JP2008087392A - Laminate having photocatalyst layer and its manufacturing method - Google Patents

Laminate having photocatalyst layer and its manufacturing method Download PDF

Info

Publication number
JP2008087392A
JP2008087392A JP2006272510A JP2006272510A JP2008087392A JP 2008087392 A JP2008087392 A JP 2008087392A JP 2006272510 A JP2006272510 A JP 2006272510A JP 2006272510 A JP2006272510 A JP 2006272510A JP 2008087392 A JP2008087392 A JP 2008087392A
Authority
JP
Japan
Prior art keywords
layer
film
photocatalyst layer
photocatalyst
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006272510A
Other languages
Japanese (ja)
Inventor
Asaji Hayashi
浅次 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kagaku Sanshi Corp
Original Assignee
Mitsubishi Kagaku Sanshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kagaku Sanshi Corp filed Critical Mitsubishi Kagaku Sanshi Corp
Priority to JP2006272510A priority Critical patent/JP2008087392A/en
Publication of JP2008087392A publication Critical patent/JP2008087392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Catalysts (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate, one having an organic coating film and a photocatalyst layer provided on its surface, which has the photocatalyst layer certainly prevented from the variation of gloss levels generated in overlaying a photocatalyst and controllable to any gloss level, and to provide its manufacturing method. <P>SOLUTION: The laminate having the photocatalyst layer is formed by providing at least one surface of the metal layer (5) with the organic coating film (4), forming the photocatalyst layer (2) on the surface of the organic coating film at least through the protective adhesive layer (3), and providing the releasable film (1) on the surface of the photocatalyst layer. The surface roughness of the releasable film is 0.1-1.0 μm in terms of the center line average roughness (Ra). In the manufacture of the laminate the transfer film (A) is arranged on the organic coating film (4) on the surface of the metal layer (5) and heated/pressurized at the condition of 50-150°C, and then the releasable film (1) is removed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光触媒層を有する積層体およびその製造方法に関する。詳しくは、表面に有機系塗膜および光触媒層が設けられた金属パネル等の積層体であって、光触媒層を積層する際に発生する光沢度の変化を防止でき、任意の光沢度に制御可能な光触媒層を有する積層体、および、その製造方法に関する。   The present invention relates to a laminate having a photocatalyst layer and a method for producing the same. Specifically, it is a laminate such as a metal panel with an organic coating film and a photocatalyst layer on the surface, which can prevent changes in glossiness that occur when laminating the photocatalyst layer, and can be controlled to any glossiness The present invention relates to a laminate having a photocatalytic layer and a method for producing the same.

酸化チタン等の光触媒は、紫外線が照射されることにより有機物を分解し且つ親水性機能を発現する。基材の表面に光触媒を積層した構造は、防汚、防曇、脱臭、抗菌・防黴、大気浄化などの効果が得られるため、種々の用途に使用されている。これらの用途例としては、ガラスや金属板、金属樹脂複合板などの内外装パネルが挙げられる。   A photocatalyst such as titanium oxide decomposes an organic substance and develops a hydrophilic function when irradiated with ultraviolet rays. The structure in which the photocatalyst is laminated on the surface of the base material is used in various applications because it has effects such as antifouling, antifogging, deodorizing, antibacterial / antifungal, and air purification. Examples of these applications include interior and exterior panels such as glass, metal plates, and metal resin composite plates.

しかしながら、上記の様なパネル等に塗工された光触媒の膜は、塗布法に拘わらず、光沢度の高い艶のある膜になるという問題がある。そこで、斯かる問題を解決する技術として、例えば、基材表層部と表面層である光触媒層と間に、光触媒作用によって侵されない中間層を介在させ、当該中間層の中に無機微粒子(フィラー)を分散させる技術が提案されている。無機微粒子を添加することによる効果は、中間層の母材と屈折率が異なることを利用し、あるいは、中間層の表面部または内部面が凹凸状になることを利用し、入射光を散乱させて光沢度を下げる点にある。
特許第3717736号公報
However, the photocatalyst film coated on the panel or the like as described above has a problem that it becomes a glossy film having high glossiness regardless of the coating method. Therefore, as a technique for solving such a problem, for example, an intermediate layer that is not affected by the photocatalytic action is interposed between the surface layer portion of the substrate and the photocatalyst layer that is the surface layer, and inorganic fine particles (filler) are interposed in the intermediate layer. A technique for distributing the above has been proposed. The effect of adding inorganic fine particles is to use the fact that the refractive index is different from the base material of the intermediate layer, or to use the fact that the surface part or the inner surface of the intermediate layer is uneven to scatter incident light. Is to reduce the glossiness.
Japanese Patent No. 3717736

ところで、上記の様に中間層に無機微粒子を分散させる技術においては、基材表層部/中間層/光触媒層の層間密着性を確保するため、中間層にフィラーを均一に分散させるか、または、中間層の中央部にフィラーを集中させて分散させている。そして、層間密着性の評価では、無機質微粒子の添加量と沸騰水へ浸漬した後の剥離性を評価している。   By the way, in the technique of dispersing inorganic fine particles in the intermediate layer as described above, in order to ensure interlayer adhesion of the substrate surface layer portion / intermediate layer / photocatalyst layer, the filler is uniformly dispersed in the intermediate layer, or Fillers are concentrated and dispersed in the center of the intermediate layer. In the evaluation of interlayer adhesion, the amount of inorganic fine particles added and the peelability after being immersed in boiling water are evaluated.

しかしながら、上記の技術においては、添加量が多くなるほど、また、浸漬時間が長くなるほど、層間密着性が低下している。すなわち、長期間の密着性を確保するためには、中間層への無機微粒子の分散を行う際、より厳密な調整が必要になるという問題がある。   However, in the above technique, the interlayer adhesion decreases as the addition amount increases and the immersion time increases. That is, in order to ensure long-term adhesion, there is a problem that more strict adjustment is required when dispersing the inorganic fine particles in the intermediate layer.

本発明は、上記の問題点を解決すべくなされたものであり、その目的は、表面に有機系塗膜および光触媒層が設けられた金属パネル等の積層体であって、光触媒を積層する際に発生する光沢度の変化を確実に防止でき、任意の光沢度に制御可能な光触媒層を有する積層体を提供すること、ならびに、その製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and its purpose is a laminated body such as a metal panel having an organic coating film and a photocatalyst layer provided on the surface thereof, when laminating the photocatalyst. It is an object of the present invention to provide a laminate having a photocatalyst layer that can be reliably prevented from changing the glossiness and can be controlled to an arbitrary glossiness, and to provide a production method thereof.

本発明者は、上記の課題を解決するために鋭意研究を進めた結果、所定の表面粗度に調整され且つその表面に光触媒層、保護接着層が形成された剥離性フィルムを基材側の有機系塗膜に積層することにより、光触媒層の積層の際に発生する光沢度の変化を防止でき、かつ、光沢度に制御し得ることを見出し、本発明を完成させた。   As a result of diligent research to solve the above problems, the present inventor has developed a peelable film having a surface roughness adjusted and a photocatalyst layer and a protective adhesive layer formed on the surface. It has been found that by laminating on an organic coating film, a change in glossiness generated when laminating a photocatalyst layer can be prevented and the glossiness can be controlled, and the present invention has been completed.

すなわち、本発明の要旨は、金属層の少なくとも一方の表面に有機系塗膜が設けられ、かつ、当該有機系塗膜の表面に少なくとも保護接着層を介して光触媒層が形成され、当該光触媒層の表面に剥離性フィルムが設けられてなる光触媒層を有する積層体において、前記剥離性フィルムの表面粗度が中心線平均粗さ(Ra)で0.1〜1.0μmであることを特徴とする光触媒層を有する積層体に存する。   That is, the gist of the present invention is that an organic coating film is provided on at least one surface of a metal layer, and a photocatalytic layer is formed on the surface of the organic coating film via at least a protective adhesive layer. In the laminate having a photocatalyst layer provided with a peelable film on the surface thereof, the peelable film has a surface roughness of 0.1 to 1.0 μm in centerline average roughness (Ra). It exists in the laminated body which has a photocatalyst layer to do.

また、本発明の他の要旨は、光触媒層を有する積層体の製造方法であって、不活性粒子を含有した剥離性フィルムの表面に、少なくとも、光触媒層、保護接着層を順次塗布積層して転写フィルムを製造し、金属層の少なくとも一方の表面に有機系塗膜を塗布し、当該有機系塗膜の表面に、前記転写フィルムをその保護接着層が接する様に配置し、50〜150℃の条件で加熱加圧した後、前記剥離性フィルムを剥すことにより、前記光触媒層の表面粗度が中心線平均粗さ(Ra)で0.1〜1.0μmとなることを特徴とする光触媒層を有する積層体の製造方法に存する。   Another aspect of the present invention is a method for producing a laminate having a photocatalyst layer, wherein at least a photocatalyst layer and a protective adhesive layer are sequentially applied and laminated on the surface of a peelable film containing inert particles. A transfer film is produced, an organic coating film is applied to at least one surface of the metal layer, and the transfer film is disposed on the surface of the organic coating film so that the protective adhesive layer is in contact with the coating film. The photocatalyst is characterized in that the surface roughness of the photocatalyst layer is 0.1 to 1.0 μm in centerline average roughness (Ra) by peeling off the peelable film after heating and pressing under the conditions of It exists in the manufacturing method of the laminated body which has a layer.

本発明によれば、特定の表面粗度の剥離性フィルムを使用するため、光触媒層を積層する際に発生する光沢度の変化を確実に防止でき、光沢度を制御することが出来る。従って、光触媒層の積層により必要以上に光沢度が高くなる現象を抑制することが出来る。また、本発明によれば、上記の剥離性フィルムを使用して転写法により光触媒層(2)を形成するため、転写法により量産性を高めることが出来る。   According to the present invention, since a peelable film having a specific surface roughness is used, it is possible to reliably prevent a change in glossiness that occurs when the photocatalyst layer is laminated, and to control the glossiness. Therefore, the phenomenon that the glossiness becomes higher than necessary due to the lamination of the photocatalyst layer can be suppressed. According to the present invention, since the photocatalyst layer (2) is formed by the transfer method using the above-described peelable film, the mass productivity can be enhanced by the transfer method.

以下、本発明の実施形態を図面に基づいて詳細に説明するが、以下に説明するものは本発明の実施形態の一例であり、本発明はその要旨を超えない限り、以下の説明に何ら限定されるものではない。なお、図1は、本発明に斯かる積層体の層構成の一例および積層体の製造方法を模式的に示す断面図である。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, what is described below is an example of embodiments of the present invention, and the present invention is not limited to the following descriptions unless it exceeds the gist. Is not to be done. FIG. 1 is a cross-sectional view schematically showing an example of a layer structure of a laminate and a method for producing the laminate according to the present invention.

本発明は、建築用の内装パネルや外装パネルとして使用される金属樹脂複合板や金属板などに適用できる。図1は、建築用外装材として使用される金属パネルを例示したものであり、図中の符号(C)が製造された金属パネル(積層体)、(B)が基材である塗装金属板、(A)が転写フィルムを示す。   The present invention can be applied to a metal resin composite plate or a metal plate used as an interior panel or exterior panel for buildings. FIG. 1 exemplifies a metal panel used as a building exterior material. A metal panel (laminated body) in which a symbol (C) in the figure is manufactured, and a painted metal plate in which (B) is a base material (A) shows a transfer film.

本発明の積層体である金属パネル(C)は、図示する様に、金属層(5)の少なくとも一方の表面に有機系塗膜(4)が設けられ、かつ、有機系塗膜(4)の表面に少なくとも保護接着層(3)を介して光触媒層(2)が形成され、光触媒層(2)の表面に剥離性フィルム(1)が設けられて成る。そして、剥離性フィルム(1)の表面粗度は、中心線平均粗さ(Ra)で0.1〜1.0μmに設定されている。   As shown in the figure, the metal panel (C) which is the laminate of the present invention is provided with an organic coating film (4) on at least one surface of the metal layer (5), and the organic coating film (4). The photocatalyst layer (2) is formed on the surface of the photocatalyst layer via at least the protective adhesive layer (3), and the peelable film (1) is provided on the surface of the photocatalyst layer (2). And the surface roughness of a peelable film (1) is set to 0.1-1.0 micrometer by centerline average roughness (Ra).

本発明において、剥離性フィルム(1)の基材を構成する樹脂は、特に制限はなく、ポリエステル系樹脂が好ましい。ポリエステル系樹脂としては公知のものから任意に選択して用いることが出来る。但し、剥離性フィルム(1)は後述する様に転写フィルム(A)の転写工程で加圧加熱されるため、剥離性フィルム(1)の材料としては、耐熱性の観点から芳香族系ポリエステル樹脂を選択することが好ましい。具体的には、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート等が挙げられる。   In this invention, there is no restriction | limiting in particular in resin which comprises the base material of a peelable film (1), A polyester-type resin is preferable. The polyester resin can be arbitrarily selected from known ones. However, since the peelable film (1) is heated under pressure in the transfer step of the transfer film (A) as described later, the material of the peelable film (1) is an aromatic polyester resin from the viewpoint of heat resistance. Is preferably selected. Specific examples include polyethylene terephthalate, polyethylene-2,6-naphthalate, polyethylene isophthalate, and polybutylene terephthalate.

剥離性フィルム(1)の厚さは10〜100μm、好ましくは20〜60μmとされる。その理由は次の通りである。すなわち、剥離性フィルム(1)の厚さが10μm以下の場合は転写性が不充分であり、また、100μm以上の場合はシワが発生し易い。   The thickness of the peelable film (1) is 10 to 100 μm, preferably 20 to 60 μm. The reason is as follows. That is, when the thickness of the peelable film (1) is 10 μm or less, the transferability is insufficient, and when it is 100 μm or more, wrinkles are likely to occur.

本発明においては、転写フィルム(A)の転写工程で光触媒層(2)の光沢度を制御するため、剥離性フィルム(1)の表面粗度は、中心線平均粗さ(Ra)で0.1〜1.0μmに調整される。剥離性フィルム(1)又は光触媒層(2)の表面に凹凸を付与する方法としては、剥離性フィルム(1)の基材を構成する樹脂に不活性な無機粒子または有機粒子を配合してシートを押出し、得られたシートを少なくとも一軸方向に延伸する方法が好適である。   In the present invention, in order to control the glossiness of the photocatalyst layer (2) in the transfer step of the transfer film (A), the surface roughness of the peelable film (1) is 0 as the center line average roughness (Ra). It is adjusted to 1 to 1.0 μm. As a method for imparting irregularities to the surface of the peelable film (1) or the photocatalyst layer (2), a sheet in which inorganic particles or organic particles inert to the resin constituting the substrate of the peelable film (1) is blended is used. A method of extruding and stretching the obtained sheet in at least a uniaxial direction is preferable.

上記の不活性粒子としては、シリカ、酸化チタン、炭酸カルシウム、硫酸バリウム、アルミナ、カオリン、クレー等の無機粒子、あるいは、剥離性フィルム(1)の基材を構成する樹脂に非相溶性な樹脂粒子などの有機粒子が挙げられるが、中でも無機粒子が好ましく、特に、粒径分布、製膜性の点でシリカが好ましい。   Examples of the inert particles include inorganic particles such as silica, titanium oxide, calcium carbonate, barium sulfate, alumina, kaolin, and clay, or resins that are incompatible with the resin constituting the base material of the peelable film (1). Organic particles such as particles can be mentioned, among which inorganic particles are preferable, and silica is particularly preferable in terms of particle size distribution and film forming property.

不活性粒子の平均粒径は、通常は1〜10μm、好ましくは3〜8μmの範囲である。不活性粒子の平均粒径を上記の範囲に設定する理由は次の通りである。すなわち、平均粒径が1μm未満の場合は、剥離性フィルム、または光触媒層の表面に充分な凹凸が形成されず、また、10μmを超えた場合は、剥離性フィルム、または光触媒層の表面の凹凸が大きくなり過ぎ、粒子の脱落、製膜性の低下等の問題が生じる。   The average particle size of the inert particles is usually 1 to 10 μm, preferably 3 to 8 μm. The reason why the average particle diameter of the inert particles is set in the above range is as follows. That is, when the average particle size is less than 1 μm, sufficient unevenness is not formed on the surface of the peelable film or photocatalyst layer, and when it exceeds 10 μm, the unevenness of the surface of the peelable film or photocatalyst layer is not formed. Becomes too large, causing problems such as dropout of particles and deterioration of film forming properties.

不活性粒子の含有量は、剥離性フィルム(1)の全配合中の比として、通常は0.2〜5重量%、好ましくは1〜3.5重量%である。不活性粒子の含有量を規定する理由は次の通りである。すなわち、含有量が0.2重量%未満では、フィルム表面に充分な凹凸が形成されず、また、5重量%を超えるとフィルム表面の凹凸が大きくなり過ぎる傾向にある。   The content of the inert particles is usually 0.2 to 5% by weight, preferably 1 to 3.5% by weight, as a ratio in the total formulation of the peelable film (1). The reason for defining the content of inert particles is as follows. That is, when the content is less than 0.2% by weight, sufficient unevenness is not formed on the film surface, and when it exceeds 5% by weight, the unevenness on the film surface tends to be too large.

剥離性フィルム(1)の表面粗度は、中心線平均粗さ(Ra)で通常は0.1〜1.0μm、好ましくは0.15〜0.60μm、更に好ましくは0.20〜0.45μmの範囲である。ここで、剥離性フィルム(1)の表面粗度が、フィルム面によって異なる場合は、光触媒層(2)と接する面を意味するものとする。剥離性フィルム(1)の表面粗度が前記範囲にある場合、剥離性フィルム(1)表面の凹凸が光触媒層(2)に転写され、光触媒層(2)の表面に充分な凹凸が形成され、また、表面の凹凸が大きくなり過ぎず、粒子の脱落、製膜性の低下等の問題が生じ難い。   The surface roughness of the peelable film (1) is usually from 0.1 to 1.0 [mu] m, preferably from 0.15 to 0.60 [mu] m, and more preferably from 0.20 to 0.000 in terms of centerline average roughness (Ra). The range is 45 μm. Here, when the surface roughness of a peelable film (1) changes with film surfaces, it shall mean the surface which contact | connects a photocatalyst layer (2). When the surface roughness of the peelable film (1) is in the above range, the unevenness on the surface of the peelable film (1) is transferred to the photocatalyst layer (2), and sufficient unevenness is formed on the surface of the photocatalyst layer (2). In addition, the unevenness of the surface does not become too large, and problems such as dropout of particles and deterioration of film forming property are unlikely to occur.

また、光触媒層(2)の表面粗度は、中心線平均粗さ(Ra)で通常は0.1〜1.0μm、好ましくは0.15〜0.60μm、更に好ましくは0.15〜0.40μmの範囲である。光触媒層(2)の表面粗度を規定する理由は次の通りである。すなわち、表面粗度が0.1μm以下の場合は、転写後の光触媒膜の60°光沢度が80%を超えてしまい、また、1.0μm以上の場合は、転写時に粒子が脱落して転写性が低下するという問題が生じる。   The surface roughness of the photocatalyst layer (2) is usually from 0.1 to 1.0 μm, preferably from 0.15 to 0.60 μm, more preferably from 0.15 to 0 in terms of centerline average roughness (Ra). The range is 40 μm. The reason for defining the surface roughness of the photocatalyst layer (2) is as follows. That is, when the surface roughness is 0.1 μm or less, the 60 ° glossiness of the photocatalyst film after transfer exceeds 80%, and when the surface roughness is 1.0 μm or more, particles are dropped during transfer. There arises a problem that the performance is lowered.

また、剥離性フィルム(1)の表面には、剥離性フィルム(1)と光触媒層(2)との剥離性を高めるため、必要に応じて離型層(図示省略)が設けられてもよい。離型層としては、シリコン系化合物、熱硬化性樹脂、ガラス系無機化合物等が好適に使用される。   Moreover, in order to improve the peelability of the peelable film (1) and the photocatalyst layer (2), a release layer (not shown) may be provided on the surface of the peelable film (1) as necessary. . As the release layer, a silicon compound, a thermosetting resin, a glass inorganic compound, or the like is preferably used.

上記の範囲内に調整された表面粗度の剥離性フィルム(1)を使用して転写フィルム(A)を作製し、転写フィルム(A)の表面の光触媒層(2)を塗装金属板(B)の有機系塗膜(4)に転写することにより、60°光沢度を10〜80%に制御することが出来る積層体を得ることが出来る。ここで、60°光沢度とは、光触媒層(2)の表面を意味する。60°光沢度が10%未満では、耐汚性、耐候性を向上させ難くなる傾向にある。一方、60°光沢度が80%を超えると、内装パネルや外装パネル等に使用した場合、光沢度が高くなりすぎる傾向にある。   A transfer film (A) is produced using a peelable film (1) having a surface roughness adjusted within the above range, and a photocatalyst layer (2) on the surface of the transfer film (A) is coated with a coated metal plate (B ) To the organic coating film (4), a laminate capable of controlling the 60 ° glossiness to 10 to 80% can be obtained. Here, the 60 ° glossiness means the surface of the photocatalytic layer (2). If the 60 ° gloss is less than 10%, it tends to be difficult to improve stain resistance and weather resistance. On the other hand, when the 60 ° glossiness exceeds 80%, the glossiness tends to be too high when used for interior panels, exterior panels, and the like.

転写フィルム(A)は、上記の剥離性フィルム(1)の表面に光触媒層(2)及び保護接着層(3)を順次に積層したものである。光触媒層(2)は、光触媒の微粒子を含むコーティング液を塗布乾燥させて形成される。光触媒層(2)を構成する光触媒としては、例えば、酸化チタン、酸化亜鉛、チタン酸バリウム、チタン酸ストロンチウム、酸化タングステン、酸化マンガン、酸化ルテニウム等が挙げられる。特に、安全性、薬品に対する耐久性、透明性などの観点からは、アモルファス型酸化チタン、アナターゼ型酸化チタン、ブルッカイト型酸化チタン、ルチル型酸化チタンを組み合わせたものが好適である。   The transfer film (A) is obtained by sequentially laminating a photocatalyst layer (2) and a protective adhesive layer (3) on the surface of the peelable film (1). The photocatalyst layer (2) is formed by applying and drying a coating liquid containing photocatalyst fine particles. Examples of the photocatalyst constituting the photocatalyst layer (2) include titanium oxide, zinc oxide, barium titanate, strontium titanate, tungsten oxide, manganese oxide, and ruthenium oxide. In particular, a combination of amorphous titanium oxide, anatase titanium oxide, brookite titanium oxide, and rutile titanium oxide is preferable from the viewpoints of safety, durability against chemicals, and transparency.

光触媒コーティング液としては、水系、溶剤系の何れも使用できるが、乾燥の比較的速いアルコール系溶媒に高分散している光触媒コーティング液を使用することが好適である。本発明において使用可能な光触媒コーティング液としては、例えば、チタニアゾル溶液、チタニアゲル体又はチタニアゾル・ゲル混合体を密閉容器内で加熱処理すると同時に加圧処理した後、分散・攪拌して得られるアナターゼ型酸化チタンスラリーなどが挙げられる。   As the photocatalyst coating liquid, both water-based and solvent-based liquids can be used, but it is preferable to use a photocatalyst coating liquid that is highly dispersed in an alcohol solvent that is relatively quick to dry. Examples of the photocatalyst coating solution that can be used in the present invention include an anatase type oxidation obtained by subjecting a titania sol solution, a titania gel body, or a titania sol-gel mixture to heat treatment in a sealed container and simultaneously pressurizing, and then dispersing and stirring. Examples thereof include titanium slurry.

また、光触媒コーティング液としては、光触媒の微粒子をシリカ化合物のバインダーに均一に分散した溶液などが挙げられる。シリカ化合物としては、4、3、2官能のアルコキシシラン、および、これらアルコキシシラン類の縮合物、加水分解物、シリコーンワニス等が使用できる。光触媒層(2)の膜厚は、クラックの発生を防止するため、0.05〜1μm程度が好ましい。   Examples of the photocatalyst coating liquid include a solution in which fine particles of a photocatalyst are uniformly dispersed in a silica compound binder. As the silica compound, 4, 3, and bifunctional alkoxysilanes, and condensates, hydrolysates, silicone varnishes, and the like of these alkoxysilanes can be used. The film thickness of the photocatalyst layer (2) is preferably about 0.05 to 1 μm in order to prevent generation of cracks.

光触媒層(2)の表面(図示した状態の転写フィルム(A)の下側)には、更に、保護接着層(3)が設けられる。斯かる保護接着層(3)は、光触媒作用による有機系塗膜(4)の分解を防止するために光触媒層(2)と有機系塗膜(4)とを遮断する機能、ならびに、光触媒層(2)と有機系塗膜(4)を接着させる機能を有する。   A protective adhesive layer (3) is further provided on the surface of the photocatalyst layer (2) (below the transfer film (A) in the illustrated state). Such a protective adhesive layer (3) has a function of blocking the photocatalyst layer (2) and the organic coating film (4) in order to prevent decomposition of the organic coating film (4) due to photocatalysis, and a photocatalytic layer. It has a function of adhering (2) and the organic coating film (4).

保護接着層(3)を形成するコーティング液としては、アルコール系溶剤中にジルコニウム酸化物(ジルコニア)を主成分として含むコーティング液が好適であり、斯かるコーティング液は、ジルコニウム−n−プロポキシド、ジルコニウムテトラメトキシド、ジルコニウムエトキシド、ジルコニウムイソプロポキシド及びジルコニウムブトキシドから成る群より選ばれたジルコニウムアルコキシドをアルコール系溶剤中に通常1〜30wt%、好ましくは5〜15wt%混合した第1の液(A液)に対し、アルコール系溶剤中に水を通常0.01〜10wt%、好ましくは0.1〜5wt%及び沈殿生成抑制剤である酸又はアルカリを0.01〜10wt%、好ましくは0.02〜8wt%、より好ましくは0.05〜5wt%混合した第2の液(B液)を滴下することにより得られる。   As the coating liquid for forming the protective adhesive layer (3), a coating liquid containing zirconium oxide (zirconia) as a main component in an alcohol-based solvent is suitable, and the coating liquid is zirconium-n-propoxide, A first liquid in which zirconium alkoxide selected from the group consisting of zirconium tetramethoxide, zirconium ethoxide, zirconium isopropoxide and zirconium butoxide is usually mixed in an alcohol solvent in an amount of 1 to 30 wt%, preferably 5 to 15 wt%. In the alcohol solvent, water is usually 0.01 to 10 wt%, preferably 0.1 to 5 wt%, and the acid or alkali that is a precipitation inhibitor is 0.01 to 10 wt%, preferably 0 0.02-8 wt%, more preferably 0.05-5 wt% mixed Obtained by dropping the liquid (B liquid).

この場合、コーティング組成物中のジルコニウム酸化物(ジルコニア)の粒子径は、通常は0.5〜100nm、好ましくは5〜50nm、より好ましくは10〜30nmである。また、アルコール系溶剤としては、C2n+1OHの構造式で表されるアルコール、例えば、メタノール、エタノール、1−プロパノール、イソプロピルアルコール、1−ブタノール、2−ブタノール、イソブチルアルコール、ter−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール等が単独で又は複数組み合わせて用いられる。 In this case, the particle diameter of the zirconium oxide (zirconia) in the coating composition is usually 0.5 to 100 nm, preferably 5 to 50 nm, more preferably 10 to 30 nm. Examples of alcohol solvents include alcohols represented by the structural formula of C n H 2n + 1 OH, such as methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, and ter-butyl alcohol. , 1-pentanol, 2-pentanol, 3-pentanol and the like are used alone or in combination.

沈殿生成抑制剤としては、酸性物質またはアルカリ性物質が用いられる。酸性物質としては、塩酸、硝酸、硫酸、シュウ酸、酢酸などが挙げられ、これらは単独で又は複数組み合わせて用いられる。アルカリ性物質としては、アンモニア、アミン化合物などが挙げられ、これらは単独で又は複数組み合わせて用いられる。沈殿生成抑制剤である酸性物質、又はアルカリ性物質は、保護接着層(3)を形成するコーティング液中に通常は0.0003〜0.3wt%、好ましくは0.003〜0.3wt%、更に好ましくは0.005〜0.1wt%含まれる様にする。   An acidic substance or an alkaline substance is used as the precipitation formation inhibitor. Examples of the acidic substance include hydrochloric acid, nitric acid, sulfuric acid, oxalic acid, acetic acid and the like, and these are used alone or in combination. Examples of the alkaline substance include ammonia and amine compounds, and these are used alone or in combination. The acidic substance or alkaline substance which is a precipitation formation inhibitor is usually 0.0003 to 0.3 wt%, preferably 0.003 to 0.3 wt% in the coating solution for forming the protective adhesive layer (3). Preferably, 0.005 to 0.1 wt% is contained.

保護接着層(3)の膜厚は、光触媒層(2)と同様に、0.05〜1μm程度が好ましい。保護接着層(3)の膜厚を上記の範囲に規定する理由は次の通りである。すなわち、保護接着層(3)の厚さが薄すぎると光触媒作用による有機系塗膜(4)の分解を防止する機能が発現し難く、また、厚すぎると膜にクラックが発生し易くなる。   As with the photocatalyst layer (2), the thickness of the protective adhesive layer (3) is preferably about 0.05 to 1 μm. The reason why the thickness of the protective adhesive layer (3) is specified in the above range is as follows. That is, if the thickness of the protective adhesive layer (3) is too thin, the function of preventing the decomposition of the organic coating film (4) due to photocatalytic action is difficult to be exhibited, and if it is too thick, cracks are likely to occur in the film.

光触媒層(2)、保護接着層(3)の塗工法としては、ロールコーター、グラビアコーター、ダイコーターによる方法などが挙げられる。光触媒層(2)、保護接着層(3)の塗工液は、微粒子が水又は有機溶媒に分散した状態であり、保存安定性から固形分濃度が通常数%程度に留まるので、塗工液の粘度も数センチポイズと低いものである。また、上記の様に、この塗工液から形成される塗膜は、膜厚を通常0.05〜1μmとする必要があり、塗工法としては、グラビアコーターによる方法が特に好適である。   Examples of the coating method of the photocatalyst layer (2) and the protective adhesive layer (3) include a roll coater, a gravure coater, and a die coater. The coating solution for the photocatalyst layer (2) and the protective adhesive layer (3) is a state in which fine particles are dispersed in water or an organic solvent, and the solid content concentration is usually only about several percent from the viewpoint of storage stability. The viscosity of the resin is as low as several centipoise. Further, as described above, the coating film formed from this coating solution needs to have a film thickness of usually 0.05 to 1 μm, and a gravure coater method is particularly suitable as the coating method.

金属層(5)は、金属シートによって構成される。斯かる金属シートとしては、例えば、アルミニウム、ステンレス、鉄、銅、チタン、錫、ニッケル等の金属または各種の合金から成る板(シート)が使用される。加工性、伝熱性、剛性などの観点から、一般的にはアルミニウムシートが好ましい。金属層(5)の厚さは、下限が通常は0.1mm以上、好ましくは0.2mm以上であり、一方、上限が通常は2mm以下、好ましくは1mm以下である。   A metal layer (5) is comprised with the metal sheet. As such a metal sheet, for example, a plate (sheet) made of metal such as aluminum, stainless steel, iron, copper, titanium, tin, nickel, or various alloys is used. In general, an aluminum sheet is preferable from the viewpoint of workability, heat transfer, rigidity, and the like. The lower limit of the thickness of the metal layer (5) is usually 0.1 mm or more, preferably 0.2 mm or more, while the upper limit is usually 2 mm or less, preferably 1 mm or less.

金属層(5)の表面の有機系塗膜(4)を構成する有機系塗料としては、通常、フッ素系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂などが挙げられるが、ビルの外壁などの耐候性、耐久性が要求される外装用途に対しては、特にフッ素系樹脂が好ましい。   Examples of the organic paint constituting the organic coating film (4) on the surface of the metal layer (5) usually include a fluorine resin, an acrylic resin, a polyester resin, a polyurethane resin, and the like. For exterior applications that require weather resistance and durability such as those, fluorine-based resins are particularly preferable.

有機系塗膜(4)の膜厚は、下限が通常は5μm以上、好ましくは10μm以上であり、一方、上限が通常40μm以下、好ましくは30μm以下である。有機系塗膜(4)の膜厚を上記の範囲に設定することにより、金属層(5)との密着性を高め、かつ、塗膜の耐久性、耐候性を高めることが出来る。有機系塗膜(4)は、ロールコーター、カーテンコーター、ダイコーター等を使用した塗布法によって形成できるが、塗膜の平滑性、量産性及び塗料の歩留まりを高める観点から、ダイコーター法が好適である。   The lower limit of the thickness of the organic coating film (4) is usually 5 μm or more, preferably 10 μm or more, while the upper limit is usually 40 μm or less, preferably 30 μm or less. By setting the film thickness of the organic coating film (4) within the above range, the adhesion with the metal layer (5) can be improved, and the durability and weather resistance of the coating film can be increased. The organic coating film (4) can be formed by a coating method using a roll coater, curtain coater, die coater, etc., but the die coater method is preferred from the viewpoint of improving the smoothness of the coating film, mass productivity, and the yield of the paint. It is.

また、上記の様な金属パネル(C)の製造方法、すなわち、本発明に係る光触媒層を有する積層体の製造方法においては、不活性粒子を含有した剥離性フィルム(1)の表面に、少なくとも、光触媒層(2)、保護接着層(3)を順次塗布積層して転写フィルム(A)を製造する。他方、金属層の少なくとも一方の表面に有機系塗膜を塗布することにより図に例示する様な塗装金属板(B)準備する。そして、塗装金属板(B)の有機系塗膜(4)の表面に、上記の転写フィルム(A)をその保護接着層(3)が接する様に配置し、50〜150℃の条件で加熱加圧した後、転写フィルム(A)の剥離性フィルム(1)を剥すことにより、表面粗度が中心線平均粗さ(Ra)で0.1〜1.0μmとなる様に光触媒層(2)を表側に露出させる。   Moreover, in the manufacturing method of the above metal panels (C), ie, the manufacturing method of the laminated body which has a photocatalyst layer based on this invention, on the surface of the peelable film (1) containing an inert particle, at least Then, a photocatalyst layer (2) and a protective adhesive layer (3) are sequentially applied and laminated to produce a transfer film (A). On the other hand, a coated metal plate (B) as illustrated in the figure is prepared by applying an organic coating film on at least one surface of the metal layer. Then, the transfer film (A) is placed on the surface of the organic coating film (4) of the coated metal plate (B) so that the protective adhesive layer (3) is in contact therewith, and heated at a temperature of 50 to 150 ° C. After pressurizing, the photocatalyst layer (2) is formed so that the peelable film (1) of the transfer film (A) is peeled off so that the surface roughness becomes 0.1 to 1.0 μm in centerline average roughness (Ra). ) Is exposed on the front side.

塗装金属板(B)の有機系塗膜(4)表面に転写フィルム(A)の光触媒層(2)及び保護接着層(3)を転写するには、加熱・加圧ロールを用いて転写する。加熱・加圧ロールによる転写の最適条件は、有機系塗膜(4)の種類にもよるが、通常は、温度が50〜150℃、圧力が10〜100kg/cm(線圧)である。転写時の温度および圧力を上記の範囲に設定する理由は次の通りである。すなわち、転写時の温度が上記の範囲であれば、転写が充分に行われ、基材樹脂が劣化し難く、剥離性フィルム(1)の剥離時に破れることがない。また、転写時の圧力が上記の範囲であれば、転写が充分に行われ、設備能力を必要以上に大きくする必要がない。   In order to transfer the photocatalyst layer (2) and protective adhesive layer (3) of the transfer film (A) to the surface of the organic coating film (4) of the coated metal plate (B), transfer is performed using a heating / pressure roll. . The optimum conditions for the transfer by the heating / pressurizing roll are usually 50 to 150 ° C. and the pressure is 10 to 100 kg / cm (linear pressure), although it depends on the type of the organic coating film (4). The reason for setting the temperature and pressure during the transfer to the above ranges is as follows. That is, if the temperature at the time of transfer is in the above range, the transfer is sufficiently performed, the base resin is hardly deteriorated, and is not broken when the peelable film (1) is peeled off. Moreover, if the pressure at the time of transfer is in the above range, transfer is sufficiently performed, and it is not necessary to increase the equipment capacity more than necessary.

上記の様に、本発明の積層体ならびにその製造方法によれば、所定の表面粗度に調整され且つその表面に光触媒層(2)、保護接着層(3)が形成された特定の剥離性フィルム(1)を使用するため、光触媒層(2)を積層する際に発生する光沢度の変化を確実に防止でき、光沢度を制御することが出来る。従って、光触媒層(2)の積層により必要以上に光沢度が高くなる現象を抑制することが出来る。また、本発明によれば、上記の剥離性フィルム(1)を使用して転写法により光触媒層(2)を形成するため、量産性を高めることが出来る。   As described above, according to the laminate of the present invention and the method for producing the same, the specific peelability adjusted to a predetermined surface roughness and having the photocatalyst layer (2) and the protective adhesive layer (3) formed on the surface. Since the film (1) is used, the change in glossiness generated when the photocatalyst layer (2) is laminated can be reliably prevented, and the glossiness can be controlled. Therefore, it is possible to suppress the phenomenon that the glossiness becomes higher than necessary due to the lamination of the photocatalyst layer (2). Moreover, according to this invention, since the photocatalyst layer (2) is formed by the transfer method using the above-described peelable film (1), the mass productivity can be improved.

以下、本発明を実施例に基づいて詳細に説明するが、本発明はその趣旨を越えない限り、以下の記載例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to the following description examples, unless the meaning is exceeded.

実施例:
図1に示す様に、転写フィルム(A)及び塗装金属板(B)を作製し、これらを使用して金属パネル(C)(積層体)を製造した。そして、金属パネル(C)表面の表面粗度および光沢度について評価した。
Example:
As shown in FIG. 1, a transfer film (A) and a painted metal plate (B) were produced, and a metal panel (C) (laminated body) was produced using them. And the surface roughness and glossiness of the metal panel (C) surface were evaluated.

(転写フィルム(A)の作製)
剥離性フィルム(1)として、表面粗度の異なる4種類のPETマットフィルムを準備した。これらPETマットフィルムは、各々、シリカを含有し且つ厚さが25μmであり、後述する測定方法で測定した各表面粗度は、中心間平均粗さ(Ra)で0.44,0.34,0.27,0.20μmであった。また、光触媒層(2)を構成する光触媒層用塗布液として、アナターゼ型酸化チタン分散液である「フォリウム(登録商標)」(川崎重工業(株)製)を準備し、保護接着層(3)を構成する保護接着層用塗布液として、ジルコニアを主成分とし且つ水酸化ジルコニウム、ジルコニウムアルコキシドを含む光触媒中間剤「フォリウム用アンダーコート剤」(川崎重工業(株)製)を準備した。そして、上記の各剥離性フィルム(1)に対し、光触媒層用塗布液、保護接着層用塗布液の順にそれぞれの膜厚が0.1μmになる様にグラビアコーターで塗布した後、80℃で1分間加熱することにより、4種類の転写フィルム(A)を作製した。なお、後述する測定方法で測定した各剥離性フィルム(1)表面の光沢度は表1に示す通りであった。
(Preparation of transfer film (A))
As the peelable film (1), four types of PET mat films having different surface roughnesses were prepared. Each of these PET mat films contains silica and has a thickness of 25 μm, and each surface roughness measured by a measurement method described later is 0.44, 0.34 in terms of average roughness (Ra) between centers. 0.27, 0.20 μm. In addition, as a photocatalyst layer coating liquid constituting the photocatalyst layer (2), an anatase-type titanium oxide dispersion “Forium (registered trademark)” (manufactured by Kawasaki Heavy Industries, Ltd.) was prepared, and a protective adhesive layer (3) A photocatalytic intermediate agent “undercoat agent for folium” (manufactured by Kawasaki Heavy Industries, Ltd.) containing zirconia as a main component and containing zirconium hydroxide and zirconium alkoxide was prepared as a coating solution for a protective adhesive layer constituting the above. And after apply | coating with a gravure coater so that each film thickness may be set to 0.1 micrometer with respect to each said peelable film (1) in order of the coating liquid for photocatalyst layers, and the coating liquid for protective adhesive layers, at 80 degreeC. Four types of transfer films (A) were produced by heating for 1 minute. In addition, the glossiness of the surface of each peelable film (1) measured by the measurement method described later was as shown in Table 1.

(塗装金属板(B)の作製)
金属層(5)を構成する金属シートとして、厚さ0.5mmのアルミニウムシートを4枚準備した。また、有機系塗膜(4)を構成する有機系塗料として、溶媒可溶型フッ素樹脂塗料の「ルミフロン」(旭硝子コートアンドレジン社製)を準備した。そして、上記の各アルミニウムシートを水洗した後、圧延時に付着した油分を脱脂液への浸漬により除去し、更に湯洗した後に乾燥した。次いで、各アルミニウムシートに、有機系塗料を塗膜厚20μmになる様にダイコーターで塗装した後、230℃で1分間加熱し、有機系塗膜(4)を形成した。なお、有機系塗料としては、有機系塗膜(4)の光沢度が30%となる塗料を選択した。
(Preparation of painted metal plate (B))
Four aluminum sheets with a thickness of 0.5 mm were prepared as metal sheets constituting the metal layer (5). Moreover, “Lumiflon” (manufactured by Asahi Glass Coat and Resin Co., Ltd.), a solvent-soluble fluororesin paint, was prepared as an organic paint constituting the organic paint film (4). And after wash | cleaning each said aluminum sheet with water, the oil component adhering at the time of rolling was removed by the immersion in a degreasing liquid, and also it dried, after washing with hot water. Next, an organic coating was applied to each aluminum sheet with a die coater so that the coating thickness was 20 μm, and then heated at 230 ° C. for 1 minute to form an organic coating (4). In addition, as the organic coating material, a coating material in which the glossiness of the organic coating film (4) was 30% was selected.

(金属パネル(C)の製造)
上記の様に転写フィルム(A)、塗装金属板(B)を作製した後、各塗装金属板(B)の有機系塗膜(4)(フッ素樹脂塗膜)の表面に4種の転写フィルム(A)をその保護接着層(3)が接する様にそれぞれ重ね合わせ、熱転写ロールを使用して有機系塗膜(4)に保護接着層(3)及び光触媒層(2)を転写することにより、4種類の金属パネル(C)を製造した。転写の際の温度は80℃であり、圧力は40Kg/cm(ロール上の線圧)であった。
(Manufacture of metal panels (C))
After producing the transfer film (A) and the painted metal plate (B) as described above, four types of transfer films are formed on the surface of the organic coating film (4) (fluororesin coating film) of each painted metal plate (B). By superimposing (A) so that the protective adhesive layer (3) is in contact with each other and transferring the protective adhesive layer (3) and the photocatalyst layer (2) to the organic coating film (4) using a thermal transfer roll. Four types of metal panels (C) were manufactured. The temperature during the transfer was 80 ° C., and the pressure was 40 kg / cm (linear pressure on the roll).

(金属パネル(C)の評価)
上記の様に製造された各金属パネル(C)については、以下の項目を測定することにより評価した。測定結果は表1に実施例1〜4として示す通りである。
(Evaluation of metal panel (C))
About each metal panel (C) manufactured as mentioned above, it evaluated by measuring the following items. The measurement results are as shown in Table 1 as Examples 1-4.

(1)表面粗度の測定:
小坂研究所製の表面形状測定器「SE−1700α」を使用し、剥離性フィルム(1)表面、及び光触媒層(2)表面の中心線平均粗さ(Ra)を測定した。上記の表面形状測定器においては、触針先端径が2μm、測定長が5mm、カットオフ値が0.8mmであった。そして、測定においては、試料の片面を5回測定し、その平均値を中心線平均粗さ(Ra)として採用した。
(1) Measurement of surface roughness:
Using a surface shape measuring device “SE-1700α” manufactured by Kosaka Laboratory, the center line average roughness (Ra) of the peelable film (1) surface and the photocatalyst layer (2) surface was measured. In the surface shape measuring instrument, the tip diameter of the stylus was 2 μm, the measurement length was 5 mm, and the cutoff value was 0.8 mm. And in the measurement, the single side | surface of the sample was measured 5 times and the average value was employ | adopted as centerline average roughness (Ra).

(2)光沢度(%)の測定:
Gardner社製の光沢度計「micro−TRI−gloss」を使用し、JIS K−5600−4−7(60°光沢度)に準拠して、剥離性フィルム(1)表面、及び転写後の光触媒層(2)表面の光沢度を測定した。測定においては、測定数(n)を3とし、その平均値を光沢度(%)として採用した。
(2) Measurement of glossiness (%):
Using a gloss meter “micro-TRI-gloss” manufactured by Gardner, according to JIS K-5600-4-7 (60 ° gloss), the surface of the peelable film (1), and the photocatalyst after transfer The glossiness of the surface of the layer (2) was measured. In the measurement, the number of measurements (n) was 3, and the average value was adopted as the glossiness (%).

(3)転写率の測定:
転写率は、保護接着層(3)及び光触媒層(2)の薄膜の膜厚測定が困難であるため、蛍光X線分析により転写フィルム(A)及び転写後の金属パネル(C)表面の微量Zr、Ti元素の強度を測定し、以下の計算式により求めた。
(3) Measurement of transfer rate:
Since it is difficult to measure the film thickness of the protective adhesive layer (3) and the photocatalyst layer (2), the transfer rate is very small on the surfaces of the transfer film (A) and the metal panel (C) after transfer by fluorescent X-ray analysis. The strengths of Zr and Ti elements were measured and determined by the following calculation formula.

比較例:
剥離性フィルムとして、表面粗度が中心間平均粗さ(Ra)で0.08,1.20μmの2種類のPETマットフィルムを使用した以外は、実施例と同様に、金属パネルの有機系塗膜上に光触媒膜を積層して金属パネルを製造した。そして、実施例と同様に、表面粗度、光沢度、転写率を測定した。その結果は表1に比較例1及び2として示す通りであった。
Comparative example:
Similar to the examples, the organic coating of the metal panel was used except that two types of PET mat films having a surface roughness of 0.08, 1.20 μm in average roughness between the centers (Ra) were used as the peelable film. A metal panel was manufactured by laminating a photocatalytic film on the film. And the surface roughness, the glossiness, and the transfer rate were measured as in the examples. The results are shown in Table 1 as Comparative Examples 1 and 2.

上記の様に、転写前の塗装金属板(B)の有機系塗膜(4)の光沢度は30%であるが、実施例で製造した金属パネル(C)においては、表1に示す通り、光触媒が完全に転写しており、光沢度を10〜80%の範囲で任意に制御することが可能である。これに対し、比較例1の金属パネルでは、光沢度が異常に高く、また、比較例2の金属パネルでは、光沢度を下げることは可能であるが、転写率が低下している。   As described above, the glossiness of the organic coating film (4) of the painted metal plate (B) before transfer is 30%. In the metal panel (C) produced in the example, as shown in Table 1. The photocatalyst is completely transferred, and the glossiness can be arbitrarily controlled in the range of 10 to 80%. On the other hand, the glossiness of the metal panel of Comparative Example 1 is abnormally high, and the glossiness of the metal panel of Comparative Example 2 can be lowered, but the transfer rate is lowered.

本発明に斯かる積層体の層構成の一例および積層体の製造方法を模式的に示す断面図である。It is sectional drawing which shows typically an example of the layer structure of the laminated body which concerns on this invention, and the manufacturing method of a laminated body.

符号の説明Explanation of symbols

1:剥離性フィルム
2:光触媒層
3:保護接着層
4:有機系塗膜
5:金属層
A:転写フィルム
B:塗装金属板
C:金属パネル(積層体)
1: peelable film 2: photocatalytic layer 3: protective adhesive layer 4: organic coating 5: metal layer A: transfer film B: painted metal plate C: metal panel (laminate)

Claims (7)

金属層の少なくとも一方の表面に有機系塗膜が設けられ、かつ、当該有機系塗膜の表面に少なくとも保護接着層を介して光触媒層が形成され、当該光触媒層の表面に剥離性フィルムが設けられてなる光触媒層を有する積層体において、前記剥離性フィルムの表面粗度が中心線平均粗さ(Ra)で0.1〜1.0μmであることを特徴とする光触媒層を有する積層体。   An organic coating film is provided on at least one surface of the metal layer, and a photocatalyst layer is formed on the surface of the organic coating film via at least a protective adhesive layer, and a peelable film is provided on the surface of the photocatalyst layer. The laminated body which has a photocatalyst layer by which the surface roughness of the said peelable film is 0.1-1.0 micrometer by centerline average roughness (Ra). 前記剥離性フィルムに、不活性粒子が含有されていることを特徴とする請求項1に記載の光触媒層を有する積層体。   The laminate having a photocatalyst layer according to claim 1, wherein the peelable film contains inert particles. 金属層の少なくとも一方の表面に有機系塗膜が設けられ、かつ、当該有機系塗膜の表面に少なくとも保護接着層を介して光触媒層が形成されてなる光触媒層を有する積層体において、前記光触媒層の表面粗度が中心線平均粗さ(Ra)で0.1〜1.0μmであることを特徴とする光触媒層を有する積層体。   In the laminate having a photocatalyst layer in which an organic coating film is provided on at least one surface of the metal layer and a photocatalyst layer is formed on the surface of the organic coating film via at least a protective adhesive layer, the photocatalyst A laminate having a photocatalyst layer, wherein the surface roughness of the layer is 0.1 to 1.0 μm in terms of centerline average roughness (Ra). 請求項1ないし3のいずれか1項に記載の光触媒層を有する積層体の60°光沢度が10〜80%であることを特徴とする光触媒層を有する積層体。   A laminate having a photocatalyst layer, wherein the laminate having the photocatalyst layer according to any one of claims 1 to 3 has a 60 ° glossiness of 10 to 80%. 光触媒層を有する積層体の製造方法であって、不活性粒子を含有した剥離性フィルムの表面に、少なくとも、光触媒層、保護接着層を順次塗布積層して転写フィルムを製造し、金属層の少なくとも一方の表面に有機系塗膜を塗布し、当該有機系塗膜の表面に、前記転写フィルムをその保護接着層が接する様に配置し、50〜150℃の条件で加熱加圧した後、前記剥離性フィルムを剥すことにより、前記光触媒層の表面粗度が中心線平均粗さ(Ra)で0.1〜1.0μmとなることを特徴とする光触媒層を有する積層体の製造方法。   A method for producing a laminate having a photocatalyst layer, wherein at least a photocatalyst layer and a protective adhesive layer are sequentially applied and laminated on the surface of a peelable film containing inert particles to produce a transfer film, and at least a metal layer An organic coating film is applied to one surface, and the transfer film is disposed on the surface of the organic coating film so that the protective adhesive layer is in contact therewith, and after heating and pressing under a condition of 50 to 150 ° C., The manufacturing method of the laminated body which has a photocatalyst layer characterized by the surface roughness of the said photocatalyst layer becoming 0.1-1.0 micrometer by centerline average roughness (Ra) by peeling a peelable film. 前記不活性粒子がシリカであることを特徴とする請求項5に記載の光触媒層を有する積層体の製造方法。   The method for producing a laminate having a photocatalyst layer according to claim 5, wherein the inert particles are silica. 光触媒層を有する積層体の60°光沢度が10〜80%であることを特徴とする請求項5または6に記載の光触媒層を有する積層体の製造方法。   The method for producing a laminate having a photocatalyst layer according to claim 5 or 6, wherein the laminate having the photocatalyst layer has a 60 ° glossiness of 10 to 80%.
JP2006272510A 2006-10-04 2006-10-04 Laminate having photocatalyst layer and its manufacturing method Pending JP2008087392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272510A JP2008087392A (en) 2006-10-04 2006-10-04 Laminate having photocatalyst layer and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272510A JP2008087392A (en) 2006-10-04 2006-10-04 Laminate having photocatalyst layer and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008087392A true JP2008087392A (en) 2008-04-17

Family

ID=39372026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272510A Pending JP2008087392A (en) 2006-10-04 2006-10-04 Laminate having photocatalyst layer and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008087392A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046527A (en) * 2007-08-14 2009-03-05 Mitsubishi Plastics Inc Transferring carrier film for photocatalytic layer
JP2014071292A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Anti-reflection article
CN106660387A (en) * 2015-03-02 2017-05-10 松下知识产权经营株式会社 Transfer film and method for manufacturing transfer film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314523A (en) * 1991-04-15 1992-11-05 Dainippon Printing Co Ltd Shaping film
JPH11198293A (en) * 1998-01-14 1999-07-27 Toyobo Co Ltd Photocatalyst-containing layer laminated thermoplastic film
JP2001332129A (en) * 2000-05-19 2001-11-30 Tdk Corp Functional film
JP2003236978A (en) * 2002-02-20 2003-08-26 Nihon Yamamura Glass Co Ltd Method for manufacturing transfer foil and molded article having photo-catalyst layer
JP2003236979A (en) * 2002-02-20 2003-08-26 Nihon Yamamura Glass Co Ltd Method for manufacturing photocatalyst film and molded article
JP2005212446A (en) * 2004-02-02 2005-08-11 Mitsubishi Kagaku Sanshi Corp Manufacturing process for metal resin composite board having photocatalytic function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314523A (en) * 1991-04-15 1992-11-05 Dainippon Printing Co Ltd Shaping film
JPH11198293A (en) * 1998-01-14 1999-07-27 Toyobo Co Ltd Photocatalyst-containing layer laminated thermoplastic film
JP2001332129A (en) * 2000-05-19 2001-11-30 Tdk Corp Functional film
JP2003236978A (en) * 2002-02-20 2003-08-26 Nihon Yamamura Glass Co Ltd Method for manufacturing transfer foil and molded article having photo-catalyst layer
JP2003236979A (en) * 2002-02-20 2003-08-26 Nihon Yamamura Glass Co Ltd Method for manufacturing photocatalyst film and molded article
JP2005212446A (en) * 2004-02-02 2005-08-11 Mitsubishi Kagaku Sanshi Corp Manufacturing process for metal resin composite board having photocatalytic function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046527A (en) * 2007-08-14 2009-03-05 Mitsubishi Plastics Inc Transferring carrier film for photocatalytic layer
JP2014071292A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Anti-reflection article
CN106660387A (en) * 2015-03-02 2017-05-10 松下知识产权经营株式会社 Transfer film and method for manufacturing transfer film
JPWO2016139705A1 (en) * 2015-03-02 2017-06-08 パナソニックIpマネジメント株式会社 Transfer film and transfer film manufacturing method
CN106660387B (en) * 2015-03-02 2020-01-14 松下知识产权经营株式会社 Transfer film and method for manufacturing transfer film
US10569496B2 (en) 2015-03-02 2020-02-25 Panasonic Intellectual Property Management Co., Ltd. Transfer film and method for manufacturing transfer film

Similar Documents

Publication Publication Date Title
US8048511B2 (en) Titanium oxide coating agent and titanium oxide film forming method
JP6083386B2 (en) Optical laminated film, infrared shielding film and infrared shielding body
WO2016158604A1 (en) Near-infrared shielding film, method for producing same and adhesive composition
EP2302100B1 (en) Self-cleaning substrates and methods for making the same
TWI377986B (en) Photocatalyst hard coat film
KR101769228B1 (en) Aqueous hydrophilic coating composition capable of forming coating film having excellent self-cleaning ability against stains adhered thereon, and surface-treated material having formed thereon coating film having excellent self-cleaning ability against stains adhered thereon
JP6014005B2 (en) Black painted metal plate
WO2015133316A1 (en) Photocatalyst coating liquid and photocatalyst film using same
JP6046436B2 (en) Method for forming antifouling coating film and antifouling paint
JP2008087392A (en) Laminate having photocatalyst layer and its manufacturing method
WO2016147573A1 (en) Hydrophilic lens
JP6635329B2 (en) Organic base material with photocatalyst layer
JP2005212446A (en) Manufacturing process for metal resin composite board having photocatalytic function
JP7094743B2 (en) Inkjet recording medium and image recording method
JP4777171B2 (en) Paint plate and manufacturing method thereof
JP6749093B2 (en) Substrate with superhydrophilic coating, coating solution and manufacturing method thereof
JP4529863B2 (en) Method for producing composite plate having photocatalytic function
JP2017096990A (en) Method for producing light reflection film
WO2015037514A1 (en) Method for manufacturing multilayer dielectric film
JP6466077B2 (en) Painted metal plate
JP5155621B2 (en) Photocatalyst layer transfer carrier film
JP2011177621A (en) Method of manufacturing surface-treated coated steel sheet
JP2014113735A (en) Aluminum resin covering material
JP2008127625A (en) Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method
WO2016136503A1 (en) Heat barrier film and heat barrier body

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206