JP2008096401A - Radiographic inspection device - Google Patents

Radiographic inspection device Download PDF

Info

Publication number
JP2008096401A
JP2008096401A JP2006281839A JP2006281839A JP2008096401A JP 2008096401 A JP2008096401 A JP 2008096401A JP 2006281839 A JP2006281839 A JP 2006281839A JP 2006281839 A JP2006281839 A JP 2006281839A JP 2008096401 A JP2008096401 A JP 2008096401A
Authority
JP
Japan
Prior art keywords
rays
collimator
subject
ray
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006281839A
Other languages
Japanese (ja)
Other versions
JP4836746B2 (en
JP2008096401A5 (en
Inventor
Susumu Naito
晋 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006281839A priority Critical patent/JP4836746B2/en
Publication of JP2008096401A publication Critical patent/JP2008096401A/en
Publication of JP2008096401A5 publication Critical patent/JP2008096401A5/ja
Application granted granted Critical
Publication of JP4836746B2 publication Critical patent/JP4836746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiographic inspection device capable of acquiring information of an inside, a fault and the vicinity of a surface of a specimen in transmission image photographing. <P>SOLUTION: The radiographic inspection device includes a γ-ray source for emitting a γ-ray toward the specimen, a collimator having a material and a thickness transmitting the γ-ray emitted from the γ-ray source and transmitted through the specimen, and not transmitting a scattered γ-ray and a fluorescent X-ray, and a radiographic two-dimensional detector for detecting the γ-ray transmitted through the collimator, and the scattered γ-ray and the fluorescent X-ray transmitted through the collimator. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放射線によって被検体の内部、断層、表面近傍の情報を得る放射線検査装置
に関する。
The present invention relates to a radiation inspection apparatus that obtains information on the inside, a tomography, and the vicinity of a surface of a subject by radiation.

被検体の内部、断層、表面近傍の情報を得るために物質の透過力の高いγ線を用いて透
過像撮影が行われている。γ線を用いた透過像撮影は、ステンレスやインコネル等の重元
素で出来た構造物の非破壊検査において有効である(特許文献1参照)。
特開2003−130819号公報
In order to obtain information on the inside, the tomography, and the vicinity of the surface of a subject, transmission image photographing is performed using γ rays having a high substance transmission power. Transmission image photography using γ rays is effective in nondestructive inspection of structures made of heavy elements such as stainless steel and Inconel (see Patent Document 1).
JP 2003-130819 A

しかしながら、その透過像から得られるのは、2次元情報であり、被検体の内部構造が
重なって見えるため、検査したい欠陥等が見えない場合がある。また3次元断層撮影法と
してCT技術があるが、被検体または検出器を回転させる必要があるため、スペースのない
現場での検査には不向きである。
However, what is obtained from the transmission image is two-dimensional information, and the internal structure of the subject appears to overlap, so that a defect or the like to be inspected may not be visible. There is CT technology as a three-dimensional tomography method, but it is not suitable for on-site inspection where there is no space because the subject or detector needs to be rotated.

本発明は、上述した事情を考慮してなされたもので、透過像撮影において被検体の内部、
断層、表面近傍の情報が得られる放射線検査装置を提供することを目的とする。
The present invention has been made in consideration of the above-described circumstances, and in the transmission image photographing,
An object of the present invention is to provide a radiation inspection apparatus capable of obtaining information on a tomography and the vicinity of the surface.

本発明に係る放射線検査装置は、上述した課題を解決するために、被検体にγ線を照射す
るγ線源と、前記γ線源から放出され前記被検体を透過したγ線を透過させ散乱γ線およ
び蛍光X線を透過させない材質および厚みのコリメータと、前記コリメータを透過するγ
線およびコリメータを通過した散乱γ線および蛍光X線を検出する放射線2次元検出装置
とを備えたことを特徴とするものである。
In order to solve the above-mentioned problems, a radiological examination apparatus according to the present invention transmits a γ-ray that irradiates a subject with γ-rays, and transmits and scatters γ-rays emitted from the γ-ray source and transmitted through the subject. Collimator of material and thickness that does not transmit γ rays and fluorescent X-rays, and γ that passes through the collimator
And a two-dimensional radiation detector for detecting scattered γ-rays and fluorescent X-rays that have passed through the collimator.

また、被検体に1.02MeV以上のエネルギーを有するγ線を照射するγ線源と、前記γ線源
から放出され前記被検体を透過したγ線を透過させ511keVのγ線を透過させない材質およ
び厚みのコリメータと、前記コリメータを透過するγ線およびコリメータを通過するγ線
を検出する放射線2次元検出装置とを備えたことを特徴とする。
Also, a γ-ray source that irradiates the subject with γ-rays having energy of 1.02 MeV or more, and a material and thickness that transmits the γ-rays emitted from the γ-ray source and transmitted through the subject but does not transmit 511 keV γ-rays. And a two-dimensional radiation detector for detecting γ-rays passing through the collimator and γ-rays passing through the collimator.

本発明に係る放射線検査装置およびその測定方法は、透過像撮影において被検体の内部
、断層、表面近傍の情報を得ることができる。
The radiation inspection apparatus and the measurement method thereof according to the present invention can obtain information on the inside, the tomography, and the vicinity of the surface of the subject in transmission imaging.

(実施例1) Example 1

本発明の第1の実施形態の放射線検査装置について、図1〜5を参照して説明する。 A radiation inspection apparatus according to a first embodiment of the present invention will be described with reference to FIGS.

図1において、欠陥(き裂、空隙等)1、2を有する被検体3にγ線を照射するγ線源4
と、散乱γ線や蛍光X線に対しコリメータとして機能するピンホールコリメータ5と、放
射線2次元検出装置6が設置されている。
In FIG. 1, a gamma ray source 4 that irradiates a subject 3 having defects (cracks, voids, etc.) 1 and 2 with gamma rays.
A pinhole collimator 5 that functions as a collimator for scattered γ rays and fluorescent X-rays, and a radiation two-dimensional detection device 6 are installed.

γ線源4から放出され、被検体3を透過したγ線7は、ピンホールコリメータ5を透過し
、放射線2次元検出装置5で検出され、被検体1の透過像が得られる。欠陥1で散乱し、
ピンホールコリメータ5のピンホールに入射してピンホールコリメータ5を通過した散乱
γ線8は、放射線2次元検出装置6で検出され、断層画像が得られる。γ線が表面近傍に
ある欠陥2と反応し放出された蛍光X線9は、ピンホールコリメータ5のピンホールに入
射した場合、放射線2次元検出装置6で検出され、表面近傍の画像が得られる。ピンホー
ルコリメータ5の材質および厚みは、γ線7は透過させるが、散乱γ線8および蛍光X線
9は透過させない材質、厚みで作られている。
The γ-rays 7 emitted from the γ-ray source 4 and transmitted through the subject 3 are transmitted through the pinhole collimator 5 and detected by the radiation two-dimensional detection device 5, and a transmission image of the subject 1 is obtained. Scattered by defect 1,
The scattered γ-rays 8 that have entered the pinhole of the pinhole collimator 5 and have passed through the pinhole collimator 5 are detected by the radiation two-dimensional detection device 6 to obtain a tomographic image. Fluorescent X-rays 9 that are emitted by the reaction of the γ-rays with the defects 2 in the vicinity of the surface are detected by the radiation two-dimensional detection device 6 when incident on the pinholes of the pinhole collimator 5, and an image in the vicinity of the surface is obtained. . The material and thickness of the pinhole collimator 5 are made of a material and thickness that allow the γ-ray 7 to pass through, but not the scattered γ-ray 8 and the fluorescent X-ray 9.

散乱γ線による断層画像撮影の原理を図2を用いて説明する。 The principle of tomographic imaging using scattered γ rays will be described with reference to FIG.

まず散乱γ線による欠陥の検出について説明する。被検体3内で、散乱しエネルギーの低
下したγ線が被検体3外に飛び出す場合を考える。欠陥部分では散乱γ線が減衰しないた
め、欠陥を通過した散乱γ線の方が、欠陥を通過しないγ線よりも強度が強くなる。この
結果、被検体3表面での散乱γ線の強度は欠陥に対応した位置でその周囲に比べ高くなる
。この強度分布を、ピンホールコリメータ5と放射線2次元検出装置6で構成されるピン
ホールカメラで撮影することで、欠陥位置を同定できる。
First, detection of defects using scattered γ rays will be described. Consider a case in which γ-rays scattered and reduced in energy jump out of the subject 3. Since the scattered γ-rays are not attenuated at the defect portion, the scattered γ-rays that have passed through the defect are stronger than the γ-rays that do not pass through the defect. As a result, the intensity of the scattered γ rays on the surface of the subject 3 is higher than the surrounding area at the position corresponding to the defect. The defect position can be identified by photographing the intensity distribution with a pinhole camera including the pinhole collimator 5 and the radiation two-dimensional detection device 6.

次に断層撮影法について説明する。散乱γ線が、被検体の外に飛び出す確率は、被検体の
材質、欠陥と被検体までの距離と散乱γ線のエネルギーで決まる。図3にステンレスにお
けるγ線の透過率のエネルギー依存性の図を示す。図3より、例えば0.1mm以上または200
mm以上より深いところで生じたエネルギー10keVまたは100keVの散乱γ線は、被検体内で
の減衰により被検体の外には飛び出さないことが分かる。したがって10keVおよび100keV
の散乱γ線の画像は、それぞれ表面から0.1mmおよび200mmの深さまでの内部情報を示す画
像である。適切な補正の下で、それぞれのエネルギーでの画像の差をとることによって断
層画像が得られる。
Next, tomography will be described. The probability that the scattered γ rays jump out of the subject is determined by the material of the subject, the distance between the defect and the subject, and the energy of the scattered γ rays. FIG. 3 shows the energy dependence of the gamma ray transmittance in stainless steel. From FIG. 3, for example, 0.1 mm or more or 200
It can be seen that scattered γ-rays with an energy of 10 keV or 100 keV generated at a depth deeper than mm do not jump out of the subject due to attenuation within the subject. Therefore 10keV and 100keV
The scattered γ-ray images are images showing internal information from the surface to a depth of 0.1 mm and 200 mm, respectively. A tomographic image is obtained by taking an image difference at each energy under appropriate correction.

この断層撮影においては蛍光X線も用いることができる。散乱γ線を吸収した被検体は、
その吸収位置で、被検体の材質と散乱γ線のエネルギーにより決まる蛍光X線を放出する
。この蛍光X線は、先の欠陥の検出における散乱と同じ役割を担えることから、蛍光X線に
より欠陥の検出ができる。ここで蛍光X線のエネルギーは、数keVから数10keVの範囲であ
るので、被検体のごく表面近傍の欠陥を検出することができる。
In this tomography, fluorescent X-rays can also be used. The subject that absorbed the scattered γ-rays
At the absorption position, fluorescent X-rays determined by the material of the subject and the energy of scattered γ rays are emitted. Since this fluorescent X-ray can play the same role as the scattering in the previous defect detection, the defect can be detected by the fluorescent X-ray. Here, since the energy of the fluorescent X-ray is in the range of several keV to several tens keV, it is possible to detect a defect near the surface of the subject.

上記断層撮影においては、各エネルギーでの画像を得る必要がある。これは放射線2次元
検出装置5がエネルギー弁別機能を有することで達成できる。またエネルギー弁別機能を
有さなくとも、図4に示すように放射線2次元検出装置6の受光面の前に、エネルギーフ
ィルター10を設置することで実現できる。このエネルギーフィルターとして、例えば、
ステンレスを用いる場合、図3より、その厚みが0.1mm以上または200mm以上であれば、10
keV以下または100keV以下の散乱γ線が除去できる。エネルギーフィルターの厚みを変え
、それぞれのフィルター厚での画像を、適切な補正の下で、差をとることによって特定の
エネルギーの散乱γ線による画像を得ることができる。
In the tomography, it is necessary to obtain an image at each energy. This can be achieved because the radiation two-dimensional detection device 5 has an energy discrimination function. Moreover, even if it does not have an energy discrimination function, as shown in FIG. As this energy filter, for example,
When stainless steel is used, it can be seen from FIG. 3 that if the thickness is 0.1 mm or more or 200 mm or more, 10
Scattered gamma rays of keV or less or 100 keV or less can be removed. By changing the thickness of the energy filter and taking the difference between the images at the respective filter thicknesses with appropriate correction, an image of scattered energy with specific energy can be obtained.

また、画像をエネルギーによって弁別しない場合(透過像のみの測定)であっても、その
透過像は被検体の表面に近いほど輝度が大きくなるので、その輝度の濃淡から断層の情報
が推定できる。これは散乱γ線が被検体の表面から飛び出す確率は、その散乱γ線が生じ
た位置が表面から近いほど大きいためである。
Even when the image is not discriminated by energy (measurement of only the transmission image), since the luminance of the transmission image increases as it is closer to the surface of the subject, information on the tomogram can be estimated from the intensity of the luminance. This is because the probability that scattered γ-rays jump out of the surface of the subject increases as the position where the scattered γ-rays are generated is closer to the surface.

なお、本発明の実施の形態1では、コリメータとして、ピンホールコリメータを用いたが
、図5に示すように、多孔コリメータ11によってピンホールコリメータと同じ機能を持
たせることができる。
In the first embodiment of the present invention, the pinhole collimator is used as the collimator. However, as shown in FIG. 5, the porous collimator 11 can have the same function as the pinhole collimator.

以上より、散乱γ線や蛍光X線に対しコリメータとして機能するコリメータにより、透過
像撮影において被検体の内部、断層、表面近傍の情報を得ることができる。
(実施例2)
As described above, information on the inside, the tomography, and the vicinity of the surface of the subject can be obtained in transmission image photographing by using a collimator that functions as a collimator for scattered γ rays and fluorescent X-rays.
(Example 2)

本発明の第2の実施形態の放射線検査装置について説明する。 A radiation inspection apparatus according to a second embodiment of the present invention will be described.

図1においてγ線源4がエネルギー1.02MeV以上のγ線7を発生する機能を有し、ピンホ
ールコリメータ5は、γ線源から放出され被検体を透過したγ線は透過させ、511keVのγ
線は透過させないようにその材質および厚みを設計したものであり、それ以外の構成要素
は、第1の実施形態と同様である。
In FIG. 1, the γ-ray source 4 has a function of generating γ-rays 7 having energy of 1.02 MeV or more, and the pinhole collimator 5 transmits γ-rays emitted from the γ-ray source and transmitted through the subject, and 511 keV γ
The material and thickness of the wire are designed so as not to be transmitted, and the other components are the same as those in the first embodiment.

エネルギー1.02MeV以上のγ線は、被検体の材質とγ線のエネルギーによって決まる確率
で、電子対生成反応によって、電子と陽電子に転換する。この陽電子は物質内部で拡散し
、物質内部の格子欠陥に集まりやすい性質を持つ。陽電子は、ある寿命を経た後消滅し、
511keVのγ線を放出する。ピンホールコリメータ5は、511keVのエネルギーの画像から、
格子欠陥の位置を同定できる。
Γ-rays with an energy of 1.02 MeV or higher are converted into electrons and positrons by the electron pair production reaction with a probability determined by the material of the subject and the energy of the γ-rays. This positron has the property of diffusing inside the material and easily gathering into lattice defects inside the material. Positrons disappear after a certain lifetime,
It emits 511keV gamma rays. The pinhole collimator 5 is obtained from an image of energy of 511 keV.
The position of lattice defects can be identified.

この格子欠陥は、マクロな欠陥の前兆である可能性があるので、この位置の同定は、欠陥
の予防に利用できる。
Since this lattice defect may be a precursor of a macro defect, this location identification can be used for defect prevention.

以上より、γ線源4がエネルギー1.02MeV以上のγ線7を発生する機能を有し、ピンホー
ルコリメータ5が、511keVのγ線は透過させないようにその材質および厚みを設計するこ
とで、欠陥の予防ができる。
As described above, the γ-ray source 4 has a function of generating γ-rays 7 with energy of 1.02 MeV or more, and the pinhole collimator 5 is designed to have a material and thickness so as not to transmit 511 keV γ-rays. Can be prevented.

本発明に係る放射線検査装置の第1実施形態を示す構成図。1 is a configuration diagram showing a first embodiment of a radiation inspection apparatus according to the present invention. 断層画像撮影の原理を説明する図。The figure explaining the principle of tomographic imaging. ステンレスにおけるγ線の透過率のエネルギー依存性を示す図。The figure which shows the energy dependence of the transmittance | permeability of the gamma ray in stainless steel. 本発明に係る放射線検査装置の第1実施形態を示す構成図。1 is a configuration diagram showing a first embodiment of a radiation inspection apparatus according to the present invention. 本発明に係る放射線検査装置の第1実施形態を示す構成図。1 is a configuration diagram showing a first embodiment of a radiation inspection apparatus according to the present invention.

符号の説明Explanation of symbols

1 欠陥
2 欠陥
3 被検体
4 γ線源
5 ピンホールコリメータ
6 放射線2次元検出装置
7 γ線
8 散乱γ線
9 蛍光X線
10 エネルギーフィルター
11 多孔コリメータ
DESCRIPTION OF SYMBOLS 1 Defect 2 Defect 3 Subject 4 γ-ray source 5 Pinhole collimator 6 Radiation two-dimensional detector 7 γ-ray 8 Scattered γ-ray 9 X-ray fluorescence 10 Energy filter 11 Porous collimator

Claims (6)

被検体にγ線を照射するγ線源と、
前記γ線源から放出され前記被検体を透過したγ線を透過させ散乱γ線および蛍光X線を
透過させない材質および厚みのコリメータと、
前記コリメータを透過するγ線およびコリメータを通過した散乱γ線および蛍光X線を検
出する放射線2次元検出装置と
を備えたことを特徴とする放射線検査装置。
A γ-ray source that irradiates the subject with γ-rays;
A collimator of material and thickness that transmits γ-rays emitted from the γ-ray source and transmitted through the subject and does not transmit scattered γ-rays and fluorescent X-rays;
A radiation inspection apparatus comprising: a γ-ray that passes through the collimator, and a two-dimensional radiation detector that detects scattered γ-rays and fluorescent X-rays that have passed through the collimator.
前記放射線2次元検出装置が、エネルギー弁別機能と、エネルギーの異なる撮影画像同士
の差をとる演算手段とを有することを特徴とする請求項1記載の放射線検査装置。
The radiation inspection apparatus according to claim 1, wherein the two-dimensional radiation detection apparatus includes an energy discriminating function and a calculation unit that obtains a difference between captured images having different energies.
前記放射線2次元検出装置が、受光面に備えられた前記散乱γ線および蛍光X線の遮蔽機
能を有するフィルター機能で得られるエネルギーの異なる撮影画像同士の差をとる演算手
段を有することを特徴とする請求項1記載の放射線検査装置。
The radiation two-dimensional detection apparatus has a calculation means for taking a difference between photographed images having different energies obtained by a filter function having a function of shielding the scattered γ rays and fluorescent X-rays provided on a light receiving surface. The radiation inspection apparatus according to claim 1.
前記コリメータが多孔コリメータであることを特徴とする請求項1〜3記載の放射線検査
装置。
The radiation inspection apparatus according to claim 1, wherein the collimator is a porous collimator.
前記コリメータがピンホールコリメータであることを特徴とする請求項1〜3記載の放射
線検査装置。
The radiation inspection apparatus according to claim 1, wherein the collimator is a pinhole collimator.
被検体に1.02MeV以上のエネルギーを有するγ線を照射するγ線源と、
前記γ線源から放出され前記被検体を透過したγ線を透過させ511keVのγ線を透過させな
い材質および厚みのコリメータと、
前記コリメータを透過するγ線およびコリメータを通過するγ線を検出する放射線2次元
検出装置と
を備えたことを特徴とする放射線検査装置。
A gamma ray source that irradiates the subject with gamma rays having an energy of 1.02 MeV or more;
A collimator of material and thickness that transmits gamma rays emitted from the gamma ray source and transmitted through the subject and does not transmit 511 keV gamma rays;
A radiation inspection apparatus comprising: a two-dimensional radiation detection device that detects γ-rays passing through the collimator and γ-rays passing through the collimator.
JP2006281839A 2006-10-16 2006-10-16 Radiation inspection equipment Expired - Fee Related JP4836746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281839A JP4836746B2 (en) 2006-10-16 2006-10-16 Radiation inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281839A JP4836746B2 (en) 2006-10-16 2006-10-16 Radiation inspection equipment

Publications (3)

Publication Number Publication Date
JP2008096401A true JP2008096401A (en) 2008-04-24
JP2008096401A5 JP2008096401A5 (en) 2009-05-14
JP4836746B2 JP4836746B2 (en) 2011-12-14

Family

ID=39379380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281839A Expired - Fee Related JP4836746B2 (en) 2006-10-16 2006-10-16 Radiation inspection equipment

Country Status (1)

Country Link
JP (1) JP4836746B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105519A1 (en) * 2012-01-13 2013-07-18 独立行政法人放射線医学総合研究所 Radioactive substance detection device, radiation source location visibility system, and radioactive substance detection method
JP2013178262A (en) * 2013-04-24 2013-09-09 Toshiba Corp Radiation inspection device
CN103630562A (en) * 2013-12-11 2014-03-12 安徽三兴检测有限公司 Radiographic testing method with simultaneous use of two different gamma sources

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954052A (en) * 1995-08-18 1997-02-25 Toyota Central Res & Dev Lab Inc Method and device for x-ray analysis
JPH0954050A (en) * 1995-08-14 1997-02-25 Rigaku Corp X-ray small-angle scattering device
JP2003130819A (en) * 2001-10-29 2003-05-08 Toshiba Corp Inspection device using radiation
JP2006519647A (en) * 2003-03-07 2006-08-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and imaging system for imaging spatial distribution of X-ray fluorescent markers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954050A (en) * 1995-08-14 1997-02-25 Rigaku Corp X-ray small-angle scattering device
JPH0954052A (en) * 1995-08-18 1997-02-25 Toyota Central Res & Dev Lab Inc Method and device for x-ray analysis
JP2003130819A (en) * 2001-10-29 2003-05-08 Toshiba Corp Inspection device using radiation
JP2006519647A (en) * 2003-03-07 2006-08-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and imaging system for imaging spatial distribution of X-ray fluorescent markers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105519A1 (en) * 2012-01-13 2013-07-18 独立行政法人放射線医学総合研究所 Radioactive substance detection device, radiation source location visibility system, and radioactive substance detection method
US9488602B2 (en) 2012-01-13 2016-11-08 National Institutes For Quantum And Radiological Science And Technology Radioactive substance detection device, radiation source location visibility system, and radioactive substance detection method
JP2013178262A (en) * 2013-04-24 2013-09-09 Toshiba Corp Radiation inspection device
CN103630562A (en) * 2013-12-11 2014-03-12 安徽三兴检测有限公司 Radiographic testing method with simultaneous use of two different gamma sources
CN103630562B (en) * 2013-12-11 2016-01-27 安徽三兴检测有限公司 A kind of radiography detection method simultaneously using two kinds of different γ sources

Also Published As

Publication number Publication date
JP4836746B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
AU2005287211B2 (en) Apparatus and method for multi-modal imaging
JP5752434B2 (en) X-ray diffraction and computer tomography
US20050031081A1 (en) Dual energy imaging using optically coupled digital radiography system
EP0785674A1 (en) Radiographic apparatus and image processing method
JP6596414B2 (en) Apparatus for measuring X-ray dose parameters in an X-ray detector and computer network for handling radiological information
US11644583B2 (en) X-ray detectors of high spatial resolution
AU2016325425A1 (en) System for radiography imaging and method of operating such system
JP2008256603A (en) Nondestructive inspection device and non-destructive inspection method
Schumacher et al. Photon counting and energy discriminating x-ray detectors-benefits and applications
JP2020502505A (en) Dual energy microfocus X-ray imaging system and method for inspection of chicken and meat
JP4836746B2 (en) Radiation inspection equipment
JP2017187286A (en) Radiation measuring device and radiation measuring method
JP2011185716A (en) Radiation tomographic system
JP2006329905A (en) Line sensor, line sensor unit, and radiation nondestructive inspection system
KR20100033754A (en) Radiography image acuqisition techinique for boiler tube weldments
CN210894172U (en) X-ray small-angle scattering imaging system
JP2007071602A (en) Radiation detector
Winch et al. Detector performance for fast neutron radiography and computed tomography
JP2002532713A (en) Inspection of objects with crystal lattice by radiography
JP2002162371A (en) Nondestructive inspection method and its device utilizing inverse compton scattered light
KR100923624B1 (en) Radiation transmission image apparatus using CMOS sensors
JP2007017446A (en) Radiation nondestructive inspection method
Walter et al. Recent developments of photon counting and energy discriminating detectors for radiographic imaging
JP2009276285A (en) Apparatus and method for radiation tomographic photographing
JP2008256587A (en) X-ray inspection device and method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees