JP2008256587A - X-ray inspection device and method - Google Patents

X-ray inspection device and method Download PDF

Info

Publication number
JP2008256587A
JP2008256587A JP2007100291A JP2007100291A JP2008256587A JP 2008256587 A JP2008256587 A JP 2008256587A JP 2007100291 A JP2007100291 A JP 2007100291A JP 2007100291 A JP2007100291 A JP 2007100291A JP 2008256587 A JP2008256587 A JP 2008256587A
Authority
JP
Japan
Prior art keywords
ray
rays
subject
original
inspection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007100291A
Other languages
Japanese (ja)
Inventor
Noriyasu Kobayashi
徳康 小林
Akiko Sumiya
晶子 角谷
Nobutada Aoki
延忠 青木
Susumu Naito
晋 内藤
Satoshi Yamamoto
智 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007100291A priority Critical patent/JP2008256587A/en
Publication of JP2008256587A publication Critical patent/JP2008256587A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inspect the shape of a metal surface or the like at high spatial resolution in an X-ray inspection device. <P>SOLUTION: The X-ray inspection device irradiates an X-ray irradiation section 30 of an analyte 1 with X-rays 6 and inspects the surface shape of the analyte 1. The X-ray inspection device has an X-ray source 2 for irradiating the X-ray irradiation section 30 with the original X-rays 6, a plurality of X-ray detectors 4 that are arranged at an interval in a state facing the X-ray irradiation section 30 so as to detect a secondary X-rays (scattered X-rays 7 or fluorescent X-rays) released from each part of the X-ray irradiation section 30 according to the irradiation of the original X-rays 6 and detect two-dimensional X-ray intensity distribution, and a plurality of suppressing means (for example, collimator 3) that are arranged between the X-ray irradiation section 30 and X-ray detectors 4 and suppress depth angle of the secondary X-rays 7 reaching respective X-ray detectors 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、金属などの被検体の表面検査などに好適なX線検査装置およびX線検査方法に関する。   The present invention relates to an X-ray inspection apparatus and an X-ray inspection method suitable for surface inspection of a subject such as metal.

一般的なX線検査装置として、被検体を透過したX線による被検体内部および表面の透過像をもとに検査を行なうもので知られている。このようなX線検査装置としては、X線を発生するX線源とX線フィルム、X線イメージインテンシファイアあるいはX線CCDカメラなどのX線二次元検出器とで被検体を挟み込み、被検体の透過像を得るものがある。また、特殊なX線検査装置として、X線源からのX線(原X線)を被検体表面に照射し、そこから放たれる二次X線(蛍光X線あるいは散乱X線)を二次元的に検出して被検体表面の元素分布分析を行なうものが知られている(たとえば特許文献1および特許文献2参照)。
特開2000−55842号公報 特開2003−329622号公報
As a general X-ray inspection apparatus, it is known to perform an inspection based on a transmission image of the inside and surface of a subject by X-rays transmitted through the subject. Such an X-ray inspection apparatus includes an X-ray source that generates X-rays and an X-ray two-dimensional detector such as an X-ray film, an X-ray image intensifier, or an X-ray CCD camera. Some obtain a transmission image of a specimen. Further, as a special X-ray inspection apparatus, X-rays (original X-rays) from an X-ray source are irradiated on the subject surface, and secondary X-rays (fluorescent X-rays or scattered X-rays) emitted from the X-ray source are secondly emitted. There are known ones that detect a dimension and perform element distribution analysis on the surface of an object (see, for example, Patent Document 1 and Patent Document 2).
JP 2000-55842 A JP 2003-329622 A

上述したX線検査装置においては、たとえば数10cm程度の厚さをもつ金属板表面の10μm程度の傷などを検査する場合、X線透過検査では高いエネルギーでかつ光子数のX線が10μm以下のX線焦点から発生するX線源が必要となる。このような場合、X線源において大電力密度の電子がX線を発生する金属ターゲットに吸収されるため、金属ターゲットの熱衝撃による耐久性に問題があり、実現が困難である。したがって検査に必要なX線光子数と空間分解能の両立ができないことが課題であった。   In the X-ray inspection apparatus described above, for example, when inspecting a scratch of about 10 μm on the surface of a metal plate having a thickness of about several tens of centimeters, the X-ray transmission inspection has a high energy and the number of photons is 10 μm or less. An X-ray source generated from the X-ray focal point is required. In such a case, electrons having a high power density are absorbed by the metal target that generates X-rays in the X-ray source, so that there is a problem in durability due to thermal shock of the metal target, which is difficult to realize. Therefore, it has been a problem that the number of X-ray photons necessary for inspection and the spatial resolution cannot be compatible.

また、蛍光X線あるいは散乱X線を利用する検査装置においては、X線源の形状、大きさの制限を受けてX線源と被検体の間の距離をある距離以下に短縮することができないため、被検体表面への照射X線光子数が制限され、これにともない蛍光および散乱X線光子数も制限を受ける。このため、検出に必要なX線光子数を確保するためにコリメータ径を大きくする必要があり、コリメータ径により決まる空間分解能の確保が困難な点が課題であった。   Further, in an inspection apparatus using fluorescent X-rays or scattered X-rays, the distance between the X-ray source and the subject cannot be shortened to a certain distance or less due to limitations on the shape and size of the X-ray source. Therefore, the number of irradiation X-ray photons on the subject surface is limited, and the number of fluorescent and scattered X-ray photons is also limited accordingly. For this reason, it is necessary to increase the collimator diameter in order to secure the number of X-ray photons necessary for detection, and it is difficult to ensure the spatial resolution determined by the collimator diameter.

本発明は上述した課題を解決するためになされたものであり、高い空間分解能で金属表面などの形状の検査が可能なX線検査装置およびX線検査方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an X-ray inspection apparatus and an X-ray inspection method capable of inspecting a shape such as a metal surface with high spatial resolution.

本発明は上記目的を達成するものであって、本発明の一つの態様は、被検体のX線照射部に原X線を照射して被検体の表面形状の検査を行なうX線検査装置において、前記X線照射部に原X線を照射するX線源と、前記原X線の照射に応じて前記X線照射部の各部分から放出される二次X線を検出するように、前記X線照射部に対向して互いに間隔をおいて配置され、二次元的X線強度分布を検出する複数のX線検出器と、前記X線照射部とX線検出器との間に配置され、前記X線検出器それぞれに到達する前記二次X線の見込み角を抑制する複数の抑制手段と、を有すること、を特徴とする。   The present invention achieves the above object, and one aspect of the present invention is an X-ray inspection apparatus that inspects the surface shape of a subject by irradiating the X-ray irradiation part of the subject with an original X-ray. The X-ray source for irradiating the X-ray irradiation unit with the original X-ray, and the secondary X-ray emitted from each part of the X-ray irradiation unit in response to the irradiation with the original X-ray, A plurality of X-ray detectors that are arranged opposite to each other and are spaced apart from each other and detect a two-dimensional X-ray intensity distribution, and are arranged between the X-ray irradiation unit and the X-ray detector. And a plurality of suppression means for suppressing a prospective angle of the secondary X-ray that reaches each of the X-ray detectors.

また、本発明の他の一つの態様は、被検体のX線照射部に原X線を照射して被検体の表面形状の検査を行なうX線検査装置において、原X線を照射するX線源と、前記原X線を前記X線照射部に集光するX線集光光学素子と、前記原X線の照射に応じて前記X線照射部から放出される二次X線を検出するように、前記X線照射部に対向して配置されたX線検出器と、前記X線源、X線集光光学素子およびX線検出器を、前記被検体に対して相対的に、かつ前記被検体に沿って移動させる移動機構と、を有すること、を特徴とする。   Another aspect of the present invention is an X-ray that irradiates an original X-ray in an X-ray inspection apparatus that inspects the surface shape of the subject by irradiating the X-ray irradiation unit of the subject with the original X-ray. A source, an X-ray condensing optical element for condensing the original X-rays on the X-ray irradiation unit, and secondary X-rays emitted from the X-ray irradiation unit in response to the irradiation of the original X-rays As described above, the X-ray detector disposed facing the X-ray irradiation unit, the X-ray source, the X-ray focusing optical element, and the X-ray detector are relatively disposed with respect to the subject, and And a moving mechanism for moving along the subject.

さらに、本発明の他の一つの態様は、被検体のX線照射部にX線を照射して被検体の表面形状の検査を行なうX線検査方法において、前記X線照射部に対向して原X線を照射するX線源を配置し、前記X線照射部に対向して複数のX線検出器を互いに間隔をおいて配置し、前記X線照射部とX線検出器との間に、前記複数のX線検出器それぞれから前記X線照射部を見込む見込み角を抑制する複数の抑制手段を配置し、前記原X線の照射に応じて前記X線照射部の各部分から放出される二次X線を前記複数のX線検出器によって二次元的に検出すること、を特徴とする。   Furthermore, another aspect of the present invention is an X-ray inspection method for inspecting the surface shape of a subject by irradiating the X-ray irradiation portion of the subject with X-rays, facing the X-ray irradiation portion. An X-ray source for irradiating the original X-ray is disposed, and a plurality of X-ray detectors are disposed opposite to each other so as to face the X-ray irradiation unit, and between the X-ray irradiation unit and the X-ray detector. In addition, a plurality of suppression means for suppressing a prospective angle at which the X-ray irradiation unit is expected from each of the plurality of X-ray detectors is disposed, and emitted from each part of the X-ray irradiation unit according to the irradiation of the original X-ray The secondary X-ray to be detected is two-dimensionally detected by the plurality of X-ray detectors.

さらに、本発明の他の一つの態様は、被検体のX線照射部にX線を照射して被検体の表面形状の検査を行なうX線検査方法において、前記X線照射部に対向して原X線を照射するX線源を配置し、前記原X線を前記X線照射部に集光するX線集光光学素子を配置し、前記X線照射部に対向してX線検出器を配置し、前記原X線の照射に応じて前記X線照射部から放出される二次X線を前記X線検出器によって検出し、前記X線源、X線集光光学素子およびX線検出器を、前記被検体に対して相対的に、かつ前記被検体に沿って移動させて、前記X線検出器による二次X線の検出を繰り返すこと、を特徴とする。   Furthermore, another aspect of the present invention is an X-ray inspection method for inspecting the surface shape of a subject by irradiating the X-ray irradiation portion of the subject with X-rays, facing the X-ray irradiation portion. An X-ray source for irradiating the original X-ray, an X-ray condensing optical element for condensing the original X-ray on the X-ray irradiator, and an X-ray detector facing the X-ray irradiator The secondary X-ray emitted from the X-ray irradiation unit in response to the irradiation of the original X-ray is detected by the X-ray detector, and the X-ray source, the X-ray condensing optical element, and the X-ray are detected. The detector is moved relative to the subject and along the subject, and the detection of secondary X-rays by the X-ray detector is repeated.

本発明によれば、高い空間分解能で、金属表面などの形状の検査が可能なX線検査装置およびX線検査方法を提供することができる。   According to the present invention, it is possible to provide an X-ray inspection apparatus and an X-ray inspection method capable of inspecting a shape such as a metal surface with high spatial resolution.

以下、本発明に係るX線検査装置の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of an X-ray inspection apparatus according to the present invention will be described with reference to the drawings.

[第1の実施形態]
まず、図1を用いて本発明に係るX線検査装置の第1の実施形態を説明する。X線源2は複数個(図1では2個)が被検体1の近くに配置され、それぞれからX線(原X線)6が被検体1のX線照射部30に照射されるように配置されている。被検体1のX線照射部30に対向して複数の微細管8を有するコリメータ3が配置され、微細管8を通してX線照射部30を見込む位置それぞれにX線二次元検出器4が配置されている。X線源2およびX線二次元検出器4の外側は遮蔽体5で覆われている。
[First Embodiment]
First, a first embodiment of the X-ray inspection apparatus according to the present invention will be described with reference to FIG. A plurality of (two in FIG. 1) X-ray sources 2 are arranged near the subject 1 so that X-rays (original X-rays) 6 are irradiated on the X-ray irradiation unit 30 of the subject 1 from each. Has been placed. A collimator 3 having a plurality of fine tubes 8 is arranged facing the X-ray irradiation unit 30 of the subject 1, and an X-ray two-dimensional detector 4 is arranged at each position where the X-ray irradiation unit 30 is viewed through the fine tubes 8. ing. The outside of the X-ray source 2 and the X-ray two-dimensional detector 4 is covered with a shield 5.

このように構成された本実施の形態において、まず、複数のX線源2からX線6が被検体1のX線照射部30に二次元的に照射される。被検体1のX線照射部30に照射されたX線6の一部は被検体1の表面あるいは内部で散乱し、散乱X線7が放たれる。被検体1から放たれた散乱X線7の一部は、複数個の微細管8が開けられたコリメータ3を通過した後、X線二次元検出器4に入射し、ここでX線量が二次元的に検出される。   In the present embodiment configured as described above, first, X-rays 6 from a plurality of X-ray sources 2 are irradiated two-dimensionally to the X-ray irradiation unit 30 of the subject 1. A part of the X-rays 6 irradiated to the X-ray irradiation unit 30 of the subject 1 is scattered on the surface or inside of the subject 1, and scattered X-rays 7 are emitted. A part of the scattered X-rays 7 emitted from the subject 1 passes through the collimator 3 in which a plurality of fine tubes 8 are opened, and then enters the X-ray two-dimensional detector 4 where the X-ray dose is two. Dimensionally detected.

このとき、被検体1、コリメータ3およびX線二次元検出器4の位置関係を図1に示すように配置し、コリメータ径、コリメータ厚さ、被検体1とコリメータ3の間の距離およびコリメータ3とX線二次元検出器4の間の距離を適当な値とすることで、被検体1の表面全体を一様に、ある空間分解能でコリメータ3が見込むこととなる。また、被検体1の表面形状(たとえば凹凸)により散乱X線7の光子数が変化するので、X線二次元検出器4には被検体1の表面形状の情報が二次元的に映し出されることとなる。   At this time, the positional relationship among the subject 1, the collimator 3 and the X-ray two-dimensional detector 4 is arranged as shown in FIG. 1, the collimator diameter, the collimator thickness, the distance between the subject 1 and the collimator 3, and the collimator 3 By setting the distance between the X-ray two-dimensional detector 4 to an appropriate value, the collimator 3 can expect the entire surface of the subject 1 uniformly and with a certain spatial resolution. In addition, since the number of photons of the scattered X-rays 7 changes depending on the surface shape (for example, unevenness) of the subject 1, information on the surface shape of the subject 1 is displayed two-dimensionally on the X-ray two-dimensional detector 4. It becomes.

本実施の形態によれば、X線二次元検出器4に被検体1の表面形状の情報が二次元的に映し出されるので、被検体1の表面形状の検査をすることができる。   According to the present embodiment, since the surface shape information of the subject 1 is two-dimensionally displayed on the X-ray two-dimensional detector 4, the surface shape of the subject 1 can be inspected.

[第2の実施形態]
次に、本発明に係るX線検査装置の第2の実施形態を、図2を用いて説明する。なお第1の実施形態と同一または類似の構成には同一の符号を付し、重複する説明は省略する。
[Second Embodiment]
Next, a second embodiment of the X-ray inspection apparatus according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same or similar structure as 1st Embodiment, and the overlapping description is abbreviate | omitted.

本実施形態の構成は図1とほぼ同様であるが、ここで特徴的なことは、複数のX線源2のターゲット金属9固有の特性X線10を利用すること、被検体1表面から放たれる蛍光X線11を利用すること、およびエネルギー弁別型X線二次元検出器12を用いることである。   The configuration of the present embodiment is almost the same as that in FIG. 1, but what is characteristic here is that the characteristic X-rays 10 unique to the target metal 9 of the plurality of X-ray sources 2 are used, and the surface of the subject 1 is released. The use of drooping fluorescent X-rays 11 and the use of an energy discrimination type X-ray two-dimensional detector 12.

このように構成された本実施の形態において、まず、複数のX線源2から特性X線10が被検体1の表面に二次元的に照射される。被検体1に照射された特性X線10の一部は被検体1の表面に吸収され、そこから蛍光X線11が放たれる。被検体1の表面から放たれた蛍光X線11の一部は複数個の微細管8が開けられたコリメータ3を通過した後、X線二次元検出器4に入射し、ここでX線量が二次元的に検出される。以降の作用は第1の実施形態と同様であるが、蛍光X線11は図1の散乱X線7に比べて、被検体1の表面形状の細かい変化に対して強度応答が敏感であることが特徴である。これにより、被検体1の深さ方向の分解能の高い表面形状の検査をすることができる。   In the present embodiment configured as described above, first, characteristic X-rays 10 are irradiated two-dimensionally on the surface of the subject 1 from a plurality of X-ray sources 2. A part of the characteristic X-ray 10 irradiated to the subject 1 is absorbed by the surface of the subject 1, and the fluorescent X-ray 11 is emitted therefrom. A part of the fluorescent X-rays 11 emitted from the surface of the subject 1 passes through the collimator 3 in which a plurality of fine tubes 8 are opened, and then enters the X-ray two-dimensional detector 4 where the X-ray dose is Two-dimensionally detected. The subsequent operation is the same as that of the first embodiment, but the fluorescent X-ray 11 is more sensitive in intensity response to fine changes in the surface shape of the subject 1 than the scattered X-ray 7 in FIG. Is a feature. Thereby, it is possible to inspect the surface shape of the subject 1 with high resolution in the depth direction.

[第3の実施形態]
次に、本発明に係るX線検査装置の第3の実施形態を、図3を用いて説明する。なお第1または第2の実施形態と同一または類似の構成には同一の符号を付し、重複する説明は省略する。
[Third Embodiment]
Next, a third embodiment of the X-ray inspection apparatus according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same or similar structure as 1st or 2nd embodiment, and the overlapping description is abbreviate | omitted.

本実施形態では、複数のX線源2のうちの一つ(あるいはいくつかあるいは全て)から発生したX線6をフレネルゾーンプレートなどのX線集光光学素子14に入射し、X線6を集光して被検体1の表面に微小ポイント照射するように構成されている。被検体1に照射されたX線6の一部は被検体1の表面あるいは内部で散乱し、散乱X線7が放たれる。被検体1から放たれた散乱X線7の一部はX線検出器13に入射し、ここでX線量が検出される。   In the present embodiment, X-rays 6 generated from one (or some or all) of the plurality of X-ray sources 2 are incident on an X-ray focusing optical element 14 such as a Fresnel zone plate, and the X-rays 6 are emitted. It is configured to focus and irradiate the surface of the subject 1 with a minute point. A part of the X-ray 6 irradiated to the subject 1 is scattered on the surface or inside of the subject 1, and scattered X-rays 7 are emitted. A part of the scattered X-rays 7 emitted from the subject 1 is incident on the X-ray detector 13 where the X-ray dose is detected.

この実施形態では、X線源2、X線検出器13、X線集光光学素子14、遮蔽体5などを含むX線検査装置を一体で、被検体1に対して相対的に被検体1に沿って移動(走査)させる移動機構(図示せず)が設けられている。この移動機構により、検査装置の位置をX線6の集光径程度ずつ移動させて、そのつど同様に散乱X線量を検出する。この操作を連続して行ない、検査装置を移動(走査)した範囲の散乱X線量を比較することで被検体1表面の形状変化を検知することができる。このとき、X線集光光学素子14により集光されたX線6の集光径は、第1の実施形態のX線検査装置で得られる空間分解能より小さくすることが可能である。したがって、より高い空間分解能の表面形状変化を検出することができる。   In this embodiment, an X-ray inspection apparatus including an X-ray source 2, an X-ray detector 13, an X-ray condensing optical element 14, a shield 5 and the like is integrated, and the subject 1 is relatively relative to the subject 1. Is provided with a moving mechanism (not shown) for moving (scanning) along. By this moving mechanism, the position of the inspection apparatus is moved by about the condensed diameter of the X-ray 6, and the scattered X-ray dose is detected in the same manner each time. By performing this operation continuously and comparing the scattered X-ray dose in the range in which the inspection apparatus is moved (scanned), the shape change of the surface of the subject 1 can be detected. At this time, the condensing diameter of the X-ray 6 condensed by the X-ray condensing optical element 14 can be made smaller than the spatial resolution obtained by the X-ray inspection apparatus of the first embodiment. Therefore, a surface shape change with higher spatial resolution can be detected.

[第4の実施形態]
次に、本発明に係るX線検査装置の第4の実施形態を、図4を用いて説明する。なお第1ないし第3の実施形態と同一または類似の構成には同一の符号を付し、重複する説明は省略する。
[Fourth Embodiment]
Next, a fourth embodiment of the X-ray inspection apparatus according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same or similar structure as 1st thru | or 3rd embodiment, and the overlapping description is abbreviate | omitted.

本実施形態は、図1に示した構成に発振器15、パルス電源16、時間分解検出器17(あるいは同期検出器18)が付加された構成をとっている。このように構成された本実施の形態において、まず、ある繰り返し周波数に設定された発振器15からのパルス信号により、パルス電源16が駆動し、複数のX線源2からX線6がパルス状に被検体1に照射される。以降、X線二次元検出器4により被検体1から放たれた散乱X線7を検出する作用までは第1の実施形態と同様である。   In the present embodiment, an oscillator 15, a pulse power supply 16, and a time-resolved detector 17 (or a synchronous detector 18) are added to the configuration shown in FIG. In the present embodiment configured as described above, first, the pulse power source 16 is driven by the pulse signal from the oscillator 15 set to a certain repetition frequency, and the X-rays 6 from the plurality of X-ray sources 2 are pulsed. The subject 1 is irradiated. Thereafter, the operation up to the operation of detecting the scattered X-rays 7 emitted from the subject 1 by the X-ray two-dimensional detector 4 is the same as in the first embodiment.

X線二次元検出器4において検出されたX線量は、時間分解検出器17により二次元でしかも時間分解計測(パルスイベント計測)をされる。あるいは、発振器15と同期をとった同期検出器18によりパルス成分のみが同期検出される。また、X線6をパルス状に発生するため、X線源2の電流ピーク値は直流時に比べて高く設定することができるようになる。したがって、照射X線のパルスピーク値も直流時よりも高くなるため、散乱X線7のパルスピーク値も同様に高いものとなる。   The X-ray dose detected by the X-ray two-dimensional detector 4 is two-dimensionally and time-resolved (pulse event measurement) by the time-resolved detector 17. Alternatively, only the pulse component is synchronously detected by the synchronous detector 18 synchronized with the oscillator 15. Further, since the X-ray 6 is generated in a pulse shape, the current peak value of the X-ray source 2 can be set higher than that at the time of direct current. Therefore, since the pulse peak value of the irradiated X-ray is higher than that at the time of direct current, the pulse peak value of the scattered X-ray 7 is similarly high.

本実施の形態によれば、高いパルスピーク値をもつ散乱X線7をパルスイベント計測することができるので、たとえば放射線環境下などでのSN比(信号/ノイズ比)の高い検査が可能となる。また、X線6の繰り返し周波数と同期した散乱X線のみの検出が可能となるため、他の周波数成分をもつノイズ環境下(たとえば放射線環境下)でのSN比の高い検査が可能となる。   According to the present embodiment, since scattered event X-rays 7 having a high pulse peak value can be measured, for example, inspection with a high SN ratio (signal / noise ratio) in a radiation environment or the like can be performed. . In addition, since only scattered X-rays synchronized with the repetition frequency of X-rays 6 can be detected, an inspection with a high SN ratio can be performed in a noise environment (for example, in a radiation environment) having other frequency components.

[第5の実施形態]
次に、図5を用いて第5の実施形態を説明する。本実施形態は、第1の実施形態(図1)の構成において、X線二次元検出器4の前面に設置されたコリメータ3の代わりに、X線結像光学素子19を設置して、被検体1の表面像をX線二次元検出器4に結像する構成としたものである。前記コリメータ3は、ピンホールカメラの原理によって、被検体表面の画像を得るものであるが、第5の実施の形態においては、被検体1からのX線信号を効率良く、X線二次元検出器4に導くことが可能となり、空間分解能の確保と信号となるX線光子数の確保が可能となる。
[Fifth Embodiment]
Next, a fifth embodiment will be described with reference to FIG. In the present embodiment, in the configuration of the first embodiment (FIG. 1), instead of the collimator 3 installed on the front surface of the X-ray two-dimensional detector 4, an X-ray imaging optical element 19 is installed, The surface image of the specimen 1 is formed on the X-ray two-dimensional detector 4. The collimator 3 obtains an image of the subject surface based on the principle of a pinhole camera. In the fifth embodiment, the X-ray signal from the subject 1 can be detected efficiently and two-dimensionally detected. Therefore, it is possible to secure the spatial resolution and the number of X-ray photons as signals.

また、被検体1とX線結像光学素子19とX線二次元検出器4との間隔を調整することにより、被検体1のX線画像の拡大率を変えることが可能となり、縮小撮影によって広い領域を荒く検査するケースや、拡大撮影によって狭い領域を高分解能で検査するケースを任意に選択することが可能となる。   Further, by adjusting the distances between the subject 1, the X-ray imaging optical element 19, and the X-ray two-dimensional detector 4, the enlargement ratio of the X-ray image of the subject 1 can be changed. It is possible to arbitrarily select a case in which a wide area is inspected roughly or a case in which a narrow area is inspected with high resolution by magnified imaging.

[第6の実施形態]
次に、本発明に係るX線検査装置の第6の実施形態を、図6を用いて説明する。
[Sixth Embodiment]
Next, a sixth embodiment of the X-ray inspection apparatus according to the present invention will be described with reference to FIG.

本実施形態は、X線照射・検出装置20と、これに一体に形成された表面凹凸モニタ21とから構成されている。X線照射・検出装置20は、たとえば前述の第1ないし第5の実施形態のいずれかのX線検出装置である。表面凹凸モニタ21は、たとえば表面とセンサまでの距離を測光するためのレーザー光22を投光する投光部23と、表面からの反射光を受光する受光部24を有する変位センサである。表面凹凸モニタ21から得られた表面凹凸状態は、データ処理によってX線照射・検出装置20により得られた散乱、蛍光X線量の補正に供される。   The present embodiment is composed of an X-ray irradiation / detection device 20 and a surface unevenness monitor 21 formed integrally therewith. The X-ray irradiation / detection device 20 is, for example, the X-ray detection device according to any one of the first to fifth embodiments described above. The surface unevenness monitor 21 is a displacement sensor having, for example, a light projecting unit 23 that projects laser light 22 for measuring the distance between the surface and the sensor, and a light receiving unit 24 that receives reflected light from the surface. The surface unevenness state obtained from the surface unevenness monitor 21 is used for correction of scattering and fluorescent X-ray dose obtained by the X-ray irradiation / detection device 20 by data processing.

このように構成された本実施形態において、表面凹凸モニタ21により、被検体1とX線照射・検出装置20までの距離を計測することにより、その距離による検出X線量の誤差を補正することが可能となる。これにより、より正確な表面状態の計測が可能となる。   In the present embodiment configured as described above, the surface unevenness monitor 21 measures the distance between the subject 1 and the X-ray irradiation / detection device 20, thereby correcting the error in the detected X-ray dose due to the distance. It becomes possible. Thereby, the measurement of a more accurate surface state is attained.

[第7の実施形態]
次に、本発明に係るX線検査装置の第7の実施形態を図7を用いて説明する。なお第6の実施形態と同一または類似の構成には同一の符号を付し、重複する説明は省略する。
[Seventh Embodiment]
Next, a seventh embodiment of the X-ray inspection apparatus according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same or similar structure as 6th Embodiment, and the overlapping description is abbreviate | omitted.

本実施形態は、X線照射・検出装置20、二次元走査型表面凹凸モニタ25から構成されている。二次元走査型表面凹凸モニタ25は、変位センサを二次元的に走査する機構を有する。X線照射・検出装置20の進行方向に二次元走査型表面凹凸モニタ25を設置し、予め被検体1の表面状態を計測しておくことにより、その距離に応じて、データ処理によってX線照射・検出装置20により得られた散乱、蛍光X線量の補正をリアルタイムに行なうことが可能であり、より正確な表面状態のリアルタイム計測が可能となる。   The present embodiment includes an X-ray irradiation / detection device 20 and a two-dimensional scanning surface unevenness monitor 25. The two-dimensional scanning surface unevenness monitor 25 has a mechanism for scanning the displacement sensor two-dimensionally. A two-dimensional scanning surface unevenness monitor 25 is installed in the traveling direction of the X-ray irradiation / detection device 20, and the surface state of the subject 1 is measured in advance, so that X-ray irradiation is performed by data processing according to the distance. -The scattering and fluorescent X-ray dose obtained by the detection device 20 can be corrected in real time, and more accurate real-time measurement of the surface state becomes possible.

[第8の実施形態]
次に、本発明に係るX線検査装置の第8の実施形態を説明する。この実施形態は第2の実施形態(図2)の変形例であって、第2の実施形態と類似するが、複数のX線源2のいくつかあるいは全てのターゲットを異なる金属材質としたことに特徴がある。このように構成された本実施の形態においては、異なるターゲット金属固有の特性X線10を複数種類得ることができ、これらを被検体1に照射することができる。また、蛍光X線のエネルギーは被検体1の材質により決まる。したがって、被検体1の材質(蛍光X線11)に適した特性X線10を選んで被検体1に照射することで、複数の材質の被検体1の表面形状検査をすることができる。
[Eighth Embodiment]
Next, an eighth embodiment of the X-ray inspection apparatus according to the present invention will be described. This embodiment is a modification of the second embodiment (FIG. 2) and is similar to the second embodiment, but some or all of the targets of the plurality of X-ray sources 2 are made of different metal materials. There is a feature. In the present embodiment configured as described above, a plurality of types of characteristic X-rays 10 unique to different target metals can be obtained, and the subject 1 can be irradiated with these. The energy of the fluorescent X-ray is determined by the material of the subject 1. Therefore, by selecting the characteristic X-ray 10 suitable for the material (fluorescent X-ray 11) of the subject 1 and irradiating the subject 1, the surface shape inspection of the subject 1 made of a plurality of materials can be performed.

本発明に係るX線検査装置の第1の実施形態の縦断面図である。1 is a longitudinal sectional view of a first embodiment of an X-ray inspection apparatus according to the present invention. 本発明に係るX線検査装置の第2の実施形態の縦断面図である。It is a longitudinal cross-sectional view of 2nd Embodiment of the X-ray inspection apparatus which concerns on this invention. 本発明に係るX線検査装置の第3の実施形態の縦断面図である。It is a longitudinal cross-sectional view of 3rd Embodiment of the X-ray inspection apparatus which concerns on this invention. 本発明に係るX線検査装置の第4の実施形態の縦断面図である。It is a longitudinal cross-sectional view of 4th Embodiment of the X-ray inspection apparatus which concerns on this invention. 本発明に係るX線検査装置の第5の実施形態の縦断面図である。It is a longitudinal cross-sectional view of 5th Embodiment of the X-ray inspection apparatus which concerns on this invention. 本発明に係るX線検査装置の第6の実施形態を示す図であって、(a)は全体斜視図、(b)は(a)の投光部および受光部を下方から見た斜視図である。It is a figure which shows 6th Embodiment of the X-ray inspection apparatus which concerns on this invention, Comprising: (a) is a whole perspective view, (b) is the perspective view which looked at the light projection part and light-receiving part of (a) from the bottom. It is. 本発明に係るX線検査装置の第7の実施形態を示す図であって、(a)は全体斜視図、(b)は(a)の投光部および受光部を下方から見た斜視図である。It is a figure which shows 7th Embodiment of the X-ray inspection apparatus which concerns on this invention, Comprising: (a) is a whole perspective view, (b) is the perspective view which looked at the light projection part and light-receiving part of (a) from the downward direction. It is.

符号の説明Explanation of symbols

1…被検体、2…X線源、3…コリメータ、4…X線二次元検出器、5…遮蔽体、6…X線、7…散乱X線、8…微細管、9…ターゲット金属、10…特性X線、11…蛍光X線、12…エネルギー弁別型X線二次元検出器、13…X線検出器、14…X線集光光学素子、15…発振器、16…パルス電源、17…時間分解検出器、18…同期検出器、19…X線結像光学素子、20…X線照射・検出装置、21…表面凹凸モニタ、22…レーザー光、23…投光部、24…受光部、25…二次元走査型表面凹凸モニタ、30…X線照射部 DESCRIPTION OF SYMBOLS 1 ... Subject, 2 ... X-ray source, 3 ... Collimator, 4 ... X-ray two-dimensional detector, 5 ... Shielding body, 6 ... X-ray, 7 ... Scattered X-ray, 8 ... Micro tube, 9 ... Target metal, DESCRIPTION OF SYMBOLS 10 ... Characteristic X-ray, 11 ... Fluorescence X-ray, 12 ... Energy discrimination type X-ray two-dimensional detector, 13 ... X-ray detector, 14 ... X-ray condensing optical element, 15 ... Oscillator, 16 ... Pulse power supply, 17 ... time-resolved detector, 18 ... synchronous detector, 19 ... X-ray imaging optical element, 20 ... X-ray irradiation / detection device, 21 ... surface unevenness monitor, 22 ... laser light, 23 ... light projecting unit, 24 ... light reception 25: Two-dimensional scanning surface unevenness monitor, 30 ... X-ray irradiation unit

Claims (13)

被検体のX線照射部に原X線を照射して被検体の表面形状の検査を行なうX線検査装置において、
前記X線照射部に原X線を照射するX線源と、
前記原X線の照射に応じて前記X線照射部の各部分から放出される二次X線を検出するように、前記X線照射部に対向して互いに間隔をおいて配置され、二次元的X線強度分布を検出する複数のX線検出器と、
前記X線照射部とX線検出器との間に配置され、前記X線検出器それぞれに到達する前記二次X線の見込み角を抑制する複数の抑制手段と、
を有すること、を特徴とするX線検査装置。
In an X-ray inspection apparatus that inspects the surface shape of a subject by irradiating the X-ray irradiation part of the subject with original X-rays,
An X-ray source for irradiating the X-ray irradiator with original X-rays;
Two-dimensionally arranged opposite to the X-ray irradiation unit so as to detect secondary X-rays emitted from each part of the X-ray irradiation unit in response to the irradiation of the original X-ray. A plurality of X-ray detectors for detecting a dynamic X-ray intensity distribution;
A plurality of suppression means arranged between the X-ray irradiator and the X-ray detector, for suppressing a prospective angle of the secondary X-ray reaching each X-ray detector;
An X-ray inspection apparatus characterized by comprising:
前記抑制手段はコリメータであることを特徴とする請求項1に記載のX線検査装置。   The X-ray inspection apparatus according to claim 1, wherein the suppression unit is a collimator. 前記抑制手段はX線結像光学素子であることを特徴とする請求項1に記載のX線検査装置。   The X-ray inspection apparatus according to claim 1, wherein the suppression unit is an X-ray imaging optical element. 被検体のX線照射部に原X線を照射して被検体の表面形状の検査を行なうX線検査装置において、
原X線を照射するX線源と、
前記原X線を前記X線照射部に集光するX線集光光学素子と、
前記原X線の照射に応じて前記X線照射部から放出される二次X線を検出するように、前記X線照射部に対向して配置されたX線検出器と、
前記X線源、X線集光光学素子およびX線検出器を、前記被検体に対して相対的に、かつ前記被検体に沿って移動させる移動機構と、
を有すること、を特徴とするX線検査装置。
In an X-ray inspection apparatus that inspects the surface shape of a subject by irradiating the X-ray irradiation part of the subject with original X-rays,
An X-ray source that irradiates the original X-ray;
An X-ray focusing optical element that focuses the original X-rays on the X-ray irradiation unit;
An X-ray detector disposed opposite to the X-ray irradiation unit so as to detect secondary X-rays emitted from the X-ray irradiation unit in response to irradiation of the original X-ray;
A moving mechanism for moving the X-ray source, the X-ray focusing optical element and the X-ray detector relative to the subject and along the subject;
An X-ray inspection apparatus characterized by comprising:
前記二次X線は散乱X線であることを特徴とする請求項1ないし請求項4のいずれか一項に記載のX線検査装置。   The X-ray inspection apparatus according to any one of claims 1 to 4, wherein the secondary X-ray is a scattered X-ray. 前記二次X線は蛍光X線であることを特徴とする請求項1ないし請求項4のいずれか一項に記載のX線検査装置。   The X-ray inspection apparatus according to any one of claims 1 to 4, wherein the secondary X-ray is a fluorescent X-ray. 前記X線源はパルスX線源であって、前記X線検出器はパルスイベント計測あるいは同期検出を行なうものであること、を特徴とする請求項1ないし請求項6のいずれか一項に記載のX線検査装置。   The X-ray source is a pulse X-ray source, and the X-ray detector performs pulse event measurement or synchronous detection. X-ray inspection equipment. 前記被検体の表面凹凸を検査する被検体表面凹凸モニタをさらに有することを特徴とする請求項1ないし請求項7のいずれか一項に記載のX線検査装置。   The X-ray inspection apparatus according to claim 1, further comprising a subject surface unevenness monitor that inspects the surface unevenness of the subject. 前記X線源は複数個あって、これら複数のX線源が同時に原X線を照射可能であることを特徴とする請求項1ないし請求項8のいずれか一項に記載のX線検査装置。   9. The X-ray inspection apparatus according to claim 1, wherein there are a plurality of X-ray sources, and the plurality of X-ray sources can simultaneously irradiate an original X-ray. . 前記X線源は複数個あって、これら複数のX線源が異なる特性X線を照射可能であることを特徴とする請求項1ないし請求項9のいずれか一項に記載のX線検査装置。   The X-ray inspection apparatus according to claim 1, wherein there are a plurality of X-ray sources, and the plurality of X-ray sources can irradiate different characteristic X-rays. . 被検体のX線照射部にX線を照射して被検体の表面形状の検査を行なうX線検査方法において、
前記X線照射部に対向して原X線を照射するX線源を配置し、
前記X線照射部に対向して複数のX線検出器を互いに間隔をおいて配置し、
前記X線照射部とX線検出器との間に、前記複数のX線検出器それぞれから前記X線照射部を見込む見込み角を抑制する複数の抑制手段を配置し、
前記原X線の照射に応じて前記X線照射部の各部分から放出される二次X線を前記複数のX線検出器によって二次元的に検出すること、
を特徴とするX線検査方法。
In an X-ray inspection method for inspecting the surface shape of a subject by irradiating the X-ray irradiation part of the subject with X-rays,
An X-ray source that irradiates the original X-rays facing the X-ray irradiation unit
A plurality of X-ray detectors are arranged at intervals from each other so as to face the X-ray irradiation unit,
Between the X-ray irradiator and the X-ray detector, a plurality of suppression means for suppressing a prospective angle to expect the X-ray irradiator from each of the plurality of X-ray detectors,
Two-dimensionally detecting secondary X-rays emitted from each part of the X-ray irradiation unit in response to the irradiation of the original X-rays by the plurality of X-ray detectors;
X-ray inspection method characterized by the above.
被検体のX線照射部にX線を照射して被検体の表面形状の検査を行なうX線検査方法において、
前記X線照射部に対向して原X線を照射するX線源を配置し、
前記原X線を前記X線照射部に集光するX線集光光学素子を配置し、
前記X線照射部に対向してX線検出器を配置し、
前記原X線の照射に応じて前記X線照射部から放出される二次X線を前記X線検出器によって検出し、
前記X線源、X線集光光学素子およびX線検出器を、前記被検体に対して相対的に、かつ前記被検体に沿って移動させて、前記X線検出器による二次X線の検出を繰り返すこと、
を特徴とするX線検査方法。
In an X-ray inspection method for inspecting the surface shape of a subject by irradiating the X-ray irradiation part of the subject with X-rays,
An X-ray source that irradiates the original X-rays facing the X-ray irradiation unit is disposed,
An X-ray condensing optical element that condenses the original X-ray on the X-ray irradiation unit is disposed,
An X-ray detector is disposed opposite the X-ray irradiation unit,
Secondary X-rays emitted from the X-ray irradiation unit in response to irradiation of the original X-rays are detected by the X-ray detector;
The X-ray source, the X-ray condensing optical element, and the X-ray detector are moved relative to the subject and along the subject, so that secondary X-rays generated by the X-ray detector are generated. Repeating detection,
X-ray inspection method characterized by the above.
前記X線源、X線集光光学素子およびX線検出器に取り付けられた表面凹凸モニタによって前記X線照射部の表面の凹凸を検出するステップを含むことを特徴とする請求項11または12に記載のX線検査方法。   13. The method according to claim 11, further comprising: detecting irregularities on the surface of the X-ray irradiation unit by a surface irregularity monitor attached to the X-ray source, the X-ray focusing optical element, and the X-ray detector. The X-ray inspection method described.
JP2007100291A 2007-04-06 2007-04-06 X-ray inspection device and method Withdrawn JP2008256587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100291A JP2008256587A (en) 2007-04-06 2007-04-06 X-ray inspection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100291A JP2008256587A (en) 2007-04-06 2007-04-06 X-ray inspection device and method

Publications (1)

Publication Number Publication Date
JP2008256587A true JP2008256587A (en) 2008-10-23

Family

ID=39980288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100291A Withdrawn JP2008256587A (en) 2007-04-06 2007-04-06 X-ray inspection device and method

Country Status (1)

Country Link
JP (1) JP2008256587A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444004C2 (en) * 2010-12-15 2012-02-27 Общество с ограниченной ответственностью "АНАЛИТНАУЧЦЕНТР" (ООО "АНАЛИТНАУЧЦЕНТР") Apparatus for x-ray radiometric analysis of composition of pulp and solutions
JP2018059911A (en) * 2016-09-14 2018-04-12 ザ・ボーイング・カンパニーThe Boeing Company Backscattered x-ray for inspecting component
JP2019025331A (en) * 2017-07-25 2019-02-21 清華大学Tsinghua University Radiation transmission/fluorescence ct imaging system and imaging method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444004C2 (en) * 2010-12-15 2012-02-27 Общество с ограниченной ответственностью "АНАЛИТНАУЧЦЕНТР" (ООО "АНАЛИТНАУЧЦЕНТР") Apparatus for x-ray radiometric analysis of composition of pulp and solutions
JP2018059911A (en) * 2016-09-14 2018-04-12 ザ・ボーイング・カンパニーThe Boeing Company Backscattered x-ray for inspecting component
JP7440671B2 (en) 2016-09-14 2024-02-28 ザ・ボーイング・カンパニー Backscattered X-rays for component inspection
JP2019025331A (en) * 2017-07-25 2019-02-21 清華大学Tsinghua University Radiation transmission/fluorescence ct imaging system and imaging method
US10914693B2 (en) 2017-07-25 2021-02-09 Tsinghua University Ray transmission and fluorescence CT imaging system and method

Similar Documents

Publication Publication Date Title
US10466185B2 (en) X-ray interrogation system using multiple x-ray beams
US9329141B2 (en) Large field of view grating interferometers for X-ray phase contrast imaging and CT at high energy
US7236564B2 (en) Linear array detector system and inspection method
JP5269041B2 (en) X-ray imaging apparatus and X-ray imaging method
KR20190015531A (en) Method and Apparatus for X-ray Microscopy Observation
US20100091947A1 (en) Differential Interference Phase Contrast X-ray Imaging System
US10234406B2 (en) Radiation image acquisition system
JP2007309685A (en) Inspection device and method
US20210255343A1 (en) X-Ray Detectors of High Spatial Resolution
JP2009002805A (en) Small angle/wide angle x-ray measuring device
JP2003130819A (en) Inspection device using radiation
JP2008256587A (en) X-ray inspection device and method
JP5489412B2 (en) High resolution X-ray microscope with X-ray fluorescence analysis function
CN109946329B (en) X-ray measuring device
JP3902048B2 (en) Radiation inspection equipment
US11000249B2 (en) X-ray detector for grating-based phase-contrast imaging
JP4987321B2 (en) X-ray inspection apparatus and X-ray inspection method
RU2288466C1 (en) Device for carrying out radiographic and tomographic examination
JP6506629B2 (en) X-ray receiving apparatus and X-ray inspection apparatus provided with the same
JP2000055842A (en) X-ray image pick-up analysis method and device
JP2020516896A (en) Talbot X-ray microscope
CN110520716B (en) TALBOT X-ray microscope
JP2007240253A (en) Device and method for detecting crack
WO2013187012A1 (en) X-ray apparatus and x-ray measurement method
JP2017044588A (en) X-ray detector and X-ray imaging system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706