JP2007071602A - Radiation detector - Google Patents

Radiation detector Download PDF

Info

Publication number
JP2007071602A
JP2007071602A JP2005256867A JP2005256867A JP2007071602A JP 2007071602 A JP2007071602 A JP 2007071602A JP 2005256867 A JP2005256867 A JP 2005256867A JP 2005256867 A JP2005256867 A JP 2005256867A JP 2007071602 A JP2007071602 A JP 2007071602A
Authority
JP
Japan
Prior art keywords
ray
radiation
electrodes
energy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005256867A
Other languages
Japanese (ja)
Inventor
Ikuo Jinno
郁夫 神野
Hideaki Onabe
秀明 尾鍋
Hisatoshi Aoki
久敏 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytech Corp
Kyoto University NUC
Original Assignee
Raytech Corp
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytech Corp, Kyoto University NUC filed Critical Raytech Corp
Priority to JP2005256867A priority Critical patent/JP2007071602A/en
Publication of JP2007071602A publication Critical patent/JP2007071602A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation detector which can detect radiation with a high count rate and collect energy information as well. <P>SOLUTION: An X-ray detector 3 comprises a matrix M made of silicon, which is a semiconductor, and first to fourth electrodes 21 to 24 for outputting a current developed in the matrix M. The matrix M is formed in a plate shape extending in the incident direction of filtered X-rays and is provided with a ground side electrode E on its one end. The first to fourth electrodes 21 to 24 are arranged in order along the incident direction of the filtered X-rays on the top side of the matrix M. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放射線透過撮像等に用いられる放射線検出器に関する。   The present invention relates to a radiation detector used for radiation transmission imaging and the like.

電磁放射線(以下、単に放射線と記す)であるX線やガンマ線は、高い透過能力を有することから、医療分野における診断をはじめ、工業分野における非破壊検査や結晶構造解析等にも広く用いられている。近年、放射線の透過能力を利用した放射線透過撮像法としては、写真乾板に対する感光作用を用いたレントゲン撮影に代え、検出媒体に対する放射線の励起作用を電気的に検出し、その検出結果に基づいてデジタル画像を得るものが主流となってきている。放射線検出器の内部に放射線のエネルギが付与されると、検出媒体の種類によって、例えば、半導体であれば電子・正孔対、また、ガスであれば電子・イオン対、また、シンチレータであれば蛍光、超伝導体であれば準電子等の励起子が生成される。放射線検出器では、これらの励起子が電極に移動することによって付与エネルギに比例した電圧が誘起され、人体等を透過した放射線のエネルギを測定することができる。   X-rays and gamma rays, which are electromagnetic radiation (hereinafter simply referred to as radiation), have a high transmission capability, so they are widely used for non-destructive inspection and crystal structure analysis in the industrial field, including diagnosis in the medical field. Yes. In recent years, as a radiation transmission imaging method using the radiation transmission capability, instead of X-ray imaging using a photosensitive action on a photographic plate, the radiation excitation action on a detection medium is electrically detected, and the digital result is obtained based on the detection result. What gets images has become mainstream. When radiation energy is applied to the inside of the radiation detector, depending on the type of detection medium, for example, an electron / hole pair for a semiconductor, an electron / ion pair for a gas, or an scintillator In the case of fluorescence and superconductors, excitons such as quasi-electrons are generated. In the radiation detector, a voltage proportional to the applied energy is induced by the movement of these excitons to the electrode, and the energy of the radiation transmitted through the human body or the like can be measured.

しかし、上述した放射線検出器を用いた場合、放射線が入射するごとに誘起電圧を測定するため、励起子が電極に移動している間に次の放射線が入射した場合には、前後する放射線を一つの放射線として認識してしまう虞がある。その結果、単位時間あたりに入射する放射線のカウント数(すなわち、計数率)が制限されることになり、従来の放射線透過撮像法(X線CTスキャン等)のように短時間で非常に高い計数率を測定する際には、放射線のエネルギ情報を利用できなくなる問題があった。そこで、従来の放射線透過撮像装置では、電極に流れる電流を検出することにより、放射線から付与された単位時間あたりのエネルギを測定する方法が採られていた(特許文献1参照)。   However, when the radiation detector described above is used, the induced voltage is measured every time the radiation is incident. Therefore, when the next radiation is incident while the excitons are moving to the electrode, There is a risk of recognizing it as a single radiation. As a result, the number of counts of radiation incident per unit time (that is, the count rate) is limited, and a very high count is achieved in a short time as in a conventional radiographic imaging method (such as an X-ray CT scan). When measuring the rate, there is a problem that the energy information of radiation cannot be used. Therefore, in a conventional radiation transmission imaging apparatus, a method of measuring energy per unit time given from radiation by detecting a current flowing through an electrode has been adopted (see Patent Document 1).

一方、ヨウ素造影剤を用いて癌組織の有無を判定するための画像を得る場合、照射されたX線のごく一部しかヨウ素に吸収されないことから、人体に大量のX線を照射する必要があり、放射線被曝のリスクが高くなる問題があった。そこで、低被曝型のX線透過撮影装置として、人体とヨウ素との間でX線の吸収率が異なることを利用したエネルギ差分法を採用したものが開発されている。この種のX線透過撮影装置では、白色X線を用いるものや、2種の単色X線を用いるものが一般的であるが、本出願人が過去に提案したものでは、ランタンフィルタ(Laフィルタ)により高エネルギ部分をカットしたフィルタX線を人体に照射し、人体を透過したフィルタX線のうち、ヨウ素のK殻吸収端を挟んだ上下2つのエネルギ範囲のものを測定し、これにより得られた2種のエネルギ情報をサブストラクションすることによって造影剤のみを強調した画像を得るようにしている(特許文献2参照)。
特開2005−77152号公報 特開2004−223158号公報
On the other hand, when an image for determining the presence or absence of cancer tissue is obtained using an iodine contrast agent, only a small part of the irradiated X-rays are absorbed by iodine, so it is necessary to irradiate a large amount of X-rays on the human body. There was a problem of increasing the risk of radiation exposure. In view of this, a low-exposure type X-ray transmission imaging apparatus has been developed that employs an energy difference method that utilizes the difference in X-ray absorption between the human body and iodine. In this type of X-ray transmission apparatus, those using white X-rays and those using two types of monochromatic X-rays are generally used. However, in the past proposed by the present applicant, a lantern filter (La filter) is used. ) Irradiate the human body with filter X-rays from which the high-energy portion has been cut, and measure the filter X-rays transmitted through the human body in the upper and lower energy ranges with the K shell absorption edge of iodine in between. By subtracting the two types of energy information, an image in which only the contrast medium is emphasized is obtained (see Patent Document 2).
JP-A-2005-77152 JP 2004-223158 A

特許文献1の放射線検出器では、高い計数率に対応することができる反面、個々の放射線から付与されたエネルギの情報が失われるため、例えば、従来型X線透過撮影に対しては、ある組織を通過したX線の量が多いか少ないかという情報しか得ることができない。そのため、このような放射線検出器を特許文献2のエネルギ差分法に適用した場合、X線CTスキャン等のように少ない放射線量をもって高計数率での測定を行うことができず、心臓のような動きの速い臓器の鮮明な画像を得ることが極めて困難であった。   The radiation detector of Patent Document 1 can cope with a high counting rate, but information on energy applied from individual radiation is lost. For example, for conventional X-ray transmission imaging, a certain tissue is used. Only information on whether the amount of X-rays that passed through is large or small can be obtained. Therefore, when such a radiation detector is applied to the energy difference method of Patent Document 2, measurement with a high counting rate cannot be performed with a small amount of radiation, such as an X-ray CT scan, and the like It was extremely difficult to obtain a clear image of a fast-moving organ.

本発明は、このような背景に鑑みなされたもので、高計数率の放射線を検出しながら、エネルギ情報の収集をも可能とした放射線検出器を提供することを目的とする。   The present invention has been made in view of such a background, and an object thereof is to provide a radiation detector capable of collecting energy information while detecting radiation with a high count rate.

請求項1の発明に係る放射線検出器は、入射した放射線から付与されたエネルギによって電荷を発生する検出媒体と、前記検出媒体における前記放射線の入射端からの距離が互いに異なる位置で、当該検出媒体に設置された複数の電極とを備えたことを特徴とする。   The radiation detector according to the invention of claim 1 is a detection medium that generates a charge by energy applied from incident radiation, and the detection medium at a position where the distance from the radiation incident end of the detection medium is different from each other. And a plurality of electrodes installed in the.

また、請求項2の発明は、請求項1に記載の放射線検出器において、前記検出媒体が固体であり、当該検出媒体には前記各電極間に溝が形成されたことを特徴とする。   According to a second aspect of the present invention, in the radiation detector according to the first aspect, the detection medium is a solid, and a groove is formed between the electrodes in the detection medium.

また、請求項3の発明は、請求項1または請求項2に記載の放射線検出器において、前記検出媒体が半導体であり、当該検出媒体には前記各電極間に前記半導体と極性が異なる半導体層が形成されたことを特徴とする。   According to a third aspect of the present invention, in the radiation detector according to the first or second aspect, the detection medium is a semiconductor, and the detection medium includes a semiconductor layer having a polarity different from that of the semiconductor between the electrodes. Is formed.

また、請求項4の発明は、請求項1に記載の放射線検出器において、前記検出媒体は、前記各電極間で分割されていることを特徴とする。   According to a fourth aspect of the present invention, in the radiation detector according to the first aspect, the detection medium is divided between the electrodes.

請求項1の放射線検出器によれば、検出媒体に入射した放射線は、エネルギを放出することで減衰しながら検出媒体内を進行するため、各電極を流れる電流を計測することにより、高計数率の放射線の検出とエネルギ情報の収集とが同時に行える。また、請求項2〜請求項4の放射線検出器によれば、各電極間の絶縁性が向上し、より高精度の検出が実現される。   According to the radiation detector of claim 1, since the radiation incident on the detection medium travels in the detection medium while being attenuated by releasing energy, a high count rate is obtained by measuring the current flowing through each electrode. Radiation detection and energy information collection can be performed simultaneously. Moreover, according to the radiation detector of Claims 2-4, the insulation between each electrode improves and a more accurate detection is implement | achieved.

以下、図面を参照して、本発明を適用した放射線検出器のいくつかの実施形態を詳細に説明する。
〔第1実施形態〕
図1は第1実施形態に係るX線検査装置の概略構成図であり、図2は第1実施形態に係るX線検出器の斜視図である。また、図3は第1実施形態に係るX線エネルギスペクトルを示すグラフであり、図4および図5は第1実施形態に係る各電極の電流値を示すグラフである。
Hereinafter, some embodiments of a radiation detector to which the present invention is applied will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is a schematic configuration diagram of the X-ray inspection apparatus according to the first embodiment, and FIG. 2 is a perspective view of the X-ray detector according to the first embodiment. FIG. 3 is a graph showing an X-ray energy spectrum according to the first embodiment, and FIGS. 4 and 5 are graphs showing current values of the respective electrodes according to the first embodiment.

≪第1実施形態の構成≫
<X線検査装置>
図1に示すように、第1実施形態のX線検査装置1は、X線管2や、X線検出器(放射線検出器)3を縦横に配置してなるX線検出器アレイ4、前置増幅器5、主増幅器6、2種の積分器7,8、造影剤厚さ演算装置9、画像化装置10等から構成されている。
<< Configuration of First Embodiment >>
<X-ray inspection equipment>
As shown in FIG. 1, an X-ray inspection apparatus 1 according to the first embodiment includes an X-ray tube 2 and an X-ray detector array 4 in which X-ray detectors (radiation detectors) 3 are arranged vertically and horizontally. It comprises a preamplifier 5, a main amplifier 6, two types of integrators 7, 8, a contrast agent thickness calculator 9, an imaging device 10, and the like.

<X線検出器>
図2に示すように、第1実施形態のX線検出器3は、半導体であるシリコンを素材とする母材Mと、母材Mに生起された電流を出力するための第1電極21〜第4電極24とを備えている。母材Mは、フィルタX線の入射方向に沿って延設された矩形の板状を呈しており、その一端に接地側電極Eが設けられている。また、第1電極21〜第4電極24は、母材Mの上面にフィルタX線の入射方向に沿って順に並ぶかたちで設置されており、それぞれから出力された電流I1〜I4がダイオードDを介して前述した前置増幅器5に送られる。
<X-ray detector>
As shown in FIG. 2, the X-ray detector 3 according to the first embodiment includes a base material M made of silicon, which is a semiconductor, and first electrodes 21 to 21 for outputting a current generated in the base material M. And a fourth electrode 24. The base material M has a rectangular plate shape extending along the incident direction of the filter X-ray, and a ground side electrode E is provided at one end thereof. In addition, the first electrode 21 to the fourth electrode 24 are arranged on the upper surface of the base material M in order along the incident direction of the filter X-ray, and the currents I1 to I4 output from the respective electrodes cause the diode D to be arranged. To the preamplifier 5 described above.

≪第1実施形態の作用≫
X線検査装置1が起動し、X線管2から被検体SにフィルタX線が照射されると、被検体Sを透過したフィルタX線がX線検出器アレイ4内のX線検出器3に入射する。なお、本実施形態のX線管2では、50kVに加速した電子をタングステンターゲットに衝突させ、放出された白色X線からLaフィルタによって高エネルギ部分(38.9keV以上)を除去してフィルタX線を生成する。
<< Operation of First Embodiment >>
When the X-ray inspection apparatus 1 is activated and the subject X is irradiated with the filter X-rays from the X-ray tube 2, the filter X-rays transmitted through the subject S are X-ray detectors 3 in the X-ray detector array 4. Is incident on. In the X-ray tube 2 of the present embodiment, electrons accelerated to 50 kV are collided with a tungsten target, and a high energy portion (38.9 keV or more) is removed from the emitted white X-rays by a La filter. Is generated.

X線検出器3にフィルタX線が入射すると、母材M内では励起子である電子・正孔対が生成され、第1電極21〜第4電極24から前置増幅器5にそれぞれ電流I〜Iが出力される。電流I〜Iは、前置増幅器5と主増幅器6とにより増幅された後、積分器7,8でエネルギ領域ごとに積算されて造影剤厚さ演算装置に出力される。造影剤厚さ演算装置9では両積分器7,8の積算結果に基づき被検体S内のヨウ素造影剤の厚みが演算され、その演算結果に基づき画像化装置10が透過X線画像を生成する。 When filtered X-rays enter the X-ray detector 3, exciton electron / hole pairs are generated in the base material M, and current I 1 is supplied from the first electrode 21 to the fourth electrode 24 to the preamplifier 5. ~ I 4 is output. The currents I 1 to I 4 are amplified by the preamplifier 5 and the main amplifier 6, integrated by the integrators 7 and 8 for each energy region, and output to the contrast agent thickness calculator. In the contrast agent thickness calculator 9, the thickness of the iodine contrast agent in the subject S is calculated based on the integration results of the integrators 7 and 8, and the imaging device 10 generates a transmission X-ray image based on the calculation result. .

癌等の病巣や血管にヨウ素造影剤を注入した被検体SにフィルタX線を照射すると、図3に示すように、ヨウ素のK殻吸収端のエネルギ準位(33.2keV)付近が不連続となったX線エネルギスペクトルが得られる。なお、図3は、人体を模した厚さ20cmの水層中にヨウ素造影剤を模したヨウ素を含ませたものにフィルタX線を照射して得たX線エネルギスペクトルのグラフであり、X線の4つのエネルギ範囲E〜Eとこれらエネルギ範囲E〜Eに含まれるX線の個数Y〜Yとを示している。なお、本出願人は、先に挙げた特許文献2において、図3中のエネルギ範囲E,Eに含まれるX線の個数Y,Yの比に基づいて、ヨウ素造影剤の厚さを判定できることを開示した。 When the subject S in which iodine contrast medium is injected into a lesion or blood vessel such as cancer is irradiated with filter X-rays, as shown in FIG. 3, the energy level (33.2 keV) around the K shell absorption edge of iodine is discontinuous. An X-ray energy spectrum is obtained. FIG. 3 is a graph of an X-ray energy spectrum obtained by irradiating filter X-rays into an aqueous layer having a thickness of 20 cm imitating a human body and containing iodine imitating an iodine contrast agent. It shows four energy range E 1 to E 4 of the lines and the number Y 1 to Y 4 of the X-rays in these energy range E 1 to E 4. In addition, in the patent document 2 cited above, the applicant of the present invention is based on the ratio of the number of X-rays Y 2 and Y 3 included in the energy ranges E 2 and E 3 in FIG. It has been disclosed that it is possible to determine the thickness.

さて、前述したように、1つの放射線の入射による誘起電圧を測定すれば、その放射線がどのエネルギ範囲に含まれるのかを判定することができるが、放射線から付与された単位時間あたりのエネルギを電流によって測定する放射線検出器を用いた場合には、単一の電極から出力される電流によって個々のX線のエネルギを正しく測定することはできない。すなわち、図2において、第1電極21から出力される電流Iには全エネルギ範囲E〜EのX線が寄与しているため、第1電極21だけで電流を測定した場合には、どのエネルギ範囲のX線がどの程度の個数存在するのかを測定することは当然にできない(式1)。

Figure 2007071602
式1において、wは一つの電子・正孔対を生成するために必要なエネルギであり、Tは測定時間であるが、以降の説明においては、説明が煩雑になることを防ぐため、wおよびTはともに1とする(考慮しない)。また、E(j=1,4)は各エネルギ範囲の平均エネルギであり、Cij(i=1,4,j=1,4)は平均エネルギEのX線が母材Mの第i電極(21〜24)に対応する部位で吸収される相対確率を示す。 As described above, by measuring the induced voltage due to the incidence of one radiation, it is possible to determine in which energy range the radiation is included. In the case of using the radiation detector which measures by the above method, the energy of individual X-rays cannot be measured correctly by the current output from a single electrode. That is, in FIG. 2, since the X-rays in the entire energy range E 1 to E 4 contribute to the current I 1 output from the first electrode 21, when the current is measured only with the first electrode 21. Of course, it is not possible to measure how many X-rays in which energy range exist (Equation 1).
Figure 2007071602
In Equation 1, w is the energy required to generate one electron / hole pair, and T is the measurement time. In the following description, in order to prevent the explanation from becoming complicated, w and T is 1 (not considered). E j (j = 1, 4) is the average energy of each energy range, and C ij (i = 1, 4, j = 1, 4) is the X-ray of the average energy E j of the base material M. The relative probability of being absorbed in the site | part corresponding to i electrode (21-24) is shown.

式2に、第1電極21〜第4電極24から出力された電流I〜Iを示す。

Figure 2007071602
式2から判るように、電流I〜Iは、母材M(シリコン)の各電極21〜24に対応する部位で吸収される数に依存している。ここで、E(j=1,4)は既知の値であるが、Y(i=1,4)およびCij(i=1,4,j=1,4)は未知数であり、式が4つで未知数が合計20個となるため、そのままでは式2の連立方程式を解くことができない。 Formula 2 shows currents I 1 to I 4 output from the first electrode 21 to the fourth electrode 24.
Figure 2007071602
As can be seen from Equation 2, the currents I 1 to I 4 depend on the number absorbed at the portions corresponding to the electrodes 21 to 24 of the base material M (silicon). Here, E j (j = 1, 4) is a known value, but Y i (i = 1, 4) and C ij (i = 1, 4, j = 1, 4) are unknowns, Since there are four equations and a total of 20 unknowns, the simultaneous equations of Equation 2 cannot be solved as they are.

ところで、X線は、物質中を通過する際にその強度が指数関数的に減少する(式3)。

Figure 2007071602
ここで、μ(E)はエネルギに依存する減衰係数である。また、X1−2は第1電極21と第2電極22との間の距離、X2−3は第2電極22と第3電極23との間の距離、X3−4は第3電極23と第4電極24との間の距離である。 By the way, the intensity of X-rays decreases exponentially when passing through a substance (Equation 3).
Figure 2007071602
Here, μ (E j ) is an attenuation coefficient depending on energy. X1-2 is a distance between the first electrode 21 and the second electrode 22, X2-3 is a distance between the second electrode 22 and the third electrode 23, and X3-4 is a third electrode. 23 and the fourth electrode 24.

したがって、光子と物質との相互作用のシミュレーションコードからエネルギEの光子が入射した際の各電極セグメントにおける吸収確率を予め求めておけば、Cijを得ることができる。その結果、式2の連立方程式は、含まれる未知数がY〜Yの4個となり、解くことが可能となる(式4)。

Figure 2007071602
Therefore, C ij can be obtained by previously obtaining the absorption probability in each electrode segment when a photon of energy E j is incident from the simulation code of the interaction between the photon and the substance. As a result, the simultaneous equations of Expression 2 include four unknowns Y 1 to Y 4 and can be solved (Expression 4).
Figure 2007071602

以下に具体的計算例を挙げる。
図3における4つのエネルギ範囲E〜Eの代表値をそれぞれ、26.1keV、31.7keV、37.5keV、および44.5keVとし、図2に示したX線検出器3の大きさを、どちらも幅が6mm、厚さが2mmで、長さ2mmの電極が1mm間隔で設置された全長11mmとしたもの(A)と、長さ4mmの電極が1mm間隔で設置された全長19mmのもの(B)とでそれぞれ試験を行った。その結果、前者(A)では図4に示すグラフが得られ、後者(B)では図5に示すグラフが得られた。なお、図4,図5では、どちらも、26.1keVのX線が第1電極21に対応する部位で吸収される割合を1と規格化している。
Specific calculation examples are given below.
The representative values of the four energy ranges E 1 to E 4 in FIG. 3 are 26.1 keV, 31.7 keV, 37.5 keV, and 44.5 keV, respectively, and the size of the X-ray detector 3 shown in FIG. Both have a width of 6 mm, a thickness of 2 mm, and a total length of 11 mm (2 mm long electrodes installed at 1 mm intervals) and a total length of 19 mm (4 mm long electrodes installed at 1 mm intervals). The test was performed with the thing (B). As a result, the graph shown in FIG. 4 was obtained in the former (A), and the graph shown in FIG. 5 was obtained in the latter (B). 4 and 5, in both cases, the rate at which 26.1 keV X-rays are absorbed at the portion corresponding to the first electrode 21 is normalized to 1.

図4,図5の結果に基づき、式4の4行4列の行列式をCとすると、(A)に対応する式5と、(B)に対応する式6とが得られる。

Figure 2007071602
Figure 2007071602
Based on the results of FIGS. 4 and 5, when the determinant of 4 rows and 4 columns of Equation 4 is C, Equation 5 corresponding to (A) and Equation 6 corresponding to (B) are obtained.
Figure 2007071602
Figure 2007071602

これにより、式4を解くこと(すなわち、どのエネルギ範囲のX線がどの数存在するかを知ること)が可能となるため、造影剤厚さ演算装置9によるヨウ素造影剤の厚みの演算と画像化装置10による透過X線画像の生成とが可能となる。   This makes it possible to solve Equation 4 (that is, to know how many X-rays in which energy range exist), so that the contrast agent thickness calculation device 9 calculates the iodine contrast agent thickness and the image. The transmission apparatus 10 can generate a transmission X-ray image.

≪第1実施形態の効果≫
このように、第1実施形態では、電流測定を行いながらフィルタX線のエネルギスペクトルが得られるため、単位時間あたりのフィルタX線の照射量を多くすることができ、短時間で明瞭な透過X線画像を得ることができた。また、X線検出器3に設ける電極の個数を多くすれば、更に詳細なエネルギスペクトルを得ること(すなわち、より明瞭な透過X線画像を得ること)が可能となる。また、一定の数の電極で電流測定を行った後、予め計算で求めておいた応答関数(行列式C)を変更することにより、X線検出器3の交換等を行うことなく測定エネルギ範囲を自由に変更できる。
<< Effects of First Embodiment >>
Thus, in the first embodiment, since the energy spectrum of the filter X-ray can be obtained while performing current measurement, the amount of filter X-ray irradiation per unit time can be increased, and clear transmission X can be obtained in a short time. A line image could be obtained. Further, if the number of electrodes provided in the X-ray detector 3 is increased, a more detailed energy spectrum can be obtained (that is, a clearer transmitted X-ray image can be obtained). In addition, after measuring the current with a certain number of electrodes, changing the response function (determinant C) obtained by calculation in advance, the measured energy range can be obtained without replacing the X-ray detector 3 or the like. Can be changed freely.

≪従来との比較≫
従来のX線検査装置では、単一の電極を備えたX線検出器を用い、図3に示す全エネルギ領域のX線によって生成された電流を検出していた。正常組織を通過したフィルタX線のエネルギスペクトルにはヨウ素造影剤による吸収が殆ど無く、ヨウ素造影剤を多く含む病巣部分を通過したフィルタX線のエネルギスペクトルには、図3に示すように、ヨウ素のK殻吸収端のエネルギ準位(33.2keV)に相当する部分が吸収されるため、病巣部分において測定電流の有意な減少が見られる。これを式で表現すると、以下のようになる。
≪Comparison with conventional products≫
In a conventional X-ray inspection apparatus, an X-ray detector having a single electrode is used to detect a current generated by X-rays in the entire energy region shown in FIG. The energy spectrum of the filter X-ray that has passed through the normal tissue has almost no absorption by the iodine contrast agent, and the energy spectrum of the filter X-ray that has passed through the lesion portion containing a large amount of iodine contrast agent has an iodine as shown in FIG. Since the portion corresponding to the energy level (33.2 keV) at the K-shell absorption edge of is absorbed, a significant decrease in the measured current is observed in the lesion portion. This can be expressed as follows:

先ず、正常組織を通過したフィルタX線による電流値Iは、

Figure 2007071602
となり、病巣部分を通過したフィルタX線による電流値I’は、
Figure 2007071602
となるため、それぞれの電流値I,I’の差ΔIは、
Figure 2007071602
となる。 First, the current value I by the filter X-ray that has passed through the normal tissue is
Figure 2007071602
The current value I ′ by the filter X-ray that has passed through the lesion is
Figure 2007071602
Therefore, the difference ΔI between the current values I and I ′ is
Figure 2007071602
It becomes.

電流の量子雑音を考慮すると、信号雑音比S/Nは、

Figure 2007071602
となるため、従来のエネルギ差分法における信号雑音比S/Nは、式11で与えられる。
Figure 2007071602
Considering the current quantum noise, the signal-to-noise ratio S / N is
Figure 2007071602
Therefore, the signal-to-noise ratio S / N in the conventional energy difference method is given by Equation 11.
Figure 2007071602

一方、本実施形態のX線検出器を用いた場合、電流値とエネルギ情報とを同時に得ることができるため、測定電流値から各エネルギ範囲E〜EのX線の数Y〜Yを同定でき、式11をエネルギ表現とすることができる(式12)。

Figure 2007071602
On the other hand, when the X-ray detector of the present embodiment is used, the current value and the energy information can be obtained at the same time, and therefore the number of X-rays Y 1 to Y in each energy range E 1 to E 4 from the measured current value. 4 can be identified, and Equation 11 can be an energy representation (Equation 12).
Figure 2007071602

ここで、ヨウ素造影剤による吸収が殆ど無いエネルギ範囲E,EのX線による電流値は、正常組織を通過した場合と病巣部分を通過した場合との間で殆ど差が無いため、Y’=Y、Y’=Yとすることができる。また、ヨウ素造影剤の有無に拘わらず一定量となるYおよびYは、1とおくことができる。これらにより、信号雑音比S/Nは、

Figure 2007071602
とすることが可能となり、信号雑音比S/Nの分母が小さくなる分だけ信号が雑音に埋もれ難くなる(すなわち、有意な信号を得やすい)。 Here, since the current values by the X-rays in the energy ranges E 1 and E 4 where there is almost no absorption by the iodine contrast agent are almost the same between the case of passing through the normal tissue and the case of passing through the lesion part, Y 1 ′ = Y 1 and Y 4 ′ = Y 4 . Moreover, Y 1 E 1 and Y 4 E 4 that are constant amounts regardless of the presence or absence of an iodine contrast agent can be set to 1. As a result, the signal-to-noise ratio S / N is
Figure 2007071602
And the signal is less likely to be buried in the noise (ie, it is easy to obtain a significant signal) as the denominator of the signal / noise ratio S / N becomes smaller.

このように、本実施形態によれば、単一の電極を有する放射線検出器を用いた従来のX線検査装置に較べ、より少ない量のフィルタX線を用いて同等の透過X線画像を得ることが可能となり、低被曝化を効果的に実現できた。   Thus, according to the present embodiment, an equivalent transmission X-ray image is obtained by using a smaller amount of filter X-rays compared to a conventional X-ray inspection apparatus using a radiation detector having a single electrode. It was possible to achieve low exposure effectively.

〔第2実施形態〕
図6は第2実施形態に係るX線検出器の斜視図である。
同図に示すように、第2実施形態のX線検出器3は、その全体構成は上述した第1実施形態と同様であるが、母材Mの上面に各電極21〜24を区画する溝31がそれぞれ刻設されている。これにより、本実施形態では、各電極21〜24間の電気絶縁性が向上し、電流I〜Iの出力精度が向上した。
[Second Embodiment]
FIG. 6 is a perspective view of an X-ray detector according to the second embodiment.
As shown in the figure, the X-ray detector 3 of the second embodiment has the same overall configuration as that of the first embodiment described above, but the grooves that partition the electrodes 21 to 24 on the upper surface of the base material M. 31 is engraved. Thus, in this embodiment, it improves the electrical insulation between the electrodes 21 to 24 were improved output accuracy of the current I 1 ~I 4.

〔第3実施形態〕
図7は第3実施形態に係るX線検出器の斜視図である。
同図に示すように、第3実施形態のX線検出器3も、その全体構成は上述した第1実施形態と同様であるが、各電極21〜24を区画する部分に母材Mと極性の異なる半導体層(母材Mがn層であれば、p層)32がイオン注入または熱拡散により形成されている。これにより、本実施形態では、空乏層によって各電極21〜24間の電気絶縁性が更に向上し、電流I〜Iの出力精度がより向上した。
[Third Embodiment]
FIG. 7 is a perspective view of an X-ray detector according to the third embodiment.
As shown in the figure, the X-ray detector 3 of the third embodiment is the same in overall configuration as that of the first embodiment described above, but the base material M and the polarity are formed in the portions that partition the electrodes 21 to 24. Semiconductor layers 32 (or p layers if the base material M is an n layer) are formed by ion implantation or thermal diffusion. Thus, in the present embodiment, the electrical insulation is further improved between the electrodes 21 to 24 by the depletion layer, the output accuracy of the current I 1 ~I 4 is improved.

〔第4実施形態〕
図8は第4実施形態に係るX線検出器の斜視図である。
同図に示すように、第4実施形態のX線検出器3も、その全体構成は上述した第1実施形態と同様であるが、フィルタX線の入射方向に沿って分割された第1母材M1〜第4母材M4を備えており、第1電極21〜第4電極24がこれら母材M1〜M4の上面にそれぞれ設置されている。これにより、本実施形態では、各電極21〜24間の電気絶縁性が更に向上し、電流I〜Iの出力精度がより向上した。
[Fourth Embodiment]
FIG. 8 is a perspective view of an X-ray detector according to the fourth embodiment.
As shown in the figure, the X-ray detector 3 of the fourth embodiment is similar in overall configuration to the first embodiment described above, but the first mother is divided along the incident direction of the filter X-ray. The material M1-the 4th base material M4 are provided, and the 1st electrode 21-the 4th electrode 24 are each installed in the upper surface of these base materials M1-M4. Thus, in the present embodiment, the electrical insulation is further improved between the respective electrodes 21 to 24, the output accuracy of the current I 1 ~I 4 is improved.

〔第5実施形態〕
図9は第5実施形態に係るX線検出器の斜視図である。
同図に示すように、第5実施形態のX線検出器3は、フィルタX線の入射方向に沿ってガスが充填された第1母材M1〜第4母材M4を直列に並べ、各母材M1〜M4に第1電極21〜第4電極24を設置したものである。
[Fifth Embodiment]
FIG. 9 is a perspective view of an X-ray detector according to the fifth embodiment.
As shown in the figure, the X-ray detector 3 of the fifth embodiment arranges the first base material M1 to the fourth base material M4 filled with gas in series along the incident direction of the filter X-ray, The first electrode 21 to the fourth electrode 24 are installed on the base materials M1 to M4.

〔第6実施形態〕
図10は第6実施形態に係るX線検出器の斜視図である。
同図に示すように、第6実施形態のX線検出器3は、フィルタX線の入射方向に沿って延設された板状のシンチレータ(絶縁体)SCと、このシンチレータ41の上面に設置された電極として第1光電子倍増管41〜第4光電子倍増管44とを備えたものである。
[Sixth Embodiment]
FIG. 10 is a perspective view of an X-ray detector according to the sixth embodiment.
As shown in the figure, the X-ray detector 3 of the sixth embodiment is installed on a plate-like scintillator (insulator) SC extending along the incident direction of the filter X-ray and on the upper surface of the scintillator 41. The first photomultiplier tube 41 to the fourth photomultiplier tube 44 are provided as the formed electrodes.

〔第7実施形態〕
図11は第7実施形態に係るX線検出器の斜視図である。
同図に示すように、第7実施形態のX線検出器3も、その全体構成は第6実施形態と同様であるが、フィルタX線の入射方向に沿って分割された第1シンチレータSC1〜第4シンチレータSC4を備えており、第1光電子倍増管41〜第4光電子倍増管44がこれらシンチレータSC1〜SC4の上面にそれぞれ設置されている。
[Seventh Embodiment]
FIG. 11 is a perspective view of an X-ray detector according to the seventh embodiment.
As shown in the figure, the X-ray detector 3 of the seventh embodiment is similar in overall configuration to the sixth embodiment, but is divided into first scintillators SC1 to SC1 divided along the incident direction of the filter X-ray. A fourth scintillator SC4 is provided, and a first photomultiplier tube 41 to a fourth photomultiplier tube 44 are respectively installed on the upper surfaces of the scintillators SC1 to SC4.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。例えば、上記実施形態は本発明をエネルギ差分法を用いた医療用のX線検査装置に適用したものであるが、産業用のX線検査装置やガンマ線検査装置等にも適用できる。この場合、検出対象となるX線やガンマ線のエネルギに応じて、放射線検出器の母材をCdTe(テルル化カドミウム)等を採用すればよい。また、上記実施形態では電極や光電子倍増管を4個としたが、2個や3個でもよいし、5個以上としてもよい。その他、放射線検出器の具体的構成等についても、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   Although the description of the specific embodiment is finished as described above, the present invention is not limited to the above embodiment and can be widely modified. For example, although the above embodiment is an application of the present invention to a medical X-ray inspection apparatus using the energy difference method, it can also be applied to an industrial X-ray inspection apparatus, a gamma ray inspection apparatus, or the like. In this case, CdTe (cadmium telluride) or the like may be employed as the base material of the radiation detector according to the energy of X-rays or gamma rays to be detected. In the above embodiment, the number of electrodes and photomultiplier tubes is four, but it may be two, three, or five or more. In addition, the specific configuration and the like of the radiation detector can be appropriately changed without departing from the spirit of the present invention.

第1実施形態に係るX線検査装置の概略構成図である。1 is a schematic configuration diagram of an X-ray inspection apparatus according to a first embodiment. 第1実施形態に係るX線検出器の斜視図である。It is a perspective view of the X-ray detector which concerns on 1st Embodiment. 第1実施形態に係るX線エネルギスペクトルを示すグラフである。It is a graph which shows the X-ray energy spectrum which concerns on 1st Embodiment. 第1実施形態に係る各電極の電流値を示すグラフである。It is a graph which shows the electric current value of each electrode which concerns on 1st Embodiment. 第1実施形態に係る各電極の電流値を示すグラフである。It is a graph which shows the electric current value of each electrode which concerns on 1st Embodiment. 第2実施形態に係るX線検出器の斜視図である。It is a perspective view of the X-ray detector which concerns on 2nd Embodiment. 第3実施形態に係るX線検出器の斜視図である。It is a perspective view of the X-ray detector which concerns on 3rd Embodiment. 第4実施形態に係るX線検出器の斜視図である。It is a perspective view of the X-ray detector which concerns on 4th Embodiment. 第5実施形態に係るX線検出器の斜視図である。It is a perspective view of the X-ray detector which concerns on 5th Embodiment. 第6実施形態に係るX線検出器の斜視図である。It is a perspective view of the X-ray detector which concerns on 6th Embodiment. 第7実施形態に係るX線検出器の斜視図である。It is a perspective view of the X-ray detector which concerns on 7th Embodiment.

符号の説明Explanation of symbols

1 X線検査装置
2 X線管
3 X線検出器(放射線検出器)
21 第1電極
22 第2電極
23 第3電極
24 第4電極
31 溝
32 半導体層
41 第1光電子倍増管
42 第2光電子倍増管
43 第3光電子倍増管
44 第4光電子倍増管
M 母材
M1 第1母材
M2 第2母材
M3 第3母材
M4 第4母材
SC シンチレータ
SC1 第1シンチレータ
SC2 第2シンチレータ
SC3 第3シンチレータ
SC4 第4シンチレータ
1 X-ray inspection device 2 X-ray tube 3 X-ray detector (radiation detector)
21 1st electrode 22 2nd electrode 23 3rd electrode 24 4th electrode 31 Groove 32 Semiconductor layer 41 1st photomultiplier tube 42 2nd photomultiplier tube 43 3rd photomultiplier tube 44 4th photomultiplier tube M Base material M1 1st 1 base material M2 2nd base material M3 3rd base material M4 4th base material SC scintillator SC1 1st scintillator SC2 2nd scintillator SC3 3rd scintillator SC4 4th scintillator

Claims (4)

入射した放射線から付与されたエネルギによって電荷を発生する検出媒体と、
前記検出媒体における前記放射線の入射端からの距離が互いに異なる位置で、当該検出媒体に設置された複数の電極と
を備えたことを特徴とする放射線検出器。
A detection medium that generates charge by energy imparted from incident radiation;
A radiation detector comprising: a plurality of electrodes installed on the detection medium at positions where the distances from the radiation incident end of the detection medium are different from each other.
前記検出媒体が固体であり、前記各電極間の絶縁を向上させるべく、当該検出媒体には前記各電極間に溝が形成されたことを特徴とする、請求項1に記載の放射線検出器。   The radiation detector according to claim 1, wherein the detection medium is a solid, and a groove is formed between the electrodes in the detection medium in order to improve insulation between the electrodes. 前記検出媒体が半導体であり、前記各電極間の絶縁を向上させるべく、当該検出媒体には前記各電極間に前記半導体と極性が異なる半導体層が形成されたことを特徴とする、請求項1または請求項2に記載の放射線検出器。   The detection medium is a semiconductor, and a semiconductor layer having a polarity different from that of the semiconductor is formed between the electrodes in order to improve insulation between the electrodes. Or the radiation detector of Claim 2. 前記検出媒体は、前記各電極間の絶縁を向上させるべく、前記各電極間で分割されていることを特徴とする、請求項1に記載の放射線検出器。   The radiation detector according to claim 1, wherein the detection medium is divided between the electrodes in order to improve insulation between the electrodes.
JP2005256867A 2005-09-05 2005-09-05 Radiation detector Pending JP2007071602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256867A JP2007071602A (en) 2005-09-05 2005-09-05 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256867A JP2007071602A (en) 2005-09-05 2005-09-05 Radiation detector

Publications (1)

Publication Number Publication Date
JP2007071602A true JP2007071602A (en) 2007-03-22

Family

ID=37933176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256867A Pending JP2007071602A (en) 2005-09-05 2005-09-05 Radiation detector

Country Status (1)

Country Link
JP (1) JP2007071602A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022625A1 (en) * 2007-08-15 2009-02-19 Kyoto University X-ray ct apparatus, and its method
WO2012121338A1 (en) * 2011-03-08 2012-09-13 株式会社トクヤマ Radiation detector and scintillator
JP2012524255A (en) * 2009-04-16 2012-10-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Spectroscopic imaging
JP2013522585A (en) * 2010-03-12 2013-06-13 クロメック リミテッド Detector device, inspection apparatus and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144576A (en) * 1979-04-27 1980-11-11 Toshiba Corp Semiconductor radiation detector
JPS57162372A (en) * 1981-03-30 1982-10-06 Toshiba Corp Semiconductor radiation detector
JPS58143286A (en) * 1982-02-22 1983-08-25 Toshiba Corp Radiation measuring method
JPS6151585A (en) * 1984-08-21 1986-03-14 Toshiba Corp Radiation detecting device
JPS61269089A (en) * 1985-05-23 1986-11-28 Aloka Co Ltd Neutron measuring instrument
JPS6292486A (en) * 1985-10-18 1987-04-27 Seiko Epson Corp Solar cell watch structure
JPS6320874A (en) * 1986-07-15 1988-01-28 Toshiba Corp Radiation detector
JPS63238587A (en) * 1987-03-27 1988-10-04 ベ−タジエン・コ−ポレ−シヨン Method and device for measuring surface distribution of radioactive nuclear specy emitting charged particle
JPH09275223A (en) * 1995-04-12 1997-10-21 Seiko Instr Kk Semiconductor radiation detector
JPH10284748A (en) * 1997-02-10 1998-10-23 S I I R D Center:Kk Manufacture of semiconductor radiation detector
JP2003084068A (en) * 2001-09-12 2003-03-19 Toshiba Corp Radiation detector, and manufacturing method therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144576A (en) * 1979-04-27 1980-11-11 Toshiba Corp Semiconductor radiation detector
JPS57162372A (en) * 1981-03-30 1982-10-06 Toshiba Corp Semiconductor radiation detector
JPS58143286A (en) * 1982-02-22 1983-08-25 Toshiba Corp Radiation measuring method
JPS6151585A (en) * 1984-08-21 1986-03-14 Toshiba Corp Radiation detecting device
JPS61269089A (en) * 1985-05-23 1986-11-28 Aloka Co Ltd Neutron measuring instrument
JPS6292486A (en) * 1985-10-18 1987-04-27 Seiko Epson Corp Solar cell watch structure
JPS6320874A (en) * 1986-07-15 1988-01-28 Toshiba Corp Radiation detector
JPS63238587A (en) * 1987-03-27 1988-10-04 ベ−タジエン・コ−ポレ−シヨン Method and device for measuring surface distribution of radioactive nuclear specy emitting charged particle
JPH09275223A (en) * 1995-04-12 1997-10-21 Seiko Instr Kk Semiconductor radiation detector
JPH10284748A (en) * 1997-02-10 1998-10-23 S I I R D Center:Kk Manufacture of semiconductor radiation detector
JP2003084068A (en) * 2001-09-12 2003-03-19 Toshiba Corp Radiation detector, and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022625A1 (en) * 2007-08-15 2009-02-19 Kyoto University X-ray ct apparatus, and its method
US8180016B2 (en) 2007-08-15 2012-05-15 Kyoto University X-ray CT apparatus and method thereof
JP5367574B2 (en) * 2007-08-15 2013-12-11 国立大学法人京都大学 X-ray CT apparatus and method
EP3090686A1 (en) 2007-08-15 2016-11-09 Kyoto University X-ray ct apparatus and method thereof
JP2012524255A (en) * 2009-04-16 2012-10-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Spectroscopic imaging
JP2013522585A (en) * 2010-03-12 2013-06-13 クロメック リミテッド Detector device, inspection apparatus and method
US9086361B2 (en) 2010-03-12 2015-07-21 Kromek Limited Detector device, inspection apparatus and method
WO2012121338A1 (en) * 2011-03-08 2012-09-13 株式会社トクヤマ Radiation detector and scintillator
JP5995246B2 (en) * 2011-03-08 2016-09-21 株式会社トクヤマ X-ray or gamma ray detector

Similar Documents

Publication Publication Date Title
JP5779819B2 (en) Radiation detector
Shikhaliev et al. Photon counting computed tomography: concept and initial results
JP5367574B2 (en) X-ray CT apparatus and method
JP2008510132A (en) Anti-scatter grid for radiation detectors
TWI762277B (en) Apparatus suitable for detecting x-ray, method of making the same, system for x-ray detection, cargo scanning or non-intrusive inspection (nii) system, full-body scanner system, x-ray computed tomography (x-ray ct) system, electron microscope, and system suitable for phase-contrast x-ray imaging (pci)
CN103998952B (en) X-ray detector
US11644583B2 (en) X-ray detectors of high spatial resolution
CN109313276B (en) Gamma ray image acquisition device and gamma ray image acquisition method
JP2006078486A (en) Detecting apparatus for medical diagnostic equipment and medical imaging diagnostic method
US9977136B2 (en) Beta and alpha emission tomography for three-dimensional autoradiography
JP2008309683A (en) Nuclear medicine diagnostic device
US20160206255A1 (en) Hybrid passive/active multi-layer energy discriminating photon-counting detector
WO2014154188A1 (en) Method of phase gradient radiography and arrangement of an imaging system for application of the method
US20220133254A1 (en) Systems and methods for three-dimensional imaging
CN112601984A (en) Thyroid imaging system and method
JP2007071602A (en) Radiation detector
Fang et al. Quantitative study of x-ray luminescence computed tomography
Zeller et al. Charge sharing between pixels in the spectral Medipix2 x-ray detector
Weidinger et al. Investigation of ultra low-dose scans in the context of quantum-counting clinical CT
Kappler et al. A full-system simulation chain for computed tomography scanners
JP4997603B2 (en) Method and apparatus for improving the sensitivity of positron images
Stepanov et al. Application of gamma-ray imager for non-destructive testing
US12029601B2 (en) Systems and methods for three-dimensional imaging
JP2005090979A (en) Radiation detector for diagnosing nuclear medicine image and image diagnostic device
JP2009008560A (en) Nondestructive inspection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816