JP2008092720A - Charging device of instantaneous drop compensation device - Google Patents

Charging device of instantaneous drop compensation device Download PDF

Info

Publication number
JP2008092720A
JP2008092720A JP2006272518A JP2006272518A JP2008092720A JP 2008092720 A JP2008092720 A JP 2008092720A JP 2006272518 A JP2006272518 A JP 2006272518A JP 2006272518 A JP2006272518 A JP 2006272518A JP 2008092720 A JP2008092720 A JP 2008092720A
Authority
JP
Japan
Prior art keywords
charging
electric double
layer capacitor
voltage
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006272518A
Other languages
Japanese (ja)
Inventor
Hiroshi Zaitsu
寛 材津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006272518A priority Critical patent/JP2008092720A/en
Publication of JP2008092720A publication Critical patent/JP2008092720A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To conduct stable high-speed charging to an electric double-layer capacitor. <P>SOLUTION: This charging control device for charging the electric double-layer capacitor generates a PWM output command of an inverter by proportionally integrates (PI) and operates deviation between a charging power command value and a charging power detection value by a proportional integration operation part 11, and corrects the charging power command value by proportionally integrates and operates a charging voltage command value and its voltage detection value by a proportional integration operation part 12. A switch 16 is on-controlled when a charging voltage of the electric double-layer capacitor reaches a full-charging voltage, and outputs an output of the proportional integration operation part 12 as a correction signal for lowering the charging power command value. The device includes a limiter which prevents discharging control from the electric double-layer capacitor caused by an effect that the corrected charging power command value is brought into negative polarity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、落雷・事故等による系統の瞬低(瞬時電圧低下および瞬時停電)時に、電気二重層キャパシタを蓄電体として負荷への給電を補償する瞬低補償装置に係り、特に瞬低補償動作後の電気二重層キャパシタの回復充電に関する。   The present invention relates to a voltage sag compensator that compensates for power supply to a load by using an electric double layer capacitor as a power storage unit at the time of voltage sag (instantaneous voltage drop and power failure) due to lightning strikes and accidents, etc. It relates to recovery charging of the electric double layer capacitor later.

系統の停電時に負荷への給電を補償する装置として、無停電電源装置が多く提案されているこの種の無停電電源装置は、図2に構成例を示すように、商用電源1から切換スイッチ2を介して負荷3への電力供給路を形成し、これとは別に、蓄電池などの蓄電体4からの直流電力をインバータ5で交流電力に変換し、出力トランス6を介して負荷3への電力供給路を形成しておく。   This type of uninterruptible power supply, for which many uninterruptible power supplies have been proposed as devices for compensating for power supply to a load during a power failure of the system, is shown in FIG. In addition to this, a power supply path to the load 3 is formed, and separately from this, DC power from the power storage unit 4 such as a storage battery is converted into AC power by the inverter 5, and power to the load 3 is output via the output transformer 6. A supply path is formed.

この構成において、通常時は商用電源1から負荷3に電力供給を行い、商用電源1の停電時には切換スイッチ2を開放すると共に、一般負荷を切り離して重要負荷のみとし、制御装置7による制御開始でインバータ5から負荷3への電力供給に切り替える。   In this configuration, power is supplied from the commercial power source 1 to the load 3 in normal times, the change-over switch 2 is opened in the event of a power failure of the commercial power source 1, and the general load is disconnected to make only the important load. Switch to power supply from the inverter 5 to the load 3.

以上のように構成される無停電電源装置において、瞬低補償装置としての機能構成は、蓄電体4として、蓄電池に比べて蓄積電力量が少ないが、小型で高速応答ができる電気二重層キャパシタを使用し、商用電源の瞬時電圧低下のみを補償する。また、瞬低の復帰後に、次回の瞬低に備えて、電気二重層キャパシタを速やかに充電しておく充電装置8を設ける。   In the uninterruptible power supply configured as described above, the functional configuration as the voltage sag compensator is an electric double layer capacitor that is small in size and capable of high-speed response, although the stored power amount is smaller than that of the storage battery. Use it to compensate only for instantaneous voltage drop of commercial power. In addition, a charging device 8 is provided for quickly charging the electric double layer capacitor in preparation for the next instantaneous voltage drop after the recovery from the voltage drop.

ここで、充電装置8には、インバータと昇圧トランスおよび整流器で構成する充電器またはDC−DCコンバータ(昇降圧チョッパ)を使用し、電源電圧よりも高い電圧まで電気二重層キャパシタを充電しておき、瞬低補償時に放電できる電力量を高める。また、充電方式としては、充電初期には電気二重層キャパシタを定電力充電し、一定電圧に達したときに電圧一定制御に切り替えること、さらには充電電流を絞ることで、電気二重層キャパシタの過電圧充電を防止する(例えば、特許文献1参照)。   Here, the charging device 8 uses a charger composed of an inverter, a step-up transformer and a rectifier or a DC-DC converter (buck-boost chopper), and charges the electric double layer capacitor to a voltage higher than the power supply voltage. Increases the amount of power that can be discharged during sag compensation. As for the charging method, the electric double layer capacitor is charged with constant power at the beginning of charging, and when it reaches a certain voltage, it is switched to constant voltage control. Charging is prevented (see, for example, Patent Document 1).

図3は従来の充電装置の制御ブロック図を示し、充電電力変換手段としてのインバータをPWM制御し、初期には定電力充電し、終期には定電圧充電する場合である。PI演算部11は電気二重層キャパシタの充電電力指令値と充電電力検出値との偏差を比例積分(PI)演算してインバータの出力電圧指令を発生する。PI演算部12は電気二重層キャパシタの直流電圧指令値と直流電圧検出値との偏差を比例積分演算してインバータの出力電圧指令を発生する。切替器13は電気二重層キャパシタの充電電圧が満充電電圧に達したときにPI演算部11の出力からPI演算部12の出力に切替える。PWM変調部14は、切替器13からの出力電圧指令とベース電圧との偏差に応じてPWM変調波を得、これをインバータのゲート信号にする。ベース電圧(1p.u)は直流電圧検出値からベース電圧演算部15で演算する。   FIG. 3 shows a control block diagram of a conventional charging apparatus, in which the inverter as the charging power conversion means is PWM-controlled, constant power charging is performed at the initial stage, and constant voltage charging is performed at the end stage. The PI calculation unit 11 generates an inverter output voltage command by performing a proportional integral (PI) calculation on the deviation between the charge power command value of the electric double layer capacitor and the charge power detection value. PI calculation unit 12 generates an inverter output voltage command by performing a proportional integral calculation on the deviation between the DC voltage command value of the electric double layer capacitor and the DC voltage detection value. The switch 13 switches from the output of the PI calculation unit 11 to the output of the PI calculation unit 12 when the charging voltage of the electric double layer capacitor reaches the full charge voltage. The PWM modulation unit 14 obtains a PWM modulated wave according to the deviation between the output voltage command from the switch 13 and the base voltage, and uses this as a gate signal for the inverter. The base voltage (1 p.u) is calculated by the base voltage calculation unit 15 from the detected DC voltage.

上記の充電制御ブロック図による実際の制御として、回復充電電力75kW、待機電圧640V、電気二重層キャパシタの内部抵抗0.3Ωとし、まず、75kWで定電力充電を行い、キャパシタ電圧が673Vに達したら直流電圧一定制御に切り替える。待機電圧よりも高い電圧まで充電するのは、キャパシタの内部抵抗を考慮してのことである。   As the actual control by the above charge control block diagram, the recovery charge power is 75 kW, the standby voltage is 640 V, the internal resistance of the electric double layer capacitor is 0.3Ω, first, constant power charge is performed at 75 kW, and the capacitor voltage reaches 673 V Switch to DC voltage constant control. Charging to a voltage higher than the standby voltage is due to consideration of the internal resistance of the capacitor.

例えば、75kWで640Vまで定電力充電した場合、キャパシタ電圧が640Vに達した時に流れる電流は75000[W]÷640[V]=117[A]である。内部抵抗が0.3[Ω]とすると、117[A]×0.3[Ω]=35.1[V]より、35V程度の電圧は内部抵抗にかかっており、実際にキャパシタにかかっている電圧は605[V]程度となる。この状態から直流電圧一定制御を行ってしまうと、充電電流が小さくなるため充電時間がかかってしまう。   For example, when constant power charging is performed up to 640 V at 75 kW, the current that flows when the capacitor voltage reaches 640 V is 75000 [W] ÷ 640 [V] = 117 [A]. When the internal resistance is 0.3 [Ω], a voltage of about 35 V is applied to the internal resistance from 117 [A] × 0.3 [Ω] = 35.1 [V], and is actually applied to the capacitor. The voltage is about 605 [V]. If the DC voltage constant control is performed from this state, the charging current becomes small and it takes a long charging time.

そのため、キャパシタ電圧を673Vまで定電力で充電を行う。75kWで673Vまで定電力充電した場合、キャパシタ電圧が673Vに達した時に流れる電流は75000[W]÷673[V]=111[A]である。内部抵抗が0.3[Ω]とすると、111[A]×0.3[Ω]=33.3[V]より、実際にキャパシタにかかっている電圧は639.7[V]程度となり、満充電の状態にすることができる。
特開2003−199332号公報
Therefore, the capacitor voltage is charged up to 673V with constant power. When constant power charging is performed up to 673 V at 75 kW, the current that flows when the capacitor voltage reaches 673 V is 75000 [W] ÷ 673 [V] = 111 [A]. If the internal resistance is 0.3 [Ω], the voltage actually applied to the capacitor is about 639.7 [V] from 111 [A] × 0.3 [Ω] = 33.3 [V], The battery can be fully charged.
JP 2003-199332 A

従来の充電方式では、キャパシタ電圧が673[V]に達した後、充電電力一定制御から直流電圧一定制御に切り替えるため、PWM指令値がステップ的に変化し、充電制御が不安定になる可能性がある。   In the conventional charging method, after the capacitor voltage reaches 673 [V], the constant charge power control is switched to the constant DC voltage control, so that the PWM command value may change stepwise and the charge control may become unstable. There is.

また、電圧一定制御では、直流電圧検出値が640[V]以上の場合、充電電流を小さくするように働くため、充電電力を負極性(マイナス)にしてしまい、電気二重層キャパシタに蓄えられた電力を放電してしまう恐れがあるし、充電時間が延びる恐れがある。   Further, in the constant voltage control, when the detected DC voltage value is 640 [V] or more, the charging current is reduced, so that the charging power is made negative (minus) and stored in the electric double layer capacitor. There is a risk of discharging electric power, and there is a risk that the charging time will be extended.

本発明の目的は、上記の課題を解決した瞬低補償装置の充電装置を提供することにある。   An object of the present invention is to provide a charging device for a voltage sag compensator that solves the above-described problems.

本発明は、前記の課題を解決するため、電気二重層キャパシタの満充電までは充電電力指令値と検出値による比例積分演算部によって定電力充電制御し、満充電に達したときに直流電圧指令値と検出値による比例積分演算部によって充電電力指令値を補正制御するようにしたもので、以下の構成を特徴とする。   In order to solve the above-mentioned problem, the present invention performs constant power charging control by a proportional-integral calculation unit based on a charging power command value and a detection value until the electric double layer capacitor is fully charged, and a direct current voltage command when full charging is reached. The charging power command value is corrected and controlled by a proportional-integral operation unit based on the value and the detected value, and has the following configuration.

(1)電源の瞬時電圧低下または瞬時停電時に、電気二重層キャパシタを蓄電体として負荷への給電を補償する瞬低補償装置において、
前記補償後に前記電気二重層キャパシタを充電する充電装置は、
前記電気二重層キャパシタの充電電力指令値と充電電力検出値との偏差を比例積分(PI)演算して該電気二重層キャパシタの充電電力出力手段の充電電力出力指令を発生する第1の比例積分演算部と、
前記電気二重層キャパシタの充電電圧指令値とその電圧検出値との偏差を比例積分演算して前記充電電力指令値の補正信号を発生する第2の比例積分演算部と、
前記電気二重層キャパシタの充電電圧が満充電電圧に達したときにオン制御され、前記第2の比例積分演算部の出力を前記充電電力指令値を下げる補正信号として出力するスイッチを備えたことを特徴とする。
(1) In a voltage sag compensator that compensates for power supply to a load by using an electric double layer capacitor as a power storage unit in the event of an instantaneous voltage drop or a power failure,
A charging device for charging the electric double layer capacitor after the compensation,
A first proportional integration for generating a charging power output command of the charging power output means of the electric double layer capacitor by performing a proportional integration (PI) operation on a deviation between the charging power command value of the electric double layer capacitor and a charging power detection value. An arithmetic unit;
A second proportional-integral calculation unit that generates a correction signal of the charge power command value by performing a proportional-integral calculation of a deviation between the charge voltage command value of the electric double layer capacitor and the detected voltage value;
A switch that is turned on when the charge voltage of the electric double layer capacitor reaches a full charge voltage, and that outputs the output of the second proportional-integral calculation unit as a correction signal that lowers the charge power command value; Features.

(2)前記補正した充電電力指令値が負極性になって前記電気二重層キャパシタからの放電制御になるのを防止するリミッタを備えたことを特徴とする。   (2) A limiter is provided for preventing the corrected charging power command value from becoming negative and controlling discharge from the electric double layer capacitor.

以上のとおり、本発明によれば、電気二重層キャパシタの満充電までは充電電力指令値と検出値による比例積分演算部によって定電力充電制御し、満充電に達したときに直流電圧指令値と検出値による比例積分演算部によって充電電力指令値を補正制御するようにしたため、以下の効果がある。   As described above, according to the present invention, constant power charging control is performed by the proportional-plus-integral calculation unit based on the charging power command value and the detected value until the electric double layer capacitor is fully charged. Since the charging power command value is corrected and controlled by the proportional-plus-integral calculation unit based on the detected value, the following effects are obtained.

・従来の直流電圧一定制御への切り替えによる充電に比べて高速充電ができる。   ・ High-speed charging is possible compared to conventional charging by switching to constant DC voltage control.

・充電電流は連続的に変化するため、安定した制御を行うことができる。   -Since charging current changes continuously, stable control can be performed.

・充電電力指令値が負極性になるのを抑制するリミッタを設けることで、電気二重層キャパシタからの放電をなくし、充電時間も短縮できる。   -By providing a limiter that suppresses the charging power command value from becoming negative, discharging from the electric double layer capacitor can be eliminated and the charging time can be shortened.

図1は、本発明の実施形態を示す充電装置の制御ブロック図である。PI演算部11は充電電力指令と充電電力検出値との偏差を比例積分(PI)演算してインバータの出力電圧指令を発生する。PI演算部12は直流電圧指令と直流電圧検出値との偏差を比例積分演算して充電電力指令値の補正信号を発生する。スイッチ16は、電気二重層キャパシタの充電電圧が満充電電圧に達したときにオン制御され、PI演算部12の出力で充電電力指令値を下げる補正信号として出力する。   FIG. 1 is a control block diagram of a charging apparatus showing an embodiment of the present invention. The PI calculation unit 11 performs a proportional integral (PI) calculation on the deviation between the charging power command and the detected charging power value to generate an output voltage command for the inverter. The PI calculation unit 12 performs a proportional integral calculation on the deviation between the DC voltage command and the DC voltage detection value to generate a correction signal for the charging power command value. The switch 16 is turned on when the charge voltage of the electric double layer capacitor reaches the full charge voltage, and is output as a correction signal that lowers the charge power command value at the output of the PI calculation unit 12.

PWM変調部14は、PI演算部11からの出力電圧指令とベース電圧との偏差に応じてPWM変調波を得、これをインバータのゲート信号にする。ベース電圧(1p.u)は直流電圧検出値からベース電圧演算部15で演算する。   The PWM modulation unit 14 obtains a PWM modulation wave according to the deviation between the output voltage command from the PI calculation unit 11 and the base voltage, and makes this a gate signal of the inverter. The base voltage (1 p.u) is calculated by the base voltage calculation unit 15 from the detected DC voltage.

以上の制御回路構成によれば、電気二重層キャパシタの充電初期には、スイッチ16をオフ制御しておき、PI演算部11により電気二重層キャパシタを定電力充電する。その後、電気二重層キャパシタが満充電電圧(例えば、前記の例では673V)まで充電されたときにスイッチ16をオン制御する。   According to the above control circuit configuration, at the initial stage of charging of the electric double layer capacitor, the switch 16 is controlled to be off, and the electric power of the electric double layer capacitor is charged by the PI calculation unit 11. After that, when the electric double layer capacitor is charged to a full charge voltage (for example, 673 V in the above example), the switch 16 is turned on.

これにより、電気二重層キャパシタの直流電圧がその指令値に達するまではその偏差が大きいほど充電電力指令値を大きく絞った充電電力の垂下制御になり、従来の直流電圧一定制御への切り替えによる充電に比べて高速充電ができる。   As a result, until the DC voltage of the electric double layer capacitor reaches the command value, the charging power drooping control is performed with the charging power command value greatly reduced as the deviation increases, and charging by switching to the conventional DC voltage constant control is performed. Compared to, high-speed charging is possible.

また、定電力充電状態から充電電力指令値の補正に移行するとき、制御スイッチ16のオン制御で充電電力指令値がステップ的に変化することが予測されるが、PI演算部11による積分動作によってPWM指令値が滑らかに変化する。すなわち、PWM指令値は連続的に変化し、安定した制御を行うことができる。   In addition, when shifting from the constant power charging state to the correction of the charging power command value, it is predicted that the charging power command value changes stepwise by the on-control of the control switch 16. The PWM command value changes smoothly. That is, the PWM command value changes continuously, and stable control can be performed.

なお、充電電力指令値を補正した補正出力にリミッタ回路を追加することにより、電流指令値がマイナスにならないように(放電しないように)することができ、電気二重層キャパシタに蓄えられた電力を放電してしまうことはない。   By adding a limiter circuit to the corrected output that corrects the charge power command value, the current command value can be prevented from becoming negative (so as not to be discharged), and the electric power stored in the electric double layer capacitor can be reduced. There is no discharge.

なお、実施形態ではインバータによる充電電力制御の場合を示したが,DC−DCコンバータなどの他の充電回路による充電電力制御に適用して同等の作用効果を得ることができる。   In addition, although the case of the charging power control by an inverter was shown in embodiment, it can apply to the charging power control by other charging circuits, such as a DC-DC converter, and can obtain an equivalent effect.

本発明の実施形態を示す充電装置の制御ブロック図。The control block diagram of the charging device which shows embodiment of this invention. 無停電電源装置の構成例。The structural example of an uninterruptible power supply. 従来の充電装置の制御ブロック図。The control block diagram of the conventional charging device.

符号の説明Explanation of symbols

11 PI演算部
12 PI演算部
13 切替スイッチ
14 PWM変調部
15 ベース電圧演算部
16 スイッチ
11 PI Calculation Unit 12 PI Calculation Unit 13 Changeover Switch 14 PWM Modulation Unit 15 Base Voltage Calculation Unit 16 Switch

Claims (2)

電源の瞬時電圧低下または瞬時停電時に、電気二重層キャパシタを蓄電体として負荷への給電を補償する瞬低補償装置において、
前記補償後に前記電気二重層キャパシタを充電する充電装置は、
前記電気二重層キャパシタの充電電力指令値と充電電力検出値との偏差を比例積分(PI)演算して該電気二重層キャパシタの充電電力出力手段の充電電力出力指令を発生する第1の比例積分演算部と、
前記電気二重層キャパシタの充電電圧指令値とその電圧検出値との偏差を比例積分演算して前記充電電力指令値の補正信号を発生する第2の比例積分演算部と、
前記電気二重層キャパシタの充電電圧が満充電電圧に達したときにオン制御され、前記第2の比例積分演算部の出力を前記充電電力指令値を下げる補正信号として出力するスイッチを備えたことを特徴とする瞬低補償装置の充電装置。
In the voltage sag compensator that compensates the power supply to the load using the electric double layer capacitor as a power storage unit at the time of instantaneous voltage drop or power failure
A charging device for charging the electric double layer capacitor after the compensation,
A first proportional integration for generating a charging power output command of the charging power output means of the electric double layer capacitor by performing a proportional integration (PI) operation on a deviation between the charging power command value of the electric double layer capacitor and a charging power detection value. An arithmetic unit;
A second proportional-integral calculation unit that generates a correction signal of the charge power command value by performing a proportional-integral calculation of a deviation between the charge voltage command value of the electric double layer capacitor and the detected voltage value;
A switch that is turned on when the charge voltage of the electric double layer capacitor reaches a full charge voltage, and that outputs the output of the second proportional-integral calculation unit as a correction signal that lowers the charge power command value; A charging device for a sag compensation device as a feature.
前記補正した充電電力指令値が負極性になって前記電気二重層キャパシタからの放電制御になるのを防止するリミッタを備えたことを特徴とする請求項1に記載の瞬低補償装置の充電装置。   2. The charging device of the sag compensation device according to claim 1, further comprising a limiter that prevents the corrected charging power command value from becoming negative and causing discharge control from the electric double layer capacitor. .
JP2006272518A 2006-10-04 2006-10-04 Charging device of instantaneous drop compensation device Pending JP2008092720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272518A JP2008092720A (en) 2006-10-04 2006-10-04 Charging device of instantaneous drop compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272518A JP2008092720A (en) 2006-10-04 2006-10-04 Charging device of instantaneous drop compensation device

Publications (1)

Publication Number Publication Date
JP2008092720A true JP2008092720A (en) 2008-04-17

Family

ID=39376270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272518A Pending JP2008092720A (en) 2006-10-04 2006-10-04 Charging device of instantaneous drop compensation device

Country Status (1)

Country Link
JP (1) JP2008092720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021792A (en) * 2011-07-08 2013-01-31 Sanyo Denki Co Ltd Power supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021792A (en) * 2011-07-08 2013-01-31 Sanyo Denki Co Ltd Power supply system

Similar Documents

Publication Publication Date Title
US10084315B2 (en) Power conversion device with an autonomous operation function
JP6948918B2 (en) Power converter control device
US9692307B2 (en) Power conversion apparatus
WO2013175644A1 (en) Power conversion device
JP2014087134A (en) Dc/dc converter
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP2010088150A (en) Charger
JP2013021861A (en) Power-supply device and method of controlling the same
JP3699082B2 (en) Switching power supply circuit
JP2010124557A (en) Uninterruptible power supply device
JP2011188706A (en) Uninterruptible power supply apparatus
JP6205281B2 (en) Power supply
JP2003259567A (en) Uninterruptible power source
JP5123673B2 (en) Power converter
JP2004048938A (en) Voltage compensation apparatus
JP5589771B2 (en) Charger current control device
JP4370965B2 (en) Power converter
JP2011199996A (en) Motor drive
JP2008092720A (en) Charging device of instantaneous drop compensation device
KR101318960B1 (en) Uninterruptible power supply and method controlling thereof
JP2007267582A (en) Step-up/step-down chopper device and driving method therefor
JP2006296080A (en) Control method for instantaneous voltage drop compensation device
JP2011139594A (en) System interconnection system
JP2005354756A (en) Uninterruptible power supply apparatus
JP2007252164A (en) Distributed power supply system