JP2008091430A - Mounting component and method for manufacturing the same - Google Patents

Mounting component and method for manufacturing the same Download PDF

Info

Publication number
JP2008091430A
JP2008091430A JP2006268100A JP2006268100A JP2008091430A JP 2008091430 A JP2008091430 A JP 2008091430A JP 2006268100 A JP2006268100 A JP 2006268100A JP 2006268100 A JP2006268100 A JP 2006268100A JP 2008091430 A JP2008091430 A JP 2008091430A
Authority
JP
Japan
Prior art keywords
copper foil
copper
positron
wiring board
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006268100A
Other languages
Japanese (ja)
Inventor
Naoya Kuwazaki
尚哉 鍬崎
Koichi Hattori
公一 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2006268100A priority Critical patent/JP2008091430A/en
Publication of JP2008091430A publication Critical patent/JP2008091430A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting component including a wiring circuit board having excellent flexure property, an electronic component and a bonding part for bonding between a conductor of the wiring circuit board and the electronic component. <P>SOLUTION: In the mounting component, the conductor of wiring circuit board is formed as a copper foil, positrons released from a line source are inputted to the copper foil, and life span of the positrons of copper foil measured with the positron method for measuring life span of the positrons in the copper foil is within the range of 120 to 150 ps against 120 ps (pico-second) of a copper plate (O material in quality, copper element of 99.96% or more) of JIS alloy number C1020. Here, the wiring circuit board can be obtained through the steps of coating the front surface of the copper foil with a polyimide precurser resin solution, drying up this solution, and then hardening the copper foil or conducting thermal pressure bonding the polyimide resin film to the font surface of the copper foil. In these steps, life span of the positrons of the copper foil is determined by maintaining the substrate for 3 to 40 minutes within the temperature range of 300 to 400°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、配線基板、電子部品及び配線基板の導体部と電子部品とを接合する接合部を有する実装部品に関する。   The present invention relates to a wiring board, an electronic component, and a mounting component having a joint part for joining a conductor part of the wiring board and the electronic component.

配線基板に半導体等の電子部品を実装した実装部品は広く知られている。配線基板としては、絶縁体としての樹脂層及び導体としての回路加工された金属層を有する配線基板が広く知られている。そして、絶縁体としての樹脂層としては、ポリイミド樹脂やエポキシ樹脂(複合材を含む)、ポリエステル樹脂等が知られている。一方、導体としての回路加工された金属層としては、銅箔(銅を主成分とする銅合金箔を含む)が一般的である。   A mounting component in which an electronic component such as a semiconductor is mounted on a wiring board is widely known. As a wiring board, a wiring board having a resin layer as an insulator and a metal layer subjected to circuit processing as a conductor is widely known. And as a resin layer as an insulator, a polyimide resin, an epoxy resin (including a composite material), a polyester resin, and the like are known. On the other hand, as a metal layer subjected to circuit processing as a conductor, a copper foil (including a copper alloy foil mainly composed of copper) is generally used.

フレキシブルプリント基板用積層板の耐折性を向上させるために、銅箔の品質改善が要請されているが、これまで、その品質向上を可能とする評価・解析技術の適用が充分ではなかった。近年、陽電子寿命を測定し、材料内部に存在する空孔型欠陥の評価方法が進展してきた。   In order to improve the folding resistance of the laminated board for flexible printed circuit boards, the quality improvement of the copper foil is required, but until now, the application of the evaluation / analysis technique capable of improving the quality has not been sufficient. In recent years, positron lifetimes have been measured and methods for evaluating vacancy-type defects present in materials have been developed.

特開2003-270176号公報Japanese Patent Laid-Open No. 2003-270176 第15回マイクロエレクトロニクスシンポジウム、2005年10月、p34915th Microelectronics Symposium, October 2005, p349 新日鉄技報、第367号、1998年、p15Nippon Steel Technical Report, No.367, 1998, p15 応用物理、第74巻、第9号、2005年、p1223Applied Physics, Volume 74, Number 9, 2005, p1223 Isotope News、2003年12月、p2Isotope News, December 2003, p2

非特許文献1では、陽電子消滅法を用いためっき銅中の格子欠陥を研究した報告がなされている。この報告では、めっき銅と鉛フリー半田との界面反応性を調べており、界面に格子欠陥があると陽電子の平均寿命が長くなるとしている。非特許文献2では、陽電子消滅法によるシリコン中のイオン注入欠陥を研究した報告がなされている。非特許文献3では、陽電子による先端半導体材料の評価方法を研究した報告がなされている。非特許文献4では、陽電子消滅による欠陥化学状態を分析した報告がなされている。具体的には、Si半導体、Fe-Cu合金についての分析にとどまる。   In Non-Patent Document 1, there has been a report of research on lattice defects in plated copper using the positron annihilation method. In this report, the interfacial reactivity between plated copper and lead-free solder is investigated, and it is said that if there are lattice defects at the interface, the average life of positrons will be extended. Non-patent document 2 reports that ion implantation defects in silicon by the positron annihilation method have been studied. In Non-Patent Document 3, there is a report of research on a method for evaluating advanced semiconductor materials using positrons. In Non-Patent Document 4, there is a report analyzing a defect chemical state due to positron annihilation. Specifically, the analysis is limited to Si semiconductors and Fe-Cu alloys.

本発明は、優れた耐屈曲性を有する実装部品を提供することを目的とする。他の目的は、優れた耐屈曲性を有する実装部品を製造する方法を提供することを目的とする。他の目的は、実装部品を評価する方法を提供することを目的とする。   An object of this invention is to provide the mounting component which has the outstanding bending resistance. Another object of the present invention is to provide a method for producing a mounting component having excellent bending resistance. Another object is to provide a method for evaluating a mounted component.

本発明は、配線基板、電子部品及び配線基板の導体部と電子部品とを接合する接合部を有する実装部品において、配線基板の導体部が銅箔であって、線源から放出した陽電子を銅箔に入射させ、銅箔中の陽電子寿命を測定する陽電子消滅法によって測定される銅箔の陽電子の寿命が、JIS合金番号C1020銅板(質別O材、銅成分99.96%以上)の120ps(ピコ秒)に対し、120〜150psの範囲内の陽電子寿命を有する銅箔であることを特徴とする実装部品である。   The present invention relates to a wiring board, an electronic component, and a mounting component having a joint part for joining the conductor part of the wiring board and the electronic component, wherein the conductor part of the wiring board is a copper foil, and the positron emitted from the radiation source is copper. The copper foil positron lifetime measured by the positron annihilation method, which is incident on the foil and measured the positron lifetime in the copper foil, is 120 ps (picopic) of JIS alloy number C1020 copper plate (quality O material, copper component 99.96% or more) 2), a copper foil having a positron lifetime in the range of 120 to 150 ps.

上記実装部品は次のいずれか1以上を満足することは、より優れた実装部品を与える。
1) 配線基板の導体部が、電解銅箔であること。
2) 電子部品が半導体素子であって、配線基板が銅箔とポリイミド樹脂層から構成される銅張積層板を回路加工して得られるものであること。
Satisfying one or more of the following mounting components gives a more excellent mounting component.
1) The conductor part of the wiring board must be electrolytic copper foil.
2) The electronic component is a semiconductor element, and the wiring board is obtained by processing a copper-clad laminate composed of a copper foil and a polyimide resin layer.

また、本発明は、配線基板、電子部品及び配線基板の導体部と電子部品とを接合する接合部を有する実装部品の製造方法において、配線基板が銅箔とポリイミド樹脂層から構成される銅張積層板を回路加工して得られるものであり、銅張積層板が、銅箔表面にポリイミド前駆体樹脂溶液を塗工し、続く熱処理工程で乾燥及び硬化を行うことで得られるものであり、銅箔に電解銅箔を用い、前記熱処理工程において、300〜400℃の温度範囲で3〜40分間保持することで、陽電子消滅法によって測定される銅箔の陽電子の寿命が、JIS合金番号C1020銅板(質別O材、銅成分99.96%以上)の120psに対し、120〜150psの範囲内の陽電子寿命を有する銅箔とすることを特徴とする実装部品の製造方法である。また、上記銅張積層板が、銅箔表面にポリイミド樹脂のフィルムを重ね合わせ、加圧下で熱圧着を行うことで得られるものであり、銅箔に電解銅箔を用い、前記熱圧着において、300〜400℃の温度範囲で3〜40分間保持することで、上記陽電子寿命を有する銅箔とする実装部品の製造方法であることもよい。   Further, the present invention provides a wiring board, an electronic component, and a method for manufacturing a mounting component having a joint portion for joining a conductor portion and an electronic component of the wiring substrate, wherein the wiring substrate is made of a copper clad composed of a copper foil and a polyimide resin layer. It is obtained by circuit processing the laminate, copper-clad laminate is obtained by applying a polyimide precursor resin solution on the copper foil surface, followed by drying and curing in the subsequent heat treatment step, By using electrolytic copper foil as the copper foil, and maintaining the temperature in the temperature range of 300 to 400 ° C. for 3 to 40 minutes in the heat treatment step, the positron life of the copper foil measured by the positron annihilation method is JIS alloy number C1020 It is a method for manufacturing a mounting component, characterized in that a copper foil having a positron lifetime within a range of 120 to 150 ps is obtained for 120 ps of a copper plate (quality O material, copper component 99.96% or more). In addition, the copper-clad laminate is obtained by superimposing a polyimide resin film on the surface of the copper foil and performing thermocompression bonding under pressure, using an electrolytic copper foil as the copper foil, in the thermocompression bonding, It may be a method for producing a mounted component that is a copper foil having the above-mentioned positron lifetime by holding at a temperature range of 300 to 400 ° C. for 3 to 40 minutes.

更に本発明は、配線基板、電子部品及び配線基板の導体部と電子部品とを接合する接合部を有する実装部品の評価方法において、配線基板の導体部が銅箔であって、線源から放出した陽電子を銅箔に入射させ、銅箔中の陽電子寿命を測定する陽電子消滅法によって測定される銅箔の陽電子の寿命が、JIS合金番号C1020銅板(質別O材、銅成分99.96%以上)の120psに対し、120〜150psの範囲内の陽電子寿命を有する銅箔であることを確認することを特徴とする実装部品の評価方法である。   Furthermore, the present invention relates to a wiring board, an electronic component, and a mounting component evaluation method having a joint portion for joining a wiring board conductor portion and an electronic component, wherein the wiring board conductor portion is a copper foil and is emitted from a radiation source. The positron lifetime of the copper foil measured by the positron annihilation method, which measures the positron lifetime in the copper foil, is incident on the copper foil, JIS alloy number C1020 copper plate (quality O material, copper component 99.96% or more) It is a mounting component evaluation method characterized by confirming that the copper foil has a positron lifetime in a range of 120 to 150 ps with respect to 120 ps.

本発明の製造方法によれば、優れた耐熱性及び耐屈曲性を有する実装部品を得ることができる。   According to the manufacturing method of the present invention, a mounting component having excellent heat resistance and bending resistance can be obtained.

本発明の実装部品は、配線基板、電子部品及び配線基板の導体部と電子部品とを接合する接合部を有する。ここで、配線基板の導体部が銅箔であって、線源から放出した陽電子を銅箔に入射させ、銅箔中の陽電子寿命を測定する陽電子消滅法によって測定される銅箔の陽電子の寿命(平均寿命をいう)が、JIS合金番号C1020銅板(質別O材、銅成分99.96%以上)の120ps(ピコ秒)に対し、120〜150psの範囲内の陽電子寿命を有する銅箔である。   The mounting component of the present invention includes a wiring board, an electronic component, and a joint part that joins the conductor part of the wiring board and the electronic component. Here, the conductor part of the wiring board is a copper foil, and the positron lifetime of the copper foil measured by the positron annihilation method in which the positron emitted from the radiation source is incident on the copper foil and the positron lifetime in the copper foil is measured. (Mean life) refers to a copper foil having a positron lifetime in the range of 120 to 150 ps with respect to 120 ps (picoseconds) of a JIS alloy number C1020 copper plate (quality O material, copper component 99.96% or more).

配線基板としては、銅箔とポリイミド樹脂層から構成される銅張積層板を回路加工して得られるものが適する。銅張積層板としては、銅箔表面にポリイミド前駆体樹脂溶液を塗工し、続く熱処理工程で乾燥及び硬化(イミド化)を行うことで得られるものや、銅箔表面にポリイミド前駆体樹脂のフィルムを重ね合わせ、加圧下で熱圧着を行うことで得られるものが適する。銅張積層板は、ポリイミド樹脂層を有するが、ポリイミド樹脂層は1層であっても、2層以上であってもよい。銅張積層板に使用される銅箔としては、電解銅箔が適する。そして、熱処理工程又は熱圧着において、300〜400℃の温度範囲で3〜40分間保持することで、陽電子消滅法によって測定される銅箔の陽電子の寿命が、上記寿命を有する銅箔である必要がある。なお、銅張積層板を回路加工する方法としては、現像、エッチング等の公知の方法が採用できる。   As a wiring board, what is obtained by carrying out circuit processing of the copper clad laminated board comprised from a copper foil and a polyimide resin layer is suitable. As a copper clad laminate, a polyimide precursor resin solution is applied to the copper foil surface, and is obtained by drying and curing (imidization) in the subsequent heat treatment process. What is obtained by stacking films and performing thermocompression bonding under pressure is suitable. The copper clad laminate has a polyimide resin layer, but the polyimide resin layer may be one layer or two or more layers. As the copper foil used for the copper-clad laminate, electrolytic copper foil is suitable. And in the heat treatment process or thermocompression bonding, the lifetime of the positron of the copper foil measured by the positron annihilation method is required to be a copper foil having the above-mentioned lifetime by holding at a temperature range of 300 to 400 ° C. for 3 to 40 minutes. There is. As a method for processing the copper-clad laminate, known methods such as development and etching can be employed.

電子部品を配線基板に実装した場合、次の2箇所が接合部となる。
1)電子部品と半田の接合部
2)半田と配線基板の接合部
When an electronic component is mounted on a wiring board, the following two locations become joints.
1) Electronic component and solder joint
2) Solder-wiring board joint

高温又は屈曲動作が要求される環境下では、これら接合界面の変化に伴う劣化が生じる。半田と配線基板の接合部においては、配線基板の導体部、特に銅箔の空孔型欠陥を介した半田中の錫の拡散で生成した金属間化合物の層と銅層の2層を形成する。銅リッチの金属間化合物層には、原子の拡散速度の差異によって発生するカーケンダルボイドを誘起し、脆弱な金属間化合物の存在と相まって、クラックに発展する。カーケンダルボイドは、走査型電子顕微鏡(FE-SEM)にて観察可能であるが、観察不可能な空孔欠陥は、陽電子消滅法による陽電子寿命を測定することが有効である。陽電子の寿命は、陽電子の周りの電子密度に反比例する。空孔内では消滅の相手となる電子の密度は低いので、陽電子が空孔に捕獲されるとその寿命は長くなる。三次元的空孔集合体が大きくなるにつれて、陽電子寿命が延びる。このことを利用して、陽電子寿命から空孔集合体の大きさを見積る。空孔型欠陥の数密度が比較的低い場合(100ppm程度以下)、一部の陽電子は空孔型欠陥に捕獲される前にバルクで消滅する。このためバルクと欠陥での全体としての陽電子平均寿命は、空孔濃度に依存し、空孔濃度が高ければ陽電子寿命は長くなり、低ければ短くなる。導体部が従来のものより陽電子寿命が短いもの、すなわち空孔型欠陥が少ない材料であることにより、実装部品としての性能が向上することが見出された。すなわち、使用する配線基板の導体部となる銅箔の空孔欠陥が少ない材料であることがよいことが見出された。   In an environment where a high temperature or bending operation is required, deterioration due to the change in the bonding interface occurs. At the joint between the solder and the wiring board, two layers of a conductor part of the wiring board, in particular, an intermetallic compound layer formed by diffusion of tin in the solder via a void type defect of the copper foil and a copper layer are formed. . In the copper-rich intermetallic compound layer, a Kirkendall void generated due to the difference in the diffusion rate of atoms is induced, which develops into a crack in combination with the presence of a fragile intermetallic compound. Kirkendall voids can be observed with a scanning electron microscope (FE-SEM). For vacant defects that cannot be observed, it is effective to measure the positron lifetime by the positron annihilation method. The lifetime of a positron is inversely proportional to the electron density around the positron. Since the density of electrons that are annihilated in the vacancies is low, the lifetime of the positrons is increased when they are captured in the vacancies. As the three-dimensional vacancy aggregate grows, the positron lifetime increases. Utilizing this fact, the size of the vacancy aggregate is estimated from the positron lifetime. When the number density of vacancy-type defects is relatively low (about 100 ppm or less), some positrons disappear in bulk before being captured by the vacancy-type defects. For this reason, the overall positron lifetime in bulk and defects depends on the vacancy concentration. The higher the vacancy concentration, the longer the positron lifetime, and the lower the positron lifetime. It has been found that the performance as a mounting component is improved when the conductor portion has a shorter positron lifetime than that of the conventional one, that is, a material with fewer hole-type defects. That is, it was found that the copper foil that becomes the conductor portion of the wiring board to be used should be a material having few void defects.

配線基板の導体層に適用されている銅箔は、陽電子消滅法によって測定される銅箔の陽電子の寿命が、JIS合金番号C1020銅板(質別O材、銅成分99.96%以上)の120psに対し、150psを超える陽電子寿命を有する銅箔であるが、本発明における実装部品では、配線基板の銅箔の陽電子寿命は120〜150psの範囲内、好ましくは130〜148psの範囲内、更に好ましくは140〜147psの範囲内の陽電子寿命を有することがよい。   The copper foil applied to the conductor layer of the wiring board has a positron lifetime measured by the positron annihilation method of 120 ps compared to JIS alloy number C1020 copper plate (quality O material, copper component 99.96% or more). In the mounting component according to the present invention, the positron lifetime of the copper foil of the wiring board is in the range of 120 to 150 ps, preferably in the range of 130 to 148 ps, more preferably 140. It should have a positron lifetime in the range of ~ 147ps.

このような陽電子寿命を有する銅箔は、市販の電解銅箔を適宜選択し、所定の熱処理工程を加えることで製造可能である。熱処理工程においては、300〜400℃の温度範囲で3〜40分間、好ましくは310〜390℃の温度範囲で5〜30分間、更に好ましくは、320〜380℃の温度範囲で7〜20分間保持する工程を備えることで、上記陽電子寿命を120〜150psの範囲内のものとすることができることを見出した。   A copper foil having such a positron lifetime can be manufactured by appropriately selecting a commercially available electrolytic copper foil and adding a predetermined heat treatment step. In the heat treatment step, hold at a temperature range of 300 to 400 ° C. for 3 to 40 minutes, preferably at a temperature range of 310 to 390 ° C. for 5 to 30 minutes, more preferably at a temperature range of 320 to 380 ° C. for 7 to 20 minutes. It has been found that the above-mentioned positron lifetime can be set within a range of 120 to 150 ps by including the step of performing.

熱処理工程は上記陽電子寿命を銅箔に与える条件である必要があるが、有利には銅張積層板を製造する工程中に、上記熱処理工程を設けることがよい。具体的には、銅張積層板が、銅箔表面にポリイミド前駆体樹脂溶液を塗工し、続く熱処理工程で乾燥及び硬化を行うことで得られるものである場合は、この熱処理工程において、300〜400℃の温度範囲で3〜40分間、好ましくは310〜390℃の温度範囲で5〜30分間、更に好ましくは、320〜380℃の温度範囲で7〜20分間保持する工程を備えることがよい。   The heat treatment step needs to be a condition that gives the positron lifetime to the copper foil, but it is preferable to provide the heat treatment step during the step of producing the copper clad laminate. Specifically, when the copper-clad laminate is obtained by applying a polyimide precursor resin solution to the copper foil surface and performing drying and curing in a subsequent heat treatment step, in this heat treatment step, A step of holding at a temperature range of ˜400 ° C. for 3 to 40 minutes, preferably at a temperature range of 310 to 390 ° C. for 5 to 30 minutes, more preferably at a temperature range of 320 to 380 ° C. for 7 to 20 minutes. Good.

また、銅張積層板が、銅箔表面にポリイミド樹脂のフィルムを重ね合わせ、加圧下で熱圧着を行うことで得られるものである場合は、この熱圧着工程において、300〜400℃の温度範囲で3〜40分間保持することと熱処理を同時に行うことがよい。   In addition, when the copper clad laminate is obtained by superimposing a polyimide resin film on the copper foil surface and performing thermocompression bonding under pressure, in this thermocompression bonding step, a temperature range of 300 to 400 ° C It is better to hold for 3 to 40 minutes and heat treatment at the same time.

配線基板の絶縁層は、上記温度に耐え得るものであり、このような絶縁層はポリイミド樹脂が選択される。実装における熱寸法安定性の観点から、上記ポリイミド樹脂層は、熱線膨張係数が30ppm/K未満、有利には5ppm/K〜25ppm/Kの範囲にある低熱膨張性ポリイミド樹脂層を有することが好ましい。そして、この低熱膨張性ポリイミド樹脂層のいずれか一方又は両面の面にガラス転移温度が350℃以下、好ましくは250〜350℃の範囲にある熱可塑性ポリイミド樹脂層を設けることがよい。   The insulating layer of the wiring board can withstand the above temperature, and a polyimide resin is selected for such an insulating layer. From the viewpoint of thermal dimensional stability in mounting, the polyimide resin layer preferably has a low thermal expansion polyimide resin layer having a thermal linear expansion coefficient of less than 30 ppm / K, preferably in the range of 5 ppm / K to 25 ppm / K. . And it is good to provide the thermoplastic polyimide resin layer which has a glass transition temperature of 350 degrees C or less, Preferably it is the range of 250-350 degreeC on the surface of either one or both surfaces of this low thermal expansion polyimide resin layer.

ポリイミド樹脂層の層厚みは、15〜50μmの範囲にあることが好ましく、更に好ましくは20〜40μmの範囲にあることがよい。ポリイミド樹脂層を低熱膨張性ポリイミド樹脂層と熱可塑性ポリイミド樹脂層とで構成する場合、その合計厚みの1/2以上、有利には2/3〜9/10は低熱膨張性ポリイミド樹脂層で構成することがよい。また、耐熱性や寸法安定性の観点から、熱可塑性ポリイミド樹脂層の一層の厚みは、5μm以下、有利には1〜4μmの範囲にあることがよい。同じ厚さの熱可塑性ポリイミド樹脂層を低熱膨張性ポリイミド樹脂層の両側に設ける場合、熱可塑性ポリイミド樹脂層の合計厚みは前記値の2倍となる。   The layer thickness of the polyimide resin layer is preferably in the range of 15 to 50 μm, more preferably in the range of 20 to 40 μm. When the polyimide resin layer is composed of a low thermal expansion polyimide resin layer and a thermoplastic polyimide resin layer, 1/2 or more of the total thickness, preferably 2/3 to 9/10 is composed of a low thermal expansion polyimide resin layer It is good to do. Further, from the viewpoint of heat resistance and dimensional stability, the thickness of one layer of the thermoplastic polyimide resin layer is preferably 5 μm or less, preferably in the range of 1 to 4 μm. When the thermoplastic polyimide resin layer having the same thickness is provided on both sides of the low thermal expansion polyimide resin layer, the total thickness of the thermoplastic polyimide resin layer is twice the above value.

銅箔の好ましい厚さは、8〜35μmの範囲であり、特に好ましくは9〜18μmの範囲である。銅箔厚みが8μmに満たないと、銅張積層板の製造時のテンション調整が困難となり、空孔欠陥を増加させる要因ともなり得る。一方、35μmを越えると銅張積層板の屈曲性が劣る。   The preferred thickness of the copper foil is in the range of 8 to 35 μm, particularly preferably in the range of 9 to 18 μm. If the thickness of the copper foil is less than 8 μm, it is difficult to adjust the tension during the production of the copper clad laminate, which may increase the number of void defects. On the other hand, if it exceeds 35 μm, the flexibility of the copper clad laminate is inferior.

配線基板の導体部は、圧延銅箔又は電解銅箔のいずれでもよいが、電解銅箔が好ましい。この中でも特に、結晶粒径の平均値が2.0〜5.0μmの範囲内にあるものが好ましい。この結晶粒径の範囲のものは、陽電子寿命が140〜150psの範囲内にある銅箔の耐折性能を向上させる効果がある。なお、配線基板の導体部又は電子部品実装後の導体部(接合部を除く)の陽電子寿命は、使用する銅張積層板の銅箔の陽電子寿命と同じと見ることができる。これは、銅張積層板が熱処理を受けたものであり、銅箔は再結晶を完了しているためである。   The conductor part of the wiring board may be either a rolled copper foil or an electrolytic copper foil, but an electrolytic copper foil is preferred. Of these, those having an average crystal grain size in the range of 2.0 to 5.0 μm are particularly preferable. Those having this crystal grain size range have the effect of improving the folding endurance of a copper foil having a positron lifetime in the range of 140 to 150 ps. In addition, the positron lifetime of the conductor part of a wiring board or the conductor part (except a junction part) after electronic component mounting can be considered to be the same as the positron lifetime of the copper foil of the copper clad laminate to be used. This is because the copper-clad laminate has been heat-treated and the copper foil has been recrystallized.

配線基板に実装する電子部品としては、半導体素子が一般的である。実装する際には、両者を電気的に接続する接合材料が使用される。接合材料としては、半田が一般的であるが、鉛フリー半田等の各種の半田が使用される。接合材料としては、錫、金、亜鉛又は鉛のいずれかを主成分とする金属が好ましい。   A semiconductor element is generally used as an electronic component to be mounted on a wiring board. When mounting, a bonding material that electrically connects the two is used. As a bonding material, solder is generally used, but various kinds of solder such as lead-free solder are used. As the bonding material, a metal containing tin, gold, zinc or lead as a main component is preferable.

本発明の実装部品の評価方法は、配線基板の導体部が銅箔であって、線源から放出した陽電子を銅箔に入射させ、銅箔中の陽電子寿命を測定する陽電子消滅法によって測定される銅箔の陽電子の寿命が、JIS合金番号C1020銅板(質別O材、銅成分99.96%以上)の120psに対し、120〜150psの範囲内の陽電子寿命を有する銅箔であることを確認することである。かかる評価を行うことにより耐熱性、耐屈曲性の優れる実装部品を選択することができ、良品の検査方法として優れる。   The mounting component evaluation method of the present invention is measured by a positron annihilation method in which the conductor part of the wiring board is a copper foil, and the positron emitted from the radiation source is incident on the copper foil and the positron lifetime in the copper foil is measured. Confirm that the copper foil has a positron lifetime in the range of 120 to 150 ps with respect to 120 ps of JIS alloy number C1020 copper plate (classified O material, copper component 99.96% or more). That is. By performing such an evaluation, it is possible to select a mounted component having excellent heat resistance and bending resistance, which is excellent as a method for inspecting a good product.

1)銅箔中の陽電子寿命の測定方法
非特許文献2(新日鉄技報第367号)のp16中の図1に記載の装置を用いて、銅張積層板を構成する銅箔の陽電子寿命の平均を求めた。なお、陽電子で検出できる量の空孔型欠陥が含まれていない標準材料として、充分、焼きなましされた高純度銅のJIS合金番号C1020銅板(質別O材、銅成分99.96%以上)を選定し、その陽電子寿命が120psとなる測定条件で測定した。
1) Method for measuring positron lifetime in copper foil Using the apparatus shown in Fig. 1 in p16 of Non-Patent Document 2 (Nippon Steel Technical Report No. 367), the positron lifetime of the copper foil constituting the copper clad laminate is measured. The average was calculated. As a standard material that does not contain vacancies that can be detected by positrons, select JIS alloy number C1020 copper plate (quality O material, copper component 99.96% or more) of sufficiently annealed high-purity copper. The measurement was performed under the measurement conditions that the positron lifetime was 120 ps.

2)平均結晶粒径の測定方法
銅箔表面に物理研磨を施した後、さらに酸性の腐食液を用いてエッチングし、これをキーエンス社製の超深度形状測定顕微鏡VK8500により2000倍の倍率で観察し、切断法によるASTM粒度測定(ASTM E112)に準拠した方法を用いて、平均の結晶粒径を求めた。
2) Measuring method of average crystal grain size After performing physical polishing on the copper foil surface, it was further etched using an acidic corrosive solution, and this was observed at a magnification of 2000 times with an ultra-deep shape measuring microscope VK8500 manufactured by Keyence Corporation. Then, the average crystal grain size was determined using a method based on ASTM particle size measurement by a cutting method (ASTM E112).

3)屈曲試験
以下に示したMIT試験法により評価を行った。屈曲試験サンプルは、銅張積層板を各屈曲試験用に回路加工して、回路が形成された面に12μm厚のポリイミドフィルムに15μmのエポキシ系接着剤層が設けられた市販のカバー材を回路形成面と接着剤層とが向かい合わさるようにし、40kgf/cm2の圧力、160℃、60分間の条件で高温真空プレス機を用いて熱圧着させて得た。以下、試験片と呼ぶ。
3) Bending test Evaluation was made by the MIT test method shown below. The bending test sample is a circuit of a commercially available cover material in which a copper-clad laminate is processed for each bending test and a 12 μm thick polyimide film is provided on the surface on which the circuit is formed. The formed surface and the adhesive layer were made to face each other and obtained by thermocompression bonding using a high-temperature vacuum press machine under conditions of a pressure of 40 kgf / cm 2 and 160 ° C. for 60 minutes. Hereinafter, it is called a test piece.

[MIT屈曲試験方法]
(株)東洋精機製作所製のMIT屈曲試験装置により、MIT屈曲試験を行った。下記条件下で屈曲を繰り返し、試験片が断線するまでの回数を屈曲回数として求めた。
試験片幅:9mm、試験片長さ:90mm、回路幅/絶縁幅=150μm/250μm、試験片採取方向:試験片の長さが機械方向と平行になるように採取、屈曲半径r=0.8mm、おもりの重さ=500g、折り曲げ角度=135°の条件で試験を行った。
[MIT bending test method]
An MIT flex test was performed using an MIT flex test device manufactured by Toyo Seiki Seisakusho. The bending was repeated under the following conditions, and the number of times until the test piece was disconnected was determined as the number of bendings.
Specimen width: 9mm, Specimen length: 90mm, Circuit width / Insulation width = 150μm / 250μm, Specimen sampling direction: Specimen sample length is parallel to the machine direction, Bending radius r = 0.8mm, The test was conducted under the conditions of weight of weight = 500 g and bending angle = 135 °.

4)ガラス転移温度の測定
粘弾性アナライザー(レオメトリックサイエンスエフィー株式会社製RSA−II)にて、合成例から得られたポリイミドフィルムを10mm幅のサンプルとして用い、1Hzの振動を与えながら、室温から400℃まで10℃/分の速度で昇温した際の、損失正接(Tanδ)の極大から求めた。
4) Measurement of glass transition temperature Using a viscoelasticity analyzer (RSA-II, manufactured by Rheometric Science Effy Co., Ltd.), the polyimide film obtained from the synthesis example was used as a 10 mm wide sample, and a vibration of 1 Hz was applied from room temperature. It was determined from the maximum loss tangent (Tanδ) when the temperature was increased to 400 ° C at a rate of 10 ° C / min.

5)熱線膨張係数の測定
サーモメカニカルアナライザー(セイコーインスツルメンツ社製)をにて、合成例から得られたポリイミドフィルムを250℃まで昇温し、更にその温度で10分保持した後、5℃/分の速度で冷却し、ポリイミドフィルムの寸法変化から240℃から100℃までの平均の熱線膨張係数を求めた。
5) Measurement of the coefficient of thermal expansion Using a thermomechanical analyzer (manufactured by Seiko Instruments Inc.), raise the temperature of the polyimide film obtained from the synthesis example to 250 ° C. and hold at that temperature for 10 minutes, then 5 ° C./minute The average linear thermal expansion coefficient from 240 ° C. to 100 ° C. was determined from the dimensional change of the polyimide film.

合成例1
反応容器に、N,N-ジメチルアセトアミドを入れる。この反応容器に4,4'-ジアミノ-2'-メトキシベンズアニリド(MABA)を容器中で撹拌しながら溶解させた。次に、無水ピロメリット酸(PMDA)及び4,4'-ジアミノジフェニルエーテル(DAPE)を加えた。モノマーの投入総量が15wt%で、各ジアミンのモル比率は、MABA:DAPE、60:40となるよう投入した。その後、3時間撹拌を続けて重合反応を行い、粘稠なポリイミド前駆体樹脂液aを得た。また、本合成例によって得られたポリイミド前駆体樹脂液aを、ポリイミド樹脂フィルムとし、その熱線膨張係数を測定したところ、15×10-6/Kであった。
Synthesis example 1
N, N-dimethylacetamide is placed in a reaction vessel. In this reaction vessel, 4,4′-diamino-2′-methoxybenzanilide (MABA) was dissolved in the vessel with stirring. Next, pyromellitic anhydride (PMDA) and 4,4′-diaminodiphenyl ether (DAPE) were added. The total amount of monomers was 15 wt%, and the molar ratio of each diamine was MABA: DAPE, 60:40. Thereafter, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a viscous polyimide precursor resin liquid a. Moreover, when the polyimide precursor resin liquid a obtained by this synthesis example was used as a polyimide resin film and the coefficient of thermal expansion was measured, it was 15 × 10 −6 / K.

合成例2
反応容器に、N,N-ジメチルアセトアミドを入れる。この反応容器に2,2'ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)及び1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)を容器中で撹拌しながら溶解させた。次に、BPDA及びPMDAを加えた。モノマーの投入総量が15wt%で、各ジアミンのモル比率は、BAPP:TPE-Q、80:20となるよう投入した。その後、3時間撹拌を続けて重合反応を行い、粘稠なポリイミド前駆体樹脂液bを得た。また、本合成例によって得られたポリイミド前駆体樹脂液bをイミド化してガラス転移温度を測定したところ、319℃であった。
Synthesis example 2
N, N-dimethylacetamide is placed in a reaction vessel. Dissolve 2,2'bis [4- (4-aminophenoxy) phenyl] propane (BAPP) and 1,4-bis (4-aminophenoxy) benzene (TPE-Q) in this reactor with stirring. I let you. Next, BPDA and PMDA were added. The total amount of monomers was 15 wt%, and the molar ratio of each diamine was BAPP: TPE-Q, 80:20. Thereafter, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a viscous polyimide precursor resin liquid b. Moreover, when the polyimide precursor resin liquid b obtained by this synthesis example was imidized and the glass transition temperature was measured, it was 319 degreeC.

参考例
銅箔上に、合成例2で得られたポリイミド前駆体樹脂液bを硬化後の厚みが約2μmとなるように均一に塗布したのち、130℃で加熱乾燥し溶媒を除去した。次に、その上に積層するように合成例1で調整したポリイミド前駆体樹脂aを硬化後の厚みが約35μmとなるように均一に塗布し、135℃で加熱乾燥し溶媒を除去した。さらにこのポリイミド前駆体樹脂層上にポリイミド前駆体樹脂液bを硬化後の厚みが約3μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。引き続き、130℃から380℃まで10分かけて段階的に昇温された熱処理工程を経由させ、ポリイミド樹脂層の厚み40μmの銅張積層板を得た。
この銅張積層板を塩化第二鉄溶液にてエッチングして銅箔を除去し、ポリイミドフィルムを得た。このポリイミドフィルムの銅箔を除去した面に金属原料が成膜されるように、RFマグネトロンスパッタリング装置にセットし、金属薄膜を形成した。サンプルをセットした槽内は3×10-4Paまで減圧した後、アルゴンガスを導入し真空度を2×10-1Paとし、RF電源にてプラズマを発生した。このプラズマにてニッケル:クロムの合金層〔比率8:2、99.9wt%、ニクロム層が膜厚30nmとなるようにポリイミドフィルムの銅箔除去面に成膜した。ニクロム層を成膜した後、同一雰囲気下にて、このニクロム層上に更にスパッタリングにより銅(99.99wt%)を200nm成膜した。次いで、上記銅スパッタ膜を電極として電解めっき浴にて12μm厚の銅めっき層を形成した。電解めっき浴としては、硫酸銅浴(浴組成として、硫酸銅100g/L、硫酸220g/L及び塩素40mg/L、並びにアノードとして、含燐銅)を使用し、電流密度2.0A/dm2にてめっき膜を形成した。めっき後には十分な蒸留水で洗浄し乾燥を行った。このようにして、ポリイミドフィルム/ニクロム層/銅スパッタ層/電解めっき銅層から構成される銅張積層板Sを得た。前記銅張積層板Sを屈曲試験サンプル試験片に加工後、導体部表面に錫めっきし、さらに150℃、1時間の熱処理を行ったサンプルを得た。錫めっき前後におけるMIT屈曲試験を実施し、屈曲回数を測定した。
Reference Example The polyimide precursor resin liquid b obtained in Synthesis Example 2 was uniformly applied on a copper foil so that the thickness after curing was about 2 μm, and then dried by heating at 130 ° C. to remove the solvent. Next, the polyimide precursor resin a prepared in Synthesis Example 1 so as to be laminated thereon was uniformly applied so that the thickness after curing was about 35 μm, and the solvent was removed by heating and drying at 135 ° C. Further, the polyimide precursor resin liquid b was uniformly applied onto the polyimide precursor resin layer so that the thickness after curing was about 3 μm, and the solvent was removed by heating at 130 ° C. Subsequently, a copper-clad laminate having a polyimide resin layer thickness of 40 μm was obtained through a heat treatment step in which the temperature was raised stepwise from 130 ° C. to 380 ° C. over 10 minutes.
This copper clad laminate was etched with a ferric chloride solution to remove the copper foil, and a polyimide film was obtained. A metal thin film was formed by setting in an RF magnetron sputtering apparatus so that a metal raw material was formed on the surface of the polyimide film from which the copper foil was removed. The inside of the tank in which the sample was set was depressurized to 3 × 10 −4 Pa, and then argon gas was introduced to make the degree of vacuum 2 × 10 −1 Pa, and plasma was generated by an RF power source. With this plasma, a nickel: chromium alloy layer [ratio 8: 2, 99.9 wt%, and a nichrome layer was formed on the copper foil removal surface of the polyimide film so as to have a film thickness of 30 nm. After forming the nichrome layer, 200 nm of copper (99.99 wt%) was further formed on the nichrome layer by sputtering under the same atmosphere. Next, a 12 μm thick copper plating layer was formed in an electrolytic plating bath using the copper sputtered film as an electrode. As an electrolytic plating bath, a copper sulfate bath (100 g / L of copper sulfate, 220 g / L of sulfuric acid and 40 mg / L of chlorine as the bath composition, and phosphorus-containing copper as the anode) is used, and the current density is 2.0 A / dm 2 . Thus, a plating film was formed. After plating, it was washed with sufficient distilled water and dried. Thus, a copper clad laminate S composed of polyimide film / nichrome layer / copper sputter layer / electroplated copper layer was obtained. The copper-clad laminate S was processed into a bending test sample specimen, and then the surface of the conductor was tin-plated, and a sample was further heat-treated at 150 ° C. for 1 hour. An MIT bending test was performed before and after tin plating, and the number of bendings was measured.

実施例1
銅箔1(電解銅箔、厚み12μm)を準備した。この銅箔上に合成例2で得られたポリイミド前駆体樹脂液bを硬化後の厚みが約2μmとなるように均一に塗布したのち、130℃で加熱乾燥し溶媒を除去した。次に、その上に積層するように合成例1で調整したポリイミド前駆体樹脂aを硬化後の厚みが約35μmとなるように均一に塗布し、135℃で加熱乾燥し溶媒を除去した。さらにこのポリイミド前駆体樹脂層上にポリイミド前駆体樹脂液bを硬化後の厚みが約3μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。
この積層体1を、その後130℃から380℃まで10分かけて段階的に昇温された熱処理工程を経由させ、ポリイミド樹脂層の厚み40μmの銅張積層板Aを得た。この際、最高加熱温度は380℃であり、この温度で6分の熱処理を行った。300℃から380℃の温度範囲における合計の保持時間は、約10分である。得られた銅張積層板Aの銅箔の陽電子寿命は147psであり、平均結晶粒径は3.0μmであった。前記銅張積層板Aを屈曲試験サンプル試験片に加工後、導体部表面に錫めっきし、さらに150℃、1時間の熱処理を行ったサンプルを得た。錫めっき前後におけるMIT屈曲試験を実施し、屈曲回数を測定した。
Example 1
Copper foil 1 (electrolytic copper foil, thickness 12 μm) was prepared. On this copper foil, the polyimide precursor resin liquid b obtained in Synthesis Example 2 was uniformly applied so that the thickness after curing was about 2 μm, and then dried by heating at 130 ° C. to remove the solvent. Next, the polyimide precursor resin a prepared in Synthesis Example 1 so as to be laminated thereon was uniformly applied so that the thickness after curing was about 35 μm, and the solvent was removed by heating and drying at 135 ° C. Further, the polyimide precursor resin liquid b was uniformly applied onto the polyimide precursor resin layer so that the thickness after curing was about 3 μm, and the solvent was removed by heating at 130 ° C.
The laminate 1 was then subjected to a heat treatment step in which the temperature was raised stepwise from 130 ° C. to 380 ° C. over 10 minutes to obtain a copper clad laminate A having a polyimide resin layer thickness of 40 μm. At this time, the maximum heating temperature was 380 ° C., and heat treatment was performed at this temperature for 6 minutes. The total holding time in the temperature range of 300 ° C. to 380 ° C. is about 10 minutes. The copper foil of the obtained copper-clad laminate A had a positron lifetime of 147 ps and an average crystal grain size of 3.0 μm. The copper-clad laminate A was processed into a bending test sample specimen, and then the surface of the conductor was tin-plated, and a sample was further heat-treated at 150 ° C. for 1 hour. An MIT bending test was performed before and after tin plating, and the number of bendings was measured.

実施例2
銅箔2(電解銅箔、厚み12μm)を準備した。この銅箔を用いて、実施例1と同様にして、ポリイミド樹脂層の厚み40μmの銅張積層板Bを得た。なお、得られた銅張積層板Bの銅箔の陽電子寿命は、146psであり、平均結晶粒径は、4.0μmであった。この銅張積層板Bを屈曲試験サンプル試験片に加工後、導体部表面に錫めっきし、さらに150℃、1時間の熱処理を行ったサンプルを得た。錫めっき前後におけるMIT屈曲試験を実施し、屈曲回数を測定した。
Example 2
Copper foil 2 (electrolytic copper foil, thickness 12 μm) was prepared. Using this copper foil, a copper clad laminate B having a polyimide resin layer thickness of 40 μm was obtained in the same manner as in Example 1. The copper foil of the obtained copper-clad laminate B had a positron lifetime of 146 ps and an average crystal grain size of 4.0 μm. The copper-clad laminate B was processed into a bending test sample specimen, and then the surface of the conductor was tin-plated, and a sample was further heat-treated at 150 ° C. for 1 hour. An MIT bending test was performed before and after tin plating, and the number of bendings was measured.

比較例1
銅箔3(電解銅箔、厚み12μm)を準備した。この銅箔を用いて、実施例1と同様にして、ポリイミド樹脂層の厚み40μmの銅張積層板Cを得た。なお、得られた銅張積層板Cの銅箔の陽電子寿命は、160psであり、平均結晶粒径は、1.3μmであった。前記銅張積層板Cを屈曲試験サンプル試験片に加工後、導体部表面に錫めっきし、さらに150℃、1時間の熱処理を行ったサンプルを得た。錫めっき前後におけるMIT屈曲試験を実施し、屈曲回数を測定した。
Comparative Example 1
Copper foil 3 (electrolytic copper foil, thickness 12 μm) was prepared. Using this copper foil, a copper clad laminate C having a polyimide resin layer thickness of 40 μm was obtained in the same manner as in Example 1. The copper foil of the obtained copper-clad laminate C had a positron lifetime of 160 ps and an average crystal grain size of 1.3 μm. After processing the copper-clad laminate C into a bending test sample specimen, the surface of the conductor was tin-plated, and a sample was further heat-treated at 150 ° C. for 1 hour. An MIT bending test was performed before and after tin plating, and the number of bendings was measured.

比較例2
銅箔1(電解銅箔、厚み12μm)を準備した。この銅箔を用いて、実施例1と同様にして、積層体1を得た。この積層体1を、その後130℃から250℃まで10分かけて段階的に昇温された熱処理工程を経由させ、ポリイミド樹脂層の厚み40μmの銅張積層板Dを得た。この際、最高加熱温度は250℃であり、この温度で6分の熱処理を行った。なお、得られた銅張積層板Dの銅箔の陽電子寿命は、152psであり、平均結晶粒径は、2.5μmであった。前記銅張積層板Dを屈曲試験サンプル試験片に加工後、導体部表面に錫めっきし、さらに150℃、1時間の熱処理を行ったサンプルを得た。錫めっき前後におけるMIT屈曲試験を実施し、屈曲回数を測定した。
Comparative Example 2
Copper foil 1 (electrolytic copper foil, thickness 12 μm) was prepared. Using this copper foil, a laminate 1 was obtained in the same manner as in Example 1. The laminate 1 was then subjected to a heat treatment step in which the temperature was raised stepwise from 130 ° C. to 250 ° C. over 10 minutes to obtain a copper-clad laminate D having a polyimide resin layer thickness of 40 μm. At this time, the maximum heating temperature was 250 ° C., and the heat treatment was performed at this temperature for 6 minutes. The copper foil of the obtained copper clad laminate D had a positron lifetime of 152 ps and an average crystal grain size of 2.5 μm. The copper-clad laminate D was processed into a bending test sample specimen, and then the surface of the conductor was tin-plated, and a sample was further heat-treated at 150 ° C. for 1 hour. An MIT bending test was performed before and after tin plating, and the number of bendings was measured.

以上の結果をまとめて表1に示す。なお、表1の屈曲回数比は、参考例で作製した銅張積層板Sの屈曲回数に対する比率を表し、総合判定はこの比率が1.0未満をNGとし、1.0以上のものをOKとした。   The above results are summarized in Table 1. The ratio of the number of bendings in Table 1 represents the ratio of the copper-clad laminate S produced in the reference example to the number of bendings, and the overall judgment was NG when the ratio was less than 1.0 and OK when the ratio was 1.0 or more.

Figure 2008091430
Figure 2008091430

Claims (6)

配線基板、電子部品及び配線基板の導体部と電子部品とを接合する接合部を有する実装部品において、配線基板の導体部が銅箔であって、線源から放出した陽電子を銅箔に入射させ、銅箔中の陽電子寿命を測定する陽電子消滅法によって測定される銅箔の陽電子の寿命が、JIS合金番号C1020銅板(質別O材、銅成分99.96%以上)の120ピコ秒に対し、120〜150ピコ秒の範囲内の陽電子寿命を有する銅箔であることを特徴とする実装部品。   In a mounting component having a wiring board, an electronic component, and a bonding part for joining the conductor part of the wiring board and the electronic component, the conductor part of the wiring board is a copper foil, and the positron emitted from the radiation source is incident on the copper foil. The positron lifetime of copper foil measured by the positron annihilation method, which measures the positron lifetime in copper foil, is 120 ps compared to 120 ps for JIS alloy number C1020 copper plate (classified O material, copper component 99.96% or more). A mounting component comprising a copper foil having a positron lifetime in a range of up to 150 picoseconds. 配線基板の導体部が、電解銅箔であることを特徴とする請求項1記載の実装部品。   2. The mounting component according to claim 1, wherein the conductor portion of the wiring board is an electrolytic copper foil. 電子部品が半導体素子であって、配線基板が銅箔とポリイミド樹脂層から構成される銅張積層板を回路加工して得られるものであることを特徴とする請求項1又は2記載の実装部品。   3. The mounting component according to claim 1, wherein the electronic component is a semiconductor element, and the wiring board is obtained by circuit processing of a copper-clad laminate composed of a copper foil and a polyimide resin layer. . 配線基板、電子部品及び配線基板の導体部と電子部品とを接合する接合部を有する実装部品の製造方法において、
配線基板が銅箔とポリイミド樹脂層から構成される銅張積層板を回路加工して得られるものであること、
銅張積層板が、銅箔表面にポリイミド前駆体樹脂溶液を塗工し、続く熱処理工程で乾燥及び硬化を行うことで得られるものであること、
銅箔に電解銅箔を用い、前記熱処理工程において、300〜400℃の温度範囲で3〜40分間保持することで、陽電子消滅法によって測定される銅箔の陽電子の寿命が、JIS合金番号C1020銅板(質別O材、銅成分99.96%以上)の120ピコ秒に対し、120〜150ピコ秒の範囲内の陽電子寿命を有する銅箔とすることを特徴とする実装部品の製造方法。
In a manufacturing method of a mounting component having a bonding portion for bonding a wiring board, an electronic component, and a conductor portion of the wiring substrate and the electronic component,
The wiring board is obtained by circuit processing a copper-clad laminate composed of a copper foil and a polyimide resin layer,
The copper clad laminate is obtained by applying a polyimide precursor resin solution to the copper foil surface and drying and curing in a subsequent heat treatment step,
By using electrolytic copper foil as the copper foil, and maintaining the temperature in the temperature range of 300 to 400 ° C. for 3 to 40 minutes in the heat treatment step, the positron life of the copper foil measured by the positron annihilation method is JIS alloy number C1020 A method for producing a mounting component, characterized in that a copper foil having a positron lifetime within a range of 120 to 150 picoseconds is used with respect to 120 picoseconds of a copper plate (quality O material, copper component 99.96% or more).
配線基板、電子部品及び配線基板の導体部と電子部品とを接合する接合部を有する実装部品の製造方法において、
配線基板が銅箔とポリイミド樹脂層から構成される銅張積層板を回路加工して得られるものであること、
銅張積層板が、銅箔表面にポリイミド樹脂のフィルムを重ね合わせ、加圧下で熱圧着を行うことで得られるものであること、
銅箔に電解銅箔を用い、前記熱圧着において、300〜400℃の温度範囲で3〜40分間保持することで、陽電子消滅法によって測定される銅箔の陽電子の寿命が、JIS合金番号C1020銅板(質別O材、銅成分99.96%以上)の120ピコ秒に対し、120〜150ピコ秒の範囲内の陽電子寿命を有する銅箔とすることを特徴とする実装部品の製造方法。
In a manufacturing method of a mounting component having a bonding portion for bonding a wiring board, an electronic component, and a conductor portion of the wiring substrate and the electronic component,
The wiring board is obtained by circuit processing a copper-clad laminate composed of a copper foil and a polyimide resin layer,
The copper-clad laminate is obtained by superimposing a polyimide resin film on the copper foil surface and performing thermocompression bonding under pressure,
By using electrolytic copper foil as the copper foil, in the thermocompression bonding, the positron lifetime of the copper foil measured by the positron annihilation method is maintained at a temperature range of 300 to 400 ° C. for 3 to 40 minutes, so that the JIS alloy number C1020 A method for producing a mounting component, characterized in that a copper foil having a positron lifetime within a range of 120 to 150 picoseconds is used with respect to 120 picoseconds of a copper plate (material O, 99.96% or more).
配線基板、電子部品及び配線基板の導体部と電子部品とを接合する接合部を有する実装部品の評価方法において、配線基板の導体部が銅箔であって、線源から放出した陽電子を銅箔に入射させ、銅箔中の陽電子寿命を測定する陽電子消滅法によって測定される銅箔の陽電子の寿命が、JIS合金番号C1020銅板(質別O材、銅成分99.96%以上)の120ピコ秒に対し、120〜150ピコ秒の範囲内の陽電子寿命を有する銅箔であることを確認することを特徴とする実装部品の評価方法。   In a method for evaluating a wiring board, an electronic component, and a mounting part having a joint for joining the conductor part of the wiring board and the electronic component, the conductor part of the wiring board is a copper foil, and the positron emitted from the radiation source is copper foil. The positron lifetime of the copper foil, measured by the positron annihilation method, which measures the positron lifetime in the copper foil, is 120 ps of JIS alloy number C1020 copper plate (quality O material, copper component 99.96% or more) On the other hand, it is confirmed that the copper foil has a positron lifetime in the range of 120 to 150 picoseconds.
JP2006268100A 2006-09-29 2006-09-29 Mounting component and method for manufacturing the same Withdrawn JP2008091430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268100A JP2008091430A (en) 2006-09-29 2006-09-29 Mounting component and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006268100A JP2008091430A (en) 2006-09-29 2006-09-29 Mounting component and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2008091430A true JP2008091430A (en) 2008-04-17

Family

ID=39375317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268100A Withdrawn JP2008091430A (en) 2006-09-29 2006-09-29 Mounting component and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2008091430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231400A (en) * 2010-04-05 2011-11-17 Kobe Steel Ltd Aluminum alloy plate excellent in formability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231400A (en) * 2010-04-05 2011-11-17 Kobe Steel Ltd Aluminum alloy plate excellent in formability

Similar Documents

Publication Publication Date Title
JP4927963B2 (en) Surface-treated copper foil, method for producing the same, and copper-clad laminate
US8624125B2 (en) Metal foil laminated polyimide resin substrate
JP5983825B2 (en) Manufacturing method of flexible printed circuit board
JP2011031603A (en) Metalized polyimide film, flexible wiring board, and method for manufacturing the same
TWI519412B (en) Flexible copper-clad lamination board
JP2006289959A (en) Copper-clad laminate
US7132158B2 (en) Support layer for thin copper foil
JP4652020B2 (en) Copper-clad laminate
JP2007059892A (en) Manufacturing method for high-flexible copper clad laminate
KR20070014067A (en) Process of high flexuous flexible copper clad laminate
WO2007097585A1 (en) Double side conductor laminates and its manufacture
TWI293467B (en)
KR20140054417A (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board and electronic device
JP4777206B2 (en) Method for producing flexible copper-clad laminate
KR20120053195A (en) Laminated structure for a flexible circuit board having a improved heat resistance adhesive strength and manufacturing method the same
JP5505349B2 (en) Metal-coated polyimide film, flexible wiring board, and production method thereof
JP2008230096A (en) Laminated film with metallic layer
JP2008091430A (en) Mounting component and method for manufacturing the same
JP2002249835A (en) Copper alloy foil for lamination
JP2008143101A (en) Manufacturing method of flexible copper-clad laminated sheet having high flexibility
JP2006175634A (en) Metal-polyimide substrate
JP4823884B2 (en) Method for producing flexible copper-clad laminate
JP5073801B2 (en) Method for producing copper-clad laminate
KR20170099673A (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
JP5255496B2 (en) Metal-clad laminate and method for producing metal-clad laminate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201