二次プラズマによる効率的なプラズマ処理を確保しつつ上記作用効果を奏することができる。また、高周波電界は一次プラズマを発生する反応空間に印加するだけであるので小電力で済み、また入力電力が小さいので発生した二次プラズマのプラズマ温度も低く、耐熱性の低い部品が搭載又は設置された基板など、耐熱性の低い基板等のプラズマ処理も簡便に行うことが可能となるなどの効果も得られる。なお、プラズマ発生部は、コイル又はアンテナからVHF周波数帯以上の周波数の高周波電界を印加する誘導結合方式で、熱プラズマを発生するプラズマ発生部とするのが好適である。   In addition, the plasma head supplies a first inert gas into the reaction space and applies a high frequency electric field to blow out a primary plasma, and a mixture of the second inert gas and the reactive gas. A plasma expansion part that blows out secondary plasma generated by colliding primary plasma with the gas region from the blowout port, and the suction port is opened in the vicinity of the blowout port of the plasma development part, By blowing out the primary plasma in which the inert gas is turned into plasma from the reaction space and colliding with the mixed gas region of the second inert gas and the reactive gas, the second inert gas collided with the primary plasma is avalanche. Phenomenologically turns into plasma and expands to the entire mixed gas region, forming a secondary plasma in which the reactive gas is turned into plasma by radicals of the second inert gas turned into plasma By blowing this secondary plasma to the processing location of the workpiece, the processing location can be efficiently plasma-treated, and in this case, the suction port is opened near the blowout port of the plasma developing section. Thus, the above-described effects can be achieved while ensuring efficient plasma treatment with secondary plasma. In addition, high-frequency electric field is only applied to the reaction space where primary plasma is generated, so it requires only a small amount of power. Also, because the input power is low, the plasma temperature of the generated secondary plasma is low and components with low heat resistance are mounted or installed. It is also possible to obtain an effect that plasma treatment of a substrate having low heat resistance such as a processed substrate can be easily performed. The plasma generator is preferably an inductive coupling method that applies a high-frequency electric field having a frequency equal to or higher than the VHF frequency band from a coil or an antenna, and is preferably a plasma generator that generates thermal plasma.

また、本発明のプラズマ処理方法は、プラズマヘッドに設けた反応空間内にガスを供給するとともに高周波電界を印加して大気圧プラズマを発生し、発生した大気圧プラズマをプラズマヘッドの吹き出し口から吹き出し、吹き出したプラズマを被処理物の処理箇所に吹き付けて処理するプラズマ処理方法であって、プラズマヘッドと被処理物を相対移動させて処理箇所を処理するに際して、処理箇所以外の範囲ではプラズマヘッドの吹き出し口近傍位置で吸引してプラズマを維持したままプラズマの吹き出しを停止させ、処理箇所では吸引を停止してプラズマを吹き付けるものである。   In addition, the plasma processing method of the present invention supplies atmospheric gas into a reaction space provided in the plasma head and applies a high-frequency electric field to generate atmospheric pressure plasma. The generated atmospheric pressure plasma is blown out from the outlet of the plasma head. A plasma processing method for processing by blowing the blown plasma on a processing portion of the object to be processed, and processing the processing portion by moving the plasma head and the object to be processed relative to each other in the range other than the processing portion. The plasma is blown out while maintaining the plasma by sucking in the vicinity of the blow-out port, and the plasma is blown off while stopping the suction at the processing point.

この構成によると、処理箇所以外でプラズマヘッドの吹き出し口近傍位置で吸引することで、プラズマを維持したままプラズマの吹き出しを瞬時に停止させてプラズマ処理を停止でき、再度処理箇所になると、吸引を停止することでプラズマが維持されているので瞬時に安定してプラズマが吹き出し、効率的にプラズマ処理を行うことができ、被処理物の処理箇所のみに対して安定してかつ効率的にプラズマ処理することができる。また、非処理時にプラズマヘッドを被処理物から退避移動させるような移動が必要で無くなり、簡単な構成及び制御にて生産性良く、低コストにて処理箇所のみをプラズマ処理することができる。なお、非処理時にガス供給量を絞ることにより、高価なガスの消費量を少なくできる。   According to this configuration, by sucking at a position near the blowout port of the plasma head other than the processing point, the plasma blowing can be stopped instantaneously while maintaining the plasma, and the plasma processing can be stopped. Since plasma is maintained by stopping, plasma can be blown out instantaneously and stably, and plasma processing can be performed efficiently, and plasma processing can be performed stably and efficiently only on the processing location of the workpiece. can do. Further, it is not necessary to move the plasma head away from the workpiece during non-processing, and it is possible to perform plasma processing only at a processing point with a simple configuration and control with high productivity and low cost. Note that the consumption of expensive gas can be reduced by reducing the gas supply amount during non-treatment.

また、プラズマヘッドの吹き出し口から吹き出すプラズマが、プラズマヘッド内に設けた反応空間に第1の不活性ガスを供給するとともに高周波電界を印加して反応空間から一次プラズマを吹き出させ、プラズマヘッド内に第2の不活性ガスを主とし適量の反応性ガスを混合した混合ガス領域を形成してこの混合ガス領域に一次プラズマを衝突させて発生させた二次プラズマであると、二次プラズマを被処理物の処理箇所に吹き付けることで、上記のように処理箇所を効率的にプラズマ処理することができる。   Further, the plasma blown out from the outlet of the plasma head supplies the first inert gas to the reaction space provided in the plasma head and applies a high-frequency electric field to blow out the primary plasma from the reaction space. A secondary plasma generated by forming a mixed gas region mainly containing the second inert gas and mixing an appropriate amount of reactive gas and colliding the primary plasma with the mixed gas region is not covered by the secondary plasma. By spraying on the processing location of the processed product, the processing location can be efficiently plasma-treated as described above.

また、第1の不活性ガスと第2の不活性ガスは、異種のものを使用することもできるが、同種の不活性ガスであると、二次プラズマの展開が安定するとともに、ガス供給構成が簡単になるため好適である。   The first inert gas and the second inert gas may be different, but if the same kind of inert gas is used, the development of the secondary plasma is stabilized and the gas supply structure Is preferable because it becomes simple.

また、第1の不活性ガス及び第2の不活性ガスは、アルゴン、ヘリウム、キセノン、ネオン、窒素、又はこれらの1種又は複数種の混合ガスから選ばれたものであるのが好適である。   In addition, the first inert gas and the second inert gas are preferably selected from argon, helium, xenon, neon, nitrogen, or one or more mixed gases thereof. .

また、本発明のプラズマ処理装置は、反応空間内にガスを供給するとともに高周波電界を印加することで大気圧プラズマを発生し、発生した大気圧プラズマを吹き出し口から吹き出すプラズマヘッドと、ガスを供給するガス供給手段と、高周波電界を印加する高周波電源と、プラズマヘッドの吹き出し口近傍に設けられた吸引口に接続された吸引手段と、吸引口と吸引手段との間の吸引通路に配設された開閉制御手段と、被処理物とプラズマヘッドを相対移動させる移動手段と、被処理物の処理箇所にプラズマヘッドが対向位置するタイミングを認識する手段と、ガス供給手段と高周波電源と開閉制御手段と移動手段を制御する制御手段とを備え、制御手段はプラズマヘッドが被処理物の処理箇所に対向する時に開閉制御手段を閉成させ、処理不要箇所に対向する時に開成させるものである。   In addition, the plasma processing apparatus of the present invention generates atmospheric pressure plasma by supplying a gas into the reaction space and applying a high-frequency electric field, and supplies the generated atmospheric pressure plasma from the outlet and the gas. Gas supply means, a high-frequency power source for applying a high-frequency electric field, a suction means connected to a suction port provided in the vicinity of the blowout port of the plasma head, and a suction passage between the suction port and the suction unit. Open / close control means, moving means for relatively moving the object to be processed and the plasma head, means for recognizing the timing when the plasma head faces the processing location of the object to be processed, gas supply means, high frequency power supply, and opening / closing control means And a control means for controlling the moving means. The control means closes the open / close control means when the plasma head faces the processing location of the object to be processed. It is intended to open when facing the unnecessary portions.

この構成によると、プラズマヘッドを移動手段にて被処理物に対して相対移動させ、プラズマヘッドが被処理物の処理不要箇所に対向位置したときに制御手段にて開閉制御手段を開成し、処理箇所に対向位置したときに閉成することで、処理箇所でのみプラズマを吹き出してプラズマ処理が行われ、上記プラズマ処理方法を実施してその効果を発揮することができる。   According to this configuration, the plasma head is moved relative to the object to be processed by the moving means, and the opening / closing control means is opened by the control means when the plasma head is positioned opposite the processing unnecessary portion of the object to be processed. By closing the position when facing the location, the plasma treatment is performed by blowing out plasma only at the treatment location, and the plasma treatment method can be implemented to exert the effect.

また、プラズマヘッドが、プラズマ化した第1の不活性ガスから成る一次プラズマを吹き出させるプラズマ発生部と、第2の不活性ガスと反応性ガスの混合ガス領域に一次プラズマを衝突させてプラズマ化した混合ガスから成る二次プラズマを発生するプラズマ展開部とを有し、高周波電源はプラズマ発生部に高周波電界を印加し、ガス供給手段は、プラズマ発生部に第1の不活性ガスを供給する第1の不活性ガス供給手段と、混合ガス領域に第2の不活性ガスと反応性ガスを供給する混合ガス供給手段とから成ると、上記のように二次プラズマが被処理物の処理箇所に吹き付けられることで、処理箇所を効率的にプラズマ処理することができる。   In addition, the plasma head collides with the plasma generation unit that blows out the primary plasma composed of the first inert gas that has been converted into plasma, and the mixed gas region of the second inert gas and the reactive gas to generate plasma. A high-frequency electric power source that applies a high-frequency electric field to the plasma generation unit, and a gas supply means supplies a first inert gas to the plasma generation unit. When the first inert gas supply means and the mixed gas supply means for supplying the second inert gas and the reactive gas to the mixed gas region are formed, the secondary plasma is processed at the processing location of the workpiece as described above. It is possible to efficiently perform plasma processing on the processing portion.

また、混合ガス供給手段を、第2の不活性ガスと反応性ガスを予め混合した混合ガスを混合ガス領域に供給するようにすると、混合ガス領域を簡単な構成で形成できるとともに第2の不活性ガスと反応性ガスが均等に混合しているので、均一なプラズマ処理を安定して実現することができる。   Further, when the mixed gas supply means supplies a mixed gas in which the second inert gas and the reactive gas are mixed in advance to the mixed gas region, the mixed gas region can be formed with a simple configuration and the second inert gas can be formed. Since the active gas and the reactive gas are evenly mixed, uniform plasma treatment can be realized stably.

また、混合ガス供給手段を、第2の不活性ガスを混合ガス領域に供給する第2の不活性ガス供給手段と、反応性ガスを混合ガス領域に供給する反応性ガス供給手段にて構成すると、反応性ガスを任意の濃度に調整して混合することができ、所望のプラズマ処理を行うことができる。   Further, the mixed gas supply means includes a second inert gas supply means for supplying the second inert gas to the mixed gas region and a reactive gas supply means for supplying the reactive gas to the mixed gas region. The reactive gas can be adjusted to an arbitrary concentration and mixed, and a desired plasma treatment can be performed.

また、移動手段がロボット装置を備え、そのロボット装置のX、Y、Z方向に移動可能な可動ヘッドにプラズマヘッドを搭載した構成とすると、極めて高い汎用性をもってプラズマ処理を行うことができる。   Further, if the moving means includes a robot device and the plasma head is mounted on a movable head that can move in the X, Y, and Z directions of the robot device, plasma processing can be performed with extremely high versatility.

本発明の大気圧プラズマ発生装置によれば、大気圧プラズマを発生して吹き出すプラズマヘッドにおけるプラズマの吹き出し口近傍に吸引口を設けて開閉制御手段を介して吸引手段に接続したことで、開閉制御手段を開くとプラズマの点火状態は維持したままプラズマの吹き出しを瞬時に停止でき、閉じるとプラズマの点火状態が維持されているので瞬時に所要のプラズマが吹き出すことになり、開閉制御手段の開閉動作に伴って大気圧プラズマの吹き出しと停止を瞬時に切り替えることができる。   According to the atmospheric pressure plasma generator of the present invention, the opening / closing control is achieved by providing a suction port in the vicinity of the plasma outlet in the plasma head that generates and blows off the atmospheric pressure plasma and is connected to the suction unit via the opening / closing control unit. When the means is opened, the plasma blowing can be stopped instantaneously while the plasma ignition state is maintained. When the means is closed, the plasma ignition state is maintained, so that the required plasma is blown out instantaneously. Along with this, it is possible to instantaneously switch between blowing and stopping the atmospheric pressure plasma.

以下、本発明の大気圧プラズマ発生装置を用いたプラズマ処理装置の各実施形態について、図1〜図10を参照しながら説明する。   Hereinafter, embodiments of a plasma processing apparatus using the atmospheric pressure plasma generation apparatus of the present invention will be described with reference to FIGS.

(第1の実施形態)
まず、本発明のプラズマ処理装置の第1の実施形態について、図1〜図8を参照して説明する。
(First embodiment)
First, a first embodiment of the plasma processing apparatus of the present invention will be described with reference to FIGS.

本実施形態の大気圧プラズマ処理装置1は、図1に示すように、3軸方向に移動及び位置決め可能な移動手段としてのロボット装置2を備えている。ロボット装置2は、水平面内で直交する2軸方向(X−Y軸方向)に移動及び位置決め可能な移動体3に垂直方向(Z軸方向)に移動及び位置決め可能に可動ヘッド4を取付けて構成され、その可動ヘッド4にプラズマヘッド10が設置されている。一方、被処理物5は、搬入・搬出部7によってプラズマヘッド10の可動範囲の下部位置に搬入・搬出されるとともに、所定位置に位置決めされて固定される。   As shown in FIG. 1, the atmospheric pressure plasma processing apparatus 1 according to the present embodiment includes a robot apparatus 2 as a moving unit that can move and position in three axial directions. The robot apparatus 2 is configured by attaching a movable head 4 so as to be movable and positioned in a vertical direction (Z-axis direction) to a movable body 3 that can be moved and positioned in two axial directions (XY directions) orthogonal to each other in a horizontal plane. A plasma head 10 is installed on the movable head 4. On the other hand, the workpiece 5 is carried into and out of the movable range of the plasma head 10 by the carry-in / carry-out unit 7 and is positioned and fixed at a predetermined position.

被処理物5には、図2(a)、(b)に示すように、プラズマ処理を行うべき処理箇所6が複数箇所に分散して配されている。このような被処理物5としては、例えば図2(a)に示すように電子部品実装用のランド配設領域が処理箇所6である回路基板8の例や、図2(b)に示すように異方導電膜の貼付領域が処理箇所6である液晶パネルやプラズマディスプレイパネルなどのフラットパネルディスプレイ9の例があり、それぞれプラズマ処理にてランド表面の表面改質や貼付面のクリーニングを行うものである。   As shown in FIGS. 2A and 2B, the processing object 6 to be subjected to the plasma processing is distributed in a plurality of places on the workpiece 5. As such an object to be processed 5, for example, as shown in FIG. 2A, an example of a circuit board 8 in which a land disposition area for mounting electronic components is a processing location 6, or as shown in FIG. 2B. There are examples of flat panel displays 9 such as liquid crystal panels and plasma display panels in which the anisotropic conductive film is attached to the treatment site 6, and each of them performs surface modification of the land surface and cleaning of the attachment surface by plasma treatment. It is.

プラズマヘッド10の構成を、図3(a)、(b)を参照して説明する。断面円形の反応空間11を形成する誘電体からなる円筒状の反応容器12の周囲にコイル状のアンテナ13を配設し、アンテナ13に高周波電源14から高周波電圧を印加して反応空間11に高周波電界を印加し、反応容器12の上端12aから第1の不活性ガス15を供給することで、反応容器12の下端12bから一次プラズマ16を吹き出すように構成されている。この反応容器12がプラズマ発生部を構成している。   The configuration of the plasma head 10 will be described with reference to FIGS. 3 (a) and 3 (b). A coiled antenna 13 is disposed around a cylindrical reaction vessel 12 made of a dielectric material that forms a reaction space 11 having a circular cross section, and a high frequency voltage is applied to the antenna 13 from a high frequency power source 14 to generate a high frequency in the reaction space 11. By applying an electric field and supplying the first inert gas 15 from the upper end 12 a of the reaction vessel 12, the primary plasma 16 is blown out from the lower end 12 b of the reaction vessel 12. This reaction vessel 12 constitutes a plasma generation unit.

反応容器12の下端12b近傍の周囲に角筒形状の混合ガス容器17が配設され、その四周壁上部に混合ガス18を内部に供給する複数のガス供給口19が配設されている。混合ガス容器17は、反応容器12の下端12bより下方に延出され、反応容器12の下端12bより下方の部分に、一次プラズマ16が衝突して二次プラズマ21を発生する下端開放の混合ガス領域20が形成されている。この混合ガス容器17がプラズマ展開部を構成している。   A rectangular tube-shaped mixed gas container 17 is disposed around the vicinity of the lower end 12b of the reaction container 12, and a plurality of gas supply ports 19 for supplying the mixed gas 18 to the inside are disposed at the upper part of the four peripheral walls. The mixed gas container 17 extends downward from the lower end 12 b of the reaction container 12, and the lower end open mixed gas in which the primary plasma 16 collides with a portion below the lower end 12 b of the reaction container 12 to generate the secondary plasma 21. Region 20 is formed. This mixed gas container 17 constitutes a plasma developing part.

混合ガス容器17の下端開口の近傍には吸引口22が設けられ、この吸引口22と吸引手段23を接続する吸引通路24の途中に電磁開閉弁などの開閉制御手段25が配置されている。吸引手段23としては、簡便な機構のエゼクタ吸引装置やその他各種の真空ポンプなどを適用できる。開閉制御手段25は、吸引口22での吸引作用のオン・オフの応答性を良くするため吸引口22の近傍に配設するのが好適である。開閉制御手段25を開成して吸引口22での吸引作用をオンすると、図4に示すように、一次プラズマ16の点火状態は維持しつつ、二次プラズマ21が混合ガス容器17内で極小化し、混合ガス容器17の下端から二次プラズマ21が吹き出さない状態となり、開閉制御手段25を閉成して吸引口22での吸引作用をオフすると、直ちに図3(a)に示すように二次プラズマ21が大きく展開して混合ガス容器17の下端から吹き出す。   A suction port 22 is provided in the vicinity of the lower end opening of the mixed gas container 17, and an opening / closing control means 25 such as an electromagnetic opening / closing valve is disposed in the middle of a suction passage 24 connecting the suction port 22 and the suction means 23. As the suction means 23, an ejector suction device having a simple mechanism or various other vacuum pumps can be applied. The opening / closing control means 25 is preferably arranged in the vicinity of the suction port 22 in order to improve the on / off response of the suction action at the suction port 22. When the opening / closing control means 25 is opened and the suction action at the suction port 22 is turned on, the secondary plasma 21 is minimized in the mixed gas container 17 while maintaining the ignition state of the primary plasma 16 as shown in FIG. When the secondary plasma 21 is not blown out from the lower end of the mixed gas container 17 and the opening / closing control means 25 is closed and the suction action at the suction port 22 is turned off, immediately, as shown in FIG. The next plasma 21 expands greatly and blows out from the lower end of the mixed gas container 17.

アンテナ13に高周波電圧を供給する高周波電源14としては、その出力周波数帯がRF周波数帯、又はVHF周波数帯、さらにマイクロ波周波数帯のものなどを使用することができる。なお、RF周波数帯やVHF周波数帯やマイクロ波周波数帯を使用する場合には、高周波電源14とアンテナ13との間に、アンテナ13で発生する反射波を抑制する整合器(マッチング回路)を介装する必要がある。   As the high frequency power supply 14 for supplying a high frequency voltage to the antenna 13, an output frequency band having an RF frequency band, a VHF frequency band, or a microwave frequency band can be used. When the RF frequency band, the VHF frequency band, or the microwave frequency band is used, a matching unit (matching circuit) that suppresses a reflected wave generated by the antenna 13 is interposed between the high-frequency power source 14 and the antenna 13. It is necessary to disguise.

プラズマ処理装置1の制御構成は、図5に示すように、制御部31にて記憶部32に予め記憶された動作プログラムや制御データに基づいて、プラズマヘッド10の移動手段としてのロボット装置2、高周波電源14、開閉制御手段25、及びガス供給部26からプラズマヘッド10へのガス供給を制御する流量制御部27を動作制御するように構成されている。また、制御部31による開閉制御手段25の制御は、被処理物5の処理箇所6にプラズマヘッド10が対向位置するタイミング、即ち処理箇所6に対する処理の開始と終了を認識する処理開始認識手段33と処理終了認識手段34から入力された信号に基づき、処理開始信号によって開閉制御手段25を閉成して吸引口22での吸引作用を停止することで処理箇所6に対するプラズマ処理を行い、処理終了信号によって開閉制御手段25を開成して吸引口22で吸引することで処理箇所6に対するプラズマ処理を終了するように構成されている。また、この開閉制御手段25の開閉動作に同期して流量制御部27を制御し、混合ガス容器17への混合ガス18の供給量を増減し、プラズマ処理を行わない場合のガス消費量の低減を図るようにしても良い。なお、本実施形態においては、処理開始認識手段33及び処理終了認識手段34は、記憶部32に記憶された制御データとロボット装置2からの現在位置データの比較によって認識するように構成されているが、別にプラズマヘッド10が処理箇所6の開始点と終了点に対向位置した時に認識する手段を設けても良い。   As shown in FIG. 5, the control configuration of the plasma processing apparatus 1 is based on an operation program and control data stored in the storage unit 32 in advance by the control unit 31, and a robot apparatus 2 as a moving unit of the plasma head 10. The high frequency power source 14, the open / close control means 25, and the flow rate control unit 27 that controls the gas supply from the gas supply unit 26 to the plasma head 10 are configured to control the operation. The control of the opening / closing control means 25 by the control unit 31 is a process start recognition means 33 for recognizing the timing at which the plasma head 10 faces the processing location 6 of the workpiece 5, that is, the start and end of processing for the processing location 6. Based on the signal input from the processing end recognition means 34, the opening / closing control means 25 is closed by the processing start signal and the suction action at the suction port 22 is stopped, so that the plasma processing is performed on the processing location 6, and the processing ends. The opening / closing control means 25 is opened by a signal and suctioned by the suction port 22, so that the plasma processing for the processing location 6 is completed. In addition, the flow rate control unit 27 is controlled in synchronization with the opening / closing operation of the opening / closing control means 25 to increase / decrease the supply amount of the mixed gas 18 to the mixed gas container 17 and reduce the gas consumption amount when the plasma processing is not performed. You may make it plan. In the present embodiment, the process start recognizing unit 33 and the process end recognizing unit 34 are configured to recognize by comparing the control data stored in the storage unit 32 and the current position data from the robot apparatus 2. However, a means for recognizing when the plasma head 10 faces the start point and the end point of the processing location 6 may be provided.

ガス供給部26と流量制御部27は具体的には図6に示すように構成されている。すなわち、ガス供給部26は第1の不活性ガス15を供給する第1の不活性ガス源28と、第2の不活性ガスと反応性ガスの混合ガス18を供給する混合ガス源29とを備え、それぞれのガス出口には圧力調整弁28a、29aが設けられている。第1の不活性ガス15は、マスフローコントローラなどから成る第1の流量制御装置27aを介して反応容器12に供給され、混合ガス18は、マスフローコントローラなどから成る第2の流量制御装置27bを介して混合ガス容器17に供給するように構成されている。これら第1と第2の流量制御装置27a、27bが流量制御部27を構成し、それぞれ制御部31にて制御されている。   Specifically, the gas supply unit 26 and the flow rate control unit 27 are configured as shown in FIG. That is, the gas supply unit 26 includes a first inert gas source 28 that supplies the first inert gas 15 and a mixed gas source 29 that supplies a mixed gas 18 of the second inert gas and the reactive gas. And pressure regulating valves 28a and 29a are provided at the respective gas outlets. The first inert gas 15 is supplied to the reaction vessel 12 via a first flow rate control device 27a including a mass flow controller and the mixed gas 18 is supplied via a second flow rate control device 27b including a mass flow controller and the like. And is supplied to the mixed gas container 17. These first and second flow rate control devices 27 a and 27 b constitute a flow rate control unit 27, which is controlled by the control unit 31.

なお、第1及び第2の不活性ガスは、アルゴン、ネオン、キセノン、ヘリウム、窒素から選択された単独ガス又は複数の混合ガスが適用される。また、反応性ガスは、プラズマ処理の種類に応じて、酸素、空気、CO2 、N2 Oなどの酸化性ガス、水素、アンモニアなどの還元性ガス、CF4 などのフッ素系ガスなどが適用される。なお、窒素ガスは、字義通りの不活性ガスではないが、大気圧プラズマの発生においては、本来の不活性ガスに準ずる挙動を示し、ほぼ同様に用いることができるので、本明細書においては不活性ガスに窒素ガスを含むものとする。 As the first and second inert gases, a single gas or a plurality of mixed gases selected from argon, neon, xenon, helium, and nitrogen are applied. In addition, reactive gases such as oxygen, air, oxidizing gases such as CO 2 and N 2 O, reducing gases such as hydrogen and ammonia, and fluorine-based gases such as CF 4 are applicable depending on the type of plasma treatment. Is done. Although nitrogen gas is not literally an inert gas, it exhibits a behavior similar to that of the original inert gas in the generation of atmospheric pressure plasma, and can be used in substantially the same manner. It is assumed that the active gas contains nitrogen gas.

以上の構成において、反応容器12の下端12bから一次プラズマ16を吹き出している状態で、混合ガス容器17内に混合ガス18を供給することで、混合ガス領域20内で混合ガス18に一次プラズマ16が衝突して二次プラズマ21が発生し、その二次プラズマ21が混合ガス領域20の全領域に展開するとともにさらにこの混合ガス領域20から下方に吹き出す。この二次プラズマ21を被処理物5の処理箇所6に照射することで、所望のプラズマ処理が行われる。このように二次プラズマ21が大きく展開するので、反応容器12の下端12bと被処理物5の間の間隔が大きくても、また平面方向にも反応容器12の断面積に比して大きな領域のプラズマ処理を短時間で効率的かつ確実に行うことができる。   In the above configuration, the primary plasma 16 is supplied to the mixed gas 18 in the mixed gas region 20 by supplying the mixed gas 18 into the mixed gas container 17 while the primary plasma 16 is blown out from the lower end 12 b of the reaction vessel 12. Collide with each other to generate a secondary plasma 21, which develops in the entire region of the mixed gas region 20 and further blows downward from the mixed gas region 20. By irradiating the processing location 6 of the workpiece 5 with the secondary plasma 21, a desired plasma processing is performed. Since the secondary plasma 21 develops greatly in this way, even if the interval between the lower end 12b of the reaction vessel 12 and the workpiece 5 is large, the region in the plane direction is larger than the cross-sectional area of the reaction vessel 12. This plasma treatment can be performed efficiently and reliably in a short time.

ここで、プラズマヘッド10の構成と供給ガスの具体例について説明すると、図3(a)において、反応容器12の内径R1=0.8mm、混合ガス容器17の内径R2=5mm、混合ガス容器17の下端と被処理物5の間の間隔L1=1mm、反応容器12の下端と混合ガス容器17の下端の間の間隔L2=4mmの装置構成とし、第1の不活性ガス15としてはアルゴンガスを用いて流量を50sccmとし、第2の不活性ガスとしてアルゴンガスやヘリウムガスを用い、反応性ガスとして酸素ガスなどを用いて、混合比を10対1として、混合ガスの流量を550sccmと設定した。そして、上記第1の不活性ガス15を反応容器12に供給して所定の高周波電界を印加し、第2の不活性ガスと反応性ガスの混合ガス18を混合ガス容器17内に供給することで二次プラズマ21を発生させ、この二次プラズマ21を被処理物5の表面に照射したところ被処理物5の表面処理を短時間で効果的に行うことができた。   Here, the configuration of the plasma head 10 and a specific example of the supply gas will be described. In FIG. 3A, the inner diameter R1 of the reaction container 12 is 0.8 mm, the inner diameter R2 of the mixed gas container 17 is 5 mm, and the mixed gas container 17 is. The apparatus is configured such that the distance L1 = 1 mm between the lower end of the gas and the workpiece 5 and the distance L2 = 4 mm between the lower end of the reaction vessel 12 and the lower end of the mixed gas vessel 17, and the first inert gas 15 is argon gas. The flow rate is set to 50 sccm, argon gas or helium gas is used as the second inert gas, oxygen gas is used as the reactive gas, the mixture ratio is set to 10: 1, and the flow rate of the mixed gas is set to 550 sccm. did. Then, the first inert gas 15 is supplied to the reaction vessel 12, a predetermined high-frequency electric field is applied, and the mixed gas 18 of the second inert gas and the reactive gas is supplied into the mixed gas vessel 17. When the secondary plasma 21 was generated and the surface of the workpiece 5 was irradiated with the secondary plasma 21, the surface treatment of the workpiece 5 could be effectively performed in a short time.

次に、以上の構成のプラズマ処理装置1による被処理物5の処理箇所6のプラズマ処理過程について説明する。   Next, the plasma processing process of the processing location 6 of the workpiece 5 by the plasma processing apparatus 1 having the above configuration will be described.

搬入・搬出部7にて被処理物5が搬入されて所定位置に位置決めされると、ロボット装置2が動作を開始し、プラズマヘッド10を被処理物5の最初の処理箇所6の処理開始点に向けて移動させる。また、プラズマ発生部としての反応容器12に第1の不活性ガス15を供給するとともに高周波電源14にて高周波電界を印加することで一次プラズマ16が発生し、その一次プラズマ16が混合ガス容器17に吹き出した状態とされ、次いで混合ガス容器17に混合ガス18が供給され、上記のように二次プラズマ21が発生した状態とされ、以降その状態が連続して維持される。また、処理開始点にプラズマヘッド10が近付くまでは、開閉制御手段25が開成され、吸引口22からの吸引が行われて、図4に示すように、二次プラズマ21が吹き出さない状態に維持されている。   When the workpiece 5 is loaded into the loading / unloading unit 7 and positioned at a predetermined position, the robot apparatus 2 starts to operate, and the plasma head 10 is moved to the processing start point of the first processing point 6 of the workpiece 5. Move towards. In addition, a primary plasma 16 is generated by supplying a first inert gas 15 to a reaction vessel 12 as a plasma generating unit and applying a high-frequency electric field by a high-frequency power source 14, and the primary plasma 16 is mixed gas vessel 17. Then, the mixed gas 18 is supplied to the mixed gas container 17 and the secondary plasma 21 is generated as described above, and this state is continuously maintained thereafter. Further, until the plasma head 10 approaches the processing start point, the opening / closing control means 25 is opened, and suction from the suction port 22 is performed, so that the secondary plasma 21 does not blow out as shown in FIG. Maintained.

この状態で、プラズマヘッド10が処理開始点に近付くと、図7に示すように、t0 時点で、処理開始認識手段33の検知信号に基づいて開閉制御手段25が閉成され、直後のt1 時点で吸引口22からの吸引が停止され、図3(a)に示すように、二次プラズマ21が吹き出して処理個所6のプラズマ処理が開始され、その後プラズマ処理状態を維持しつつプラズマヘッド10が処理個所6上を移動することで処理個所6のプラズマ処理が行われる。次いで、t2 時点で、処理終了認識手段34の検知信号に基づいて開閉制御手段25が開成され、直後のt3 時点で二次プラズマ21の吹き出しが停止し、プラズマ処理が直ちに停止し、最初の処理箇所6のプラズマ処理が終了する。 In this state, when the plasma head 10 approaches the processing start point, as shown in FIG. 7, the opening / closing control unit 25 is closed based on the detection signal of the processing start recognition unit 33 at time t 0 , and immediately after t The suction from the suction port 22 is stopped at one point, and as shown in FIG. 3 (a), the secondary plasma 21 is blown out to start the plasma processing at the processing location 6, and then the plasma head is maintained while maintaining the plasma processing state. When 10 moves on the processing location 6, the plasma processing of the processing location 6 is performed. Next, at time t 2 , the opening / closing control means 25 is opened based on the detection signal from the processing end recognition means 34, and immediately after the time t 3 , the secondary plasma 21 stops blowing, and the plasma processing is immediately stopped. The plasma processing at the processing location 6 is completed.

引き続いてロボット装置2の動作が継続してプラズマヘッド10が被処理物5の次の処理箇所6の処理開始点に向けて移動する。その間、一次プラズマ16が混合ガス容器17に吹き出した状態は維持され、二次ブラズマ21の点火状態は維持されていても、二次ブラズマ21は吹き出さず、プラズマ処理は全く行われない。そして、t4 時点で処理開始点に近付くと、処理開始認識手段33の検知信号に基づいて開閉制御手段25が閉成され、直後のt5 時点で上記のように二次プラズマ21が吹き出して次の処理個所6のプラズマ処理が開始される。以降、被処理物5の全ての処理箇所6のプラズマ処理が終了するまで以上の動作が繰り返される。全ての処理箇所6のプラズマ処理が終了すると、搬入・搬出部7にて被処理物5が搬出され、次の被処理物5が搬入され、 同様にプラズマ処理が行われる。 Subsequently, the operation of the robot apparatus 2 continues, and the plasma head 10 moves toward the processing start point of the next processing location 6 of the workpiece 5. In the meantime, the state in which the primary plasma 16 is blown out to the mixed gas container 17 is maintained, and even if the ignition state of the secondary plasma 21 is maintained, the secondary plasma 21 is not blown out, and plasma processing is not performed at all. When the processing start point is approached at time t 4 , the opening / closing control means 25 is closed based on the detection signal from the processing start recognition means 33, and the secondary plasma 21 is blown out as described above at time t 5 immediately after. Plasma processing at the next processing location 6 is started. Thereafter, the above operation is repeated until the plasma processing of all the processing points 6 of the workpiece 5 is completed. When the plasma processing of all the processing points 6 is completed, the workpiece 5 is unloaded at the loading / unloading unit 7, the next workpiece 5 is loaded, and the plasma processing is performed in the same manner.

このように開閉制御手段25にて吸引口22での吸引・停止によって、応答性良くかつ的確に二次プラズマ21の吹き出しと停止の切替を行うことができるので、本実施形態によれば、図8(a)に示すように、プラズマヘッド10をA位置から、最初の処理箇所6の処理開始点Bまで下降させた後、プラズマヘッド10を処理終了点C(=D)に向けて移動させることでこの最初の処理箇所6をプラズマ処理し、引き続いてプラズマヘッド10をその高さを維持したまま次の処理箇所6の処理開始点E(=F)に向けて移動し、その位置から処理終了点G(=H)に向けて移動する間にプラズマ処理し、同じ位置Hから次の処理箇所6に向けて移動するという動作を繰り返すことで、プラズマヘッド10の高さ位置を維持したまま複数の処理箇所6のみを安定してプラズマ処理することができ、プラズマヘッド10の移動経路がストレートで、その移動制御が簡単であるため生産性良くプラズマ処理を行うことができる。   As described above, since the opening / closing control means 25 can switch the blowing and stopping of the secondary plasma 21 with good responsiveness by the suction / stop at the suction port 22, according to the present embodiment, FIG. As shown in FIG. 8A, after the plasma head 10 is lowered from the position A to the processing start point B of the first processing point 6, the plasma head 10 is moved toward the processing end point C (= D). Thus, the first processing portion 6 is subjected to plasma processing, and then the plasma head 10 is moved toward the processing start point E (= F) of the next processing portion 6 while maintaining its height, and processing is performed from that position. By repeating the operation of performing plasma processing while moving toward the end point G (= H) and moving toward the next processing point 6 from the same position H, the height position of the plasma head 10 is maintained. Multiple locations Point 6 only can be stably plasma treatment, in the movement path of the plasma head 10 is straight, it is possible to perform the movement control with good productivity plasma treatment because it is simple.

これに対して、従来は、図8(b)に示すように、プラズマヘッド10をA位置から、最初の処理箇所6の処理開始点Bをプラズマ処理できる高さ位置まで下降させた後、プラズマヘッド10を処理終了点Cに向けて移動させることでこの最初の処理箇所6をプラズマ処理した後、プラズマヘッド10を被処理物5に対してプラズマ処理を行うことのない高さのD位置まで上昇させ、次いでプラズマヘッド10をその高さを維持したまま次の処理箇所6の処理開始点Fの上方のE位置に向けて移動し、そのE位置からプラズマ処理が可能な高さのF位置まで下降させた後、処理終了点Gに向けて移動する間にプラズマ処理し、その後プラズマヘッド10をH位置まで上昇させ、次の処理箇所6に向けて移動するという動作を繰り返す必要があるため、プラズマヘッド10の移動経路及びその移動制御が複雑であるためプラズマ処理の生産性が良くないという問題があった。   On the other hand, conventionally, as shown in FIG. 8B, after the plasma head 10 is lowered from the position A to the height at which the processing start point B of the first processing location 6 can be plasma processed, After the head 10 is moved toward the processing end point C, the first processing portion 6 is subjected to plasma processing, and then the plasma head 10 is moved to the D position where the plasma processing is not performed on the workpiece 5. Then, the plasma head 10 is moved toward the E position above the processing start point F of the next processing position 6 while maintaining the height thereof, and the F position at which the plasma processing can be performed from the E position. It is necessary to repeat the operation of performing the plasma processing while moving toward the processing end point G and then moving the plasma head 10 up to the H position and moving toward the next processing location 6. Therefore, there is a problem that the moving path and moving control of the plasma head 10 is poor productivity of the plasma treatment for a complex.

なお、上記実施形態のプラズマヘッド10では、図3のように混合ガス容器17が四角筒形状のものを例示したが、円筒形状や、下方に向けて径が小さくなる倒立接頭四角錐形状や接頭円錐形状のものとしても良い。また、図3の構成例では、複数の全てのガス供給口19から混合ガス容器17内に混合ガス18を供給するようにしたが、第2の反応性ガスと反応性ガスを別々に各ガス供給口19から混合ガス容器17内に供給するようにして、混合ガス容器17内でこれらのガスが混合して混合ガス領域20を形成するようにしても良い。   In the plasma head 10 of the above-described embodiment, the mixed gas container 17 is illustrated as having a rectangular tube shape as shown in FIG. 3, but a cylindrical shape or an inverted prefix quadrangular pyramid shape or prefix having a diameter that decreases downward. It may be conical. In the configuration example of FIG. 3, the mixed gas 18 is supplied into the mixed gas container 17 from all of the plurality of gas supply ports 19, but the second reactive gas and the reactive gas are separately supplied to each gas. The gas may be supplied from the supply port 19 into the mixed gas container 17, and these gases may be mixed in the mixed gas container 17 to form the mixed gas region 20.

また、上記実施形態では、プラズマヘッド10と被処理物5を相対移動させる移動手段として、プラズマヘッド10を搭載したロボット装置2を用いた例を示したが、移動手段はこれに限定されるものではなく、例えば被処理物5を搬送する搬送手段を移動手段とし、プラズマヘッド10は固定位置とした構成とすることもできる。また、被処理物5とプラズマヘッド10をそれぞれ移動させる手段を設けても良い。   Moreover, in the said embodiment, although the example using the robot apparatus 2 carrying the plasma head 10 was shown as a moving means to move the plasma head 10 and the to-be-processed object 5 relatively, a moving means is limited to this. Instead, for example, the transporting means for transporting the workpiece 5 may be a moving means, and the plasma head 10 may be a fixed position. Further, means for moving the workpiece 5 and the plasma head 10 may be provided.

(第2の実施形態)
次に、本発明のプラズマ処理装置の第2の実施形態について、図9を参照して説明する。尚、以下の実施形態の説明では、先行する実施形態と同一の構成要素については同一の参照符号を付して説明を省略し、主として相違点についてのみ説明する。
(Second Embodiment)
Next, a second embodiment of the plasma processing apparatus of the present invention will be described with reference to FIG. In the following description of the embodiment, the same components as those in the preceding embodiment are denoted by the same reference numerals, description thereof is omitted, and only differences will be mainly described.

上記第1の実施形態と本実施形態との相違点はプラズマヘッド10の構成にある。上記第1の実施形態のプラズマヘッド10では円筒状の反応容器12を用い、その周囲に配設したアンテナ13から反応空間11内に高周波電界を印加するようにし、反応容器12の下端12bの周囲に混合ガス容器17を配設した例を示したが、本実施形態では、図9に示すように、断面形状が長方形の角筒状の反応容器41の互いに対向する長壁に一対の電極42a、42bを配置するとともに、反応容器41を誘電体で構成し又は電極42a、42bの対向面の少なくとも一方に誘電体を配置し、かつ電極42a、42b間に高周波電源14から高周波電圧を印加して反応容器41内の反応空間11内に高周波電界を印加するように構成されている。かくして、反応容器41の上端から第1の不活性ガス15を供給するとともに、反応空間11内に高周波電界を印加することで反応容器41の下端から一次プラズマ16を吹き出す。   The difference between the first embodiment and the present embodiment is the configuration of the plasma head 10. In the plasma head 10 of the first embodiment, a cylindrical reaction vessel 12 is used, and a high-frequency electric field is applied to the reaction space 11 from an antenna 13 disposed around the reaction vessel 12, and the periphery of the lower end 12b of the reaction vessel 12 is used. In this embodiment, as shown in FIG. 9, a pair of electrodes 42 a, and a pair of electrodes 42 a are disposed on the opposing long walls of a rectangular tube-shaped reaction vessel 41. 42b, the reaction vessel 41 is made of a dielectric, or a dielectric is arranged on at least one of the opposing surfaces of the electrodes 42a, 42b, and a high frequency voltage is applied from the high frequency power source 14 between the electrodes 42a, 42b. A high frequency electric field is applied to the reaction space 11 in the reaction vessel 41. Thus, the first inert gas 15 is supplied from the upper end of the reaction vessel 41, and the primary plasma 16 is blown out from the lower end of the reaction vessel 41 by applying a high-frequency electric field in the reaction space 11.

また、反応容器41の下端部一側に隣接して混合ガス容器43が配設され、かつこの混合ガス容器43の上部に設けられたガス供給口44から第2の不活性ガスと反応性ガスの混合ガス18を供給するように構成されている。反応容器41及び混合ガス容器43の外側壁及び両端壁が下方に長く延出されて下端開放の混合ガス領域20が形成され、混合ガス容器43から混合ガス領域20に流出した混合ガスに一次プラズマ16が衝突して二次プラズマ21を発生して下端開口から吹き出すように構成されている。さらに、混合ガス容器43の下端近傍に吸引口22が設けられ、吸引通路24にて開閉制御手段25を介して吸引手段23に接続されている。   Further, a mixed gas container 43 is disposed adjacent to one side of the lower end portion of the reaction container 41, and a second inert gas and a reactive gas are supplied from a gas supply port 44 provided at the upper part of the mixed gas container 43. The mixed gas 18 is supplied. The outer wall and both end walls of the reaction vessel 41 and the mixed gas vessel 43 extend long downward to form a mixed gas region 20 having an open lower end, and the primary plasma is applied to the mixed gas flowing out from the mixed gas vessel 43 to the mixed gas region 20. 16 collides to generate secondary plasma 21 and blow out from the lower end opening. Further, a suction port 22 is provided in the vicinity of the lower end of the mixed gas container 43, and is connected to the suction means 23 through the opening / closing control means 25 in the suction passage 24.

本実施形態においても、開閉制御手段25が閉成している状態で、混合ガス領域20で混合ガス18に一次プラズマ16が衝突することで二次プラズマ21が発生して全領域に展開し、この混合ガス領域20の下端開口から下方に二次プラズマ21が吹き出し、この二次プラズマ21を被処理物5の処理箇所6に照射することで、所望のプラズマ処理が行われ、開閉制御手段25を開成すると、二次プラズマ21の点火状態を維持したまま、二次プラズマ21が極小化して吹き出しが停止され、プラズマ処理が停止される。   Also in the present embodiment, the secondary plasma 21 is generated by the primary plasma 16 colliding with the mixed gas 18 in the mixed gas region 20 in a state where the open / close control means 25 is closed, and is expanded to the entire region. The secondary plasma 21 is blown downward from the lower end opening of the mixed gas region 20, and the secondary plasma 21 is irradiated to the processing portion 6 of the workpiece 5, whereby a desired plasma processing is performed, and the opening / closing control means 25. Is opened, the secondary plasma 21 is minimized while the secondary plasma 21 is maintained in an ignition state, the blowing is stopped, and the plasma processing is stopped.

なお、図9に示した構成例では、反応容器41の一側に混合ガス容器43を配設した例を示したが、反応容器41の両側に混合ガス容器43を配設し、両側から供給された混合ガス18に対して一次プラズマ16が効果的に衝突する構成としても良く、さらに両側の混合ガス容器43の外側壁を内傾させることで、一次プラズマ16が混合ガス18にさらに効果的に衝突するようにして、さらに効率的に二次プラズマ21が発生するとともに、下端の吸引口22での吸引作用がより効果的に作用するようにしても良い。   In the configuration example shown in FIG. 9, the mixed gas container 43 is disposed on one side of the reaction container 41. However, the mixed gas container 43 is disposed on both sides of the reaction container 41 and supplied from both sides. The primary plasma 16 may collide with the mixed gas 18 effectively, and the primary plasma 16 is more effective against the mixed gas 18 by inclining the outer walls of the mixed gas containers 43 on both sides. The secondary plasma 21 may be generated more efficiently and the suction action at the suction port 22 at the lower end may be more effectively acted.

(第3の実施形態)
次に、本発明のプラズマ処理装置の第3の実施形態について、図10を参照して説明する。本実施形態と上記実施形態との相違点もプラズマヘッド10の構成にある。
(Third embodiment)
Next, a third embodiment of the plasma processing apparatus of the present invention will be described with reference to FIG. The difference between the present embodiment and the above embodiment is also the configuration of the plasma head 10.

上記第1及び第2の実施形態では反応容器12、41の下端の周囲に、混合ガス18を供給する混合ガス容器17、43を配設して二次プラズマ21を発生させて吹き出し、この二次プラズマ21でプラズマ処理するようにした例を示したが、本実施形態では、図10に示すように、プラズマヘッド10が、一次プラズマ16を吹き出す反応容器41のみにて構成されている。そして、反応容器41の下端開口の近傍に吸引口22が設けられ、吸引通路24にて開閉制御手段25を介して吸引手段23に接続されている。   In the first and second embodiments, the mixed gas containers 17 and 43 for supplying the mixed gas 18 are arranged around the lower ends of the reaction containers 12 and 41 to generate the secondary plasma 21 and blow it out. Although an example in which the plasma treatment is performed with the secondary plasma 21 has been shown, in the present embodiment, as shown in FIG. 10, the plasma head 10 is configured only by the reaction vessel 41 that blows out the primary plasma 16. A suction port 22 is provided in the vicinity of the lower end opening of the reaction vessel 41, and is connected to the suction means 23 via the opening / closing control means 25 in the suction passage 24.

この構成においても、吸引口22からの吸引を停止した状態で、吹き出した一次プラズマ16にてプラズマ処理を行うことができるとともに、吸引口22から吸引すると、反応空間11での一次プラズマ16の点火状態を維持しつつ、反応容器41の下端からの一次プラズマ16の吹き出しを停止することができる。   Even in this configuration, the plasma processing can be performed with the blown-out primary plasma 16 in a state where the suction from the suction port 22 is stopped, and when the suction is performed from the suction port 22, the primary plasma 16 is ignited in the reaction space 11. While maintaining the state, the blowing of the primary plasma 16 from the lower end of the reaction vessel 41 can be stopped.

本発明の大気圧プラズマ発生装置とプラズマ処理方法及び装置によれば、大気圧プラズマを発生して吹き出すプラズマヘッドにおけるプラズマの吹き出し口近傍に吸引口を設けて開閉制御手段を介して吸引手段に接続したことで、開閉制御手段の開閉動作に伴って大気圧プラズマの吹き出しと停止を瞬時に切り替えることができるので、各種基板の特定箇所のみのプラズマ処理に好適に利用することができる。   According to the atmospheric pressure plasma generator and the plasma processing method and apparatus of the present invention, a suction port is provided in the vicinity of the plasma outlet in the plasma head that generates and blows off the atmospheric pressure plasma, and is connected to the suction unit through the opening / closing control unit. As a result, the blowing and stopping of the atmospheric pressure plasma can be instantaneously switched in accordance with the opening / closing operation of the opening / closing control means, so that it can be suitably used for plasma processing only at specific locations on various substrates.

本発明のプラズマ処理装置の第1の実施形態の全体構成を示す斜視図。The perspective view which shows the whole structure of 1st Embodiment of the plasma processing apparatus of this invention. 被処理物の2つの例を示す平面図。The top view which shows two examples of a to-be-processed object. 同実施形態におけるプラズマヘッドの構成を示し、(a)は縦断面図、(b)は斜視図。The structure of the plasma head in the same embodiment is shown, (a) is a longitudinal sectional view, (b) is a perspective view. 同実施形態におけるプラズマヘッドにおけるプラズマ吹き出し停止状態の縦断面図。The longitudinal cross-sectional view of the plasma blowing stop state in the plasma head in the same embodiment. 同実施形態における制御装置の構成を示すブロック図。The block diagram which shows the structure of the control apparatus in the embodiment. 同実施形態におけるガス供給部の構成図。The block diagram of the gas supply part in the embodiment. 同実施形態における動作タイミングの説明図。Explanatory drawing of the operation timing in the embodiment. 同実施形態と従来例における動作状態の説明図。Explanatory drawing of the operation state in the embodiment and a prior art example. 本発明のプラズマ処理装置の第2の実施形態におけるプラズマヘッドの構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the plasma head in 2nd Embodiment of the plasma processing apparatus of this invention. 本発明のプラズマ処理装置の第3の実施形態におけるプラズマヘッドの縦断面図。The longitudinal cross-sectional view of the plasma head in 3rd Embodiment of the plasma processing apparatus of this invention.

符号の説明Explanation of symbols

1 ブラズマ処理装置
2 ロボット装置(移動手段)
4 可動ヘッド
5 被処理物
6 処理箇所
10 プラズマヘッド
11 反応空間
12、41 反応容器(プラズマ発生部)
14 高周波電源
15 第1の不活性ガス
16 一次プラズマ
17、43 混合ガス容器(プラズマ展開部)
18 混合ガス
20 混合ガス領域
21 二次プラズマ
22 吸引口
23 吸引手段
24 吸引通路
25 開閉制御手段
26 ガス供給部
28 第1の不活性ガス源
29 混合ガス源
31 制御部
33 処理開始認識手段
34 処理終了認識手段
DESCRIPTION OF SYMBOLS 1 Plasma processing apparatus 2 Robot apparatus (moving means)
Reference Signs List 4 movable head 5 workpiece 6 processing location 10 plasma head 11 reaction space 12, 41 reaction vessel (plasma generator)
14 High-frequency power source 15 First inert gas 16 Primary plasma 17, 43 Mixed gas container (plasma developing part)
18 Mixed Gas 20 Mixed Gas Region 21 Secondary Plasma 22 Suction Port 23 Suction Unit 24 Suction Passage 25 Opening / Closing Control Unit 26 Gas Supply Unit 28 First Inert Gas Source 29 Mixed Gas Source 31 Control Unit 33 Processing Start Recognition Unit 34 Processing Termination recognition means

Claims (11)

反応空間内にガスを供給するとともに高周波電界を印加して大気圧プラズマを発生し、発生した大気圧プラズマを吹き出し口から吹き出すプラズマヘッドと、プラズマヘッドの吹き出し口近傍に設けられた吸引口に接続された吸引手段と、吸引口と吸引手段との間の吸引通路に配設された開閉制御手段とを備えたことを特徴とする大気圧プラズマ発生装置。   Connects to a plasma head that supplies gas into the reaction space and generates a high-pressure plasma by applying a high-frequency electric field, and blows out the generated atmospheric pressure plasma from the air outlet, and a suction port provided near the air outlet of the plasma head And an opening / closing control means disposed in a suction passage between the suction port and the suction means. プラズマヘッドは、反応空間内に第1の不活性ガスを供給して高周波電界を印加することで発生した一次プラズマを吹き出すプラズマ発生部と、第2の不活性ガスと反応性ガスの混合ガス領域に一次プラズマを衝突させることで発生した二次プラズマを吹き出し口から吹き出すプラズマ展開部とを有し、吸引口をプラズマ展開部の吹き出し口の近傍に開口したことを特徴とする請求項1記載の大気圧プラズマ発生装置。   The plasma head includes a plasma generation unit that blows out a primary plasma generated by supplying a first inert gas into the reaction space and applying a high-frequency electric field, and a mixed gas region of the second inert gas and the reactive gas. 2. A plasma expansion part that blows out secondary plasma generated by colliding primary plasma to the air outlet from the air outlet, and the suction port is opened in the vicinity of the air outlet of the plasma expansion part. Atmospheric pressure plasma generator. プラズマヘッドに設けた反応空間内にガスを供給するとともに高周波電界を印加して大気圧プラズマを発生し、発生した大気圧プラズマをプラズマヘッドの吹き出し口から吹き出し、吹き出したプラズマを被処理物の処理箇所に吹き付けて処理するプラズマ処理方法であって、プラズマヘッドと被処理物を相対移動させて処理箇所を処理するに際して、処理箇所以外の範囲ではプラズマヘッドの吹き出し口近傍位置で吸引してプラズマを維持したままプラズマの吹き出しを停止させ、処理箇所では吸引を停止してプラズマを吹き付けることを特徴とするプラズマ処理方法。   Gas is supplied into the reaction space provided in the plasma head and a high-frequency electric field is applied to generate atmospheric pressure plasma. The generated atmospheric pressure plasma is blown out from the outlet of the plasma head, and the blown-out plasma is processed into the workpiece. A plasma processing method for spraying and processing a part, and when processing the processing part by relatively moving the plasma head and the object to be processed, the plasma is sucked in the vicinity of the outlet of the plasma head in a range other than the processing part. A plasma processing method characterized in that the blowing of plasma is stopped while being maintained, and suction is stopped and the plasma is blown at a processing location. プラズマヘッドの吹き出し口から吹き出すプラズマは、プラズマヘッド内に設けた反応空間に第1の不活性ガスを供給するとともに高周波電界を印加して反応空間から一次プラズマを吹き出させ、プラズマヘッド内に第2の不活性ガスを主とし適量の反応性ガスを混合した混合ガス領域を形成してこの混合ガス領域に一次プラズマを衝突させて発生させた二次プラズマであることを特徴とする請求項3記載のプラズマ処理方法。   The plasma blown out from the outlet of the plasma head supplies a first inert gas to the reaction space provided in the plasma head and applies a high-frequency electric field to blow out the primary plasma from the reaction space. 4. A secondary plasma generated by forming a mixed gas region in which an appropriate amount of a reactive gas is mixed with an inert gas mainly and colliding the primary plasma with the mixed gas region. Plasma processing method. 第1の不活性ガスと第2の不活性ガスが同種の不活性ガスであることを特徴とする請求項4記載のプラズマ処理方法。   The plasma processing method according to claim 4, wherein the first inert gas and the second inert gas are the same kind of inert gas. 第1の不活性ガス及び第2の不活性ガスは、アルゴン、ヘリウム、キセノン、ネオン、窒素、又はこれらの1種又は複数種の混合ガスから選ばれたものであることを特徴とする請求項4又は5記載のプラズマ処理方法。   The first inert gas and the second inert gas are selected from argon, helium, xenon, neon, nitrogen, or one or more mixed gases thereof. 6. The plasma processing method according to 4 or 5. 反応空間内にガスを供給するとともに高周波電界を印加することで大気圧プラズマを発生し、発生した大気圧プラズマを吹き出し口から吹き出すプラズマヘッドと、ガスを供給するガス供給手段と、高周波電界を印加する高周波電源と、プラズマヘッドの吹き出し口近傍に設けられた吸引口に接続された吸引手段と、吸引口と吸引手段との間の吸引通路に配設された開閉制御手段と、被処理物とプラズマヘッドを相対移動させる移動手段と、被処理物の処理箇所にプラズマヘッドが対向位置するタイミングを認識する手段と、ガス供給手段と高周波電源と開閉制御手段と移動手段を制御する制御手段とを備え、制御手段はプラズマヘッドが被処理物の処理箇所に対向する時に開閉制御手段を閉成させ、処理不要箇所に対向する時に開成させることを特徴とするプラズマ処理装置。   A gas head is supplied into the reaction space and a high-frequency electric field is applied to generate atmospheric pressure plasma. A plasma head that blows out the generated atmospheric pressure plasma from the outlet, a gas supply means for supplying gas, and a high-frequency electric field are applied. A high-frequency power source, a suction unit connected to a suction port provided in the vicinity of the blowout port of the plasma head, an opening / closing control unit disposed in a suction passage between the suction port and the suction unit, Moving means for relatively moving the plasma head, means for recognizing the timing at which the plasma head faces the processing location of the workpiece, gas supply means, high-frequency power supply, opening / closing control means, and control means for controlling the moving means The control means closes the opening / closing control means when the plasma head faces the processing place of the workpiece, and opens it when facing the processing unnecessary place. The plasma processing apparatus according to claim and. プラズマヘッドは、プラズマ化した第1の不活性ガスから成る一次プラズマを吹き出させるプラズマ発生部と、第2の不活性ガスと反応性ガスの混合ガス領域に一次プラズマを衝突させてプラズマ化した混合ガスから成る二次プラズマを発生するプラズマ展開部とを有し、高周波電源はプラズマ発生部に高周波電界を印加し、ガス供給手段は、プラズマ発生部に第1の不活性ガスを供給する第1の不活性ガス供給手段と、混合ガス領域に第2の不活性ガスと反応性ガスを供給する混合ガス供給手段とから成ることを特徴とする請求項7記載のプラズマ処理装置。   The plasma head includes a plasma generating unit that blows out a primary plasma composed of a first inert gas that has been turned into plasma, and a mixture in which the primary plasma collides with a mixed gas region of a second inert gas and a reactive gas. A high-frequency electric power source that applies a high-frequency electric field to the plasma generation unit, and a gas supply unit that supplies a first inert gas to the plasma generation unit. 8. The plasma processing apparatus according to claim 7, further comprising: an inert gas supply means; and a mixed gas supply means for supplying a second inert gas and a reactive gas to the mixed gas region. 混合ガス供給手段は、第2の不活性ガスと反応性ガスを予め混合した混合ガスを混合ガス領域に供給するようにしたことを特徴とする請求項8記載のプラズマ処理装置。   9. The plasma processing apparatus according to claim 8, wherein the mixed gas supply means supplies a mixed gas obtained by previously mixing the second inert gas and the reactive gas to the mixed gas region. 混合ガス供給手段は、第2の不活性ガスを混合ガス領域に供給する第2の不活性ガス供給手段と、反応性ガスを混合ガス領域に供給する反応性ガス供給手段とから成ることを特徴とする請求項8記載のプラズマ処理装置。   The mixed gas supply means comprises a second inert gas supply means for supplying a second inert gas to the mixed gas region, and a reactive gas supply means for supplying a reactive gas to the mixed gas region. The plasma processing apparatus according to claim 8. 移動手段がロボット装置を備え、そのロボット装置のX、Y、Z方向に移動可能な可動ヘッドにプラズマヘッドを搭載したことを特徴とする請求項7〜10の何れかに記載のプラズマ処理装置。   The plasma processing apparatus according to any one of claims 7 to 10, wherein the moving means includes a robot apparatus, and the plasma head is mounted on a movable head movable in the X, Y, and Z directions of the robot apparatus.
JP2006280341A 2006-10-13 2006-10-13 Atmospheric pressure plasma generator and plasma processing method and apparatus Active JP4946339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280341A JP4946339B2 (en) 2006-10-13 2006-10-13 Atmospheric pressure plasma generator and plasma processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280341A JP4946339B2 (en) 2006-10-13 2006-10-13 Atmospheric pressure plasma generator and plasma processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2008098059A true JP2008098059A (en) 2008-04-24
JP4946339B2 JP4946339B2 (en) 2012-06-06

Family

ID=39380682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280341A Active JP4946339B2 (en) 2006-10-13 2006-10-13 Atmospheric pressure plasma generator and plasma processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4946339B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252843A (en) * 2011-06-01 2012-12-20 Kazuo Shimizu Surface activation treatment apparatus
CN103906335A (en) * 2014-04-09 2014-07-02 中国科学院空间科学与应用研究中心 Generator of space plasma
JP2015153652A (en) * 2014-02-17 2015-08-24 富士機械製造株式会社 Atmospheric pressure plasma generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995015832A1 (en) * 1993-12-09 1995-06-15 Seiko Epson Corporation Combining method and apparatus using solder
JP2001007095A (en) * 1993-05-14 2001-01-12 Seiko Epson Corp Surface treatment method and apparatus thereof, method and apparatus for manufacturing semiconductor device, and method of manufacturing liquid crystal display
JP2003183832A (en) * 2001-12-20 2003-07-03 Sekisui Chem Co Ltd Discharge plasma treatment method
WO2003056601A2 (en) * 2001-12-21 2003-07-10 The Procter & Gamble Company Apparatus and method for treating a workpiece using plasma generated from microwave radiation
JP2004193590A (en) * 2002-11-26 2004-07-08 Matsushita Electric Ind Co Ltd Plasma treatment method
JP2005116950A (en) * 2003-10-10 2005-04-28 Matsushita Electric Ind Co Ltd Packaging substrate cleaning method and equipment
JP2007317699A (en) * 2006-05-23 2007-12-06 Sekisui Chem Co Ltd Surface-treating apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007095A (en) * 1993-05-14 2001-01-12 Seiko Epson Corp Surface treatment method and apparatus thereof, method and apparatus for manufacturing semiconductor device, and method of manufacturing liquid crystal display
WO1995015832A1 (en) * 1993-12-09 1995-06-15 Seiko Epson Corporation Combining method and apparatus using solder
JP2003183832A (en) * 2001-12-20 2003-07-03 Sekisui Chem Co Ltd Discharge plasma treatment method
WO2003056601A2 (en) * 2001-12-21 2003-07-10 The Procter & Gamble Company Apparatus and method for treating a workpiece using plasma generated from microwave radiation
JP2004193590A (en) * 2002-11-26 2004-07-08 Matsushita Electric Ind Co Ltd Plasma treatment method
JP2005116950A (en) * 2003-10-10 2005-04-28 Matsushita Electric Ind Co Ltd Packaging substrate cleaning method and equipment
JP2007317699A (en) * 2006-05-23 2007-12-06 Sekisui Chem Co Ltd Surface-treating apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252843A (en) * 2011-06-01 2012-12-20 Kazuo Shimizu Surface activation treatment apparatus
JP2015153652A (en) * 2014-02-17 2015-08-24 富士機械製造株式会社 Atmospheric pressure plasma generator
CN103906335A (en) * 2014-04-09 2014-07-02 中国科学院空间科学与应用研究中心 Generator of space plasma

Also Published As

Publication number Publication date
JP4946339B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
KR20090014151A (en) Atmospheric pressure plasma generating method, plasma procesing method and component mounting method using same, and device using these methods
JP5762708B2 (en) Plasma generating apparatus, plasma processing apparatus, and plasma processing method
KR102023828B1 (en) Processing apparatus and processing method, and gas cluster generating apparatus and generating method
JP5510437B2 (en) Plasma processing apparatus and plasma processing method
KR20160021958A (en) Plasma treating apparatus and substrate treating apparatus
JPH10228997A (en) Device and method for generating plasma torch
JP2007323812A (en) Method and device for generating atmospheric pressure plasma
JP4682946B2 (en) Plasma processing method and apparatus
US11387077B2 (en) Plasma processing method and plasma processing apparatus
JP4946339B2 (en) Atmospheric pressure plasma generator and plasma processing method and apparatus
CN108471666B (en) Plasma generating method and device and semiconductor processing equipment
JP5162828B2 (en) Atmospheric pressure plasma processing method and apparatus
US20170087602A1 (en) Method and apparatus for treating substrate
KR20130091271A (en) Inductively coupled plasma processing method and inductively coupled plasma processing apparatus
JP5429124B2 (en) Plasma processing method and apparatus
JP5055893B2 (en) Atmospheric pressure plasma generator
JP4760609B2 (en) Component mounting method and apparatus on board
JP2005129323A (en) Plasma generation apparatus and plasma treatment apparatus
JP5211759B2 (en) Atmospheric pressure plasma treatment method
US7569154B2 (en) Plasma processing method, plasma processing apparatus and computer storage medium
KR20220168428A (en) Inductively Coupled Plasma Generating Apparatus
JP2010244948A (en) Plasma processing method and device
JP5375985B2 (en) Atmospheric pressure plasma processing equipment
KR102575677B1 (en) Plasma Etching Apparatus for Etching Multiple Composite Materials
JP2008091571A (en) Plasma processing equipment, its using method, and process for manufacturing gas supply pipe parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090403

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4946339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250