JP2008088592A - Core-sheath type conjugated polyester fiber - Google Patents

Core-sheath type conjugated polyester fiber Download PDF

Info

Publication number
JP2008088592A
JP2008088592A JP2006270055A JP2006270055A JP2008088592A JP 2008088592 A JP2008088592 A JP 2008088592A JP 2006270055 A JP2006270055 A JP 2006270055A JP 2006270055 A JP2006270055 A JP 2006270055A JP 2008088592 A JP2008088592 A JP 2008088592A
Authority
JP
Japan
Prior art keywords
core
component
weight
composition
polyester fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006270055A
Other languages
Japanese (ja)
Other versions
JP5013802B2 (en
Inventor
Hideo Ueda
秀夫 上田
Masanori Adachi
雅典 足立
Shinji Yoshida
伸治 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KB Seiren Ltd
Original Assignee
KB Seiren Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KB Seiren Ltd filed Critical KB Seiren Ltd
Priority to JP2006270055A priority Critical patent/JP5013802B2/en
Publication of JP2008088592A publication Critical patent/JP2008088592A/en
Application granted granted Critical
Publication of JP5013802B2 publication Critical patent/JP5013802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a core-sheath type conjugated polyester fiber which exhibits sufficient antistatic performance without impairing qualities even carrying out a post processing such as alkali reduction, etc., and has an antistatic agent in the core. <P>SOLUTION: The core-sheath type conjugated polyester fiber includes a polyester composition as a core component in which 50-85 wt.% of a polyalkylene glycol having a weight-average molecular weight of ≥10,000 is mixed with 10-40 wt.% of an organic sulfonic acid metal salt compound represented by the following chemical formula 1: RSO<SB>3</SB>M [R is a ≥6C alkyl group, aryl group or alkylaryl group; M is an alkali metal or an alkaline earth metal] so as to satisfy a formula 1: 80≤(A+B)≤95 [A is a polyalkylene glycol component; B is an organic sulfonic acid metal compound component; unit is wt.% (based on a composition)] and the remaining component is composed of a polyester component and which has a relative viscosity of ≥2.8 in the total weight of the composition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

ポリエステル繊維は、その優れた特性から衣料用から産業資材用分野に至るまではば広く用いられている。しかしポリエステル繊維は電気抵抗が高いため、静電気を帯び易いという問題を有している。これは衣料分野においては、特に冬季に、脱着時の放電現象や身体へのまとわりつき等の不快感を与える原因となっている。この静電気を帯び易い欠点を改善するために、これまで種々の制電剤によりポリエステル繊維の改質が提案されてきている。   Polyester fibers are widely used from the apparel to industrial materials due to their excellent properties. However, polyester fibers have a problem that they are easily charged with static electricity because of their high electrical resistance. In the clothing field, this causes discomfort such as a discharge phenomenon during attachment and detachment and clinging to the body, especially in winter. In order to improve the disadvantage that is easily charged with static electricity, modification of polyester fibers has been proposed with various antistatic agents.

例えば、特開平3−206120などに示されるように、高分子量のポリエチレングリコールおよび電解質からなるポリエステル組成物を、ポリエステル繊維の制電剤とする手法が、よく知られている。電解質とは、アルカリ金属またはアルカリ土類金属のハロゲン化合物等の無機電解質や、アルキルスルホン酸、ベンゼンスルホン酸、アルキルベンゼンスルホン酸、5−スルホイソフタル酸等のアルカリ金属塩化合物やアルカリ土類金属塩化合物等の有機電解質が挙げられるが、電解質の異物化による糸切れなどの理由により、有機電解質が一般的に使用されている。   For example, as disclosed in JP-A-3-206120 and the like, a technique in which a polyester composition comprising a high molecular weight polyethylene glycol and an electrolyte is used as an antistatic agent for polyester fibers is well known. The electrolyte is an inorganic electrolyte such as an alkali metal or alkaline earth metal halogen compound, an alkali metal salt compound such as alkyl sulfonic acid, benzene sulfonic acid, alkyl benzene sulfonic acid, or 5-sulfoisophthalic acid, or an alkaline earth metal salt compound. However, organic electrolytes are generally used for reasons such as thread breakage due to foreign matters in the electrolyte.

上記のような制電剤は、ポリエステル繊維が優れた制電性能を発揮するために、繊維軸方向に高配向させながら長い筋状に連続添加する方法が取られている。例えば、ポリエステルを鞘成分、制電剤を芯成分とする芯鞘型複合ポリエステル繊維が知られている。しかしながら、このような芯鞘型複合ポリエステル繊維は、アルカリ減量など後加工を行うと制電性能の低下を引き起こす問題がある。   For the above antistatic agent, in order for the polyester fiber to exhibit excellent antistatic performance, a method of continuously adding long streaks while highly oriented in the fiber axis direction is employed. For example, a core-sheath type composite polyester fiber having polyester as a sheath component and an antistatic agent as a core component is known. However, such a core-sheath type composite polyester fiber has a problem of causing a decrease in antistatic performance when post-processing such as alkali weight reduction is performed.

特開昭56−79717によると、ポリエチレンテレフタレートなどの繊維形成ポリマーと上述のような制電剤組成物とでは、紡糸時のそれぞれ溶融状態から固化し配向する際の引っ張り特性に相違があるため、鞘成分と芯成分にひずみが生じて亀裂が生じやすいことが述べられている。   According to JP 56-79717, fiber forming polymers such as polyethylene terephthalate and the antistatic composition as described above are different in tensile properties when solidified and oriented from the melted state during spinning, respectively. It is stated that the sheath component and the core component are distorted and are liable to crack.

さらに、ポリエチレングリコールに代表されるポリアルキレングリコールは、ポリエステルポリマーとの相溶性が極めて良好なため、紡糸時の高温下、溶融状態で接合した際に、芯成分と鞘成分の界面で鞘成分側に分散移動しやすい。このような部分で固化配向した場合にも繊維物性が低下するため、部分亀裂が生じやすくなる。   Furthermore, polyalkylene glycols typified by polyethylene glycol have extremely good compatibility with polyester polymers, so when bonded in a molten state at high temperature during spinning, the sheath component side is at the interface between the core component and the sheath component. Easy to move distributed. Even when solidified and oriented in such a portion, the physical properties of the fiber are lowered, and partial cracks are likely to occur.

このような亀裂は、特にアルカリ減量などのような厳しい加工工程を経ると発生しやすく、亀裂と同時に制電剤成分が溶出して制電性能が低下してしまう問題が生じる。   Such cracks are likely to occur particularly after severe processing steps such as alkali weight loss, and there arises a problem that the antistatic performance is lowered due to the dissolution of the antistatic component simultaneously with the cracks.

特開平3−206120号公報Japanese Patent Laid-Open No. 3-206120 特開昭56−79717号文献Japanese Unexamined Patent Publication No. 56-79717

本発明は、アルカリ減量等の後加工を行っても品位を損なうことなく十分な制電性能を発揮できる、芯に制電剤を有した芯鞘型複合ポリエステル繊維を得ることを課題とする。     An object of the present invention is to obtain a core-sheath type composite polyester fiber having an antistatic agent in the core, which can exhibit sufficient antistatic performance without losing quality even after post-processing such as alkali weight loss.

本発明者は、上記課題に鑑み、ポリアルキレングリコールの適正な選択と有機スルホン酸金属塩との配合割合及び制電剤自体の粘度を鋭意検討した結果、芯成分である制電剤と鞘成分であるポリエステルとのひずみを小さくでき、アルカリ減量時にも亀裂が生じず、良好な制電性能を発揮できる芯鞘型複合ポリエステル繊維を見出し、本発明を完成した。   In view of the above problems, the present inventor has intensively studied the appropriate selection of polyalkylene glycol and the blending ratio of the organic sulfonic acid metal salt and the viscosity of the antistatic agent itself. The present invention has been completed by finding a core-sheath type composite polyester fiber that can reduce the strain with the polyester and can exhibit good antistatic performance without cracking even when the amount of alkali is reduced.

すなわち本発明は、組成物全重量中に、重量平均分子量10000以上のポリアルキレングリコールが50〜85重量%、下記化学式1で表される有機スルホン酸金属塩化合物が10〜40重量%配合の範囲で、下記式1を満足するように配合され、かつ残りの成分がポリエステル成分で構成された相対粘度が2.8以上のポリエステル組成物を芯成分として繊維中に複合する芯鞘型複合ポリエステル繊維が、アルカリ減量などの後加工後も、安定した良好な制電性能を発揮することを特徴とする。
RSOM・・・(化学式1)
[Rは炭素数6以上のアルキル基、アリール基または、アルキルアリール基、Mはアルカリ金属又はアルカリ土類金属を示す]
80≦(A+B)≦95・・・(式1)
[Aはポリアルキレングリコール成分、Bは有機スルホン酸金属化合物成分、単位は全て重量%(対組成物)]
That is, the present invention includes 50 to 85% by weight of polyalkylene glycol having a weight average molecular weight of 10,000 or more and 10 to 40% by weight of an organic sulfonic acid metal salt compound represented by the following chemical formula 1 in the total weight of the composition. And a core-sheath type composite polyester fiber which is compounded so as to satisfy the following formula 1 and is composed of a polyester composition having a relative viscosity of 2.8 or more, wherein the remaining component is composed of a polyester component. However, it is characterized by exhibiting stable and excellent antistatic performance even after post-processing such as alkali weight loss.
RSO 3 M (Chemical formula 1)
[R represents an alkyl group having 6 or more carbon atoms, an aryl group, or an alkylaryl group, and M represents an alkali metal or an alkaline earth metal]
80 ≦ (A + B) ≦ 95 (Formula 1)
[A is a polyalkylene glycol component, B is an organic sulfonic acid metal compound component, and all units are by weight (composition)]

本発明の組成物を芯成分に含むポリエステル繊維は、良好な制電性能を発揮し、アルカリ減量を行っても亀裂が生じない。したがって制電性能が低下することがなく、良好な性能を安定して発揮することができる。   The polyester fiber containing the composition of the present invention as a core component exhibits good antistatic performance and does not crack even when alkali weight reduction is performed. Therefore, the antistatic performance does not deteriorate, and good performance can be stably exhibited.

本発明に用いるポリアルキレングリコールは、具体的にはポリエチレングリコール、ポリメチレングリコール、ポリプロピレングリコール等が挙げられる。重量平均分子量が10000以上であれば特に限定はされないが、汎用性からポリエチレングリコールを用いることが好ましい。   Specific examples of the polyalkylene glycol used in the present invention include polyethylene glycol, polymethylene glycol, and polypropylene glycol. Although it will not specifically limit if a weight average molecular weight is 10,000 or more, It is preferable to use polyethyleneglycol from versatility.

本発明に用いるポリアルキレングリコールは、重量平均分子量が10000以上である必要がある。重量平均分子量が10000未満であると、ポリエステル組成物を溶融して制電剤としてポリエステル繊維に添加した際に、ポリエステル繊維中に分散しやすくなり、亀裂が生じやすくなる。また重量平均分子量は12000以上が好ましく、16000以上がさらに好ましく、18000以上が特に好ましい。   The polyalkylene glycol used in the present invention needs to have a weight average molecular weight of 10,000 or more. When the weight average molecular weight is less than 10,000, when the polyester composition is melted and added to the polyester fiber as an antistatic agent, the polyester composition is easily dispersed in the polyester fiber, and cracks are likely to occur. The weight average molecular weight is preferably 12,000 or more, more preferably 16000 or more, and particularly preferably 18000 or more.

また、このポリアルキレングリコールは組成物100重量%に対し、50〜85重量%になるように配合する必要がある。50重量%未満の場合には、十分な制電性能を得るために、後述の有機スルホン酸金属塩化合物を40重量%より多く配合させる必要があるが、有機スルホン酸金属塩化合物を40重量%より多く配合した場合には、組成物を相対粘度2.8以上に重合させることができなくなる。   Moreover, it is necessary to mix | blend this polyalkylene glycol so that it may become 50 to 85 weight% with respect to 100 weight% of compositions. In the case of less than 50% by weight, in order to obtain sufficient antistatic performance, it is necessary to add more than 40% by weight of the organic sulfonic acid metal salt compound described later. When more is blended, the composition cannot be polymerized to a relative viscosity of 2.8 or more.

また、85重量%より多く配合した場合にも、ポリエステル成分の構成比が5重量%未満となるため、組成物を相対粘度2.8以上に重合させることができなくなる。好ましい添加率は60〜80%であり、特に60%〜75%が好ましい。   Further, when the blending amount is more than 85% by weight, the composition ratio of the polyester component is less than 5% by weight, so that the composition cannot be polymerized to a relative viscosity of 2.8 or more. A preferable addition rate is 60 to 80%, and 60 to 75% is particularly preferable.

本発明における有機スルホン酸金属塩化合物としては、アルキルスルホン酸、アルキルアリールスルホン酸またはアリールスルホン酸のアルカリ金属塩またはアルカリ土類金属塩を用いることができるが、アルキル基、アリール基、アルキルアリール基は炭素数が6以上である。本発明では上記条件を満たす有機スルホン酸金属化合物の中でも、その汎用性からドデシルベンゼンスルホン酸ナトリウム(DBS)を用いることが好ましい。   As the organic sulfonic acid metal salt compound in the present invention, an alkylsulfonic acid, an alkylarylsulfonic acid, or an alkali metal salt or alkaline earth metal salt of an arylsulfonic acid can be used. Has 6 or more carbon atoms. In the present invention, among organic sulfonic acid metal compounds satisfying the above conditions, sodium dodecylbenzenesulfonate (DBS) is preferably used because of its versatility.

この有機スルホン酸金属塩化合物は、ポリエステル組成物100重量%に対し、10〜40重量%になるように配合する必要があり、15〜30%が好ましく、15〜25%が特に好ましい。10重量%未満では十分な制電性能を得ることができない。   The organic sulfonic acid metal salt compound needs to be blended so as to be 10 to 40% by weight with respect to 100% by weight of the polyester composition, preferably 15 to 30%, and particularly preferably 15 to 25%. If it is less than 10% by weight, sufficient antistatic performance cannot be obtained.

これらポリアルキレングリコール及び有機スルホン酸金属塩化合物の配合量の合計は、ポリエステル組成物100重量%に対し、80重量%以上95重量%以下でなければならない。80重量%未満の場合には十分な制電性能を得ることができず、95重量%より多い場合には、組成物を相対粘度2.8以上に重合させることができなくなる。   The total amount of the polyalkylene glycol and the organic sulfonic acid metal salt compound must be 80% by weight to 95% by weight with respect to 100% by weight of the polyester composition. When the amount is less than 80% by weight, sufficient antistatic performance cannot be obtained, and when it is more than 95% by weight, the composition cannot be polymerized to a relative viscosity of 2.8 or more.

本発明に用いるポリエステル組成物のポリエステル成分は、芳香族ジカルボン酸成分とグリコール成分とを常法によって重合することによって得ることができるものである。最も好ましいのは、ポリエチレンテレフタレートである。   The polyester component of the polyester composition used in the present invention can be obtained by polymerizing an aromatic dicarboxylic acid component and a glycol component by a conventional method. Most preferred is polyethylene terephthalate.

本発明に用いるポリエステル組成物はその相対粘度が2.8以上である必要があり、3.0以上が好ましく、3.2以上が特に好ましい。相対粘度が2.8未満であると制電剤である芯成分と鞘成分であるポリエステル繊維との間にひずみが大きくなり亀裂が生じやすくなる。   The polyester composition used in the present invention needs to have a relative viscosity of 2.8 or more, preferably 3.0 or more, and particularly preferably 3.2 or more. When the relative viscosity is less than 2.8, the strain increases between the core component as the antistatic agent and the polyester fiber as the sheath component, and cracks are likely to occur.

尚、本発明のポリエステル組成物において、種々の公知の添加剤を適宜加えても良い。例えば生産効率を向上させる目的で、二酸化ケイ素等を添加してもよい。また、熱安定性を向上させる目的で、抗酸化剤等を添加配合して用いてもよい。   In the polyester composition of the present invention, various known additives may be appropriately added. For example, silicon dioxide or the like may be added for the purpose of improving production efficiency. Further, for the purpose of improving the thermal stability, an antioxidant or the like may be added and blended.

本発明の芯鞘型複合ポリエステル繊維は、上述のポリエステル組成物を芯成分として繊維中に複合されておれば、十分な性能を発揮する。特にその複合量比には限定はないが、芯鞘型複合ポリエステル繊維の諸物性に与える影響、制電性能を考慮すると、0.5重量%以上5重量%未満が好ましく、更には1.0重量%以上2.0重量%未満が好ましい。   The core-sheath type composite polyester fiber of the present invention exhibits sufficient performance as long as it is composited in the fiber using the above-described polyester composition as a core component. In particular, the composite amount ratio is not limited, but considering the influence on various physical properties of the core-sheath type composite polyester fiber and the antistatic performance, 0.5% by weight or more and less than 5% by weight is preferable, and further 1.0. The content is preferably not less than wt% and less than 2.0 wt%.

本発明の芯鞘型複合ポリエステル繊維は、芯成分として上述のポリエステル組成物を用いる。一方、鞘成分には溶融紡糸可能な各種ポリエステルを利用可能である。例えばポリエチレンテレフタレートのような芳香族ポリエステルや、ポリ乳酸のような脂肪族ポリエステルが利用可能であり、この他脂環族ポリエステル等も利用できる。また、これらの共重合ポリエステル、混合物を利用することも可能である。   The core-sheath type composite polyester fiber of the present invention uses the above-described polyester composition as a core component. On the other hand, various polyesters that can be melt-spun can be used for the sheath component. For example, aromatic polyesters such as polyethylene terephthalate and aliphatic polyesters such as polylactic acid can be used, and other alicyclic polyesters can also be used. Moreover, it is also possible to utilize these copolyesters and mixtures.

本発明に用いるポリエステル組成物の製法を一例を挙げながら説明する。ポリアルキレングリコールとして所定の分子量範囲のポリエチレングリコール、有機スルホン酸金属塩化合物としてドデシルベンゼンスルホン酸ナトリウム(65重量%水溶液)、ポリエステル成分としてビス−α−ヒドロキシエチルテレフタレート(以下BHETと称す)、重合反応触媒として三酸化ニアンチモンを原料とする。これらの規定量を反応槽に入れ加熱して留出する水を除去しながら235℃まで昇温し完全に溶解後に約1時間攪拌する。ほぼ規定量の水が除去されたのを確認後、真空ポンプにて内圧133Pa以下まで減圧し250℃の条件で重合反応を行い目的のポリエステル組成物を得る。   The production method of the polyester composition used in the present invention will be described with an example. Polyethylene glycol having a predetermined molecular weight range as polyalkylene glycol, sodium dodecylbenzenesulfonate (65% by weight aqueous solution) as organic sulfonic acid metal salt compound, bis-α-hydroxyethyl terephthalate (hereinafter referred to as BHET) as a polyester component, polymerization reaction The raw material is niantimony trioxide as a catalyst. These specified amounts are put into a reaction vessel and heated to 235 ° C. while removing the distilled water, and stirred for about 1 hour after complete dissolution. After confirming that the specified amount of water has been removed, the internal pressure is reduced to 133 Pa or less with a vacuum pump, and a polymerization reaction is carried out at 250 ° C. to obtain the desired polyester composition.

本発明の芯鞘型複合ポリエステル繊維の製法を一例を挙げながら説明する。上述にて得られたポリエステル組成物を180℃の溶融状態としてギアポンプにより定量的に送液し、適宜ろ過を行った後、複合紡糸口金に送液する。複合紡糸口金は、2種のポリマーが芯鞘構造になるよう流路が設計されておれば特に限定されない。溶融した組成物が、繊維中1〜2重量%の混合比で芯に配置されるようにして、芯鞘複合型ポリエステル繊維を紡糸する。   The method for producing the core-sheath type composite polyester fiber of the present invention will be described with an example. The polyester composition obtained above is melted at 180 ° C. and quantitatively fed by a gear pump, appropriately filtered, and then fed to a composite spinneret. The composite spinneret is not particularly limited as long as the flow path is designed so that two kinds of polymers have a core-sheath structure. The core-sheath composite type polyester fiber is spun so that the melted composition is disposed on the core at a mixing ratio of 1 to 2% by weight in the fiber.

上述のようにして得られた制電性繊維は、アルカリ減量加工を実施しても亀裂が生じず、織物としての品位も損なうことなく制電性能を有する。特に薄地で織物として高い品位が要求される衣料の裏地などに好適に使用できる。   The antistatic fiber obtained as described above has antistatic performance without causing cracks even when alkali weight reduction processing is performed, and without impairing the quality of the fabric. In particular, it can be suitably used for clothing linings that require high quality as a fabric in thin fabrics.

以下、実施例で本発明を詳細に説明する。
実施例における各特性値は下記の方法にしたがって求めた。
[相対粘度]0.5gのポリエステル組成物をフェノール/テトラクロルエタン=6/4(質量比)混合物50mlに溶解し、オストワルド粘度計を用いて20℃において測定した。
[極限粘度]求められた相対粘度より以下の計算式で算出した。
[極限粘度]=(√(1+1.48×[相対粘度])−1)/0.74
[制電性能]以下の条件でタフタに製織し、アルカリ減量加工を施した後に、JIS L1094(1988)参考法である摩擦帯電放電曲線測定法に従って帯電圧(kV)を測定し、60秒後の電圧(kV)を摩擦帯電圧として記載した。また、帯電圧が半減するまでの時間(秒)を半減期として評価した。
[耐アルカリ減量性]制電性能を測定したのと同様のサンプルを用い、電子顕微鏡観察によって鞘成分の亀裂の有無を確認した。表中、亀裂が見られる場合を「亀裂」、見られない場合を「○」と表記した。
Hereinafter, the present invention will be described in detail with reference to examples.
Each characteristic value in the examples was determined according to the following method.
[Relative Viscosity] 0.5 g of the polyester composition was dissolved in 50 ml of a phenol / tetrachloroethane = 6/4 (mass ratio) mixture and measured at 20 ° C. using an Ostwald viscometer.
[Intrinsic viscosity] The intrinsic viscosity was calculated from the calculated relative viscosity according to the following formula.
[Intrinsic viscosity] = (√ (1 + 1.48 × [relative viscosity]) − 1) /0.74
[Antistatic performance] After weaving the taffeta under the following conditions and performing alkali weight reduction processing, the charged voltage (kV) was measured according to the triboelectric discharge curve measurement method which is a reference method of JIS L1094 (1988), and after 60 seconds The voltage (kV) was described as the friction band voltage. The time (seconds) until the charged voltage was halved was evaluated as the half-life.
[Alkali Weight Loss Resistance] Using the same sample as the antistatic performance was measured, the presence or absence of cracks in the sheath component was confirmed by electron microscope observation. In the table, a case where a crack was observed was indicated as “crack”, and a case where a crack was not observed was indicated as “◯”.

(実施例1)
重量平均18000のポリエチレングリコールとドデシルベンゼンスルホン酸ナトリウム65%水溶液、BHET、重合触媒として三酸化ニアンチモン、イルガノックス1010を加えて1Lのフラスコで重合反応を行い、ポリエステル組成物を得た。得られたポリエステル組成物の組成及び相対粘度を表1に示した。
(Example 1)
Polyethylene glycol having a weight average of 18,000, 65% aqueous solution of sodium dodecylbenzenesulfonate, BHET, niantimony trioxide and Irganox 1010 as polymerization catalysts were added, and a polymerization reaction was performed in a 1 L flask to obtain a polyester composition. The composition and relative viscosity of the obtained polyester composition are shown in Table 1.

当該ポリエステル組成物を芯成分に、極限粘度0.63のポリエチレンテレフタレートを鞘成分として芯鞘複合紡糸口金を用いて、290℃にて溶融紡糸を行い、56dtex/36フィラメント(f)の芯鞘型複合ポリエステル繊維を得た。この芯鞘型複合ポリエステル繊維の芯鞘比率は、繊維圧入量(重量%/繊維)として表に示した通りである。   Using the polyester composition as a core component, polyethylene terephthalate having an intrinsic viscosity of 0.63 as a sheath component, using a core-sheath composite spinneret, melt spinning is performed at 290 ° C., and a core-sheath type of 56 dtex / 36 filament (f) A composite polyester fiber was obtained. The core-sheath ratio of the core-sheath-type composite polyester fiber is as shown in the table as the fiber press-fit amount (% by weight / fiber).

当該芯鞘型複合ポリエステル繊維を経糸として、84dtex/36fの通常のポリエステル糸を緯糸として打ち込み製織した。得られたポリエステルタフタを4%水酸化ナトリウム水溶液にて98℃×40分の減量加工を施した後に、摩擦帯電圧を測定した。また、糸の表面及び断面を電子顕微鏡にて観察してアルカリ減量加工に対する耐久性を確認した。結果を表1に示す。   The core-sheath type composite polyester fiber was used as a warp, and a normal polyester yarn of 84 dtex / 36f was used as a weft to be woven. The obtained polyester taffeta was subjected to weight reduction processing at 98 ° C. for 40 minutes with a 4% aqueous sodium hydroxide solution, and then the frictional voltage was measured. In addition, the durability and resistance to alkali weight loss processing were confirmed by observing the surface and cross section of the yarn with an electron microscope. The results are shown in Table 1.

(実施例2)
重量平均分子量18000のポリエチレングリコール、ドデシルベンゼンスルホン酸ナトリウム65%水溶液及びBHETの組成量を変更した以外は、実施例1と同様に重合及び紡糸を行い、芯鞘型複合ポリエステル繊維の評価を行った。結果を表1に示す。
(Example 2)
Polymerization and spinning were carried out in the same manner as in Example 1 except that the composition amount of polyethylene glycol having a weight average molecular weight of 18000, 65% aqueous solution of sodium dodecylbenzenesulfonate and BHET was changed, and the core-sheath type composite polyester fiber was evaluated. . The results are shown in Table 1.

(比較例1)
ポリエチレングリコールの重量平均分子量を6000とした以外は実施例2と同様の組成で、重合及び紡糸を行い、芯鞘型複合ポリエステル繊維の評価を行った。結果を表1に示す。
(Comparative Example 1)
Polymerization and spinning were carried out with the same composition as in Example 2 except that the weight average molecular weight of polyethylene glycol was 6000, and the core-sheath type composite polyester fiber was evaluated. The results are shown in Table 1.

(比較例2)
平均分子量18000のポリエチレングリコールの組成量を30重量%とし、それに従い、BHETの組成量を変更した以外は、実施例1と同様に重合及び紡糸を行い、芯鞘型
複合ポリエステル繊維の評価を行った。結果を表1に示す。
(Comparative Example 2)
Polymerization and spinning were carried out in the same manner as in Example 1 except that the composition amount of polyethylene glycol having an average molecular weight of 18000 was 30% by weight, and the composition amount of BHET was changed accordingly, and the core-sheath type composite polyester fiber was evaluated. It was. The results are shown in Table 1.

(比較例3)
実施例1と同様の組成で重合を行ったが、重合反応時間を調整して相対粘度を2.0のポリエステル組成物を得た。これを用いて実施例1と同様の紡糸を行い、芯鞘型複合ポリエステル繊維の評価を行った。
(Comparative Example 3)
Polymerization was carried out with the same composition as in Example 1, but the polymerization reaction time was adjusted to obtain a polyester composition having a relative viscosity of 2.0. Using this, the same spinning as in Example 1 was performed, and the core-sheath type composite polyester fiber was evaluated.

Figure 2008088592
Figure 2008088592

本発明のポリエステル組成物は、制電剤として各種用途に利用可能である。特に複合芯鞘型複合ポリエステル繊維の制電成分として用いることにより、加工耐久性に優れた制電
糸を得ることが出来る。
The polyester composition of the present invention can be used in various applications as an antistatic agent. In particular, an antistatic yarn excellent in processing durability can be obtained by using it as an antistatic component of the composite core-sheath type composite polyester fiber.

Claims (5)

組成物全重量中に、重量平均分子量10000以上のポリアルキレングリコールが50〜85重量%、下記化学式1で表される有機スルホン酸金属塩化合物が10〜40重量%の範囲で下記式1を満足するように配合され、かつ残りの成分がポリエステル成分で構成された相対粘度が2.8以上のポリエステル組成物が、芯成分として繊維中に複合された芯鞘型複合ポリエステル繊維。
RSOM・・・(化学式1)
[Rは炭素数6以上のアルキル基、アリール基または、アルキルアリール基、Mはアルカリ金属又はアルカリ土類金属を示す]
80≦(A+B)≦95・・・(式1)
[Aはポリアルキレングリコール成分、Bは有機スルホン酸金属化合物成分、単位は全て重量%(対組成物)]
In the total weight of the composition, the polyalkylene glycol having a weight average molecular weight of 10,000 or more satisfies 50 to 85% by weight, and the organic sulfonic acid metal salt compound represented by the following chemical formula 1 satisfies 10 to 40% by weight. A core-sheath-type composite polyester fiber in which a polyester composition having a relative viscosity of 2.8 or more, in which the remaining components are composed of a polyester component, is compounded in the fiber as a core component.
RSO 3 M (Chemical formula 1)
[R represents an alkyl group having 6 or more carbon atoms, an aryl group, or an alkylaryl group, and M represents an alkali metal or an alkaline earth metal]
80 ≦ (A + B) ≦ 95 (Formula 1)
[A is a polyalkylene glycol component, B is an organic sulfonic acid metal compound component, and all units are by weight (composition)]
ポリアルキレングリコールがポリエチレングリコールである請求項1に記載の芯鞘型複合ポリエステル繊維。   The core-sheath type composite polyester fiber according to claim 1, wherein the polyalkylene glycol is polyethylene glycol. 化学式1で表される有機スルホン酸金属塩化合物が、ドデシルベンゼンスルホン酸ナトリウムである請求項1に記載の芯鞘型複合ポリエステル繊維。   The core-sheath type composite polyester fiber according to claim 1, wherein the organic sulfonic acid metal salt compound represented by Chemical Formula 1 is sodium dodecylbenzenesulfonate. ポリエステル成分が、実質的にポリエチレンテレフタレートである請求項1に記載の芯鞘型複合ポリエステル繊維。   The core-sheath-type composite polyester fiber according to claim 1, wherein the polyester component is substantially polyethylene terephthalate. 芯成分の比率が0.5重量%以上5重量%未満である請求項1に記載の芯鞘型複合ポリエステル繊維。   The core-sheath-type composite polyester fiber according to claim 1, wherein the ratio of the core component is 0.5 wt% or more and less than 5 wt%.
JP2006270055A 2006-09-29 2006-09-29 Core-sheath type composite polyester fiber Expired - Fee Related JP5013802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006270055A JP5013802B2 (en) 2006-09-29 2006-09-29 Core-sheath type composite polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270055A JP5013802B2 (en) 2006-09-29 2006-09-29 Core-sheath type composite polyester fiber

Publications (2)

Publication Number Publication Date
JP2008088592A true JP2008088592A (en) 2008-04-17
JP5013802B2 JP5013802B2 (en) 2012-08-29

Family

ID=39373031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270055A Expired - Fee Related JP5013802B2 (en) 2006-09-29 2006-09-29 Core-sheath type composite polyester fiber

Country Status (1)

Country Link
JP (1) JP5013802B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562644B2 (en) 2005-11-29 2010-10-13 カルソニックカンセイ株式会社 Tire pressure monitoring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262438A (en) * 2000-01-11 2001-09-26 Kanebo Ltd Antistatic conjugate filament
JP3279529B2 (en) * 1998-09-30 2002-04-30 カネボウ株式会社 Split type composite yarn with excellent antistatic performance
JP2003105651A (en) * 2001-09-28 2003-04-09 Kanebo Ltd Cleaning fabric having antistatic performance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3279529B2 (en) * 1998-09-30 2002-04-30 カネボウ株式会社 Split type composite yarn with excellent antistatic performance
JP2001262438A (en) * 2000-01-11 2001-09-26 Kanebo Ltd Antistatic conjugate filament
JP2003105651A (en) * 2001-09-28 2003-04-09 Kanebo Ltd Cleaning fabric having antistatic performance

Also Published As

Publication number Publication date
JP5013802B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5013802B2 (en) Core-sheath type composite polyester fiber
JP2020164557A (en) Cation-dyeable polyester and method for producing the same
JP2016148132A (en) Antistatic polyester fiber, polyester composition for antistatic fiber and manufacturing method of fiber consisting of the same
JP5026041B2 (en) Polyester composite fiber
WO2017022569A1 (en) Poly(ethylene terephthalate) fiber and polyester resin
JP2004323829A (en) Easily alkali soluble copolyester
JP2015143314A (en) cationic dyeable polyester composition
JP3719884B2 (en) Method for producing polyketone fiber
JP6056103B2 (en) Polyester fiber
JP2010018926A (en) Method for producing polyester nanofiber
JP2020111847A (en) Fiber dispersion
JPS58180613A (en) Polyester type fiber containing dispersed fine particle and preparation thereof
JP4249384B2 (en) Antistatic composite filament
JPH06272114A (en) Production of fiber assembly
JP4375073B2 (en) Hygroscopic polyester fiber and method for producing the same
JP2010059232A (en) Production method of polyester composition excellent in color developing property
JP2004232172A (en) Flame retardant polyester fiber
JP3568443B2 (en) Polyester fiber and method for producing the same
JP2844334B2 (en) Antistatic polyester fiber
JP2019026991A (en) Black spun-dyed polyester fiber
KR940004700B1 (en) Method of preparing a sea-island type fiber
JP2005220485A (en) Polyester composition for fiber
JP2008007720A (en) Water dispersion for hybrid resin, adhesive using the same, coating agent and coating
JP2002227033A (en) Polyester superfine yarn
JPS6354807B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5013802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees