JP2001262438A - Antistatic conjugate filament - Google Patents

Antistatic conjugate filament

Info

Publication number
JP2001262438A
JP2001262438A JP2000395265A JP2000395265A JP2001262438A JP 2001262438 A JP2001262438 A JP 2001262438A JP 2000395265 A JP2000395265 A JP 2000395265A JP 2000395265 A JP2000395265 A JP 2000395265A JP 2001262438 A JP2001262438 A JP 2001262438A
Authority
JP
Japan
Prior art keywords
antistatic
component
core
sheath
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000395265A
Other languages
Japanese (ja)
Other versions
JP4249384B2 (en
Inventor
Yoshitomo Hara
義智 原
Tsutomu Naruse
勉 成瀬
Hideo Ueda
秀夫 上田
Shigeki Honda
繁喜 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2000395265A priority Critical patent/JP4249384B2/en
Publication of JP2001262438A publication Critical patent/JP2001262438A/en
Application granted granted Critical
Publication of JP4249384B2 publication Critical patent/JP4249384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antistatic conjugate filament which has a good performance, does not produce scum, has a good weaving property, and is suitable for a high mesh gauze woven fabric. SOLUTION: This antistatic conjugate filament is characterized by comprising a sheath-core conjugate filament which comprises a fiber-forming polymer as a sheath component, and as a core component, a resin composition obtained by adding 10 to 30 wt.% of a metal organic sulfonate to the remainder of a polymer that has an average mol.wt. of 10,000 to 70,000 and comprises 70 to 95 wt.% of a polyalkylene glycol having an average mol.wt. of >=6,000 and the remainder of an organic dicarboxylic acid or its ester, wherein the core component is used in an amount of 0.3 to 5 wt.% based on the sheath component, and wherein the core component in the conjugate filament is not exposed to the surface layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、操業性良好で、且
つ糸切れ、スカム発生のないハイメッシュ製織安定性に
優れた制電性良好な制電性複合フィラメントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antistatic composite filament having good operability, excellent thread stability and high mesh weaving stability without scum generation and good antistatic properties.

【従来の技術】[Prior art]

【0002】近年、印刷、ろ過フィルター等の産業資材
用途の紗織物においては、精密な織密度に対する要求が
ますます厳しくなってきており、細繊度、高破断強度の
フィラメントをハイメッシュ製織する方向へと進んでい
る。産業資材用途の紗織物としては、古くはシルク、ス
テンレススチールなどを材料としてきたが、近年、合成
繊維からなるメッシュ織物は、柔軟性、かつコストパフ
ォーマンスに優れているため、広く使われるようになっ
てきた。中でもポリエステルモノフィラメントは耐水
性、寸法安定性に優れており、ハイメッシュ紗織物に好
ましく用いられている。
In recent years, the demand for precise weaving density has become more and more strict in gauze fabrics for use in industrial materials such as printing and filtration filters, and in the direction of weaving filaments with fineness and high breaking strength into high mesh. It is proceeding. Silk fabrics and stainless steels have long been used as materials for industrial materials, but in recent years mesh fabrics made of synthetic fibers have become widely used due to their flexibility and excellent cost performance. Have been. Among them, polyester monofilament is excellent in water resistance and dimensional stability, and is preferably used for high mesh gauze fabric.

【0003】ところが、ポリエステル繊維をはじめ、多
くの合成繊維は天然繊維に比較してより疎水性であり、
電気抵抗も高いので静電気が発生しやすいという欠点が
ある。特にハイメッシュ製織においては走行フィラメン
トと小ピッチ配列となっている筬刃の接触頻度及び摩擦
力が増大するため、使用する紗織物が静電気を帯びやす
くなる。製織工程で静電気が紗に帯電すると、作業員が
静電気による感電や痛みなどの不快感を与えられるだけ
でなく、安全面でも静電気が粉塵爆発などの事故につな
がることがあり、好ましくない。また、紗が帯電するこ
とによって、埃が付着しやすくなり、印刷やプリント基
板などのスクリーン紗用途では印刷欠点を生じることが
ある。そのため、合成繊維に制電性能を付与させるた
め、古くから数多くの制電剤が研究されている。
However, many synthetic fibers, including polyester fibers, are more hydrophobic than natural fibers.
There is a disadvantage that static electricity is easily generated due to high electric resistance. In particular, in high mesh weaving, the frequency of contact and the frictional force between the running filament and the reed blade having a small pitch arrangement increase, so that the gauze fabric used tends to be charged with static electricity. If static electricity is charged to the gauze in the weaving process, not only is the worker given discomfort such as electric shock and pain due to the static electricity, but also in terms of safety, the static electricity may lead to an accident such as dust explosion, which is not preferable. Further, when the gauze is charged, dust is likely to adhere to the gauze, and printing defects may occur in screen gauze applications such as printing and printed circuit boards. Therefore, many antistatic agents have long been studied in order to impart antistatic performance to synthetic fibers.

【0004】制電剤に要求される性質は、制電性能はも
とより、重合操業性が良好であること、鞘成分との親和
性が良好であること、曵糸性が良好であること、紡糸条
件に耐えうる耐熱性を有すること、などが挙げられる。
中でもポリエチレングリコールを代表とする親水性ポリ
アルキレンオキシド及びその誘導体、変性体、混合体は
最も重要である。このポリアルキレンオキシド系制電剤
は多種類のものが市販されているが、溶融粘度が低く曵
糸性が乏しいため、芯鞘複合フィラメントのような連続
線状混合には適しないことが多い。ゆえに、この制電剤
を使用する場合は、曵糸性良好なポリマーと混合して紡
糸しなければならず、それによって制電性能は低下する
という問題があった。
[0004] The properties required of an antistatic agent include not only antistatic performance, but also good polymerization operability, good affinity with a sheath component, good spinnability, and spinning. And having heat resistance that can withstand the conditions.
Among them, hydrophilic polyalkylene oxide represented by polyethylene glycol and its derivatives, modified products and mixtures are the most important. Although many kinds of polyalkylene oxide-based antistatic agents are commercially available, their low melt viscosity and poor spinnability make them often unsuitable for continuous linear mixing such as core-sheath composite filaments. Therefore, when this antistatic agent is used, it has to be mixed with a polymer having good spinnability and spun, thereby causing a problem that the antistatic performance is reduced.

【0005】フィラメントに制電性を持たせることを目
的にこれまで数多くの改善技術が提案されている。例え
ば、特開平4−153372号公報、特開平7−189
121号公報などにはポリエステル繊維表面にポリマー
や金属酸化物等からなる制電剤を被膜する方法が数多く
提案されている。しかし、耐摩擦性に弱い制電剤が表層
に露出しているので、ハイメッシュ紗織物を製織する際
に制電剤が筬歯で削られやすくなり、スカムが発生す
る。また、特開平6−158534号公報などでポリエ
ステル系繊維に後加工により制電性能を付与する方法が
数多く提案されている。しかし、紗の製織後の洗浄工程
において制電剤が脱落し性能が低下するだけでなく、流
出する排水は環境汚染を引き起こすなど多くの問題点が
ある。更に、特開平2−289119号公報には、芯鞘
型複合モノフィラメントで、芯成分に分子量800〜2
000のポリアルキレンエーテルを、モノフィラメント
当り0.1〜2.5重量%含有する制電複合モノフィラ
メントが提案されている。しかし、制電剤が芯成分に混
合され、分散しているので、制電性能が充分に発揮でき
ず、ハイメッシュ製織のために充分な制電性能を得よう
とすると、多量の制電剤が必要となる。
[0005] Numerous improvement techniques have been proposed for the purpose of providing the filament with antistatic properties. For example, JP-A-4-153372, JP-A-7-189
No. 121 and the like have proposed many methods of coating a polyester fiber surface with an antistatic agent composed of a polymer, a metal oxide, or the like. However, since the antistatic agent having low friction resistance is exposed on the surface layer, when weaving the high mesh gauze fabric, the antistatic agent is easily cut by the reed teeth, and scum is generated. Also, Japanese Patent Application Laid-Open No. 6-158534 and the like have proposed many methods of imparting antistatic performance to polyester fibers by post-processing. However, in the washing process after weaving the gauze, there are many problems such as not only the antistatic agent coming off and the performance being deteriorated, but also the drainage water flowing out causing environmental pollution. Further, JP-A-2-289119 discloses a core-sheath type composite monofilament in which the core component has a molecular weight of 800-2.
Antistatic composite monofilaments containing 0.1 to 2.5% by weight of polyalkylene ether per 000 monofilament have been proposed. However, since the antistatic agent is mixed and dispersed in the core component, the antistatic performance cannot be sufficiently exhibited, and when trying to obtain sufficient antistatic performance for high mesh weaving, a large amount of the antistatic agent is required. Is required.

【0006】なお、紗織物のハイメッシュ化による原繊
の細繊度化が進むにつれて糸の破断強力は低下し、製織
時の糸切れが増加する。破断強度が小さいと、紗張り時
に充分な張力で張り付けることができないので、製織性
の良好な紗織物を得ることができない。
[0006] As the fineness of the raw fiber is increased by making the gauze fabric into a high mesh, the breaking strength of the yarn decreases, and the yarn breakage during weaving increases. If the breaking strength is low, it is not possible to attach the gauze with sufficient tension during the gauging, so that a gauze fabric having good weaving properties cannot be obtained.

【0007】一般に、ハイメッシュ紗織物用フィラメン
トの破断伸度は、品質上20〜30%が好ましい。しか
し、高強度を得ようとすると、延伸工程にて高配向化さ
せるためにより高い延伸倍率で延伸しなければならない
ので低伸度糸となってしまう。その結果、剛直なフィラ
メントとなってしまい、製織時筬によりフィラメントの
表面が削り取られてヒゲ状または粉状のスカムが発生し
やすくなる。生じたスカムは、織機の汚れとなり作業性
を損なうと同時に、その一部が紗織物の中に織り込まれ
てしまうと精密印刷時に印刷欠点となる。
Generally, the breaking elongation of the filament for high mesh gauze fabric is preferably 20 to 30% in terms of quality. However, if high strength is to be obtained, the yarn must be drawn at a higher draw ratio in order to make the film highly oriented in the drawing step, resulting in a low elongation yarn. As a result, the filament becomes a rigid filament, and the surface of the filament is scraped off by the reed during weaving, so that a whisker-like or powder-like scum is easily generated. The resulting scum causes soiling of the loom and impairs workability. At the same time, if a part of the scum is woven into the gauze fabric, printing defects occur during precision printing.

【0008】そのため、適正な伸度を保ったまま高強度
を得ることを目的にこれまで数多くの改善技術が提案さ
れている。例えば、特開平5−25709号公報では、
中層に制電性化合物を含有した3層複合モノフィラメン
トで、破断強度が5.5g/d(4.9cN/dT)以
上の印刷スクリーン紗用3層複合モノフィラメントが提
案されている。これにより高強度のモノフィラメントを
得ることができるが、薄皮の3層複合モノフィラメント
とすると製造工程が複雑となり、コストパフォーマン
ス、製造安定性の面で不利となるうえ、前述の例と同様
に制電剤が混合されているので、充分な制電性能が得ら
れない。
[0008] Therefore, a number of improved techniques have been proposed to obtain high strength while maintaining proper elongation. For example, in JP-A-5-25709,
A three-layer composite monofilament for a printing screen gauze having a breaking strength of 5.5 g / d (4.9 cN / dT) or more, which is a three-layer composite monofilament containing an antistatic compound in the middle layer, has been proposed. This makes it possible to obtain a high-strength monofilament. However, if a thin-layer three-layer composite monofilament is used, the production process becomes complicated, disadvantageous in terms of cost performance and production stability. Are mixed, so that sufficient antistatic performance cannot be obtained.

【0009】[0009]

【発明が解決しようとする課題】本発明は、後加工しな
くても少量の制電剤で制電性能が良好で、スカム発生も
無く製織性が良好なハイメッシュ紗織物に好適な制電性
複合フィラメントを提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to a high-mesh gauze fabric which has good antistatic performance with a small amount of antistatic agent without post-processing, has no scum, and has good weavability. It is an object of the present invention to provide a composite filament.

【0010】[0010]

【課題を解決するための手段】前記本発明の目的は、繊
維形成性ポリマーを鞘成分、平均分子量6000以上で
あるポリアルキレングリコール(A成分)と有機ジカル
ボン酸またはそのエステル体(B成分)からなり、A成
分の含有量が70〜95重量%の平均分子量10000
〜70000の重合体に、さらに有機スルホン酸金属塩
を該重合体に対し10〜30重量%となるように混合し
た樹脂組成物を芯成分とし、該芯成分を鞘成分に対して
0.3〜5重量%配してなる芯鞘複合フィラメントであ
り、且つ該複合フィラメントにおける芯成分が表層に露
出しないことを特徴とする制電性複合フィラメントによ
って達成することができる。
The object of the present invention is to provide a fiber-forming polymer comprising a sheath component, a polyalkylene glycol having an average molecular weight of 6000 or more (component A) and an organic dicarboxylic acid or its ester (component B). Wherein the content of the component A is 70 to 95% by weight and the average molecular weight is 10,000.
A resin composition obtained by further mixing a metal salt of an organic sulfonic acid in an amount of 10 to 30% by weight with respect to the polymer is used as a core component, and the core component is 0.3 to the sheath component. -5% by weight of the core-sheath composite filament, wherein the core component of the composite filament is not exposed to the surface layer.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。
精密印刷に適したハイメッシュスクリーン(250〜4
00メッシュ)を得るためには、繊度10〜44dTの
細繊度フィラメントが用いられ、ポリエステルモノフィ
ラメントは特に好ましく用いられる。このハイメッシュ
紗織物用フィラメントに要求されるのは、高張力での紗
張りに耐えることができる高破断強度を有しているこ
と、及び製織中に織機の筬歯によりヒゲ状、または粉状
のスカムが発生しない良好な製織性を保持していること
である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
High mesh screen suitable for precision printing (250-4
(00 mesh), a fine filament having a fineness of 10 to 44 dT is used, and a polyester monofilament is particularly preferably used. The requirements for this filament for high mesh gauze fabric are that it has a high breaking strength that can withstand gauze with high tension, and that it is mustache or powdery due to the reed teeth of the loom during weaving. Scum is not generated, and good weavability is maintained.

【0012】制電性とは紗の表面に摩擦等で発生した静
電気を速やかに漏洩させて、帯電圧を実用上障害になら
ない範囲に保持することである。合成繊維は疎水性で電
気抵抗が高いうえ、ハイメッシュ紗織物の製織時におい
て走行フィラメントと筬歯との接触頻度及び摩擦力が増
大するため、製織した紗織物が静電気を帯びやすくな
り、作業性、製織性が著しく低下する。本発明の特徴
は、芯成分に制電性化合物を少量で、かつフィラメント
表層に露出しない形で配合するために、スカム抑制能を
保持したまま、良好な制電性能が維持できる破断強度の
高いハイメッシュ紗織物用フィラメントを得られること
である。
The antistatic property means that static electricity generated by friction or the like on the surface of the gauze is quickly leaked, and the charged voltage is maintained within a range that does not hinder practical use. Synthetic fibers are hydrophobic and have high electrical resistance, and the contact frequency and frictional force between the running filament and the reeds increase during weaving of high-mesh gauze fabrics. In addition, the weaving property is significantly reduced. The feature of the present invention is that, in a small amount of the antistatic compound in the core component, and in a form that is not exposed to the filament surface layer, while maintaining the scum suppressing ability, a high breaking strength capable of maintaining good antistatic performance. The purpose is to obtain a filament for high mesh gauze fabric.

【0013】本発明の制電性複合フィラメントを構成す
る制電ポリマーは、ポリアルキレングリコールを主成分
とする樹脂組成物(以下、ASAと記す)である。すな
わち、平均分子量6000以上であるポリアルキレング
リコール(A成分)と有機ジカルボン酸またはそのエス
テル体(B成分)を、A成分の含有量が70〜95重量
%で平均分子量10000〜70000の重合体に、さ
らに有機スルホン酸金属塩を共重合ポリマー重量に対し
10〜30重量%となるように混合した樹脂組成物であ
る。ASAは、少量でも高い制電性能を有し、重合、紡
糸とも容易で、コストパフォーマンスにも優れているの
で、実用性が高い。
The antistatic polymer constituting the antistatic composite filament of the present invention is a resin composition containing polyalkylene glycol as a main component (hereinafter referred to as ASA). That is, a polyalkylene glycol (A component) having an average molecular weight of 6000 or more and an organic dicarboxylic acid or an ester thereof (B component) are converted into a polymer having an A component content of 70 to 95% by weight and an average molecular weight of 10,000 to 70,000. And a resin composition obtained by mixing an organic sulfonic acid metal salt in an amount of 10 to 30% by weight based on the weight of the copolymer. ASA has high antistatic performance even in a small amount, is easy to polymerize and spin, and is excellent in cost performance, so that it is highly practical.

【0014】ASAを構成する重合体の平均分子量は1
0000〜70000の高分子量であることが必要であ
り、この範囲であると曵糸性に優れているため、制電剤
が途中で途切れることなく、繊維軸方向に連続した筋状
形態として紡糸することができる。10000未満であ
ると、溶融粘度が低下するために芯鞘構造が形成できな
くなる。また、70000を越えると、溶融紡糸時にゲ
ル化しやすくなるために、紡糸押出しが困難になるの
で、好ましくない。
The polymer constituting ASA has an average molecular weight of 1
It is necessary to have a high molecular weight of 0000 to 70000, and since the spinning property is excellent in this range, the antistatic agent is spun as a continuous streak in the fiber axis direction without interruption in the middle. be able to. If it is less than 10,000, the core-sheath structure cannot be formed because the melt viscosity decreases. On the other hand, if it exceeds 70,000, it tends to gel during melt spinning, making spinning extrusion difficult, which is not preferable.

【0015】ASAに使用するポリアルキレングリコー
ル(A成分)としては、ポリエチレングリコール、ポリ
プロピレングリコール、ポリブチレングリコール、及び
それらのランダムポリエーテル、ブロックポリエーテル
などがあり、特に限定されるものではないが、中でもポ
リエチレングリコール及びそれらのランダム又はブロッ
クポリエーテルがポリマーの安定性の面で特に好ましく
用いられる。
The polyalkylene glycol (component A) used for ASA includes polyethylene glycol, polypropylene glycol, polybutylene glycol, and their random polyethers and block polyethers, and is not particularly limited. Among them, polyethylene glycol and their random or block polyethers are particularly preferably used in view of polymer stability.

【0016】ポリアルキレングリコールの平均分子量は
6000以上が必要であり、特に好ましいのは平均分子
量8000以上である。6000以上であると、高分子
量のASAを得るための工程通過性が良好となり、製造
にかかるコストパフォーマンスの面で有利になるだけで
なく、紡糸安定性が良好で高い制電効果が得られる。6
000未満であると、制電性能が不良となるだけでな
く、得られるASAの溶融粘度が低くなり、実用性が低
くなるので好ましくない。
The average molecular weight of the polyalkylene glycol must be 6,000 or more, and particularly preferably 8,000 or more. When it is 6000 or more, the processability for obtaining a high-molecular-weight ASA is improved, which is advantageous not only in the cost performance of the production but also in the spinning stability and the high antistatic effect. 6
If the molecular weight is less than 000, not only the antistatic performance becomes poor, but also the melt viscosity of the obtained ASA decreases, and the practicability decreases, which is not preferable.

【0017】またポリアルキレングリコールの重合比率
は、70〜95重量%が必要であり、特に好ましいのは
91〜95重量%である。この範囲であると、最適な制
電性能を保持することができ、さらに溶融時の流動開始
温度が低く、重合及び紡糸工程で比較的低温域で取り扱
えるので劣化が少ないという利点がある。70重量%未
満の場合は制電性能が充分発揮できず、更には変性度が
低いために取り扱いが高温域となるので、劣化が起こり
やすくなる。95重量%を越えると、変性度が高すぎる
ために熱安定性が悪くなり、紡糸安定性が低下するので
好ましくない。
The polymerization ratio of the polyalkylene glycol is required to be 70 to 95% by weight, particularly preferably 91 to 95% by weight. Within this range, it is possible to maintain the optimum antistatic performance, and furthermore, the flow start temperature at the time of melting is low, and the polymerization and spinning process can be handled in a relatively low temperature range, so that there is an advantage that deterioration is small. When the content is less than 70% by weight, the antistatic performance cannot be sufficiently exhibited, and further, since the degree of denaturation is low, the handling is in a high temperature range, so that the deterioration tends to occur. If the content exceeds 95% by weight, the degree of modification is too high, so that the thermal stability is deteriorated and the spinning stability is undesirably reduced.

【0018】ASAに使用する有機ジカルボン酸類(B
成分)としては、テレフタル酸、イソフタル酸等の芳香
族ジカルボン酸、及びそのメチルエステル、エチルエス
テル、プロピルエステル、エチレングリコールエステ
ル、或いは低分子量のポリエチレンテレフタレート、ポ
リエチレンイソフタレート、ポリプロピレンテレフタレ
ート、ポリプロピレンイソフタレート、及びその共重合
体、混合物などがあげられ、特に限定するものではな
い。中でも、芳香族ジカルボン酸、及びそのエステル
は、コストパフォーマンス、重合安定性の面から特に好
ましく用いられる。
Organic dicarboxylic acids (B) used for ASA
Ingredients) include terephthalic acid, aromatic dicarboxylic acids such as isophthalic acid, and their methyl esters, ethyl esters, propyl esters, ethylene glycol esters, or low molecular weight polyethylene terephthalate, polyethylene isophthalate, polypropylene terephthalate, polypropylene isophthalate, And copolymers and mixtures thereof, and are not particularly limited. Among them, aromatic dicarboxylic acids and esters thereof are particularly preferably used in view of cost performance and polymerization stability.

【0019】ASAに使用する有機スルホン酸金属塩の
種類としては、炭素数3〜40のアルキルスルホン酸の
ナトリウム塩、カリウム塩、リチウム塩であり、トルエ
ンスルホン酸、ドデシルベンゼンスルホン酸(以下、D
BSと記す)のナトリウム塩、カリウム塩、リチウム
塩、等が好ましく用いられる。有機スルホン酸金属塩の
混合比率としては、全ポリマーに対し10〜30重量%
が必要であり、特に好ましいのは20〜30重量%であ
る。この範囲であると、安定した操業性でより高い制電
性能を発揮できる。混合量が10%未満であると、充分
な制電性能を得ることが出来ない。また30%を越える
と、繊維の物性低下を引き起こし、さらには溶融紡糸時
に異物捕捉のためのろ過フィルター寿命(閉塞時間)が
短くなったり、ポリマーの流動性低下のため曵糸性も低
下するので好ましくない。
The types of the organic sulfonic acid metal salts used in ASA include sodium, potassium and lithium salts of alkyl sulfonic acids having 3 to 40 carbon atoms, such as toluenesulfonic acid, dodecylbenzenesulfonic acid (hereinafter referred to as D).
A sodium salt, a potassium salt, a lithium salt, and the like of BS) are preferably used. The mixing ratio of the organic sulfonic acid metal salt is 10 to 30% by weight based on the entire polymer.
Is necessary, and particularly preferable is 20 to 30% by weight. Within this range, higher antistatic performance can be exhibited with stable operability. If the mixing amount is less than 10%, sufficient antistatic performance cannot be obtained. On the other hand, if it exceeds 30%, the physical properties of the fiber are reduced, and furthermore, the life of the filter (capturing time) for trapping foreign matter during melt spinning is shortened, and the spinning property is also reduced due to the decrease in the fluidity of the polymer. Not preferred.

【0020】本発明の鞘成分に用いられる繊維形成性ポ
リマーの種類としては、ポリエチレン、ポリプロピレ
ン、ポリエステル、ポリアミド、アクリル、ポリウレタ
ン樹脂などがあげられ、芯鞘複合紡糸が可能なポリマー
ならば特に限定されず使用することができる。中でもポ
リエステルは、ASAとの親和性が良好であるため、特
に好ましく用いられる。またポリエステルの種類として
は、ポリエチレンテレフタレート(PET)、ポリブチ
レンテレフタレート(PBT)、ポリエチレンナフタレ
ート(PEN)のような芳香族ポリエステル、または、
ポリエチレンサクシネート、ポリカプロラクトンのよう
な脂肪族ポリエステルがあげられる。中でも、PETは
溶融紡糸を行う際の操業性、コストパフォーマンスなど
の観点より特に好ましく用いられる。繊維形成性ポリマ
ーの分子量、分子量分布、極限粘度についても、芯鞘複
合紡糸が可能であれば特に限定されない。
The type of the fiber-forming polymer used in the sheath component of the present invention includes polyethylene, polypropylene, polyester, polyamide, acryl, polyurethane resin, etc., and is not particularly limited as long as it is a polymer capable of core-sheath composite spinning. Can be used without. Among them, polyester is particularly preferably used because it has a good affinity for ASA. Examples of the type of polyester include aromatic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN);
Examples include aliphatic polyesters such as polyethylene succinate and polycaprolactone. Among them, PET is particularly preferably used from the viewpoints of operability and cost performance when performing melt spinning. The molecular weight, molecular weight distribution, and intrinsic viscosity of the fiber-forming polymer are not particularly limited as long as the core-sheath composite spinning is possible.

【0021】また、芯成分のASA及び鞘成分の繊維形
成性ポリマーには公知の酸化防止剤、光安定剤、ポリマ
ー重合時に用いられる各種金属化合物触媒、及び各種不
活性粒子類、例えば酸化チタン、酸化ケイ素、炭酸カル
シウム等を配合してもよい。
In addition, known antioxidants, light stabilizers, various metal compound catalysts used in polymer polymerization, and various inert particles such as titanium oxide, may be used for the core component ASA and the sheath component fiber-forming polymer. You may mix | blend silicon oxide, calcium carbonate, etc.

【0022】芯成分の量は、鞘成分に対して0.3〜5
重量%が必要であり、特に1〜3重量%が最も好まし
い。0.3〜5重量%の範囲内であると、高い破断強度
を維持したまま、良好な制電性能を有したモノフィラメ
ントが得られる。0.3重量%未満であると、充分な制
電性能が発揮されなくなる。また、5重量%を越えると
制電性能は高くなるが、破断強度が低下し、充分な張力
で紗張りができないために製織性が低下し、好ましくな
い。
The amount of the core component is 0.3 to 5 with respect to the sheath component.
% By weight, and most preferably 1 to 3% by weight. When the content is in the range of 0.3 to 5% by weight, a monofilament having good antistatic performance can be obtained while maintaining high breaking strength. If the content is less than 0.3% by weight, sufficient antistatic performance cannot be exhibited. If the content exceeds 5% by weight, the antistatic performance is increased, but the breaking strength is reduced, and the fabric cannot be stretched with sufficient tension.

【0023】該複合モノフィラメントの横断面形状は特
に限定されるものではないが、円形が好ましい。芯成分
の数は特に限定されるものではなく、芯の断面形状も放
射形、多芯形、海島形等があり、限定されるものではな
いが、いずれにしても芯成分がフィラメントの表層に露
出しないことが必要である。芯成分がフィラメント表面
に露出することなく鞘成分に包括されることで、鞘成分
がスカム発生に対する表面の保護効果の役割を果たし、
耐摩擦性が低いASAが織機の筬に削られることなく製
織することができる。
The cross-sectional shape of the composite monofilament is not particularly limited, but is preferably circular. The number of the core components is not particularly limited, and the cross-sectional shape of the core includes a radial type, a multi-core type, a sea-island type, and the like, and is not limited. It is necessary not to be exposed. Since the core component is included in the sheath component without being exposed on the filament surface, the sheath component plays a role of protecting the surface against scum generation,
ASA having low friction resistance can be woven without being cut by a reed of a loom.

【0024】また、鞘層の最小厚みは1〜20μmが好
ましい。この範囲内であると、制電剤使用量を少なく抑
えながらも、芯からフィラメント表層までの距離が小さ
いために、静電気を逃がしやすくなる。
The minimum thickness of the sheath layer is preferably 1 to 20 μm. When the content is within this range, static electricity is easily released because the distance from the core to the filament surface layer is small while the amount of the antistatic agent used is kept small.

【0025】得られるフィラメントの適性破断伸度は、
工程通過性及び紗織物の品質上20〜30%が好まし
く、特に22〜25%が最も好ましい。この範囲である
と、高い破断強度を維持したまま曲げ、剪断に強いフィ
ラメントとなるので、紗張り性良好な紗織物を得ること
ができる。また、この時の適正破断強度は、5.0cN
/dT以上が好ましい。5.0cN/dT以上である
と、充分な張力で紗枠に張り付けることができるため
に、糸切れが低減し、製織性良好な紗織物を得ることが
できる。
The appropriate elongation at break of the obtained filament is as follows:
20 to 30% is preferable in view of process passability and quality of the gauze fabric, and particularly preferably 22 to 25%. Within this range, the filament is bent and sheared while maintaining a high breaking strength, so that it is possible to obtain a gauze fabric having good gauging properties. The appropriate breaking strength at this time is 5.0 cN.
/ DT or more is preferable. When it is not less than 5.0 cN / dT, it can be stuck to the gauze frame with a sufficient tension, so that yarn breakage can be reduced and a gauze fabric having good weaving properties can be obtained.

【0026】[0026]

【実施例】以下に実施例をあげて本発明を更に詳細に説
明する。実施例は、スクリーン印刷、濾過フィルター等
の産業資材用ハイメッシュ紗織物用に好適であるポリエ
ステルモノフィラメントで行った。なお、実施例中の評
価は以下の方法に従った。
The present invention will be described in more detail with reference to the following examples. In the examples, polyester monofilaments suitable for high-mesh gauze fabrics for industrial materials such as screen printing and filtration filters were used. In addition, the evaluation in an Example followed the following method.

【0027】A.摩擦帯電圧測定(制電性能評価):摩
擦帯電圧は、延伸糸を筒編あるいは織物として精練を行
ない、JIS−L−1094法に準じ、カネボウエンジ
ニアリング(株)製のEST−7型摩擦帯電圧測定装置
を用いて摩擦帯電圧を測定した。摩擦布は羊毛とし、測
定室内温度を20℃、湿度40%とした。評価は、摩擦
60秒後の帯電圧が500V以下を優良(◎)、100
0V以下を良好(○)、1000Vを越えるものを不良
(×)とした。
A. Friction band voltage measurement (evaluation of antistatic performance): Friction band voltage was measured by drawing a drawn yarn into a tubular knit or a woven fabric, and following the JIS-L-1094 method, EST-7 type friction band manufactured by Kanebo Engineering Co., Ltd. Friction band voltage was measured using a voltage measuring device. The friction cloth was made of wool, the measurement room temperature was 20 ° C., and the humidity was 40%. The evaluation was excellent when the charged voltage after friction for 60 seconds was 500 V or less (◎), 100
A value of 0 V or less was rated as good (○), and a value of more than 1000 V was rated as poor (x).

【0028】B.破断強伸度:JIS−L−1013に
準じ、島津製作所(株)製のAGS−1KNGオートグ
ラフ引張試験機を用い、試料糸長20cm、定速引張速
度20cm/分の条件で、試料が伸長破断したときの強
度及び伸度を求めた。
B. Elongation at break: The sample elongates at a sample yarn length of 20 cm and a constant speed pulling speed of 20 cm / min using an AGS-1KNG autograph tensile tester manufactured by Shimadzu Corporation according to JIS-L-1013. The strength and elongation at break were determined.

【0029】C.製織性評価(糸切れ評価):スルーザ
ー型織機により、回転数300rpmで350メッシュ
のハイメッシュスクリーン織物を製織し、経糸または緯
糸切れから製織性を評価した。糸切れ評価としては、製
織長が500m以上のものを良好(○)、500m未満
のものを不良(×)とした。
C. Evaluation of weaving property (evaluation of yarn breakage): A 350 mesh high-mesh screen woven fabric was woven at 300 rpm by a sluser type loom, and weaving property was evaluated from warp or weft breakage. For the evaluation of yarn breakage, those having a weaving length of 500 m or more were evaluated as good ((), and those having a weaving length of less than 500 m were evaluated as poor (x).

【0030】D.スカム評価:「C.製織性評価」と同
様に製織し、スカム発生による筬の汚れのため、停台せ
ざるを得なくなった時の製織長から評価した。製織長が
500m以上のものを良好(○)、500m未満のもの
を不良(×)とした。
D. Scum evaluation: Weaving was carried out in the same manner as in "C. Evaluation of weaving properties", and evaluation was made based on the weaving length when the stand had to be stopped due to dirt on the reed due to generation of scum. Those with a weaving length of 500 m or more were rated good (○), and those with a weaving length of less than 500 m were rated poor (x).

【0031】E.操業性評価 操業性評価とは、溶融紡糸時のポリマー押出しの安定
性、紡糸中の糸切れ、繊度ムラより判断した。操業性が
安定して良好であった場合は良好(○)、不良であった
場合は不良(×)とした。
E. Operability evaluation Operability evaluation was determined from the stability of polymer extrusion during melt spinning, yarn breakage during spinning, and fineness unevenness. When the operability was stable and good, the result was good ((), and when the workability was bad, the result was bad (x).

【0032】F.平均分子量の測定 ポリマーサンプルをクロロホルム溶媒に約50mg/l
となるように溶解させ、0.45μmメンブランフィル
ターで濾過して試料を作成した。この試料をWater
s社製のLC Module 1plusを用い、カラ
ム温度35℃、溶離液クロロホルムとして重量平均分子
量を測定した。
F. Measurement of average molecular weight A polymer sample was dissolved in chloroform solvent at about 50 mg / l.
, And filtered through a 0.45 μm membrane filter to prepare a sample. Water sample
The weight average molecular weight was measured using an LC Module 1plus manufactured by s Corporation as a column temperature of 35 ° C. and chloroform as an eluent.

【0033】G.断面形状、鞘層の最小厚み測定 得られた延伸フィラメントを繊維軸と垂直方向に切断
し、顕微鏡により断面形状を確認した。鞘層の最小厚み
は、400倍で顕微鏡写真を撮影し、芯から表層まで最
も近い部分の長さを測定した。
G. Measurement of cross-sectional shape and minimum thickness of sheath layer The obtained drawn filament was cut in a direction perpendicular to the fiber axis, and the cross-sectional shape was confirmed with a microscope. A photomicrograph was taken at a minimum thickness of 400 times of the sheath layer, and the length of the portion closest to the surface from the core was measured.

【0034】H.PETの重合工程 今回用いたPETは従来公知のDMT法に従った。すな
わち、DMTとエチレングリコールを用い、エステル交
換触媒として酢酸カルシウム一水和物を0.09(重量
%/エステル)、酢酸マンガン四水和物を0.03(重
量%/エステル)加え、235℃でエステル交換反応を
行なった。反応完了後の重縮合反応は、重合触媒として
三酸化アンチモン0.04(重量%/ポリマー)、熱安
定剤としてリン酸トリメチル0.043(重量%)添加
し、重合温度280℃、133Pa以下の高真空条件下
で行ない、PETチップを得た。得られたチップの極限
粘度〔η〕は0.65、融点は263℃であった。
H. PET polymerization step The PET used this time was in accordance with the conventionally known DMT method. That is, using DMT and ethylene glycol, 0.09 (% by weight / ester) of calcium acetate monohydrate and 0.03 (% by weight / ester) of manganese acetate tetrahydrate were added as transesterification catalysts. The transesterification reaction was performed. After the completion of the reaction, the polycondensation reaction is carried out by adding 0.04 (% by weight / polymer) of antimony trioxide as a polymerization catalyst and 0.043 (% by weight) of trimethyl phosphate as a heat stabilizer. This was performed under high vacuum conditions to obtain a PET chip. The intrinsic viscosity [η] of the obtained chip was 0.65, and the melting point was 263 ° C.

【0035】I.ASAの重合工程 制電剤のASAの重合法は、芳香族ジカルボン酸エステ
ルであるビス−ヒドロキシエチルテレフタレートの所定
量中に、ポリエチレングリコール(以下、PEGと記
す)所定量、重合触媒として三酸化アンチモン0.04
(重量%/エステル)、安定剤としてリン酸トリメチル
0.043(重量%/エステル)、更に重合中のポリマ
ー劣化防止のためヒンダードフェノール系安定剤である
イルガノックス1010(チバガイギー社製)0.1
(重量%/エステル)を添加し、窒素気流下230℃で
約2時間原料の撹拌混合、脱水を行なった。なお、同時
にDBSのナトリウム塩を所定量混合した。次に温度を
245℃に徐々に昇温しつつ真空度130Paへ約1時
間で到達させ、更に27〜67Paで重合を行なった。
重合反応終了後、窒素注入により真空を常圧に戻してか
ら、ポリマーの酸化防止のため、さらにイルガノックス
1010を2%添加し、10分間撹拌混合し、ASAを
得た。
I. ASA Polymerization Step The polymerization of ASA as an antistatic agent is carried out by preparing a predetermined amount of bis-hydroxyethyl terephthalate, which is an aromatic dicarboxylic acid ester, a predetermined amount of polyethylene glycol (hereinafter referred to as PEG), and antimony trioxide as a polymerization catalyst. 0.04
(Weight% / ester), trimethyl phosphate 0.043 (weight% / ester) as a stabilizer, and Irganox 1010 (manufactured by Ciba Geigy) which is a hindered phenol-based stabilizer to prevent polymer deterioration during polymerization. 1
(% By weight / ester), and the raw materials were stirred, mixed, and dehydrated at 230 ° C. for about 2 hours under a nitrogen stream. At the same time, a predetermined amount of a sodium salt of DBS was mixed. Next, while gradually raising the temperature to 245 ° C., the degree of vacuum was reached to 130 Pa in about 1 hour, and polymerization was further performed at 27 to 67 Pa.
After completion of the polymerization reaction, the vacuum was returned to normal pressure by injecting nitrogen, and then 2% of Irganox 1010 was further added to prevent oxidation of the polymer, followed by stirring and mixing for 10 minutes to obtain ASA.

【0036】J.モノフィラメント紡糸 紡糸は、(H.)記載のPETを鞘成分、(I.)記載
の重合方法によって得られたASAを芯成分とし、紡糸
方法は、例えば特開平3−113010号公報、特開平
3−104912号公報などに記されているような従来
公知の複合紡糸法に従った。すなわち、芯鞘成分を別々
の濾過部を通過させ口金内に流し、吐出孔直前で会合さ
せ、フィラメントとして吐出形成することによって、芯
部と鞘部とからなる構造にすることができる。この時、
紡糸温度295℃、ASA圧入温度200℃、紡速15
00m/分で行なった。これを巻上げてから約1日後
に、速度800m/分、85℃ローラーヒーター及び1
50℃プレートヒーター通しで延伸して、制電性複合モ
ノフィラメントを得た。
J. Monofilament spinning The spinning is performed using PET described in (H.) as a sheath component and ASA obtained by the polymerization method described in (I.) as a core component. A conventionally known composite spinning method as described in JP-A-104912 and the like was used. That is, the core-sheath component is passed through separate filtration parts, flows into the base, is associated immediately before the discharge hole, and is discharged and formed as a filament, whereby a structure composed of the core and the sheath can be obtained. At this time,
Spinning temperature 295 ° C, ASA injection temperature 200 ° C, spinning speed 15
The test was performed at 00 m / min. About one day after winding, the roller was heated at a speed of 800 m / min.
Drawing was performed by passing through a 50 ° C. plate heater to obtain an antistatic composite monofilament.

【0037】<PEG平均分子量の違いによる操業性、
制電性能評価> (I.)記載のASA重合方法に従って、PEGを91
(重量%/エステル)共重合、DBSのナトリウム塩を
20(重量%/ポリマー)混合した平均分子量4000
0であるASAを得た。その際、表1に示すようにPE
Gの平均分子量を種々変化させた。このASAを用い
て、芯配合量を鞘成分に対して2(重量%)として、
(J.)記載の紡糸方法に従って、33dTの6葉形の
芯鞘複合モノフィラメントを得た。得られたモノフィラ
メントを繊維軸方向に切断して顕微鏡観察すると、芯成
分が連続した筋状形態であった。このモノフィラメント
の操業性、制電性能評価を表1に示す。
<Operability due to difference in PEG average molecular weight,
Evaluation of antistatic performance> According to the ASA polymerization method described in (I.),
(% By weight / ester) copolymerization, average molecular weight of 4000 (20% by weight / polymer) mixed with sodium salt of DBS
An ASA of 0 was obtained. At that time, as shown in Table 1, PE
The average molecular weight of G was varied. Using this ASA, the amount of the core is set to 2 (% by weight) with respect to the sheath component.
According to the spinning method described in (J.), a 6-leaf core-sheath composite monofilament of 33 dT was obtained. When the obtained monofilament was cut in the fiber axis direction and observed with a microscope, the core component was in a continuous streak-like form. Table 1 shows the operability and antistatic performance evaluation of this monofilament.

【0038】[0038]

【表1】 [Table 1]

【0039】比較例1は、PEGの平均分子量が低すぎ
るので、制電性能は不良であった。一方、本発明に準じ
た実施例1、2、3は、重合、紡糸操業性、制電性能と
も良好であった。特に、PEGの平均分子量が8000
以上では、制電性能が優良であった。
Comparative Example 1 had poor antistatic performance because the average molecular weight of PEG was too low. On the other hand, Examples 1, 2, and 3 according to the present invention exhibited good polymerization, spinning operability, and antistatic performance. In particular, the average molecular weight of PEG is 8000
Above, the antistatic performance was excellent.

【0040】<PEG/PET共重合体の平均分子量の
違いによる操業性、制電性能テスト> (I.)記載の重合方法にしたがって、平均分子量80
00の平均分子量のPEGを91(重量%/エステル)
共重合、DBSのナトリウム塩を20(重量%/ポリマ
ー)混合したASAを製造する際、表2に示すようにP
EG/PET共重合体の平均分子量を種々変化させた。
こうして重合したASAを用いて、芯配合量を鞘成分に
対して2(重量%)として、(J.)記載の紡糸方法に
したがって33dTの6葉形の芯鞘複合モノフィラメン
トを得た。得られたモノフィラメントを繊維軸方向に切
断して顕微鏡観察した。このモノフィラメントの操業
性、制電性能テストを表2に示す。
<Operability and antistatic performance test depending on difference in average molecular weight of PEG / PET copolymer> According to the polymerization method described in (I.), an average molecular weight of 80 was obtained.
PEG with an average molecular weight of 00 to 91 (wt% / ester)
As shown in Table 2, when producing an ASA mixed with 20% (% by weight / polymer) of sodium salt of DBS by copolymerization,
The average molecular weight of the EG / PET copolymer was varied.
The ASA thus polymerized was used to adjust the blending amount of the core to 2 (% by weight) with respect to the sheath component, thereby obtaining a 33-dT six-leaf core-sheath composite monofilament according to the spinning method described in (J.). The obtained monofilament was cut in the fiber axis direction and observed under a microscope. Table 2 shows the operability and antistatic performance test of this monofilament.

【0041】[0041]

【表2】 [Table 2]

【0042】比較例2は、PEG/PET共重合体の平
均分子量が小さすぎるために、紡糸温度におけるASA
の溶融粘度が低くなり、PETとの粘度差が大きくなり
紡出困難となった。また、曵糸性に乏しくなるために芯
成分を連続の筋状形態に配することができず、制電性能
も不良であった。比較例3は、ポリマーが超高分子量域
となるために、溶融紡糸時にゲル化しやすくなり操業性
不良となり、また劣化しやすいために制電性能も不良と
なった。一方、本発明に準じた実施例2、4、5は、P
EG/PET共重合体の平均分子量が最適であるため、
曵糸性良好となり、容易に芯成分を連続の筋状形態に配
すことができ、熱劣化がなく良好な制電性能を保持した
モノフィラメントを得ることができた。
Comparative Example 2 shows that the average molecular weight of the PEG / PET copolymer is too small,
Melt viscosity was low, the difference in viscosity from PET was large, and spinning was difficult. In addition, the core component could not be arranged in a continuous streak form due to poor spinnability, and the antistatic performance was poor. In Comparative Example 3, since the polymer was in the ultra-high molecular weight region, gelation was likely to occur during melt spinning, resulting in poor operability, and deterioration was liable, resulting in poor antistatic performance. On the other hand, Examples 2, 4, and 5 according to the present invention
Since the average molecular weight of the EG / PET copolymer is optimal,
The spinnability was good, the core component could be easily arranged in a continuous streak form, and a monofilament without heat deterioration and having good antistatic performance could be obtained.

【0043】<ASA原料組成の違いによる製織性、制
電性能評価> (I.)記載の重合方法に従って平均分子量8000の
PEGを用い、表3に示すようにPEG、及びDBSの
ナトリウム塩の配合量を種々変化させ、平均分子量40
000のASAを得た。これらのASAを用いて、芯配
合量を鞘成分に対して2(重量%)として、(J.)記
載の紡糸方法にしたがって、破断伸度が24±1%とな
るように延伸し、33dTの6葉形の芯鞘複合モノフィ
ラメントを得た。得られたモノフィラメントを繊維軸方
向に切断して顕微鏡観察し、芯成分が連続的な筋状形態
で表面に露出していないことを確認した。このモノフィ
ラメントの操業性、製織性、及び制電性能評価結果を表
3に示す。
<Evaluation of weaving properties and antistatic performance according to differences in ASA raw material composition> According to the polymerization method described in (I), PEG having an average molecular weight of 8000 was used, and as shown in Table 3, blending of PEG and sodium salt of DBS The amount was varied and the average molecular weight was 40
000 ASA were obtained. Using these ASA, the core was blended in an amount of 2 (% by weight) with respect to the sheath component and stretched according to the spinning method described in (J.) so that the elongation at break was 24 ± 1%. To obtain a 6-leaf core-sheath composite monofilament. The obtained monofilament was cut in the fiber axis direction and observed with a microscope, and it was confirmed that the core component was not exposed on the surface in a continuous streak form. Table 3 shows the operability, weavability, and antistatic performance evaluation results of this monofilament.

【0044】[0044]

【表3】 [Table 3]

【0045】比較例4は、PEGの添加量が少ないため
に制電性能は低く、さらには粘度ムラのため、紡糸操業
性が不良となった。比較例5は、制電性能は良好だが、
強度が低いためにスクリーン製織時に充分な張力で紗張
りすることができず、糸切れにより製織性が不良となっ
た。またPEG共重合量が多すぎるために、熱安定性が
悪くなり、紡糸操業性も低下した。比較例6、7は、D
BSのナトリウム塩の混合量が少なすぎるために充分な
制電性能を得ることができなかった。比較例8は、制電
性能は優良であったが、紡糸時にろ過フィルターの閉塞
時間が短くなり、糸質も安定しないために低強度糸とな
り、紡糸操業性、製織性とも不良であった。一方、本発
明に準じた実施例2、6、7、8、9、10は、PEG
共重合量、DBSのナトリウム塩混合量とも最適である
ため、重合操業性良好なASAを得ることができた。さ
らにはASAを低温域で紡糸できるので、熱劣化の少な
い紡糸操業性良好で制電性能良好な高強伸度モノフィラ
メントを得ることができた。
In Comparative Example 4, the antistatic performance was low due to the small amount of PEG added, and the spinning operability was poor due to uneven viscosity. Comparative Example 5 has good antistatic performance,
Due to the low strength, the screen could not be swelled with sufficient tension during screen weaving, and the weavability was poor due to yarn breakage. Further, since the PEG copolymerization amount was too large, the thermal stability was deteriorated, and the spinning operability was lowered. Comparative Examples 6 and 7
Sufficient antistatic performance could not be obtained because the mixing amount of the sodium salt of BS was too small. In Comparative Example 8, the antistatic performance was excellent, but the closing time of the filter was short during spinning, and the yarn quality was not stable, so that the yarn was low-strength, and the spinning operability and weavability were poor. On the other hand, Examples 2, 6, 7, 8, 9, and 10 according to the present invention
Since both the copolymerization amount and the DBS sodium salt mixture amount are optimal, ASA having good polymerization operability could be obtained. Furthermore, since ASA can be spun in a low temperature range, a high-strength elongation monofilament with less heat deterioration and good spinning operability and good antistatic performance could be obtained.

【0046】<芯鞘比率の違いによる製織性、制電性能
評価> (I.)記載の重合方法にしたがって、平均分子量80
00のPEGを91(重量%/エステル)共重合、DB
Sのナトリウム塩を20(重量%/ポリマー)混合した
平均分子量40000であるASAを重合した。このA
SAを用いて、表4に示すように芯鞘比率を種々変化さ
せて、(J.)記載の紡糸方法にしたがって、破断伸度
が24±1%となるように延伸し、33dTの6葉形の
芯鞘複合モノフィラメントを得た。得られたモノフィラ
メントを繊維軸方向に切断して顕微鏡観察し、芯成分が
連続的な筋状形態で表面に露出していないことを確認し
た。このモノフィラメントの製織性、制電性能評価を表
4に示す。
<Evaluation of weaving property and antistatic performance by difference in core-sheath ratio> According to the polymerization method described in (I), the average molecular weight was 80%.
PEG of 91 (wt% / ester) copolymer, DB
ASA having an average molecular weight of 40,000 mixed with 20 (wt% / polymer) of sodium salt of S was polymerized. This A
Using SA, the core-sheath ratio was variously changed as shown in Table 4, and stretched so that the breaking elongation was 24 ± 1% according to the spinning method described in (J.). A core-sheath composite monofilament of the shape was obtained. The obtained monofilament was cut in the fiber axis direction and observed with a microscope, and it was confirmed that the core component was not exposed on the surface in a continuous streak form. Table 4 shows the weaving property and antistatic performance evaluation of this monofilament.

【0047】[0047]

【表4】 [Table 4]

【0048】比較例9は、制電剤が少なすぎるために制
電性能は不充分であった。比較例10は、制電剤添加量
が多いので制電性能は優良だが、強度不足であるので充
分な張力で紗張りすることができず、糸切れが多発し製
織性不良であった。一方、本発明に準じた実施例2、1
1、12、13は、充分な張力で紗張りできるので製織
性良好であり、制電性能も良好であった。
In Comparative Example 9, the antistatic performance was insufficient because the amount of the antistatic agent was too small. In Comparative Example 10, the antistatic performance was excellent because the amount of the antistatic agent added was large, but because the strength was insufficient, the fabric could not be swelled with sufficient tension, yarn breakage occurred frequently, and the weavability was poor. On the other hand, in Examples 2 and 1 according to the present invention,
Samples Nos. 1, 12, and 13 had good weaving properties and good antistatic performance because they could be stretched with sufficient tension.

【0049】<断面形状の違いによる制電性能評価> (I.)記載の重合方法にしたがって、平均分子量80
00のPEGを91(重量%/エステル)共重合、DB
Sのナトリウム塩を20(重量%/ポリマー)混合した
平均分子量40000であるASAを得た。このASA
の芯配合量を2(重量%)として、断面形状が図1〜図
3のごとき、6葉形、円形、3層並列形となるように、
(J.)記載の紡糸方法にしたがって種々紡糸し、33
dTのモノフィラメントを得た。得られたモノフィラメ
ントを繊維軸方向に切断して顕微鏡観察し、芯成分が連
続的な筋状形態で表面に露出していないことを確認し
た。。ASA分散形のモノフィラメントは、2軸混練機
にてASA混合量2(重量%)と(H.)記載のPET
を混合量98(重量%)で混練したチップを用いて単独
糸として紡糸し、(J.)記載の紡糸方法と同じ条件に
て図4の断面形状のごとき制電モノフィラメントを得
た。この得られたモノフィラメントを繊維軸方向に切断
して顕微鏡観察したところ、芯成分(制電成分)が不連
続な筋状形態になっていた。このモノフィラメントのス
カム評価、制電性能評価を表5に示す。
<Evaluation of Antistatic Performance by Difference in Cross Section Shape> According to the polymerization method described in (I.), the average molecular weight was 80%.
PEG of 91 (wt% / ester) copolymer, DB
Asa having an average molecular weight of 40,000 was obtained by mixing 20 (wt% / polymer) of sodium salt of S. This ASA
With the core blending amount of 2 (% by weight), the cross-sectional shape is as shown in FIGS.
Various spinning according to the spinning method described in (J.), 33
A dT monofilament was obtained. The obtained monofilament was cut in the fiber axis direction and observed with a microscope, and it was confirmed that the core component was not exposed on the surface in a continuous streak form. . The ASA-dispersed monofilament was mixed with an ASA mixed amount of 2 (% by weight) and PET described in (H.) using a twin-screw kneader.
Was spun as a single yarn using a chip kneaded at a mixing amount of 98 (% by weight) to obtain an antistatic monofilament having a cross-sectional shape shown in FIG. 4 under the same conditions as the spinning method described in (J.). When the obtained monofilament was cut in the fiber axis direction and observed under a microscope, it was found that the core component (antistatic component) had a discontinuous streak shape. Table 5 shows the scum evaluation and antistatic performance evaluation of this monofilament.

【0050】[0050]

【表5】 [Table 5]

【0051】比較例11は、芯の制電剤が表層に露出し
ているので、制電性は優良だったが、製織の際に制電剤
が筬に削られて多量のスカムが発生した。比較例12は
芯の制電剤が連続筋状で配されていないために、静電気
を系外に逃がしにくくなり、制電性能は不良となった。
更に多量のスカムも発生し、製織性も不良だった。一
方、本発明の実施例2、14とも、芯成分は表層に露出
していないためスカム評価、制電性能評価とも良好だっ
た。
In Comparative Example 11, since the antistatic agent of the core was exposed on the surface layer, the antistatic property was excellent, but the antistatic agent was cut off by a reed during weaving, and a large amount of scum was generated. . In Comparative Example 12, since the antistatic agent of the core was not arranged in a continuous streak form, it was difficult for static electricity to escape out of the system, and the antistatic performance was poor.
Further, a large amount of scum was generated, and the weavability was poor. On the other hand, in both Examples 2 and 14 of the present invention, the core component was not exposed to the surface layer, so that both the scum evaluation and the antistatic performance evaluation were good.

【0052】<鞘層の最小厚み変化によるスカム、制電
性能評価> (I.)記載の重合方法にしたがって、平均分子量80
00のPEGを91(重量%/エステル)共重合、DB
Sのナトリウム塩を20(重量%/ポリマー)混合した
平均分子量40000であるASAを得た。このASA
の芯配合量を2(重量%)として、芯層からフィラメン
ト表層までの最小厚みを表6に示すように種々変化させ
て、33dTの図1のような6葉型芯鞘複合モノフィラ
メントを得た。鞘層の厚み変化は、(J.)記載の紡糸
方法において、吐出孔直前における芯の会合孔の位置を
移動させることで偏心とし、厚みを変化させた。このモ
ノフィラメントのスカム評価、制電性能評価結果を表6
に示す。
<Evaluation of scum and antistatic performance by change in minimum thickness of sheath layer> According to the polymerization method described in (I.), an average molecular weight of 80 was obtained.
PEG of 91 (wt% / ester) copolymer, DB
Asa having an average molecular weight of 40,000 was obtained by mixing 20 (wt% / polymer) of sodium salt of S. This ASA
With the core blending amount of 2 (% by weight), the minimum thickness from the core layer to the filament surface layer was variously changed as shown in Table 6 to obtain a 6-leaf core-sheath composite monofilament of 33 dT as shown in FIG. . In the spinning method described in (J.), the thickness of the sheath layer was changed by moving the position of the association hole of the core immediately before the discharge hole to change the thickness, thereby changing the thickness. Table 6 shows the scum evaluation and antistatic performance evaluation results of this monofilament.
Shown in

【0053】[0053]

【表6】 [Table 6]

【0054】実施例17、18は、芯成分からフィラメ
ント表層までの距離が大きいために、制電性能評価は良
好にとどまった。実施例2、15、16は、鞘層の最小
厚みがより最適な範囲であるので、制電性能は優良であ
った。
In Examples 17 and 18, since the distance from the core component to the filament surface layer was large, the evaluation of the antistatic performance was good. In Examples 2, 15, and 16, the minimum thickness of the sheath layer was in the more optimal range, and thus the antistatic performance was excellent.

【0055】[0055]

【発明の効果】本発明記載のASAは、ポリマー安定
性、曵糸性に優れ、少量でも高い制電性能を発揮するの
で、コストパフォーマンスにも優れた制電剤を供給する
ことができた。更には、該制電剤がフィラメントの表層
に露出しない芯鞘構造とすることで、ハイメッシュ製織
時にスカム発生のない製織性良好な制電性複合フィラメ
ントの供給を可能にした。
The ASA according to the present invention is excellent in polymer stability and spinnability, and exhibits high antistatic performance even in a small amount, so that an antistatic agent excellent in cost performance could be supplied. Further, by providing a core-sheath structure in which the antistatic agent is not exposed to the surface layer of the filament, it is possible to supply an antistatic composite filament having good weaving properties without scum during high mesh weaving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合繊維の断面形状である。FIG. 1 is a cross-sectional shape of a conjugate fiber of the present invention.

【図2】本発明の複合繊維の断面形状である。FIG. 2 is a cross-sectional shape of the conjugate fiber of the present invention.

【図3】本発明の範囲外の複合繊維の断面形状である。FIG. 3 is a cross-sectional shape of a conjugate fiber outside the scope of the present invention.

【図4】本発明の範囲外の複合繊維の断面形状である。FIG. 4 is a cross-sectional shape of a conjugate fiber outside the scope of the present invention.

【符号の説明】[Explanation of symbols]

1 繊維形成層(鞘成分) 2 制電層(芯成分) 1 Fiber forming layer (sheath component) 2 Antistatic layer (core component)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 秀夫 山口県防府市鐘紡町4番1号 カネボウ合 繊株式会社内 (72)発明者 本田 繁喜 山口県防府市鐘紡町4番1号 カネボウ合 繊株式会社内 Fターム(参考) 4L041 BA02 BA05 BA23 BA24 BA46 BC08 BC20 BD06 BD14 CA16 DD21 EE01 4L048 AA21 AA23 AA28 AA48 AA49 AA52 AB10 AC09 AC10 AC13 BA06 CA09 DA37 DA39 DA40 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideo Ueda 4-1 Kanebo-cho, Hofu City, Yamaguchi Prefecture Inside Kanebo Goden Co., Ltd. (72) Inventor Shigeki Honda 4-1 Kanebo-cho, Hofu City, Yamaguchi Prefecture Kanebo God Incorporated F term (reference) 4L041 BA02 BA05 BA23 BA24 BA46 BC08 BC20 BD06 BD14 CA16 DD21 EE01 4L048 AA21 AA23 AA28 AA48 AA49 AA52 AB10 AC09 AC10 AC13 BA06 CA09 DA37 DA39 DA40

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 繊維形成性ポリマーを鞘成分、平均分子
量6000以上であるポリアルキレングリコール(A成
分)と有機ジカルボン酸またはそのエステル体(B成
分)からなり、A成分の含有量が70〜95重量%で平
均分子量10000〜70000の重合体に、有機スル
ホン酸金属塩を該重合体に対し10〜30重量%となる
ように混合した樹脂組成物を芯成分とし、該芯成分を鞘
成分に対して0.3〜5重量%配してなる芯鞘複合フィ
ラメントであり、且つ該複合フィラメントにおける芯成
分が、表層に露出しないことを特徴とする制電性複合フ
ィラメント。
1. A fiber-forming polymer comprising a sheath component, a polyalkylene glycol having an average molecular weight of 6000 or more (component A) and an organic dicarboxylic acid or an ester thereof (component B), wherein the content of component A is 70 to 95. A resin composition in which a metal salt of an organic sulfonic acid is mixed with a polymer having an average molecular weight of 10,000 to 70,000 by weight to be 10 to 30% by weight with respect to the polymer is used as a core component, and the core component is used as a sheath component. An antistatic composite filament comprising 0.3 to 5% by weight of a core-sheath composite filament, wherein a core component of the composite filament is not exposed to a surface layer.
【請求項2】 該繊維における鞘層の最小厚みが1〜2
0μmである請求項1記載の制電性複合フィラメント。
2. The fiber according to claim 1, wherein the sheath has a minimum thickness of 1-2.
The antistatic composite filament according to claim 1, which has a thickness of 0 µm.
【請求項3】 該繊維の破断伸度が20〜30%で、破
断強度が5.0cN/dT(センチニュートン/デシテ
ックス)以上である請求項1または2記載の制電性複合
モノフィラメント。
3. The antistatic composite monofilament according to claim 1, wherein the fiber has a breaking elongation of 20 to 30% and a breaking strength of 5.0 cN / dT (centinewton / decitex) or more.
JP2000395265A 2000-01-11 2000-12-26 Antistatic composite filament Expired - Fee Related JP4249384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000395265A JP4249384B2 (en) 2000-01-11 2000-12-26 Antistatic composite filament

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-2990 2000-01-11
JP2000002990 2000-01-11
JP2000395265A JP4249384B2 (en) 2000-01-11 2000-12-26 Antistatic composite filament

Publications (2)

Publication Number Publication Date
JP2001262438A true JP2001262438A (en) 2001-09-26
JP4249384B2 JP4249384B2 (en) 2009-04-02

Family

ID=26583333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000395265A Expired - Fee Related JP4249384B2 (en) 2000-01-11 2000-12-26 Antistatic composite filament

Country Status (1)

Country Link
JP (1) JP4249384B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105651A (en) * 2001-09-28 2003-04-09 Kanebo Ltd Cleaning fabric having antistatic performance
JP2008088592A (en) * 2006-09-29 2008-04-17 Kb Seiren Ltd Core-sheath type conjugated polyester fiber
JP2008101289A (en) * 2006-10-18 2008-05-01 Teijin Fibers Ltd Polyester monofilament for screen gauze, which is excellent in electrostatic property

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114650A (en) 2017-12-22 2019-07-11 Dowaエレクトロニクス株式会社 Semiconductor light-emitting element and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105651A (en) * 2001-09-28 2003-04-09 Kanebo Ltd Cleaning fabric having antistatic performance
JP4726365B2 (en) * 2001-09-28 2011-07-20 Kbセーレン株式会社 Cleaning fabric having antistatic performance
JP2008088592A (en) * 2006-09-29 2008-04-17 Kb Seiren Ltd Core-sheath type conjugated polyester fiber
JP2008101289A (en) * 2006-10-18 2008-05-01 Teijin Fibers Ltd Polyester monofilament for screen gauze, which is excellent in electrostatic property

Also Published As

Publication number Publication date
JP4249384B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
KR20080048080A (en) High crimp bicomponent fibers
JP2011047068A (en) Water-repelling polyester blended yarn
US4357390A (en) Antistatic polyester fibers
JP3778088B2 (en) Core-sheath type composite polyester monofilament for screen bag and method for producing the same
JP4249384B2 (en) Antistatic composite filament
JP2010018927A (en) Polyester nanofiber
JP3073774B2 (en) Polyurethane elastic yarn and method for producing the same
JP3998090B2 (en) Polyester monofilament for screens
JP4726318B2 (en) Antistatic composite monofilament
JP2010018926A (en) Method for producing polyester nanofiber
JP2008081881A (en) Antistatic conjugate fiber
JP3299500B2 (en) Polyester monofilament for screen gauze
JP4893345B2 (en) Antistatic composite fiber
JP2844334B2 (en) Antistatic polyester fiber
JP3429702B2 (en) Polyester monofilament for screen gauze
JP4595714B2 (en) Method for producing blend type composite fiber
JP2882651B2 (en) Polyester based yarn
JP2772925B2 (en) Method for producing antistatic polyester fiber
JP2024011133A (en) Polyester composition, and spunbonded nonwoven fabric and separation membrane for water treatment constituted by the same
JP3462106B2 (en) Polyester monofilament for screen gauze
KR930011340B1 (en) Process for the preparation of elastic fiber
JP2852920B2 (en) Antistatic polyester fiber
JP2772926B2 (en) Method for producing antistatic polyester fiber
JP2004131860A (en) Polyester conjugated fiber
JP2008179926A (en) Cellulose fatty acid-mixed ester ultrafine fiber precursor and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4249384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees