JP2008094951A - Process for producing radiation crosslinked hydrogel - Google Patents

Process for producing radiation crosslinked hydrogel Download PDF

Info

Publication number
JP2008094951A
JP2008094951A JP2006277930A JP2006277930A JP2008094951A JP 2008094951 A JP2008094951 A JP 2008094951A JP 2006277930 A JP2006277930 A JP 2006277930A JP 2006277930 A JP2006277930 A JP 2006277930A JP 2008094951 A JP2008094951 A JP 2008094951A
Authority
JP
Japan
Prior art keywords
metal salt
cmc
aqueous solution
radiation
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006277930A
Other languages
Japanese (ja)
Inventor
Ryohei Oaku
亮平 大阿久
Naotane Nagasawa
尚胤 長澤
Toshiaki Yagi
敏明 八木
Masao Tamada
正男 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2006277930A priority Critical patent/JP2008094951A/en
Publication of JP2008094951A publication Critical patent/JP2008094951A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable low cost production of a carboxymethylcellulose (CMC) hydrogel with the use of a low concentration CMC aqueous solution by a low irradiation dose. <P>SOLUTION: The hydrogel is produced by irradiating an aqueous solution of CMC having a low concentration of 5 pts.wt. or less and a metal salt such as calcium chloride with γ rays of 3 kGy or more to allow the CMC to gel and dipping the obtained gel in water to eliminate the metal salt. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放射線照射によってカルボキシメチルセルロース(CMC)をゲル化させる、放射線橋かけ型CMCハイドロゲル(以下、単にCMCハイドロゲルという。)の製造方法に関する。本発明は、特に、CMCのゲル化に要する放射線照射線量が極めて少なくて済むCMCハイドロゲルの製造方法に関する。 The present invention relates to a method for producing a radiation-crosslinked CMC hydrogel (hereinafter simply referred to as CMC hydrogel) in which carboxymethylcellulose (CMC) is gelled by irradiation. In particular, the present invention relates to a method for producing a CMC hydrogel that requires only a very small amount of radiation for the gelation of CMC.

CMCは、現在最も一般的に使用されている水溶性高分子である。CMC水溶液にγ線などの放射線を照射し、CMCの分子同士を橋かけさせることで、セルロースの分子が三次元の網目構造をとり、この網目構造の内部に水をしっかり捉えたゲルが得られることが知られている。このようにして得られたゲルは、環境保全型の安全性の高いゲルであるため、食品、医薬品、保水材等に幅広く使用されている。 CMC is the most commonly used water-soluble polymer at present. By irradiating the CMC aqueous solution with radiation such as γ-rays and cross-linking the CMC molecules, a cellulose molecule has a three-dimensional network structure, and a gel is obtained in which water is firmly captured inside the network structure. It is known. Since the gel thus obtained is an environmentally-conserved and highly safe gel, it is widely used in foods, pharmaceuticals, water retaining materials and the like.

このように、CMC水溶液にγ線などの放射線照射を行いCMCハイドロゲルに調製する方法が、例えば、特開2001−2703号公報に開示されている(特許文献1)。 As described above, a method for preparing a CMC hydrogel by irradiating a CMC aqueous solution with radiation such as γ rays is disclosed in, for example, JP-A-2001-2703 (Patent Document 1).

特開2001−2703JP2001-2703

特許文献1の図1及び図3から明らかなように、一般的にCMC濃度が高くなるにつれて、またγ線の照射線量が大きくなるにつれて、ゲル分率は増加し、膨潤度は低下する。したがって、上述のような従来方法では、多量のCMCハイドロゲルを得ようとする場合には、多量のCMCを使用する必要があり、さらにはγ線の照射線量を大きくする必要があり、製造コストが高いという課題があった。 As apparent from FIGS. 1 and 3 of Patent Document 1, generally, as the CMC concentration increases and the irradiation dose of γ rays increases, the gel fraction increases and the degree of swelling decreases. Therefore, in the conventional method as described above, in order to obtain a large amount of CMC hydrogel, it is necessary to use a large amount of CMC, and further, it is necessary to increase the irradiation dose of γ-rays, resulting in a production cost. There was a problem of high.

そこで、本発明の目的は、低濃度のCMC水溶液などの低濃度の多糖類水溶液を使用し、かつ低照射線量によって多糖類ハイドロゲルを安価に製造することができるハイドロゲルの製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for producing a hydrogel that can produce a polysaccharide hydrogel at low cost by using a low concentration polysaccharide aqueous solution such as a low concentration CMC aqueous solution and with a low irradiation dose. There is.

本発明は、基本的には、5重量部以下という低濃度の多糖類水溶液に塩化カルシウム、塩化マグネシウム、硫酸マグネシウムなどの金属塩を添加し、多糖類の分子鎖間距離を縮めておいて、電離性放射線を照射して放射線橋かけさせることにある。本発明では、金属イオンの作用によって、分子鎖間距離を縮めることにより、従来例よりも低照射線量で多糖類の橋かけを行わせることができる。 The present invention basically adds a metal salt such as calcium chloride, magnesium chloride, magnesium sulfate to a low-concentration polysaccharide aqueous solution of 5 parts by weight or less, and shortens the distance between the molecular chains of the polysaccharide. The purpose is to bridge the radiation by irradiating with ionizing radiation. In the present invention, polysaccharides can be crosslinked with a lower irradiation dose than in the conventional example by reducing the distance between molecular chains by the action of metal ions.

本発明のより具体的かつ好適なゲルの製造方法は、金属塩とカルボキシメチル化されている多糖類の低濃度水溶液に、電離性放射線を照射し、該多糖類に放射線橋かけを生じさせゲル化した後、該ゲルを水に浸漬させて金属塩を脱離させ、放射線橋かけ型ハイドロゲルを得るものである。 A more specific and preferable method for producing a gel of the present invention is to irradiate a low-concentration aqueous solution of a metal salt and a carboxymethylated polysaccharide with ionizing radiation to cause the polysaccharide to undergo radiation crosslinking. Then, the gel is immersed in water to desorb the metal salt to obtain a radiation-crosslinked hydrogel.

CMC水溶液に限らず、カルボキシメチル化されている多糖類(CM−キチン、CM−キトサン、CM−デンプン)水溶液に金属塩を添加してもゲル化が促進されるが、カルボキシメチル化されている低濃度の多糖類は、5重量部以下のカルボキシメチルセルロースであることが最も好適である。 Gelation is promoted by adding a metal salt to an aqueous solution of polysaccharides (CM-chitin, CM-chitosan, CM-starch) that is not limited to CMC aqueous solution but is carboxymethylated. Most preferably, the low concentration polysaccharide is 5 parts by weight or less of carboxymethylcellulose.

また、ゲルの生成効率を高めるためには、金属塩が塩化カルシウムであることが好ましいが、塩化カリウムや塩化ナトリウムであっても良い。価数が大きい金属塩ほど低金属塩濃度でゲル化しやすい傾向があるが、3価の金属塩は物理ゲルを生成しやすくゲル化の制御が困難である。2価の金属塩、特に塩化カルシウムがゲル化の制御に適している。 In order to increase the gel generation efficiency, the metal salt is preferably calcium chloride, but may be potassium chloride or sodium chloride. A metal salt having a higher valence tends to be gelled at a lower metal salt concentration, but a trivalent metal salt is likely to form a physical gel and difficult to control gelation. Divalent metal salts, particularly calcium chloride, are suitable for controlling gelation.

さらに、上述の製造方法において使用される放射線はγ線であり、その放射線の照射線量は3kGy以上であることが好ましい。しかし、γ線以外でも、橋かけを生じさせるエネルギーを与えられる放射線、例えば、電子線などを使用しても良い。 Furthermore, the radiation used in the above-described manufacturing method is γ-ray, and the radiation dose is preferably 3 kGy or more. However, in addition to γ rays, radiation that can give energy to cause bridging, such as electron beams, may be used.

さらに、より一層好適な製造方法においては、5重量部以下の低濃度のカルボキシメチルセルロースと、塩化カルシウム、塩化カリウム又は塩化ナトリウムの金属塩との水溶液に、3kGy以上のγ線を照射し、該カルボキシメチルセルロースをゲル化させ、該ゲルを水に浸漬させて金属塩を離脱させ、ハイドロゲルを得るようにしている。 Furthermore, in a more preferable production method, an aqueous solution of carboxymethyl cellulose having a low concentration of 5 parts by weight or less and a metal salt of calcium chloride, potassium chloride or sodium chloride is irradiated with γ-rays of 3 kGy or more, and the carboxy Methyl cellulose is gelled and the gel is immersed in water to release the metal salt to obtain a hydrogel.

本発明によれば、30kGyとか40kGyという高照射線量を与えても十分なゲル分率が得られなかった、5重量部以下という低濃度の多糖類であっても、金属塩を添加することによって多糖類の分子鎖間距離を縮めることによって、低照射線量を与えるだけで大きなゲル分率を得ることができる。すなわち、多糖類の使用量が少なくて済み、電離性放射線の照射線量も低くて済むので、ゲルの製造コストを大幅に低下できる。 According to the present invention, a sufficient gel fraction was not obtained even when a high irradiation dose of 30 kGy or 40 kGy was given, but even by a polysaccharide having a low concentration of 5 parts by weight or less, by adding a metal salt By reducing the distance between the molecular chains of the polysaccharide, a large gel fraction can be obtained simply by giving a low irradiation dose. That is, since the amount of polysaccharide used is small and the dose of ionizing radiation is low, the production cost of the gel can be greatly reduced.

以下、図面を参照しながら、本発明の放射線橋かけ型ハイドロゲルの製造方法について詳細に説明する。なお、これらの実験は、いずれも大気圧下で室温にて行なわれた。
初めに、本発明の理解を助けるために、図1を参照して、本発明の原理について説明する。図1は、本発明の放射線橋かけ型ハイドロゲルの製造方法の概略構成を示すフローチャートである。図1では、塩化カルシウム、CMCなどの具体的物質やその濃度を揚げて説明しているが、これは単なる一例であって、後述されるようにこれらの物質やその濃度に限定されるものではない。
Hereinafter, the production method of the radiation-crosslinked hydrogel of the present invention will be described in detail with reference to the drawings. All these experiments were performed at room temperature under atmospheric pressure.
First, to help understanding of the present invention, the principle of the present invention will be described with reference to FIG. FIG. 1 is a flowchart showing a schematic configuration of a method for producing a radiation-crosslinked hydrogel of the present invention. In FIG. 1, specific substances such as calcium chloride and CMC and their concentrations are described. However, this is merely an example and is not limited to these substances and their concentrations as described later. Absent.

最初に、金属イオンを作るため、塩化カルシウムの粉末を準備する(ステップ101)。この塩化カルシウム粉末に超純水を加え、マグネチックスターラーなどの攪拌器によって混合し、均一な1重量部塩化カルシウム水溶液を調製する(ステップ102)。その後、調製された1重量部塩化カルシウム水溶液にCMC2.2(ここで、2.2は置換度を示す。)を加えて攪拌し、5重量部CMC2.2と1重量部塩化カルシウムを含む水溶液を調製する(ステップ103)。この水溶液に適量のγ線を照射してCMCに放射線橋かけを生じさせてゲル化する(ステップ104)。最後に、調製されたゲルを水に浸漬させ、ゾル分と金属塩を溶出させ、金属イオンを含まないCMCハイドロゲルを得る(ステップ105)。以上の実施例では、塩化カルシウム水溶液を調製し、その水溶液にCMC2.2を加えているが、この手順は逆であっても大きな問題はない。また、最終ステップにおいて、ゾル分と金属塩を溶出させるために水に浸漬させる時間は、添加する金属イオンによっても異なるが、ほぼ48時間程度で十分である。 First, calcium chloride powder is prepared to make metal ions (step 101). Ultrapure water is added to the calcium chloride powder and mixed with a stirrer such as a magnetic stirrer to prepare a uniform 1 part by weight calcium chloride aqueous solution (step 102). Thereafter, CMC2.2 (where 2.2 indicates the degree of substitution) is added to the prepared 1 part by weight calcium chloride aqueous solution and stirred, and the aqueous solution contains 5 parts by weight CMC2.2 and 1 part by weight calcium chloride. Is prepared (step 103). This aqueous solution is irradiated with an appropriate amount of γ rays to cause radiation crosslinking in CMC and gel (step 104). Finally, the prepared gel is immersed in water to elute the sol and metal salt to obtain a CMC hydrogel containing no metal ions (step 105). In the above examples, an aqueous calcium chloride solution is prepared and CMC2.2 is added to the aqueous solution, but there is no major problem even if this procedure is reversed. In the final step, the time for immersing in water to elute the sol and the metal salt is approximately 48 hours, although it varies depending on the metal ions to be added.

このようにして調製された本発明によるハイドロゲルは、従来のCMC水溶液に金属塩を添加したCM基と金属イオンとの相互作用型物理ゲルとは異なり、調製したゲルに有害な金属イオンを含まないという特徴がある。また、金属塩を添加する効果により、CMC濃度が低く、電離性放射線の照射線量が僅かであってもCMCをゲル化することが可能になった。 The hydrogel according to the present invention thus prepared contains a harmful metal ion in the prepared gel, unlike the conventional physical gel in which a metal salt is added to a CMC aqueous solution and a metal group that interacts with a CM group. There is no feature. Further, the effect of adding a metal salt makes it possible to gel CMC even when the CMC concentration is low and the irradiation dose of ionizing radiation is small.

これらの特徴を図2を用いてより具体的に説明する。図2は、従来技術と本発明によるゲル分率の相違を示すグラフである。各グラフは、CMC濃度の相違を示し、グラフの横軸は放射線の照射線量(kGy)を、縦軸はゲル分率(%)を示している。点線のグラフは従来技術を説明するためのものであり、実線は本発明を説明するためのものである。まず左下のグラフから明らかなように、金属塩を添加しない従来技術においては、5重量部の低濃度のCMC2.2では、照射する放射線量が30kGyに達して初めてゲル化が始まり、40kGyを照射してもゲル分率は30%程度が限度である。また、中央のグラフから、CMC濃度を40重量部に上げても80%以上のゲル分率を得るためには、20kGy以上の放射線を照射する必要があることがわかる。これに対して、金属塩を添加する本発明の製造方法によれば、5重量部の低濃度のCMC2.2であっても、照射線量3kGy程度からゲル化が始まり、照射線量が5kGyで、ゲル分率が80%に達することがわかる。 These features will be described more specifically with reference to FIG. FIG. 2 is a graph showing the difference in gel fraction according to the prior art and the present invention. Each graph shows the difference in CMC concentration, the horizontal axis of the graph shows the radiation dose (kGy), and the vertical axis shows the gel fraction (%). The dotted line graph is for explaining the prior art, and the solid line is for explaining the present invention. First, as is clear from the graph on the lower left, in the conventional technique in which no metal salt is added, gelation starts only when the dose of radiation reaches 30 kGy, and 40 kGy is irradiated with a low concentration of CMC2.2 of 5 parts by weight. Even so, the gel fraction is limited to about 30%. Further, it can be seen from the central graph that in order to obtain a gel fraction of 80% or more even when the CMC concentration is increased to 40 parts by weight, it is necessary to irradiate with radiation of 20 kGy or more. On the other hand, according to the production method of the present invention in which a metal salt is added, gelation starts from an irradiation dose of about 3 kGy, even at a low concentration of CMC2.2 of 5 parts by weight, and the irradiation dose is 5 kGy. It can be seen that the gel fraction reaches 80%.

以下に、本発明の放射線橋かけ型ハイドロゲルの製造方法に関し、本発明者等が行った幾つかの実施例について説明する。なお、以下の実施例において使用された原料のCMCは、いずれもダイセル化学工業(株)製のものであり、その詳細は次の通りである。
CMC A:1重量部水溶液の25℃の粘度142 (mPa・s) 置換度2.2
CMC B:1重量部水溶液の25℃の粘度1610(mPa・s) 置換度0.65
CMC C:1重量部水溶液の25℃の粘度126 (mPa・s) 置換度0.89
CMC D:1重量部水溶液の25℃の粘度387 (mPa・s) 置換度0.95
CMC E:1重量部水溶液の25℃の粘度1728(mPa・s) 置換度0.95
CMC F:1重量部水溶液の25℃の粘度1640(mPa・s) 置換度1.34
CMC G:1重量部水溶液の25℃の粘度3410(mPa・s) 置換度1.1
CMC H:1重量部水溶液の25℃の粘度5710(mPa・s) 置換度0.86
実施例1(CMC水溶液のゲル分率及び膨潤度に対する塩化カルシウム濃度依存性)
Hereinafter, several examples performed by the present inventors will be described with respect to the method for producing the radiation-crosslinked hydrogel of the present invention. The raw material CMC used in the following examples is manufactured by Daicel Chemical Industries, Ltd., and details thereof are as follows.
CMC A: viscosity of 1 part by weight aqueous solution at 25 ° C 142 (mPa · s) Degree of substitution 2.2
CMC B: Viscosity 1610 (mPa · s) at 25 ° C of 1 part by weight aqueous solution Degree of substitution 0.65
CMC C: Viscosity of 1 part by weight aqueous solution at 25 ° C 126 (mPa · s) Degree of substitution 0.89
CMC D: Viscosity at 25 ° C of 1 part by weight aqueous solution 387 (mPa · s) Degree of substitution 0.95
CMC E: Viscosity of 1 part by weight aqueous solution at 25 ° C 1728 (mPa · s) Degree of substitution 0.95
CMC F: viscosity of 1640 parts by weight aqueous solution at 25 ° C 1640 (mPa · s) degree of substitution 1.34
CMC G: Viscosity 3410 (mPa · s) of 1 part by weight aqueous solution at 25 ° C Substitution degree 1.1
CMC H: Viscosity 5710 (mPa · s) at 25 ° C of 1 part by weight aqueous solution Degree of substitution 0.86
Example 1 (Dependence of calcium chloride concentration on gel fraction and swelling degree of CMC aqueous solution)

塩化カルシウムに超純水100重量部を加えて塩濃度0.001〜1重量部(0.000068〜0.068mol/L)になるようにした金属塩水溶液に、5重量部のCMC Aを加えて金属塩添加のCMC水溶液とした。このサンプルにγ線20kGyを照射し、その後照射サンプルを超純水に浸漬させてゾルと金属塩成分を脱離させ、かつ膨潤させた。 5 parts by weight of CMC A is added to a metal salt aqueous solution in which 100 parts by weight of ultrapure water is added to calcium chloride so that the salt concentration becomes 0.001 to 1 part by weight (0.000068 to 0.068 mol / L). Thus, a CMC aqueous solution containing a metal salt was prepared. This sample was irradiated with γ-ray 20 kGy, and then the irradiated sample was immersed in ultrapure water to desorb and swell the sol and the metal salt component.

その結果を図3及び図4に示す。図3はCMC水溶液中の塩化カルシウム濃度とゲル分率の関係を示す。図3において、横軸は塩化カルシウム濃度(mol/L)を示し、縦軸はゲル分率(%)を示す。図3からわかるように、塩化カルシウム濃度が0.01重量部(0.00068mol/L)から1重量部(0.068mol/L)に増加するにつれて、ゲル分率は約20%から99%に上昇した。また、図4はCMC水溶液中の塩化カルシウム濃度と膨潤度の関係を示す。添加する塩化カルシウムの濃度によるが、乾燥ゲル1gの膨潤度は約90から7,000となった。
実施例2(CMC/CaCl水溶液のゲル分率及び膨潤度に対する線量依存性)
The results are shown in FIGS. FIG. 3 shows the relationship between the calcium chloride concentration in the CMC aqueous solution and the gel fraction. In FIG. 3, the horizontal axis indicates the calcium chloride concentration (mol / L), and the vertical axis indicates the gel fraction (%). As can be seen from FIG. 3, as the calcium chloride concentration increases from 0.01 parts by weight (0.00068 mol / L) to 1 part by weight (0.068 mol / L), the gel fraction increases from about 20% to 99%. Rose. FIG. 4 shows the relationship between the calcium chloride concentration in the CMC aqueous solution and the degree of swelling. Depending on the concentration of calcium chloride added, the swelling degree of 1 g of the dried gel was about 90 to 7,000.
Example 2 (Dose dependence on gel fraction and swelling degree of CMC / CaCl 2 aqueous solution)

塩化カルシウムに超純水100重量部を加えて塩濃度が1重量部(0.068mol/L)になるようにした金属塩水溶液に、5重量部のCMC Aを加えて金属塩添加のCMC水溶液とした。このサンプルにγ線0〜40kGyを照射し、その後照射サンプルを超純水に浸漬させてゾルと金属塩成分を脱離させ、且つ膨潤させた。 CMC aqueous solution added with metal salt by adding 5 parts by weight of CMC A to a metal salt aqueous solution in which 100 parts by weight of ultrapure water is added to calcium chloride so that the salt concentration becomes 1 part by weight (0.068 mol / L). It was. This sample was irradiated with γ rays of 0 to 40 kGy, and then the irradiated sample was immersed in ultrapure water to desorb and swell the sol and the metal salt component.

その測定結果を図5及び図6に示す。図5はCMC/塩化カルシウム水溶液の線量とゲル分率の関係を示す。図5の横軸は線量(kGy)を示し、縦軸はゲル分率(%)を示す。この例では、3kGyからゲル化し始め5kGyで80%のゲル分率に達した。また、図6はCMC/塩化カルシウム水溶液の線量と膨潤度の関係を示す。図6の横軸は線量(kGy)を示し、縦軸は膨潤度を示す。この例では、乾燥ゲル1gの膨潤度は、約45から2500であった。
実施例3(CMCのゲル分率に対する置換度及び分子量の影響)
The measurement results are shown in FIGS. FIG. 5 shows the relationship between the dose of CMC / calcium chloride aqueous solution and the gel fraction. The horizontal axis in FIG. 5 indicates the dose (kGy), and the vertical axis indicates the gel fraction (%). In this example, gelation started from 3 kGy and reached a gel fraction of 80% at 5 kGy. FIG. 6 shows the relationship between the dose of CMC / calcium chloride aqueous solution and the degree of swelling. The horizontal axis in FIG. 6 indicates the dose (kGy), and the vertical axis indicates the degree of swelling. In this example, the swelling degree of 1 g of the dried gel was about 45 to 2500.
Example 3 (Effect of substitution degree and molecular weight on the gel fraction of CMC)

(1)置換度(DS=Degree of Substitution)の影響
100重量部の水にCMC B、E、Fを5重量部加えてCMC水溶液としたサンプル1と、1重量部塩化カルシウム(=0.068mol/L)に100重量部の水を加えて金属塩水溶液とし、さらにCMCを加えて金属塩添加のCMC水溶液としたサンプル2にγ線20kGy照射した。その後、照射サンプルを超純水に浸漬させてゾルと金属塩成分を脱離させた。
図7にCMCの置換度とゲル分率の関係を示す。図7の横軸は置換度を示し、縦軸はゲル分率(%)を示す。この例では、置換度が1.34からゲル化が始まり、金属塩添加の効果が認められた。
(1) Influence of degree of substitution (DS = Degree of Substitution) Sample 1 in which 5 parts by weight of CMC B, E and F were added to 100 parts by weight of water to form a CMC aqueous solution, and 1 part by weight of calcium chloride (= 0.068 mol) / L) 100 parts by weight of water was added to form a metal salt aqueous solution, and CMC was further added to form a metal salt-added CMC aqueous solution. Sample 2 was irradiated with 20 kGy of γ rays. Thereafter, the irradiated sample was immersed in ultrapure water to desorb the sol and the metal salt component.
FIG. 7 shows the relationship between the degree of CMC substitution and the gel fraction. The horizontal axis in FIG. 7 indicates the degree of substitution, and the vertical axis indicates the gel fraction (%). In this example, gelation started from a substitution degree of 1.34, and the effect of adding a metal salt was observed.

(2)分子量(絶対粘度=AV=Absolute Viscosity)の影響
100重量部の水にCMC C、D、E、G、Hを5重量部加えてCMC水溶液としたサンプル1と、1重量部塩化カルシウム(=0.068mol/L)に水100重量部加えて金属塩水溶液とし、さらにCMCを加えて金属塩添加のCMC水溶液としたサンプル2にγ線20kGy照射した。その後、照射サンプルを超純水に浸漬させてゾルと金属塩成分を脱離させた。
(2) Influence of molecular weight (absolute viscosity = AV = Absolute Viscosity) Sample 1 with 5 parts by weight of CMC C, D, E, G, H added to 100 parts by weight of water and 1 part by weight of calcium chloride 100 parts by weight of water was added to (= 0.068 mol / L) to form a metal salt aqueous solution, and CMC was further added to form a metal salt-added CMC aqueous solution. Sample 2 was irradiated with γ rays of 20 kGy. Thereafter, the irradiated sample was immersed in ultrapure water to desorb the sol and the metal salt component.

図8にCMC水溶液の絶対粘度とゲル分率の関係を示す。図8の横軸は絶対粘度(mPa・s)を示し、縦軸はゲル分率(%)を示す。金属塩が添加されたサンプル2では、絶対粘度3410mPa・s以上の金属塩添加のCMC水溶液でゲル化が起こり始めた。しかし、金属塩無添加サンプル1ではゲル化は確認できなかった。 FIG. 8 shows the relationship between the absolute viscosity of the CMC aqueous solution and the gel fraction. The horizontal axis in FIG. 8 indicates absolute viscosity (mPa · s), and the vertical axis indicates gel fraction (%). In Sample 2 to which the metal salt was added, gelation started to occur in the CMC aqueous solution to which the absolute viscosity of 3410 mPa · s or more was added. However, gelation could not be confirmed in the metal salt-free sample 1.

以上の(1)及び(2)結果から、置換度は1以上、分子量は絶対粘度で約3410以上のCMCが金属塩添加のCMC水溶液の放射線橋かけに好ましいことがわかった。
実施例4(CMC水溶液のゲル分率及び膨潤度に対する種々の金属塩濃度依存性)
From the above results (1) and (2), it was found that CMC having a degree of substitution of 1 or more and a molecular weight of about 3410 or more in absolute viscosity is preferable for radiation crosslinking of an aqueous CMC solution containing a metal salt.
Example 4 (Dependence of various metal salt concentrations on gel fraction and swelling degree of CMC aqueous solution)

塩化カルシウム、塩化マグネシウム、硫酸マグネシウム、塩化ストロンチウム、塩化バリウム、塩化亜鉛、硝酸アルミニウム、硫酸アルミニウムに100重量部の水を加えて金属塩濃度が0.01〜1重量部(0.0000267〜0.073mol/L)となるようにした金属塩水溶液に5重量部のCMC Aを加え5、10、20、40kGyのγ線を照射した。 100 parts by weight of water is added to calcium chloride, magnesium chloride, magnesium sulfate, strontium chloride, barium chloride, zinc chloride, aluminum nitrate, and aluminum sulfate, and the metal salt concentration is 0.01 to 1 part by weight (0.0000267 to 0.005). 073 mol / L), 5 parts by weight of CMC A was added to the aqueous metal salt solution and irradiated with 5, 10, 20, and 40 kGy of γ rays.

図9にCMC水溶液中の種々の金属塩濃度とゲル分率の関係を示す。図9の横軸は金属塩濃度(mol/L)を示し、縦軸はゲル分率(%)を示す。この例では、金属塩を添加したサンプルから10〜100%ゲルを得た。金属無添加のCMC水溶液ではゲル化を確認できなかった。また、図10にCMC水溶液中の種々の金属塩濃度と膨潤度の関係を示す。図10の横軸は金属塩濃度(mol/L)を示し、縦軸は膨潤度を示す。この例では、乾燥ゲル1gの吸水量は約75〜5500となった。
実施例5(CMC/種々の金属塩水溶液のゲル分率に対する線量依存性)
FIG. 9 shows the relationship between various metal salt concentrations in the CMC aqueous solution and the gel fraction. The horizontal axis in FIG. 9 indicates the metal salt concentration (mol / L), and the vertical axis indicates the gel fraction (%). In this example, 10 to 100% gel was obtained from a sample to which a metal salt was added. Gelation could not be confirmed in the CMC aqueous solution without addition of metal. FIG. 10 shows the relationship between the various metal salt concentrations in the CMC aqueous solution and the degree of swelling. The horizontal axis in FIG. 10 indicates the metal salt concentration (mol / L), and the vertical axis indicates the degree of swelling. In this example, the water absorption of 1 g of the dried gel was about 75-5500.
Example 5 (CMC / Dose dependency on gel fraction of various metal salt aqueous solutions)

図11にCMC/種々の金属塩水溶液の線量とゲル分率の関係を示す。図11の横軸は線量(kGy)を示し、縦軸はゲル分率(%)を示す。この例では、3kGy照射でゲル化が始まった。そして、20kGy照射で80%以上のゲル分率に達した。
実施例6(CMC水溶液のゲル分率及び膨潤度に対する塩化ナトリウム濃度依存性)
FIG. 11 shows the relationship between the dose of CMC / various metal salt aqueous solutions and the gel fraction. The horizontal axis in FIG. 11 indicates the dose (kGy), and the vertical axis indicates the gel fraction (%). In this example, gelation started with 3 kGy irradiation. And it reached the gel fraction of 80% or more by 20 kGy irradiation.
Example 6 (Sodium chloride concentration dependence on gel fraction and swelling degree of CMC aqueous solution)

塩化ナトリウムに水100重量部を加え、濃度が0.1、0.5、1.0、35.8重量部(それぞれ、0.017、0.086、0.17、6.12mol/L)になるようにした金属塩水溶液に5重量部のCMC Aを加えて金属塩添加CMC水溶液とした。このサンプルに20kGyのγ線を照射した。その後、照射サンプルを超純水に浸漬させてゾルと金属塩成分を脱離させ、且つ膨潤させた。CMC水溶液中の塩化ナトリウム濃度とゲル分率の関係を図12に示す。図12において、横軸は塩化ナトリウム濃度(mol/L)を示し、縦軸はゲル分率(%)を示す。この例では、塩化ナトリウム濃度0.1重量部(0.017mol/L)ではゲル化は起こらなかった。0.5重量部(0.086mol/L)で約50%、塩化ナトリウム飽和状態の35.8重量部(6.12mol/L)で約70%のゲル分率に達した。一価の金属塩で物理ゲルの生成は認められなかった。 100 parts by weight of water is added to sodium chloride, and the concentrations are 0.1, 0.5, 1.0, and 35.8 parts by weight (0.017, 0.086, 0.17, and 6.12 mol / L, respectively). A metal salt-added CMC aqueous solution was prepared by adding 5 parts by weight of CMC A to the metal salt aqueous solution. This sample was irradiated with 20 kGy of gamma rays. Thereafter, the irradiated sample was immersed in ultrapure water to detach and swell the sol and the metal salt component. FIG. 12 shows the relationship between the sodium chloride concentration in the CMC aqueous solution and the gel fraction. In FIG. 12, the horizontal axis indicates the sodium chloride concentration (mol / L), and the vertical axis indicates the gel fraction (%). In this example, gelation did not occur at a sodium chloride concentration of 0.1 part by weight (0.017 mol / L). A gel fraction of about 50% was reached at 0.5 part by weight (0.086 mol / L) and about 70% at 35.8 parts by weight (6.12 mol / L) saturated with sodium chloride. Formation of a physical gel was not observed with a monovalent metal salt.

この実施例におけるCMC水溶液中の塩化ナトリウム濃度と膨潤度の関係を図13に示す。図13の横軸は塩化ナトリウム濃度(mol/L)を示し、縦軸は膨潤度を示す。この例では、このゲルの乾燥ゲル1g当たりの吸水量は約85〜2000gであった。
実施例7(CMC/一価の金属塩水溶液のゲル分率及び膨潤度に対する線量依存性)
FIG. 13 shows the relationship between the sodium chloride concentration in the CMC aqueous solution and the degree of swelling in this example. The horizontal axis in FIG. 13 indicates the sodium chloride concentration (mol / L), and the vertical axis indicates the degree of swelling. In this example, the water absorption amount per 1 g of the dried gel was about 85 to 2000 g.
Example 7 (Dose dependence on gel fraction and swelling degree of CMC / monovalent metal salt aqueous solution)

塩化カリウム、塩化ナトリウム、硫酸ナトリウム、酢酸ナトリウムに100重量部の水を加えてナトリウムイオン濃度が0.50Mとなるような金属塩水溶液とし、さらに5重量部のCMC Aを加えてCMC水溶液とし5、10、20、40kGyのγ線を照射した。
その結果を図14及び図15に示す。図14にCMC/一価の金属塩水溶液の線量とゲル分率の関係を示す。図14の横軸は放射線の線量(kGy)を示し、縦軸はゲル分率(%)を示す。この例では、金属塩を添加したCMC水溶液のゲル分率は20〜100%に達し、特に塩化カリウム、塩化ナトリウムでは5kGyでも高いゲル分率となった。
Add 100 parts by weight of water to potassium chloride, sodium chloride, sodium sulfate, and sodium acetate to obtain a metal salt aqueous solution with a sodium ion concentration of 0.50 M, and then add 5 parts by weight of CMC A to obtain a CMC aqueous solution. Irradiated with 10, 20, and 40 kGy of gamma rays.
The results are shown in FIGS. FIG. 14 shows the relationship between the dose of the CMC / monovalent metal salt aqueous solution and the gel fraction. The horizontal axis in FIG. 14 indicates the radiation dose (kGy), and the vertical axis indicates the gel fraction (%). In this example, the gel fraction of the CMC aqueous solution to which the metal salt was added reached 20 to 100%, and in particular with potassium chloride and sodium chloride, the gel fraction was high even at 5 kGy.

また、図15にCMC/一価の金属塩水溶液の線量と膨潤度の関係を示す。図15の横軸は放射線の線量(kGy)を示し、縦軸は膨潤度を示す。この例では、このゲルの乾燥ゲル1g当たりの吸水量は約80〜750gであった。金属塩無添加のCMC水溶液においては5、10、20kGy照射ではゲルを得られなかった。
実施例8(その他の多糖類水溶液への金属塩添加効果)
FIG. 15 shows the relationship between the dose of CMC / monovalent metal salt aqueous solution and the degree of swelling. The horizontal axis in FIG. 15 indicates the radiation dose (kGy), and the vertical axis indicates the degree of swelling. In this example, the water absorption per 1 g of the dried gel was about 80 to 750 g. In the CMC aqueous solution without addition of metal salt, gel could not be obtained by irradiation with 5, 10, 20 kGy.
Example 8 (effect of adding metal salt to other polysaccharide aqueous solution)

(1)カルボキシメチルキチン(CM−キチン) DS=0.81 脱アセチル化度(DDA)=24.6%
100重量部の水にCM‐キチンを5、7、10重量部加えたCM‐キチン水溶液サンプルと、1重量部の塩化カルシウムに100重量部の水とCM−キチン粉末を加えて金属塩添加のCM−キチン水溶液としたサンプルにγ線を20kGy照射した。
表1にCM−キチンの照射結果を示す。CM−キチン5重量部では金属塩添加と無添加ともにγ線照射後ゲル化が認められなかったが、7重量部に金属塩を添加したサンプルに照射するとゲル化が生じた。
(1) Carboxymethylchitin (CM-chitin) DS = 0.81 Deacetylation degree (DDA) = 24.6%
A sample of CM-chitin solution containing 5, 7 or 10 parts by weight of CM-chitin added to 100 parts by weight of water, and 100 parts by weight of water and CM-chitin powder added to 1 part by weight of calcium chloride. The sample made into CM-chitin aqueous solution was irradiated with 20 kGy of γ rays.
Table 1 shows the results of irradiation with CM-chitin. With 5 parts by weight of CM-chitin, no gelation was observed after γ-irradiation with or without addition of a metal salt, but gelation occurred when irradiated to a sample with 7 parts by weight of metal salt added.

Figure 2008094951
Figure 2008094951

(2)カルボキシメチルキトサン(CM−キトサン)DS=0.54 DDA=61.8%
100重量部の水にCM−キトサンを5、6、10重量部加えたCM−キトサン水溶液サンプル1と、1重量部の塩化カルシウムに100重量部の水とCM−キトサン粉末を加えて金属塩添加のCM−キトサン水溶液としたサンプル2に、それぞれγ線を20kGy照射した。
表2にCM−キトサンの照射結果を示す。CM−キトサン5重量部では金属塩添加と無添加ともにγ線照射後ゲル化が認められなかったが、6重量部に金属塩を添加したサンプルに照射するとゲル化が生じた。
(2) Carboxymethyl chitosan (CM-chitosan) DS = 0.54 DDA = 61.8%
CM-chitosan aqueous solution sample 1 in which 5, 6 and 10 parts by weight of CM-chitosan was added to 100 parts by weight of water, and 100 parts by weight of water and CM-chitosan powder were added to 1 part by weight of calcium chloride and a metal salt was added. Sample 2 prepared as a CM-chitosan aqueous solution was irradiated with 20 kGy of γ rays.
Table 2 shows the results of irradiation with CM-chitosan. In 5 parts by weight of CM-chitosan, no gelation was observed after γ-irradiation with or without addition of a metal salt, but gelation occurred when the sample was added with 6 parts by weight of metal salt.

Figure 2008094951
Figure 2008094951

(3)カルボキシメチルデンプン(CMS) DS=0.15
100重量部の水にCMSを5、10重量部加えたCMS水溶液サンプル1と、0.1重量部の塩化カルシウムに100重量部の水とCMSを加えて金属塩添加のCMS水溶液としたサンプル2に、それぞれγ線を5kGy照射した。
表3にCMSの照射結果を示す。7重量部のCMS水溶液ではゲル化が認められなかったが、金属塩を添加したCMS水溶液ではゲル化が生じた。
(3) Carboxymethyl starch (CMS) DS = 0.15
CMS aqueous solution sample 1 in which 5 or 10 parts by weight of CMS is added to 100 parts by weight of water, and sample 2 in which 100 parts by weight of water and CMS are added to 0.1 part by weight of calcium chloride to form a CMS aqueous solution to which a metal salt is added Each was irradiated with 5 kGy of γ rays.
Table 3 shows the results of CMS irradiation. Gelation was not observed in the 7 parts by weight CMS aqueous solution, but gelation occurred in the CMS aqueous solution to which the metal salt was added.

Figure 2008094951
Figure 2008094951

以上のようにして生成されたゲルは、工業、農業、医療、食品等の広範囲の分野において利用可能である。以下にその一例を挙げるが、これらに限定されるものではない。
本発明に係るCMCハイドロゲルは生分解性と優れた吸水性、保水性を有する環境保全型の材料である。現在、紙おむつや生理用品に利用されている吸水剤は生分解性を有しないアクリルアミド系の材料であり、焼却処分されている。しかし、生分解性を有する本発明に係るCMCハイドロゲルをそれらに利用することによって、焼却処分せずに直接土壌に廃棄することが可能となる。また、ガーデニング用や砂漠化した土壌の保水剤としての利用、油田開発や埋め立て開発などのボーリング作業時の吸水材としての利用、食品への利用、さらには工業廃水の浄化剤としての利用も期待できる。
The gel produced as described above can be used in a wide range of fields such as industry, agriculture, medicine and food. Examples thereof are given below, but are not limited thereto.
The CMC hydrogel according to the present invention is an environmentally friendly material having biodegradability, excellent water absorption and water retention. Currently, water-absorbing agents used in disposable diapers and sanitary products are acrylamide-based materials that are not biodegradable and are incinerated. However, by using the CMC hydrogel according to the present invention having biodegradability, it is possible to directly dispose of it in the soil without incineration. It is also expected to be used as a water-retaining agent for gardening and desertified soil, as a water-absorbing material during drilling operations such as oil field development and landfill development, for food use, and as a purification agent for industrial wastewater. it can.

本発明に係るゲルの製造方法の概略構成を示すフローチャートである。It is a flowchart which shows schematic structure of the manufacturing method of the gel which concerns on this invention. 従来技術と本発明によるゲル分率の相違を示すグラフである。It is a graph which shows the difference of the gel fraction by a prior art and this invention. CMC水溶液中の塩化カルシウム濃度とゲル分率の関係を示す。The relationship between the calcium chloride concentration in CMC aqueous solution and a gel fraction is shown. CMC水溶液中の塩化カルシウム濃度と膨潤度の関係を示す。The relationship between the calcium chloride concentration in CMC aqueous solution and a swelling degree is shown. CMC/塩化カルシウム水溶液の線量とゲル分率の関係を示す。The relationship between the dose of CMC / calcium chloride aqueous solution and a gel fraction is shown. CMC/塩化カルシウム水溶液の線量と膨潤度の関係を示す。The relationship between the dose of CMC / calcium chloride aqueous solution and the degree of swelling is shown. CMCの置換度とゲル分率の関係を示す。The relationship between the substitution degree of CMC and the gel fraction is shown. CMC水溶液の絶対粘度とゲル分率の関係を示す。The relationship between the absolute viscosity of CMC aqueous solution and a gel fraction is shown. CMC水溶液中の種々の金属塩濃度とゲル分率の関係を示す。The relationship between the various metal salt concentration in CMC aqueous solution and a gel fraction is shown. CMC水溶液中の種々の金属塩濃度と膨潤度の関係を示す。The relationship between the various metal salt concentration in CMC aqueous solution and swelling degree is shown. CMC/種々の金属塩水溶液の線量とゲル分率の関係を示す。The relationship between the dose of CMC / various metal salt aqueous solutions and the gel fraction is shown. CMC水溶液中の塩化ナトリウム濃度とゲル分率の関係を示す。The relationship between the sodium chloride concentration in CMC aqueous solution and a gel fraction is shown. CMC水溶液中の塩化ナトリウム濃度と膨潤度の関係を示す。The relationship between the sodium chloride concentration in CMC aqueous solution and swelling degree is shown. CMC/一価の金属塩水溶液の線量とゲル分率の関係を示す。The relationship between the dose of CMC / monovalent metal salt aqueous solution and the gel fraction is shown. CMC/一価の金属塩水溶液の線量と膨潤度の関係を示す。The relationship between the dose of CMC / monovalent metal salt aqueous solution and the degree of swelling is shown.

符号の説明Explanation of symbols

CMC カルボキシメチルセルロース
DS 置換度
AV 絶対粘度
CM カルボキシメチル
CMS カルボキシメチルデンプン
CMC Carboxymethylcellulose DS Substitution degree AV Absolute viscosity CM Carboxymethyl CMS Carboxymethyl starch

Claims (8)

金属塩とカルボキシメチル化されている多糖類の低濃度水溶液に、放射線を照射し、該多糖類に放射線橋かけを生じさせゲル化した後、該ゲルを水に浸漬させて金属塩を脱離させ、ハイドロゲルを得ることを特徴とする放射線橋かけ型ハイドロゲルの製造方法。   After irradiating a low-concentration aqueous solution of a metal salt and a carboxymethylated polysaccharide with radiation, the polysaccharide is subjected to radiation cross-linking to gel, and then the gel is immersed in water to desorb the metal salt. A method for producing a radiation-crosslinked hydrogel, characterized in that a hydrogel is obtained. 請求項1に記載の放射線橋かけ型ハイドロゲルの製造方法において、前記カルボキシル化されている多糖類が、5重量部以下のカルボキシメチルセルロースであることを特徴とする放射線橋かけ型ハイドロゲルの製造方法。   2. The method for producing a radiation-crosslinked hydrogel according to claim 1, wherein the carboxylated polysaccharide is 5 parts by weight or less of carboxymethylcellulose. . 請求項1又は2に記載の放射線橋かけ型ハイドロゲルの製造方法において、前記金属塩が塩化カルシウムであることを特徴とする放射線橋かけ型ハイドロゲルの製造方法。   3. The method for producing a radiation-crosslinking hydrogel according to claim 1 or 2, wherein the metal salt is calcium chloride. 請求項1乃至3のいずれか1項に記載の放射線橋かけ型ハイドロゲルの製造方法において、前記放射線がγ線であり、その放射線の照射線量が3kGy以上であることを特徴とする放射線橋かけ型ハイドロゲルの製造方法。   The method for producing a radiation-crosslinked hydrogel according to any one of claims 1 to 3, wherein the radiation is γ-ray, and the radiation dose is 3 kGy or more. Type hydrogel production method. 5重量部以下の低濃度のカルボキシメチルセルロースと金属塩との水溶液に、3kGy以上のγ線を照射し、該カルボキシメチルセルロースをゲル化させ、該ゲルを水に浸漬させて金属塩を離脱させ、ハイドロゲルを得ることを特徴とする放射線橋かけ型ハイドロゲルの製造方法。   An aqueous solution of 5 parts by weight or less of low concentration carboxymethyl cellulose and a metal salt is irradiated with 3 kGy or more of γ-rays to gel the carboxymethyl cellulose, and the gel is immersed in water to release the metal salt. A method for producing a radiation-crosslinking hydrogel characterized by obtaining a gel. 請求項5に記載の放射線橋かけ型ハイドロゲルの製造方法において、前記金属塩が塩化カルシウムであることを特徴とする放射線橋かけ型ハイドロゲルの製造方法。   6. The method for producing a radiation-crosslinked hydrogel according to claim 5, wherein the metal salt is calcium chloride. 請求項5に記載の放射線橋かけ型ハイドロゲルの製造方法において、前記金属塩が塩化カリウムであることを特徴とする放射線橋かけ型ハイドロゲルの製造方法。   6. The method for producing a radiation-crosslinking hydrogel according to claim 5, wherein the metal salt is potassium chloride. 請求項5に記載の放射線橋かけ型ハイドロゲルの製造方法において、前記金属塩が塩化ナトリウムであることを特徴とする放射線橋かけ型ハイドロゲルの製造方法。   6. The method for producing a radiation-crosslinked hydrogel according to claim 5, wherein the metal salt is sodium chloride.
JP2006277930A 2006-10-11 2006-10-11 Process for producing radiation crosslinked hydrogel Pending JP2008094951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006277930A JP2008094951A (en) 2006-10-11 2006-10-11 Process for producing radiation crosslinked hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006277930A JP2008094951A (en) 2006-10-11 2006-10-11 Process for producing radiation crosslinked hydrogel

Publications (1)

Publication Number Publication Date
JP2008094951A true JP2008094951A (en) 2008-04-24

Family

ID=39378145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006277930A Pending JP2008094951A (en) 2006-10-11 2006-10-11 Process for producing radiation crosslinked hydrogel

Country Status (1)

Country Link
JP (1) JP2008094951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023021640A (en) * 2021-08-02 2023-02-14 株式会社Nhvコーポレーション Method for producing carboxymethylcellulose gel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434435A (en) * 1987-07-06 1989-02-03 Agency Ind Science Techn Temperature sensitive gel and manufacture thereof
JPH0748401A (en) * 1993-08-05 1995-02-21 Dai Ichi Kogyo Seiyaku Co Ltd Modification of sodium carboxymethylcellulose
JP2001002703A (en) * 1999-06-23 2001-01-09 Japan Atom Energy Res Inst Self-crosslinked alkylcellulose derivative, and its production
JP2006022271A (en) * 2004-07-09 2006-01-26 Dai Ichi Kogyo Seiyaku Co Ltd Carboxymethylcellulose salt and method for producing the same
WO2006062258A2 (en) * 2004-12-10 2006-06-15 Nippon Shokubai Co., Ltd. Method for production of modified water absorbent resin
JP2006233028A (en) * 2005-02-25 2006-09-07 Asahi Kasei Corp Composition for forming hydrogel and hydrogel obtained by curing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434435A (en) * 1987-07-06 1989-02-03 Agency Ind Science Techn Temperature sensitive gel and manufacture thereof
JPH0748401A (en) * 1993-08-05 1995-02-21 Dai Ichi Kogyo Seiyaku Co Ltd Modification of sodium carboxymethylcellulose
JP2001002703A (en) * 1999-06-23 2001-01-09 Japan Atom Energy Res Inst Self-crosslinked alkylcellulose derivative, and its production
JP2006022271A (en) * 2004-07-09 2006-01-26 Dai Ichi Kogyo Seiyaku Co Ltd Carboxymethylcellulose salt and method for producing the same
WO2006062258A2 (en) * 2004-12-10 2006-06-15 Nippon Shokubai Co., Ltd. Method for production of modified water absorbent resin
JP2006233028A (en) * 2005-02-25 2006-09-07 Asahi Kasei Corp Composition for forming hydrogel and hydrogel obtained by curing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023021640A (en) * 2021-08-02 2023-02-14 株式会社Nhvコーポレーション Method for producing carboxymethylcellulose gel

Similar Documents

Publication Publication Date Title
JP4288618B2 (en) Method for producing carboxymethylcellulose gel
CN108102152B (en) Hectorite immobilized nano-silver/chitosan antibacterial composite film for food packaging and preparation method and application thereof
Duquette et al. Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels
JP4819984B2 (en) Self-crosslinking alkylcellulose derivatives and methods for producing them
JP2003160602A (en) Production method of chitin derivative and/or chitosan derivative having crosslinking structure
CN109749095A (en) A kind of chitosan derivatives self-healing hydrogel and its preparation method and application
Pushpamalar et al. Preparation of carboxymethyl sago pulp hydrogel from sago waste by electron beam irradiation and swelling behavior in water and various pH media
JP5071766B2 (en) Method for producing gel using polysaccharide as raw material
CN107141519B (en) A kind of modification of chitosan base superabsorbent hydrogel and its preparation and application
KR102308186B1 (en) Process for producing low endotoxin chitosan
Relleve et al. Radiation-synthesized polysaccharides/polyacrylate super water absorbents and their biodegradabilities
KR101467907B1 (en) Preparation method of cationic starch using ultra high pressure
JP2004358292A (en) Purifying agent using chitin and chitosan derivative hydrogel
JP5024921B2 (en) Method for controlling gelation of biodegradable gel by temperature control and molded article
JP4132993B2 (en) Water absorbent resin and method for producing the same
JPH06154596A (en) Salt resistant absorbent and manufacture of the same
JP2008094951A (en) Process for producing radiation crosslinked hydrogel
US8633254B2 (en) Preparation of gels derived from carboxymethyl cellulose alkali metal salt
JP3598141B2 (en) Water absorbing material and method for producing the same
KR102308191B1 (en) Process for producing low endotoxin chitosan
Tajiri et al. Facile preparation of chitin gels with calcium bromide dihydrate/methanol media and their efficient conversion into porous chitins
JP4674357B2 (en) Crosslinking of starch derivatives and methods for their production
JP5257878B2 (en) Method for controlling biodegradability of superabsorbent gel and biodegradable gel with controlled biodegradability
JP2008230996A (en) Method for producing gel containing carboxymethylcellulose as main component, and gel
JP2013071942A (en) Polysaccharide gel and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090722

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20120619

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120820

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20121011

Free format text: JAPANESE INTERMEDIATE CODE: A02