JP5589771B2 - Charger current control device - Google Patents

Charger current control device Download PDF

Info

Publication number
JP5589771B2
JP5589771B2 JP2010243618A JP2010243618A JP5589771B2 JP 5589771 B2 JP5589771 B2 JP 5589771B2 JP 2010243618 A JP2010243618 A JP 2010243618A JP 2010243618 A JP2010243618 A JP 2010243618A JP 5589771 B2 JP5589771 B2 JP 5589771B2
Authority
JP
Japan
Prior art keywords
current
voltage
iav
unit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010243618A
Other languages
Japanese (ja)
Other versions
JP2012100374A (en
Inventor
忠男 郷司
博之 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2010243618A priority Critical patent/JP5589771B2/en
Publication of JP2012100374A publication Critical patent/JP2012100374A/en
Application granted granted Critical
Publication of JP5589771B2 publication Critical patent/JP5589771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、充電器の電流制御装置に係わり、特にバッテリーフォークリフト等の電気車に搭載するバッテリー充電器の過電流を防止する装置に関するものである。   The present invention relates to a current control device for a charger, and more particularly to a device for preventing an overcurrent of a battery charger mounted on an electric vehicle such as a battery forklift.

図8はバッテリーフォークリフト等の電気車に搭載される充電器の回路構成を示したもので、ACは交流電源、RF1は第1の整流器で、ダイオードブリッジよりなって交流を直流に変換する。C1は交流電圧ACを全波整流し直流に変換した電圧を平滑するための平滑コンデンサ、TR1はインバータで、トランジスタやIGBTなどの半導体素子により構成されて直流を交流に変換する。CS1は電流検出器で、インバータTR1電流を検出してインバータを構成する半導体素子を過電流から保護するために用いられる。   FIG. 8 shows a circuit configuration of a charger mounted on an electric vehicle such as a battery forklift. AC is an AC power source, RF1 is a first rectifier, and a diode bridge converts AC to DC. C1 is a smoothing capacitor for smoothing the voltage obtained by full-wave rectifying the AC voltage AC and converting it to DC, and TR1 is an inverter, which is composed of a semiconductor element such as a transistor or IGBT and converts DC to AC. CS1 is a current detector, which is used to detect the current of the inverter TR1 and protect the semiconductor elements constituting the inverter from overcurrent.

インバータTR1によって交流に変換された電力は、トランスTFを経て第2の整流器RF2により交流を直流に変換され、平滑リアクトルDCLと平滑コンデンサC2よりなる平滑回路を経てバッテリーBを充電する。バッテリーBには、スイッチング素子T1のオンオフ比を変えることで定電圧、定電流制御される。
D2はフリーホイリングダイオードで、スイッチング素子T1がオフしたときリアクトルL1の電流をバッテリーBに戻すことでT1を過電圧から保護する。CS2はバッテリー電流を検出する電流検出器である。
The electric power converted into alternating current by the inverter TR1 is converted into alternating current by the second rectifier RF2 through the transformer TF, and the battery B is charged through the smoothing circuit including the smoothing reactor DCL and the smoothing capacitor C2. The battery B is controlled at a constant voltage and a constant current by changing the on / off ratio of the switching element T1.
D2 is a freewheeling diode, which protects T1 from overvoltage by returning the current of the reactor L1 to the battery B when the switching element T1 is turned off. CS2 is a current detector that detects battery current.

なお、図8のように、交流電源から整流器を介して所定の電圧と電流を取り出し、所定のタイミングでバッテリーに供給するものとしては、特許文献1が公知になっている。   As shown in FIG. 8, Patent Document 1 is known as a device that takes out a predetermined voltage and current from an AC power supply via a rectifier and supplies them to a battery at a predetermined timing.

特開2002−142381JP 2002-142381 A

特許文献1では、充電開始前の回路設定は、定電流制御での充電に対応していることから、充電開始前の充電電流は0であり、PWC制御回路の出力が最大デューティ比で出力される状態下に有る。この状態で定電流制御からの充電を開始すると、充電開始直後に大きな突入電流が生じるといった問題点を解決するために、充電開始時点の突入充電電流のピーク値を低減し、充電開始直後の突入電流を防止する突入電流防止スイッチを設けたものである。   In Patent Document 1, since the circuit setting before the start of charging corresponds to charging under constant current control, the charging current before starting charging is 0, and the output of the PWC control circuit is output at the maximum duty ratio. It is under the state to be. When charging from constant current control is started in this state, in order to solve the problem that a large inrush current occurs immediately after the start of charging, the peak value of the inrush charging current at the start of charging is reduced, and the inrush immediately after starting charging An inrush current prevention switch for preventing current is provided.

しかし、交流電源から整流器を介して所定の定電圧,定電流を取り出して充電する充電器では、当該充電器の接続される交流電源と同一の交流電源に容量の大きな外部負荷が接続されている場合、その外部負荷の電源投入時などで電源電圧が瞬時低下したとき充電回路に過電流現象が発生する。   However, in a charger that takes out and charges a predetermined constant voltage and constant current from an AC power source via a rectifier, an external load having a large capacity is connected to the same AC power source as the AC power source to which the charger is connected. In such a case, an overcurrent phenomenon occurs in the charging circuit when the power supply voltage drops instantaneously, for example, when the external load is turned on.

本発明が目的とするとこは、充電器の外部要因による過電流を防止する充電器の電流制御装置を提供することにある。   An object of the present invention is to provide a current controller for a charger that prevents an overcurrent due to an external factor of the charger.

本発明の請求項1は、直流に変換された交流電圧をインバータにて交流電圧に変換し、変換された交流電圧を整流器にて直流に変換して平滑回路で平滑し、スイッチング素子で制御しながらバッテリーの充電電圧と充電電流を制御する充電器において、
前記平滑回路の検出電圧Vdetと予め設定された電圧指令Vrefの偏差信号を比例積分の電圧アンプで増幅し、この増幅された信号に基づきPWM制御部を介して前記インバータの出力電圧を制御すると共に、バッテリー電流を検出する電流検出器を設け、この電流検出器で検出された検出電流Idetと電流設定器において予め設定された電流指令Irefの偏差信号を電流アンプで増幅する電流制御部を設け、この電流制御部の出力信号に基づきパルス幅変換部を介して前記スイッチング素子をオン・オフ制御するよう構成したものである。
Claim 1 of the present invention converts an alternating voltage converted to direct current into an alternating voltage by an inverter, converts the converted alternating voltage into direct current by a rectifier, smoothes it by a smoothing circuit, and controls it by a switching element. While in the charger that controls the charging voltage and charging current of the battery,
A deviation signal between the detection voltage Vdet of the smoothing circuit and a preset voltage command Vref is amplified by a proportional integration voltage amplifier, and the output voltage of the inverter is controlled via the PWM control unit based on the amplified signal. A current detector for detecting a battery current, and a current control unit for amplifying a deviation signal between a detected current Idet detected by the current detector and a current command Iref preset in the current setter by a current amplifier; The switching element is configured to be turned on / off via a pulse width converter based on the output signal of the current controller.

本発明の請求項2は、前記電流制御部は、前記電流検出器により検出された検出電流Idetを入力して平均電流Iavを算出する平均化部と、バッテリー電流の増・減の変化率をそれぞれ予め設定する変化率設定部と、前記平均電流Iavと前記電流設定部で設定された電流値と比較し、平均電流Iavが電流設定値より大の時には平均電流Iavと前記変化率設定部で設定された電流値との差信号を電流指令Irefとし、平均電流Iavが電流設定値より小の時には平均電流Iavと前記変化率設定部で設定された電流値との和信号を電流指令Irefとする比較手段よりなる設定電流切換部を備えたことを特徴としたものである。 According to a second aspect of the present invention, the current control unit receives the detection current Idet detected by the current detector and calculates an average current Iav, and a change rate of increase / decrease in battery current. Each of the change rate setting unit set in advance and the average current Iav and the current value set by the current setting unit are compared. When the average current Iav is larger than the current set value, the average current Iav and the change rate setting unit A difference signal from the set current value is set as a current command Iref, and when the average current Iav is smaller than the current set value, a sum signal of the average current Iav and the current value set by the change rate setting unit is set as a current command Iref. The present invention is characterized in that a set current switching unit comprising a comparing means is provided.

本発明の請求項3は、前記電流制御部は、前記検出電流Idetと電流指令Irefの偏差信号を入力し、入力された差信号極性により出力信号の極性切換機能を有する電流アンプと、電流アンプの出力側に接続される変化率設定部と、前記電流検出器により検出された検出電流Idetを入力して平均電流Iavを算出する平均化部と、平均電流Iavと前記変化率設定部の出力の和信号を前記パルス幅変換部に出力するよう構成したことを特徴としたものである。   According to a third aspect of the present invention, the current control unit receives a deviation signal between the detection current Idet and the current command Iref, and a current amplifier having a function of switching the polarity of the output signal according to the input difference signal polarity; A rate-of-change setting unit connected to the output side, an averaging unit that calculates the average current Iav by inputting the detected current Idet detected by the current detector, an output of the average current Iav and the rate-of-change setting unit The sum signal is output to the pulse width converter.

以上のとおり、本発明によれば、外部負荷の電源投入時などで電源電圧が瞬時低下したとき充電回路に発生する過電流現象は抑制されるものである。また、制御回路自体はインバータやスイッチング素子を直接制御するため、特許文献1のようにフィードバック信号を変換するフォトカプラや検出回路などが不要となり、小型化が可能となるものである。   As described above, according to the present invention, the overcurrent phenomenon that occurs in the charging circuit when the power supply voltage drops instantaneously, such as when the external load is turned on, is suppressed. Further, since the control circuit itself directly controls the inverter and the switching element, a photocoupler and a detection circuit for converting a feedback signal as in Patent Document 1 are unnecessary, and the size can be reduced.

本発明の実施例を示す充電器の制御装置の構成図。The block diagram of the control apparatus of the charger which shows the Example of this invention. 本発明による瞬時電圧低下時の電圧・電流のタイムチャート。The time chart of the voltage and electric current at the time of the instantaneous voltage fall by this invention. 本発明の他の実施例を示す充電器の制御装置の構成図。The block diagram of the control apparatus of the charger which shows the other Example of this invention. 本発明の電流制御部の構成図。The block diagram of the current control part of this invention. 電流制御部動作のフローチャート。The flowchart of an electric current control part operation | movement. 本発明による瞬時電圧低下時の電圧・電流のタイムチャート。The time chart of the voltage and electric current at the time of the instantaneous voltage fall by this invention. 本発明の他の実施例による電流制御部の構成図。The block diagram of the current control part by the other Example of this invention. 従来の充電器の制御装置の構成図。The block diagram of the control apparatus of the conventional charger.

図1は、本発明の第1の実施例を示す構成図を示したもので、図8と同一若しくは相当する部分に同一符号を付して説明を省略する。1は電圧制御部で、電圧設定部11、比例アンプ12、及び電圧アンプ13を有している。2は電流制御部で、電流設定部21、比例アンプ22、及び電流アンプ23を有している。3はパルス幅変換部である。   FIG. 1 is a block diagram showing a first embodiment of the present invention. The same or corresponding parts as those in FIG. A voltage control unit 1 includes a voltage setting unit 11, a proportional amplifier 12, and a voltage amplifier 13. A current control unit 2 includes a current setting unit 21, a proportional amplifier 22, and a current amplifier 23. Reference numeral 3 denotes a pulse width converter.

電圧設定部11において電圧指令Vrefとして設定する。また、平滑コンデンサC2の検出電圧Vc2は、比例アンプ12で所定値に増幅された後、Vdetとして減算部14に出力される。減算部14では設定電圧Vrefと検出電圧Vdetの差演算が実行され、算出された差信号は比例積分の電圧アンプ13を介してPWM制御部4に出力され、差信号が0となるようインバータTR1が制御される。   The voltage setting unit 11 sets the voltage command Vref. The detection voltage Vc2 of the smoothing capacitor C2 is amplified to a predetermined value by the proportional amplifier 12 and then output to the subtraction unit 14 as Vdet. The subtraction unit 14 performs a difference calculation between the set voltage Vref and the detection voltage Vdet, and the calculated difference signal is output to the PWM control unit 4 via the proportional-integral voltage amplifier 13 so that the difference signal becomes 0 so that the difference signal becomes zero. Is controlled.

一方、電流検出器CS2によって検出されたバッテリー電流Id2は、比例アンプ22を介して検出電流Idetが減算部24に出力され、電流設定部21により設定された電流指令Irefとの差信号が求められる。差信号は比例積分の電流アンプ23を通ってパルス幅変換部3に出力され、このパルス幅変換部3により差信号が0となるようスイッチング素子T1のオン・オフの比率制御が実行される。   On the other hand, the battery current Id2 detected by the current detector CS2 is output to the subtraction unit 24 through the proportional amplifier 22, and a difference signal from the current command Iref set by the current setting unit 21 is obtained. . The difference signal is output to the pulse width conversion unit 3 through the proportional-integral current amplifier 23, and the pulse width conversion unit 3 performs on / off ratio control of the switching element T1 so that the difference signal becomes zero.

図2は本発明のタイムチャートを示したもので、外部要因により時刻t1で瞬時電圧低下が発生し、時刻t2で復帰したとすると、平滑コンデンサC1,C2の電圧Vc1,Vc2も低下する。これに伴い、電圧制御部1の減算部14では電圧指令Vrefと検出電圧Vdetの差信号が発生し、電圧アンプ13では瞬時電圧低下の復帰する時刻t2まで電圧を持ち上げるべく100%の電圧を出力し、PWM制御部4を介してインバータTR1を制御する。
電流制御部2では、時刻t1での瞬時電圧低下により電流アンプ23の出力電流は電流指令以下となることから100%に振り切れるが、バッテリー電流Id2は
バッテリーへの供給電圧がVc2<VBとなりバッテリー電圧VBより低くなるため、瞬時電圧低下が復帰する時刻t2以降までは流れない。
FIG. 2 shows a time chart of the present invention. When an instantaneous voltage drop occurs at time t1 due to an external factor, and the voltage is restored at time t2, the voltages Vc1 and Vc2 of the smoothing capacitors C1 and C2 also drop. Accordingly, a difference signal between the voltage command Vref and the detected voltage Vdet is generated in the subtracting unit 14 of the voltage control unit 1, and the voltage amplifier 13 outputs 100% voltage to raise the voltage until the time t2 when the instantaneous voltage drop is restored. Then, the inverter TR1 is controlled via the PWM control unit 4.
The current controller 2, the output current of the current amplifier 23 by the instantaneous voltage drop at the time t1 Furikireru to 100% since it becomes less current command, but battery current Id2 is the supply voltage to the battery Vc2 <V B becomes Since it becomes lower than the battery voltage V B, it does not flow until time t2 after the instantaneous voltage drop is restored.

したがって、この第1の実施例によれば、外部負荷の電源投入時などで電源電圧が瞬時低下したとき充電回路に発生する過電流現象は抑制されるものである。また、制御回路自体は、インバータTR1やスイッチング素子T1を直接制御するため特許文献1のようなフィードバック信号を変換するフォトカプラや検出回路などを不要とし、小型化が可能となるものである。   Therefore, according to the first embodiment, the overcurrent phenomenon that occurs in the charging circuit when the power supply voltage drops instantaneously, such as when the external load is turned on, is suppressed. Further, since the control circuit itself directly controls the inverter TR1 and the switching element T1, the control circuit itself does not require a photocoupler or a detection circuit for converting a feedback signal as in Patent Document 1, and can be miniaturized.

図3は第2の実施例を示す構成図で、図1で示す第1の実施例との相違点は電流制御部2aで、図4のように構成される。第1の実施例では、瞬時電圧低下が復帰したとき、電圧アンプ13と電流アンプ23は100%の出力状態となっていることから最大電圧、最大電流を出力するよう作用する。このため、バッテリー電流Id2は、図2で示す時刻t3のように過電流現象が完全には抑制されずにオーバーシュートが発生している。第2の実施例は、このオーバーシュートを除去するものである。   FIG. 3 is a block diagram showing the second embodiment. The difference from the first embodiment shown in FIG. 1 is the current control unit 2a, which is configured as shown in FIG. In the first embodiment, when the instantaneous voltage drop is restored, the voltage amplifier 13 and the current amplifier 23 are in the output state of 100%, so that the maximum voltage and the maximum current are output. For this reason, the battery current Id2 does not completely suppress the overcurrent phenomenon at time t3 shown in FIG. The second embodiment eliminates this overshoot.

図4において、25は平均化部で、比例アンプ22を介して出力される検出電流Idetの平均値が移動平均手段などによって求められる。26は正方向の変化率設定部、27は負方向の変化率設定部で、各設定部26,27の設定電流は増減電流が100%充電電流の正又は負の変化率10%程度に設定されている。28,29は切換部で、切換部28は電流設定部21により設定された電流指令Iref>Iav+ΔIで端子a1(増側)に切換わり、電流指令Iref<Iav−ΔIで端子b1(減側)に切換わる。また、切換部29は電流指令Irefに対して充電電流の平均値Iavが±ΔI以内とのきに端子b2側に切換る。そして、これら25〜29によって設定電流切換部が構成される。 In FIG. 4, reference numeral 25 denotes an averaging unit, and an average value of the detection current Idet output via the proportional amplifier 22 is obtained by a moving average means or the like. 26 is a positive direction change rate setting unit, 27 is a negative direction change rate setting unit, and the set current of each setting unit 26, 27 is set to about 10% positive or negative change rate of the charging current when the increase / decrease current is 100%. Has been. 28 and 29 are switching units, and the switching unit 28 switches to the terminal a1 (increase side) when the current command Iref> Iav + ΔI set by the current setting unit 21, and the terminal b1 (decrease side) when the current command Iref <Iav−ΔI. Switch to. The switching unit 29 switches to the terminal b2 side when the average value Iav of the charging current is within ± ΔI with respect to the current command Iref. And these 25-29 comprise a setting current switching part.

図5は設定電流切換部の動作フローを示したもので、バッテリー電流Id2は、比例アンプ22に所定値に増幅されて検出電流値Idetとなって平均化部25に入力される。平均化部25では、ステップS1で平均値Iavに変換され、ステップS2で平均値Iavと電流設定部21により設定された電流設定値と比較し、電流設定値との差が変化率設定値±ΔIより大きいか否かが比較される。ここで、|Iav−Iref|>±ΔIを超えたときには、ステップS3で切換部28をオンし、更にステップS4でIav−Iref>0か否かが判断される。この結果、平均値Iavが電流設定値より大きいときにはステップS5でIav−ΔIを電流指令Irefとして出力する。また、平均値Iavが電流指令Irefより小さいときにはステップS6でIav+ΔIを電流指令Irefとして出力する。
一方、ステップS2で、平均値Iavと電流設定値の差が変化率設定値±ΔIより少ない場合には切換部28,29をオフ(ステップS7)とし、S8で電流設定部21での設定値を電流指令Irefとする。
FIG. 5 shows an operation flow of the set current switching unit. The battery current Id2 is amplified to a predetermined value by the proportional amplifier 22 and is input to the averaging unit 25 as a detected current value Idet. The averaging unit 25 converts the average value Iav to the average value Iav in step S1, compares the average value Iav with the current set value set by the current setting unit 21 in step S2, and determines the difference between the current set value and the change rate set value ±. It is compared whether it is greater than ΔI. Here, when | Iav−Iref |> ± ΔI is exceeded, the switching unit 28 is turned on in step S3, and it is further determined in step S4 whether Iav−Iref> 0. As a result, when the average value Iav is larger than the current set value, Iav−ΔI is output as the current command Iref in step S5. When the average value Iav is smaller than the current command Iref, Iav + ΔI is output as the current command Iref in step S6.
On the other hand, when the difference between the average value Iav and the current set value is smaller than the change rate set value ± ΔI in step S2, the switching units 28 and 29 are turned off (step S7), and the set value in the current set unit 21 in S8. Is a current command Iref.

図6は第2実施例のタイムチャートを示したもので、瞬時電圧低下が復帰した時刻t2後のt3で、電流指令IrefはIav+ΔIとなることから、バッテリー電流Id2が急増したときには直ちにIdet>Irefとなるため、電流アンプ23は電流増加を絞り始めるので電流増加が制限され、バッテリー電流Id2は過電流となることなく充電が継続される。   FIG. 6 shows a time chart of the second embodiment. At time t3 after time t2 when the instantaneous voltage drop is restored, the current command Iref becomes Iav + ΔI. Therefore, when the battery current Id2 increases rapidly, Idet> Iref Therefore, since the current amplifier 23 starts to limit the current increase, the current increase is limited, and the battery current Id2 is continuously charged without becoming an overcurrent.

したがって、この実施例によれば、瞬時電圧低下の復帰時におけるバッテリー電流Id2の増加は実施例1よりもより抑制され、外部要因に基づく過電流防止が可能となるものである。他は実施例1と同様である。   Therefore, according to this embodiment, the increase in the battery current Id2 at the time of recovery from the instantaneous voltage drop is suppressed more than in the first embodiment, and overcurrent can be prevented based on external factors. Others are the same as in the first embodiment.

図7は第3の実施例を示す電流制御部2bの構成図で、他は図3と同様である。30は変化率設定部で電流アンプ23の出力側に接続され、その出力±ΔIは加算部31で平均値Iavと加算された後、パルス幅変換部3に入力される。
図7の動作について説明する。
検出されたバッテリー電流Id2は、比例アンプ22に所定値に増幅されて検出電流値Idetとなって減算部24に出力されて電流指令Irefとの差演算が実行さ
れ、その差信号は電流アンプ23に入力される。電流アンプ23は、入力される差信号の極性により出力信号の極性を変える切換スイッチの機能を有し、検出電流値Idetが電流指令Irefよりも大きくなったときに電流アンプ23の出力は負となり、検出電流値Idetが電流指令Irefよりも小さくなったときに電流アンプ23の出力は正となる。したがって、電流アンプ23の出力が負の場合には、変化率設定部30で予め設定された変化率信号ΔIは負となり、パルス幅変換部3に入力され信号はIav−ΔIとなる。また、電流アンプ23の出力が正の場合には、変化率信号ΔIは正となり、パルス幅変換部3に入力され信号はIav+ΔIとなる。
FIG. 7 is a block diagram of the current control unit 2b according to the third embodiment, and the rest is the same as FIG. A change rate setting unit 30 is connected to the output side of the current amplifier 23, and its output ± ΔI is added to the average value Iav by the addition unit 31 and then input to the pulse width conversion unit 3.
The operation of FIG. 7 will be described.
The detected battery current Id2 is amplified to a predetermined value by the proportional amplifier 22 and output to the subtractor 24 as a detected current value Idet, and a difference calculation with the current command Iref is executed. Is input. The current amplifier 23 has a function of a changeover switch that changes the polarity of the output signal according to the polarity of the input difference signal. When the detected current value Idet becomes larger than the current command Iref, the output of the current amplifier 23 becomes negative. When the detected current value Idet becomes smaller than the current command Iref, the output of the current amplifier 23 becomes positive. Therefore, when the output of the current amplifier 23 is negative, the change rate signal ΔI preset by the change rate setting unit 30 is negative, and the signal input to the pulse width conversion unit 3 is Iav−ΔI. Further, when the output of the current amplifier 23 is positive, the change rate signal ΔI is positive, and the signal input to the pulse width converter 3 is Iav + ΔI.

この実施例によれば、検出電流値Idetが急に大きく変化しても、パルス幅変換部3に入力され信号は±ΔI以下の変化となるため、バッテリー電流Id2の過電流は防止され、実施例2と同様の効果を奏するものである。   According to this embodiment, even if the detected current value Idet suddenly changes greatly, the signal input to the pulse width conversion unit 3 changes to ± ΔI or less, so that the overcurrent of the battery current Id2 is prevented and implemented. The same effect as in Example 2 is achieved.

1… 電圧制御部
2… 電流制御部
3… パルス幅変換部
4… PWM制御部
11… 電圧設定部
12、22… 比例アンプ
13… 電圧アンプ
21… 電流設定部
23… 電圧アンプ
25… 平均化部
DESCRIPTION OF SYMBOLS 1 ... Voltage control part 2 ... Current control part 3 ... Pulse width conversion part 4 ... PWM control part 11 ... Voltage setting part 12, 22 ... Proportional amplifier 13 ... Voltage amplifier 21 ... Current setting part 23 ... Voltage amplifier 25 ... Averaging part

Claims (3)

直流に変換された交流電圧をインバータにて交流電圧に変換し、変換された交流電圧を整流器にて直流に変換して平滑回路で平滑し、スイッチング素子で制御しながらバッテリーの充電電圧と充電電流を制御する充電器において、
前記平滑回路の検出電圧Vdetと予め設定された電圧指令Vrefの偏差信号を比例積分の電圧アンプで増幅し、この増幅された信号に基づきPWM制御部を介して前記インバータの出力電圧を制御すると共に、
バッテリー電流を検出する電流検出器を設け、この電流検出器で検出された検出電流Idetと電流設定器において予め設定された電流指令Irefの偏差信号を電流アンプで増幅する電流制御部を設け、この電流制御部の出力信号に基づきパルス幅変換部を介して前記スイッチング素子をオン・オフ制御するよう構成したことを特徴とした充電器の電流制御装置。
The AC voltage converted to DC is converted to AC voltage by an inverter, the converted AC voltage is converted to DC by a rectifier, smoothed by a smoothing circuit, and controlled by a switching element, and the battery charging voltage and charging current are controlled. In the charger that controls
A deviation signal between the detection voltage Vdet of the smoothing circuit and a preset voltage command Vref is amplified by a proportional integration voltage amplifier, and the output voltage of the inverter is controlled via the PWM control unit based on the amplified signal. ,
A current detector for detecting the battery current is provided, and a current control unit for amplifying a deviation signal between the detected current Idet detected by the current detector and a current command Iref preset in the current setting device by a current amplifier is provided. A current control device for a charger, wherein the switching element is controlled to be turned on / off via a pulse width converter based on an output signal of the current controller.
前記電流制御部は、前記電流検出器により検出された検出電流Idetを入力して平均電流Iavを算出する平均化部と、バッテリー電流の増・減の変化率をそれぞれ予め設定する変化率設定部と、前記平均電流Iavと前記電流設定部で設定された電流値と比較し、平均電流Iavが電流設定値より大の時には平均電流Iavと前記変化率設定部で設定された電流値との差信号を電流指令Irefとし、平均電流Iavが電流設定値より小の時には平均電流Iavと前記変化率設定部で設定された電流値との和信号を電流指令Irefとする比較手段よりなる設定電流切換部を備えたことを特徴とした請求項1記載の充電器の電流制御装置。 The current control unit inputs an detection current Idet detected by the current detector, calculates an average current Iav, and a rate-of-change setting unit that presets the rate of increase / decrease in battery current. And when the average current Iav is larger than the current setting value, the difference between the average current Iav and the current value set by the change rate setting unit is compared with the current value set by the current setting unit. A set current comprising a comparison means using the current command Iref as the current command Iref, and when the average current Iav is smaller than the current set value, the sum signal of the average current Iav and the current value set by the change rate setting unit. The current control device for a charger according to claim 1, further comprising a switching unit. 前記電流制御部は、前記検出電流Idetと電流指令Irefの偏差信号を入力し、入力された差信号極性により出力信号の極性切換機能を有する電流アンプと、電流アンプの出力側に接続される変化率設定部と、前記電流検出器により検出された検出電流Idetを入力して平均電流Iavを算出する平均化部と、平均電流Iavと前記変化率設定部の出力の和信号を前記パルス幅変換部に出力するよう構成したことを特徴とした請求項1記載の充電器の電流制御装置。 The current control unit receives a deviation signal between the detection current Idet and the current command Iref, and a current amplifier having a polarity switching function of an output signal according to the input difference signal polarity, and a change connected to the output side of the current amplifier A rate setting unit, an averaging unit that inputs the detection current Idet detected by the current detector and calculates an average current Iav, and a pulse width conversion of a sum signal of the average current Iav and the output of the change rate setting unit The current control device for a charger according to claim 1, wherein the current control device is configured to output to a power supply unit.
JP2010243618A 2010-10-29 2010-10-29 Charger current control device Active JP5589771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010243618A JP5589771B2 (en) 2010-10-29 2010-10-29 Charger current control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243618A JP5589771B2 (en) 2010-10-29 2010-10-29 Charger current control device

Publications (2)

Publication Number Publication Date
JP2012100374A JP2012100374A (en) 2012-05-24
JP5589771B2 true JP5589771B2 (en) 2014-09-17

Family

ID=46391664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243618A Active JP5589771B2 (en) 2010-10-29 2010-10-29 Charger current control device

Country Status (1)

Country Link
JP (1) JP5589771B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5956966B2 (en) 2013-09-06 2016-07-27 株式会社東芝 Charge control circuit and charge control system
JP6464054B2 (en) * 2015-08-19 2019-02-06 日本電子株式会社 Power supply circuit and charged particle emission device
JP7502007B2 (en) * 2018-09-21 2024-06-18 株式会社Gsユアサ Charge control device and charge control method
WO2020059844A1 (en) * 2018-09-21 2020-03-26 株式会社Gsユアサ Charging control device, charging control method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911049B2 (en) * 1996-07-16 2007-05-09 ソニー株式会社 Charger
JP2002142381A (en) * 2000-10-31 2002-05-17 Fuji Electric Co Ltd Changing apparatus
US6958591B1 (en) * 2002-05-22 2005-10-25 National Semiconductor Corporation Battery charging safety circuit for simultaneous startup and rapid surge current clamping
US6809678B2 (en) * 2002-10-16 2004-10-26 Perkinelmer Inc. Data processor controlled DC to DC converter system and method of operation
US7199558B2 (en) * 2003-07-22 2007-04-03 Intersil Americas Inc. AC-DC adapter interface and battery charger having high speed battery charger current foldback when adapter current demand exceeds prescribed limit
JP2005269825A (en) * 2004-03-19 2005-09-29 Yanmar Co Ltd Hybrid system
JP2007066725A (en) * 2005-08-31 2007-03-15 Tdk Corp Power source apparatus
JP3922650B1 (en) * 2006-03-24 2007-05-30 株式会社パワーシステム Charging device for capacitor storage power supply
JP2009232516A (en) * 2008-03-19 2009-10-08 Kawamura Electric Inc Charging device for small wind generation
JP2010022174A (en) * 2008-07-14 2010-01-28 Toyota Motor Corp Power source system
JP2010154655A (en) * 2008-12-25 2010-07-08 Renesas Technology Corp Power system

Also Published As

Publication number Publication date
JP2012100374A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
US8619437B2 (en) Switching power supply device having a controller to calculate the duty rate and output current
JP4774987B2 (en) Switching power supply
US7612542B2 (en) Power unit
JP5701283B2 (en) Charger
JP5382552B2 (en) DCDC converter and control method of DCDC converter
JP2001186689A (en) Uninterruptible power supply device
US9160238B2 (en) Power converter with current feedback loop
US11050353B2 (en) Power conversion device that generates switching signals
JP6139786B2 (en) Power converter
US8830701B2 (en) DC-DC converter
JP5589771B2 (en) Charger current control device
JP6204237B2 (en) Power converter
WO2009123094A1 (en) Power assist device
JP5449431B2 (en) Inverter device
JP2004088862A (en) Self-excited power conversion device
JP5509454B2 (en) Power supply and charger using the same
JP5381169B2 (en) DC-DC converter
JP6958387B2 (en) Control method of DC power supply and DC power supply
JP2002125367A (en) Power supply
JP7250097B1 (en) power converter
US8830700B2 (en) DC-DC converter and method for controlling DC-DC converter
JP2001145347A (en) Switching power supply
JP2009247193A (en) Instantaneous voltage-drop compensator in inverter apparatus
JP2017158302A (en) Switching power supply apparatus and switching power supply control method
JP2008193830A (en) Control method for direct-current power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5589771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150