JP2008086083A - Pwm inverter control device, pwm inverter control method, and refrigeration air conditioner - Google Patents

Pwm inverter control device, pwm inverter control method, and refrigeration air conditioner Download PDF

Info

Publication number
JP2008086083A
JP2008086083A JP2006261109A JP2006261109A JP2008086083A JP 2008086083 A JP2008086083 A JP 2008086083A JP 2006261109 A JP2006261109 A JP 2006261109A JP 2006261109 A JP2006261109 A JP 2006261109A JP 2008086083 A JP2008086083 A JP 2008086083A
Authority
JP
Japan
Prior art keywords
voltage
phase
dead time
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006261109A
Other languages
Japanese (ja)
Other versions
JP4722002B2 (en
Inventor
Koichi Arisawa
浩一 有澤
Kazunori Sakanobe
和憲 坂廼邊
Tomoo Yamada
倫雄 山田
Kazunori Hatakeyama
和徳 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006261109A priority Critical patent/JP4722002B2/en
Publication of JP2008086083A publication Critical patent/JP2008086083A/en
Application granted granted Critical
Publication of JP4722002B2 publication Critical patent/JP4722002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To conduct the drive of a three-phase voltage type PWM inverter which can be reduced in noise, irrespective of a PWM frequency without having to add a new device, is suppressed in the restriction of application with respect to an operation frequency and a motor to be driven, can generate a dead-time compensation voltage using an easy method, is reduced in current ripples, and is high in efficiency. <P>SOLUTION: A dead-time compensation computing part 70 calculates an output current of an inverter main circuit 2 detected by a phase-current detection means 10, the carrier frequency of a switching means 4, and a specified order component of a dead-time error voltage on the basis of a DC voltage and a preset dead time. A voltage command computing means 40 calculates the voltage command, on the basis of a frequency command, the output of the DC voltage detection means, and the output of the current detection means. A PWM signal generating means 80 generates a PWM signal, on the basis of an adding result of an output of the voltage command computing means 40 and the output of the dead-time compensation part 70. A PWM signal generating means 81 generates the PWM signal generated by the PWM signal generating means 80. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷凍空調装置用電動機等の駆動に利用されるインバータに関してのPWMインバータ制御装置及びインバータ制御方法並びにこれらを利用した冷凍空調装置に関するものである。   The present invention relates to a PWM inverter control device and an inverter control method related to an inverter used for driving a motor for a refrigeration air conditioner and the like, and a refrigeration air conditioner using these.

従来、冷凍空調装置の電動機駆動等に用いられる3相電圧形PWMインバータのスイッチング素子のアーム短絡を防止するため、スイッチング素子のターンオフ時間も包含した短絡防止時間(デッドタイム)が挿入される。この短絡防止時間に起因するインバータのPWM電圧指令と出力電圧との間の誤差電圧を補償するためには、該PWM電圧指令に加算される方形波状の補償電圧の極性を、該インバータの出力電流が零クロス点を通過する時点に同期して変更する方法が一般的に行われている。しかしながら、従来のデッドタイム補償方法によると、該インバータの出力電流のゼロクロス点でステップ状に補償電圧の極性を変更しているため、該零クロス点近傍での出力電流のリプルが増大し、このリプルに起因する回転むらが大きくなるという問題があった。この問題を解決するため、例えば特許文献1では、比較器を用いてインバータ出力電流を各相毎に基準値と比較して出力電流の零クロス点近傍での比較結果の大きさに応じた時間幅のパルス電圧を発生させ、補償量演算部によりPWM周波数とデッドタイムと直流電源の電圧に基づいてデッドタイム補償量(補償量振幅)を演算させ、比較器出力と補償量演算部の出力を乗算器により乗じ、乗算器の出力を積分器により積分して台形状の波形の補償量信号を生成し、この補償量信号をPWM電圧指令演算器からの指令値に加算し、PWSパルス演算器でこの加算結果をPWM演算後デッドタイムを付加してインバータ主回路に駆動信号を出力するデッドタイム補償方法が開示されている。この構成により、上記インバータ出力電流が零クロス点を通過するのに伴って行われる補償電圧の極性変更を、上記出力電流の零クロス点以前の変更開始時点より、所定の勾配で行うことが可能となり、上記零クロス点での出力電流のリプル増大の問題が解消される。   Conventionally, a short-circuit prevention time (dead time) including a turn-off time of the switching element is inserted in order to prevent an arm short circuit of the switching element of the three-phase voltage type PWM inverter used for driving the motor of the refrigeration air conditioner. In order to compensate for the error voltage between the PWM voltage command of the inverter and the output voltage due to this short-circuit prevention time, the polarity of the square-wave compensation voltage added to the PWM voltage command is set to the output current of the inverter. In general, a method of changing in synchronization with the time point of passing through the zero cross point is performed. However, according to the conventional dead time compensation method, since the polarity of the compensation voltage is changed stepwise at the zero cross point of the output current of the inverter, the ripple of the output current near the zero cross point increases. There has been a problem that uneven rotation due to ripples becomes large. In order to solve this problem, for example, in Patent Document 1, the inverter output current is compared with a reference value for each phase using a comparator, and the time according to the magnitude of the comparison result in the vicinity of the zero cross point of the output current. A pulse voltage of width is generated, and the compensation amount calculation unit calculates the dead time compensation amount (compensation amount amplitude) based on the PWM frequency, dead time, and DC power supply voltage, and outputs the comparator output and the compensation amount calculation unit. Multiply by the multiplier, integrate the multiplier output by the integrator to generate a trapezoidal waveform compensation amount signal, add this compensation amount signal to the command value from the PWM voltage command calculator, and PWS pulse calculator Thus, there is disclosed a dead time compensation method for adding a dead time after PWM calculation to the addition result and outputting a drive signal to the inverter main circuit. With this configuration, the polarity change of the compensation voltage that is performed as the inverter output current passes through the zero cross point can be performed with a predetermined gradient from the change start time before the zero cross point of the output current. Thus, the problem of increased ripple of the output current at the zero cross point is solved.

特許第3738883号(図1,図2,段落0011〜0017)Japanese Patent No. 3738883 (FIG. 1, FIG. 2, paragraphs 0011 to 0017)

しかしながら、特許文献1で示される従来のデッドタイム補償装置は、以上のように構成されているので、台形波形のデッドタイム補償電圧に高調波が残り、特定次数調波が騒音として問題となることがあった。
また、低騒音駆動が要求される場合にはPWM周波数付近の騒音レベルが高く、特にPWM周波数を可聴領域に設定せざるを得ない場合については使用上の制約が大きかった。
また出力電流の大きさにより零クロス近辺の補償電圧の勾配が変化するので、特定次数調波の比率が変わり、騒音が問題となるモータ駆動に関しては運転領域が限定されていた。 また、比較器を利用するため、外来ノイズに対しての耐力が弱かった。
また、補償電圧の算出に積分器を含むため、オーバーフロー等の問題があり、簡易なシステムでの実現が難しいという問題があった。
However, since the conventional dead time compensation device disclosed in Patent Document 1 is configured as described above, harmonics remain in the trapezoidal waveform dead time compensation voltage, and the specific order harmonics become a problem as noise. was there.
In addition, when low noise driving is required, the noise level near the PWM frequency is high, and there are significant restrictions in use particularly when the PWM frequency must be set in the audible range.
In addition, since the gradient of the compensation voltage near the zero cross changes depending on the magnitude of the output current, the ratio of the specific order harmonics changes, and the driving range is limited for motor driving where noise is a problem. In addition, since a comparator is used, the resistance to external noise is weak.
Further, since the integrator is included in the calculation of the compensation voltage, there is a problem such as overflow, and there is a problem that it is difficult to realize with a simple system.

本発明は、上記のような問題点を解決するためになされたもので、新たな装置を付加せず、またPWM周波数に依らずに低騒音化が行え、運転周波数や駆動対象モータに対する適用制約が少なく、デッドタイム補償電圧を簡易な方法で生成し、電流リプルが少なく、高効率な運転を実現できるインバータ制御インバータ制御装置及びインバータ制御方法ならびに冷凍空調装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and does not add a new device, and can reduce noise without depending on the PWM frequency. An object of the present invention is to obtain an inverter control inverter control device, an inverter control method, and a refrigeration air conditioner capable of generating a dead time compensation voltage by a simple method, reducing current ripple and realizing highly efficient operation.

前記課題を解決するため、本発明に係る3相電圧型PWMインバータ制御方法及び装置は、相電流または固定子座標系上における相電流の2軸成分または回転子の電気角周波数と同一周波数で回転する座標系{以下、回転座標系(dq座標系)と称す}上における相電流の2軸成分またはインバータの出力電圧と同一周波数で回転する座標系{以下、一般座標系(γδ座標系)と称す}上における相電流の2軸成分と直流電圧とデッドタイムとキャリア周波数からデッドタイム誤差電圧の特定次数成分を求めてデッドタイム補償を行うことを特徴とする。   In order to solve the above problems, a three-phase voltage type PWM inverter control method and apparatus according to the present invention rotate at the same frequency as the phase current or the biaxial component of the phase current on the stator coordinate system or the electrical angular frequency of the rotor. A coordinate system {hereinafter referred to as a rotating coordinate system (dq coordinate system)} or a coordinate system rotating at the same frequency as the two-axis component of the phase current or the output voltage of the inverter {hereinafter referred to as a general coordinate system (γδ coordinate system)] A specific order component of the dead time error voltage is obtained from the biaxial component of the phase current, the DC voltage, the dead time, and the carrier frequency, and dead time compensation is performed.

本発明によれば、新たな装置を付加せず、またPWM周波数に依らずに低騒音化が行え、運転周波数や駆動対象モータに対する適用制約が少なく、デッドタイム補償電圧を簡易な方法で生成し、電流リプルが少なく、高効率な運転を実現できるインバータ制御装置及びインバータ制御方法ならびに冷凍空調装置を得ることができる。   According to the present invention, noise can be reduced without adding a new device and without depending on the PWM frequency, and there are few application restrictions on the operating frequency and the motor to be driven, and the dead time compensation voltage is generated in a simple manner. In addition, it is possible to obtain an inverter control device, an inverter control method, and a refrigeration air conditioner that can realize a highly efficient operation with less current ripple.

以下、本発明の具体的な実施の形態を説明する。
実施の形態1.
以下、本発明の実施の形態1にかかるPWMインバータの制御方法・装置について図面を参照しながら説明する。図1は、本発明の実施の形態1にかかるPWMインバータの制御装置を示す図である。以下、本文では、パルスエンコーダ等の回転子位置を検出するセンサを用いる場合、回転子の電気角周波数とインバータの回転周波数はほぼ一致するので、回転子の電気角周波数と同一周波数でインバータが回転する座標系を回転座標系(dq座標系)と定義する。また、パルスエンコーダ等の回転子位置を検出するセンサを用いない場合は、インバータ制御部100でdq軸座標を正確に捉えることができず、実際には回転座標系(dq座標系)と位相差Δθだけずれてインバータが回転している。このような場合を想定して、インバータの出力電圧と同一周波数で回転する座標系を一般座標系(γδ座標系)と称し、回転座標系とは区別して扱うこととする。また本文におけるd軸及びq軸は、以下の意を示すものとする。すなわち、電動機6の回転子上でN極側をd軸とし、回転方向に90度進んだ位相をq軸とする。
Hereinafter, specific embodiments of the present invention will be described.
Embodiment 1 FIG.
The PWM inverter control method and apparatus according to the first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a control device for a PWM inverter according to a first embodiment of the present invention. In the following text, when using a sensor that detects the rotor position, such as a pulse encoder, the electrical angular frequency of the rotor and the rotational frequency of the inverter are substantially the same, so the inverter rotates at the same frequency as the electrical angular frequency of the rotor. The coordinate system to be defined is defined as a rotating coordinate system (dq coordinate system). In addition, when a sensor for detecting the rotor position such as a pulse encoder is not used, the dq axis coordinates cannot be accurately captured by the inverter control unit 100, and in actuality, the phase difference between the rotating coordinate system (dq coordinate system) The inverter is rotating with a deviation of Δθ. Assuming such a case, a coordinate system that rotates at the same frequency as the output voltage of the inverter is referred to as a general coordinate system (γδ coordinate system), and is handled separately from the rotating coordinate system. The d-axis and q-axis in the text indicate the following meanings. That is, the N pole side on the rotor of the electric motor 6 is set as the d axis, and the phase advanced by 90 degrees in the rotation direction is set as the q axis.

図1に示す装置は、電流検出手段3a〜3bと、直流電圧検出手段90と、電流検出手段によって得られる相電流値と直流電圧検出手段によって得られる直流電圧値を用いて演算を行いPWM信号を発生するインバータ制御部100と、PWM信号によりスイッチング素子4a〜4fのON・OFFを行い電動機6を駆動するインバータ主回路2で構成される。   The apparatus shown in FIG. 1 performs a calculation using the current detection means 3a to 3b, the DC voltage detection means 90, the phase current value obtained by the current detection means, and the DC voltage value obtained by the DC voltage detection means, and outputs a PWM signal. And an inverter main circuit 2 that drives the motor 6 by turning on and off the switching elements 4a to 4f by a PWM signal.

電流検出手段3a〜3bは、相電流値を検出する検出素子・回路、及びその出力をCPU等に取り込み電流換算できるA/D変換器、増幅器等で構成される。少なくとも1つの検出素子を用いて相電流を検出する。図1では、カレントトランスを用いる例を示している。カレントトランスは3個用いて制御を行っても良いが、3相平衡インバータの特徴等を利用し、一般には2個のカレントトランスを用いてモータ制御を行う場合が多く、図1でもカレントトランスを2個使用する例を示している。また、各相の下側スイッチング素子4d〜4fと直流電源負側の間に挿入された抵抗に発生する両端電圧を検出して、下側スイッチング素子に電流が流れるタイミングに合わせて検出を行い、電流換算することで相電流検出を行っても良い。この場合も、抵抗を3個用いて制御を行っても良いが、少なくとも1素子以上の検出素子を用いてモータ制御を行う。また、直流母線の経路に挿入された抵抗の両端電圧を検出することにより、スイッチング素子のスイッチングパターンと流れる相電流が一意に決まっている関係を利用して、相電流検出を行っても良い。   The current detection means 3a to 3b are constituted by a detection element / circuit for detecting a phase current value, an A / D converter capable of taking the output into a CPU or the like and converting the current, an amplifier, and the like. The phase current is detected using at least one detection element. FIG. 1 shows an example using a current transformer. Although control may be performed using three current transformers, in many cases, motor control is generally performed using two current transformers using the characteristics of a three-phase balanced inverter. An example of using two is shown. Moreover, the both-ends voltage which generate | occur | produces in the resistance inserted between the lower side switching elements 4d-4f of each phase and DC power source negative side is detected, and it detects according to the timing to which an electric current flows into a lower side switching element, Phase current detection may be performed by converting the current. In this case as well, control may be performed using three resistors, but motor control is performed using at least one detection element. Alternatively, the phase current may be detected by detecting the voltage across the resistor inserted in the path of the DC bus, and utilizing the relationship in which the switching pattern of the switching element and the flowing phase current are uniquely determined.

直流電圧検出手段90は、直流電圧値を検出する検出素子・回路、及びその出力をCPU等に取り込み電圧換算できるA/D変換器、増幅器等で構成される。   The DC voltage detection means 90 includes a detection element / circuit for detecting a DC voltage value, an A / D converter capable of taking the output into a CPU or the like and converting the voltage, an amplifier, and the like.

インバータ主回路2は、スイッチング素子4a〜4f及びダイオード5a〜5fで構成される。   The inverter main circuit 2 includes switching elements 4a to 4f and diodes 5a to 5f.

また、インバータ制御部100は、直流電圧値を求める直流電圧検出手段90と、電流検出手段3a〜3bで得られた電流値を用い必要に応じて3相平衡条件(3相電流の総和は0となる)より残りの相電流値を算出することで3相電流値を求める相電流検出手段10と、3相の相電流値を固定子座標系(αβ座標系)上の2軸成分に変換する3相2相変換手段20と、3相2相変換手段の出力であるα軸電流Iα、β軸電流Iβを回転座標系上または一般座標系上の2軸成分に変換する回転座標変換手段30と、回転座標変換手段で得られた回転座標系上の2軸成分であるd軸電流Id・q軸電流Iqまたは一般座標系上の2軸成分であるγ軸電流Iγ、δ軸電流Iδと前記α軸電流Iα、β軸電流Iβと前記相電流値Iu〜Iwと前記直流電圧値Vdcからデッドタイム補償量を演算するデッドタイム補償量演算部70と、d軸電流Id・q軸電流Iqまたはγ軸電流Iγ・δ軸電流Iδと周波数指令ωe*と直流電圧値Vdcから速度制御を含む各種ベクトル制御を行い回転座標系上または一般座標系上における2軸の電圧指令を演算する電圧指令演算手段40と、固定子座標系上における2軸の電圧指令(Vα*、Vβ*)を演算する回転座標逆変換手段50と、各相電圧指令Vu*〜Vw*を演算する2相3相変換手段60と、各相電圧指令にデッドタイム補償量を加算する加算器74a〜74cと、デッドタイム補償量を加算された各相電圧指令よりPWM信号を作成するPWM信号作成手段80と、得られたPWM信号を発生するPWM信号発生手段81で構成される。 Further, the inverter control unit 100 uses the DC voltage detection means 90 for obtaining the DC voltage value and the current values obtained by the current detection means 3a to 3b, as necessary, for a three-phase equilibrium condition (the sum of the three-phase current is 0). Phase current detection means 10 for obtaining the three-phase current value by calculating the remaining phase current value, and converting the three-phase phase current value into a biaxial component on the stator coordinate system (αβ coordinate system) Three-phase two-phase conversion means 20 for rotating, and rotating coordinate conversion means for converting the α-axis current Iα and β-axis current Iβ that are the outputs of the three-phase two-phase conversion means into a two-axis component on the rotating coordinate system or the general coordinate system 30 and the d-axis current Id · q-axis current Iq which is a biaxial component on the rotational coordinate system obtained by the rotational coordinate conversion means, or the γ-axis current Iγ and the δ-axis current Iδ which are biaxial components on the general coordinate system. , Α-axis current Iα, β-axis current Iβ, phase current values Iu to Iw, and DC voltage value V Speed control from a dead time compensation amount calculation unit 70 for calculating a dead time compensation amount from dc, a d-axis current Id / q-axis current Iq or a γ-axis current Iγ / δ-axis current Iδ, a frequency command ωe *, and a DC voltage value Vdc Voltage command calculating means 40 for performing various vector controls including the rotational coordinate system and calculating the biaxial voltage command on the general coordinate system, and the biaxial voltage command (Vα * , Vβ * ) on the stator coordinate system. Rotational coordinate reverse conversion means 50 for calculating each phase voltage command Vu * to Vw * , two phase three phase conversion means 60 for calculating each phase voltage command, adders 74a to 74c for adding a dead time compensation amount to each phase voltage command, The PWM signal generating unit 80 generates a PWM signal from each phase voltage command to which the dead time compensation amount is added, and the PWM signal generating unit 81 generates the obtained PWM signal.

またデッドタイム補償量演算部70では、直流電圧値Vdcよりデッドタイム誤差電圧の特定次数成分を算出しデッドタイム補償量振幅を算出する補償量特定次数成分算出手段71と、相電流値または固定子座標系上における相電流の2軸成分または回転座標系上または一般座標系上における相電流の2軸成分から相電圧の零位相(以下、電圧零位相と称することがある)と相電流の零位相(以下、電流零位相と称することがある)の位相差を検出する位相差検出手段72と、デッドタイム補償量振幅と、電圧零位相と電流零位相の位相差とからデッドタイム補償量を演算する補償量演算手段73から構成される。ここで、電流零位相とは、電流が零のときの電圧指令の位相である。   The dead time compensation amount calculation unit 70 calculates a specific order component of the dead time error voltage from the DC voltage value Vdc and calculates a dead time compensation amount amplitude, and a phase current value or stator. From the two-axis component of the phase current on the coordinate system or the two-axis component of the phase current on the rotating coordinate system or the general coordinate system, the zero phase of the phase voltage (hereinafter sometimes referred to as voltage zero phase) and the zero of the phase current The dead time compensation amount is calculated from the phase difference detecting means 72 for detecting the phase difference of the phase (hereinafter sometimes referred to as zero current phase), the dead time compensation amount amplitude, and the phase difference between the zero voltage phase and the zero current phase. Compensation amount calculation means 73 for calculating is configured. Here, the current zero phase is a phase of a voltage command when the current is zero.

次に、動作について、図を用いながら説明する。
図2(a)は、PWM信号を作成するPWM信号作成手段80にて得られる3相のうち任意の1相をx相として、x相の電圧指令を示している。また、x相に本電圧を印加した時に流れる相電流の様子も併せて示している。ここで、デッドタイムによる誤差電圧は、図2(b)のような方形波で表現できる。直流電圧検出手段90より得られた直流電圧Vdcと、インバータのキャリア周波数fcと、デッドタイムTdより、上記誤差電圧の振幅は数1で求められる。
Next, the operation will be described with reference to the drawings.
FIG. 2A shows an x-phase voltage command where an arbitrary one of the three phases obtained by the PWM signal creation means 80 for creating the PWM signal is an x-phase. The state of the phase current that flows when this voltage is applied to the x phase is also shown. Here, the error voltage due to the dead time can be expressed by a square wave as shown in FIG. From the DC voltage Vdc obtained from the DC voltage detecting means 90, the carrier frequency fc of the inverter, and the dead time Td, the amplitude of the error voltage is obtained by the following equation (1).

Figure 2008086083
Figure 2008086083

しかしながら、デッドタイム補償に図2(b)の方形波、あるいは台形波を用いると、可聴領域内のキャリア周波数(約20〜20k[Hz]程度)を用いるインバータ制御においては、騒音が問題になる場合がある。そこで、補償パターンに従来の方形波や台形波を用いず、デッドタイム誤差電圧の特定次数成分(特に低次成分)をデッドタイム補償電圧として用いる方法を考案した。   However, if the square wave or trapezoidal wave of FIG. 2B is used for dead time compensation, noise becomes a problem in inverter control using a carrier frequency (about 20 to 20 k [Hz]) in the audible range. There is a case. Therefore, a method has been devised in which a specific order component (especially a low-order component) of the dead time error voltage is used as the dead time compensation voltage without using a conventional square wave or trapezoidal wave for the compensation pattern.

特定次数成分の抽出には、例えばフーリエ級数展開を用いる。フーリエ級数を用いたデッドタイム補償量の演算は、デッドタイム補償量演算部70で行う。以下、図3のような方形波に関して、直流電圧Vdcからデッドタイム補償量特定次数算出手段71において、フーリエ級数展開によりデッドタイム誤差電圧(方形波)の特定次数成分を算出する方法について、以下述べる。方形波周期をTとした場合の、0からT/2区間の上記方形波に関する関数式を数2に示す。Tはインバータの電気角速度により決まる任意の値である。またtは任意時間を示す。   For example, Fourier series expansion is used to extract the specific order component. The dead time compensation amount calculation unit 70 uses the Fourier series to calculate the dead time compensation amount. A method for calculating the specific order component of the dead time error voltage (square wave) by the Fourier series expansion in the dead time compensation amount specific order calculating means 71 from the DC voltage Vdc will be described below with respect to the square wave as shown in FIG. . Equation 2 shows a functional expression related to the square wave from 0 to T / 2 when the square wave period is T. T is an arbitrary value determined by the electrical angular velocity of the inverter. T represents an arbitrary time.

Figure 2008086083
Figure 2008086083

ここで、フーリエ級数は数3で表せる。ただし、nは基本波の第n次調波の次数を示す(nは正の整数)。また、tは任意時間、ωは回転電気角速度(=2π/T)を示す(Tは上述の方形波周期を示す)。   Here, the Fourier series can be expressed by Equation 3. Here, n represents the order of the nth harmonic of the fundamental wave (n is a positive integer). Further, t represents an arbitrary time, and ω represents a rotating electrical angular velocity (= 2π / T) (T represents the above-described square wave period).

Figure 2008086083
Figure 2008086083

数2は偶関数であるのでan=0であることは明らかである。また、数2は対称波であり、半周期積分した値を2倍すれば良く、数4を求めれば良い。 Since Equation 2 is an even function, it is clear that a n = 0. Further, Equation 2 is a symmetric wave, and the half-cycle integrated value may be doubled, and Equation 4 may be obtained.

Figure 2008086083
Figure 2008086083

b0、bnは数5、数6のように求められる。 b 0 and b n are obtained as in Expression 5 and Expression 6.

Figure 2008086083
Figure 2008086083

Figure 2008086083
Figure 2008086083

以上より、数2のような偶関数をフーリエ級数展開した結果、数7を得る。

Figure 2008086083
As described above, Expression 7 is obtained as a result of Fourier series expansion of the even function as shown in Expression 2.
Figure 2008086083

なお、ここではデッドタイム補償電圧を偶関数として求めたが、奇関数として求めても良い。   Although the dead time compensation voltage is obtained as an even function here, it may be obtained as an odd function.

数7は、図3より明らかなようにy軸に対しての対称波であるから、奇数次調波のみを含んでいる。PWMインバータの仕様、モータデバイスによって、3次以上の奇数次調波に起因する騒音が問題になる場合には、数7における1次成分のみを用いれば良い。   Since Equation 7 is a symmetric wave with respect to the y-axis as apparent from FIG. 3, it includes only odd-order harmonics. If noise due to odd-order harmonics of the third or higher order becomes a problem depending on the specifications of the PWM inverter and the motor device, only the primary component in Equation 7 may be used.

また相電流Iu〜Iwから位相差検出手段72において、各相毎に電圧零位相と電流零位相の位相差αx(x=U,V,W)を検出する。具体的には、相電流の極性の切替わりタイミングにより、各電圧零位相と各電流零位相の位相差αx(x=U,V,W)を求める。即ち、電流の零クロスの極性が−から+に変化する点と、このときの電圧指令の現在位相より電圧零位相との位相差αxを求める。なお、電流の零クロスの極性は+から−に変化する点を利用しても良い。図2(a)では、x相電圧指令を基準として、x相電流の零クロスの極性が+から−に替わる点と電圧指令の位相差よりαxを求める例を示している。また、αu、αv、αwを等しいとみなして、1相の電圧指令の位相と電流位相の位相差情報より、各相のデッドタイム補償電圧を求めても良い。また、ノイズ等が問題になる場合には、相電流値の時間積分により、各相の電圧指令と相電流の位相差αxを求めても良い。位相差αxは、上記のようにして相電流から直接求めることができるが、固定子座標系(αβ座標系)の2軸電流情報より求めることもできる。次に、固定子座標系の2軸電流情報より、各相の電圧指令と相電流の位相差を検出する方法を以下に述べる。各相の相電流値をIu、Iv、Iwとおき、数8のように表す。ここで、θは電圧指令の位相、Iaは各相の電流振幅(簡単化のため、同一とする)、αxは各相の電圧指令の位相と相電流位相の位相差とする。   Further, the phase difference detection means 72 detects the phase difference αx (x = U, V, W) between the zero voltage phase and the zero current phase for each phase from the phase currents Iu to Iw. Specifically, the phase difference αx (x = U, V, W) between each voltage zero phase and each current zero phase is determined based on the switching timing of the polarity of the phase current. That is, the phase difference αx between the point at which the polarity of the zero cross of the current changes from − to + and the current phase of the voltage command at this time is obtained. Note that a point where the polarity of the zero crossing of the current changes from + to-may be used. FIG. 2A shows an example in which αx is obtained from the point where the polarity of the zero cross of the x-phase current changes from + to − and the phase difference between the voltage commands with reference to the x-phase voltage command. Alternatively, assuming that αu, αv, and αw are equal, the dead time compensation voltage for each phase may be obtained from the phase difference information of the phase of the voltage command for one phase and the current phase. When noise or the like becomes a problem, the phase difference αx between the voltage command of each phase and the phase current may be obtained by time integration of the phase current value. The phase difference αx can be obtained directly from the phase current as described above, but can also be obtained from biaxial current information in the stator coordinate system (αβ coordinate system). Next, a method for detecting the phase difference between the voltage command of each phase and the phase current from the biaxial current information in the stator coordinate system will be described below. The phase current values of the respective phases are represented by Iu, Iv, and Iw, and are expressed as in Expression 8. Here, θ is the phase of the voltage command, Ia is the current amplitude of each phase (same for simplification), and αx is the phase difference between the voltage command phase of each phase and the phase current phase.

Figure 2008086083
Figure 2008086083

また、3相2相変換を行った後の固定子座標系上の2軸成分をα軸電流Iα、β軸電流Iβとおくと、Iα、Iβは数9で表す。ただしインバータの回転方向は反時計回りを想定しているが、時計回りの場合も同様の方法で行える。   If the two-axis components on the stator coordinate system after the three-phase to two-phase conversion are set as α-axis current Iα and β-axis current Iβ, Iα and Iβ are expressed by the following equation (9). However, although the rotation direction of the inverter is assumed to be counterclockwise, the same method can be used for clockwise rotation.

Figure 2008086083
Figure 2008086083

簡単化のため、3相平衡状態が保たれているとしαu、αv、αwをαxとおき、数8を数9に代入すると、各相の電圧指令と相電流の位相差αxを数10のように導出することができる。   For simplification, assuming that a three-phase equilibrium state is maintained, αu, αv, αw are set as αx, and when Equation 8 is substituted into Equation 9, the phase difference αx between the voltage command and the phase current of each phase is Can be derived as follows.

Figure 2008086083
Figure 2008086083

すなわち、図2(a)における各相電圧指令と相電流の位相差αxを固定子座標系の2軸成分より算出することができ、電圧位相を基準としてインバータ制御を行う場合でも、各相の電圧指令と相電流の位相差αxが算出でき、デッドタイム補償が簡易かつ正確に行える。また、相電流が0[A]近辺では検出される電流極性が正方向に振れたり負方向に振れたりして不安定であるため、検出電流値が所定値以下の区間(以下、本区間を禁止帯と称する)でデッドタイム補償を行わない等の特殊な処理を行う必要なく、高精度なデッドタイム補償が実現できる。
さらに、実環境におけるノイズが大きい場合等には、数10の入出力においてフィルタを用いても良い。
That is, the phase difference αx between each phase voltage command and phase current in FIG. 2 (a) can be calculated from the biaxial components of the stator coordinate system, and even when inverter control is performed based on the voltage phase, The phase difference αx between the voltage command and phase current can be calculated, and dead time compensation can be performed easily and accurately. Also, when the phase current is in the vicinity of 0 [A], the detected current polarity swings in the positive direction or in the negative direction and is unstable, so the section where the detected current value is less than the predetermined value (hereinafter this section is It is possible to realize highly accurate dead time compensation without requiring special processing such as not performing dead time compensation in a forbidden band).
Furthermore, when the noise in the actual environment is large, a filter may be used in the input / output of several tens.

また、同様に各相の電圧指令と相電流の位相差αxは回転座標系(dq座標系)上の電流情報から直接求めることができる。簡単化のため、U相方向とα軸の方向を回転角の0[deg]とし、3相2相変換手段20の出力であるα軸・β軸電流に対して回転座標変換手段30にて回転座標変換を行う。すなわち、数11のような回転行列を乗じる。   Similarly, the voltage command of each phase and the phase difference αx between the phase currents can be directly obtained from the current information on the rotating coordinate system (dq coordinate system). For the sake of simplification, the rotation coordinate conversion means 30 changes the U-phase direction and the α-axis direction to 0 [deg] of the rotation angle with respect to the α-axis / β-axis current output from the three-phase two-phase conversion means 20. Perform rotation coordinate transformation. That is, a rotation matrix such as Equation 11 is multiplied.

Figure 2008086083
Figure 2008086083

簡単化のため、3相平衡状態が保たれているとし、各相の電圧指令の位相と電流位相の位相差αu、αv、αwをαxとおき、U相方向を基準位相(0[deg])とおいて固定子座標系の場合と同様に数11を展開すると、αxを数12のように導出することができる。数11では回転方向を反時計回りに取っているが、場合によっては時計回りに展開しても、同様の方法でαxを算出できる。   For simplicity, it is assumed that a three-phase equilibrium state is maintained. The phase difference αu, αv, αw between the voltage command phase and current phase of each phase is set as αx, and the U-phase direction is set to the reference phase (0 [deg] ) In the same manner as in the stator coordinate system, αx can be derived as shown in Equation 12 by expanding Equation 11. Although the rotational direction is taken counterclockwise in Equation 11, αx can be calculated by the same method even if it is developed clockwise in some cases.

Figure 2008086083
Figure 2008086083

すなわち、図2(a)における各相電圧指令と相電流の位相差αxを回転座標系上の2軸電流成分より算出することができ、電圧位相を基準としてインバータ制御を行う場合でも、各相の電圧指令と相電流の位相差αxが得られることが分かる。よって、相電流の極性に依らず、各相の電圧指令と相電流の位相差αxを求めることができ、デッドタイム補償が簡易かつ正確に行える。また、電流レベルが零付近であっても、禁止帯設定等の特殊な処理を行う必要なく、高精度なデッドタイム補償が実現できる。またモータ駆動の際、電流リプルが低減でき、高効率化が実現できる。さらに、実環境におけるノイズが大きい場合等には、数12の入出力においてフィルタを用いても良い。   That is, the phase difference αx between each phase voltage command and phase current in FIG. 2 (a) can be calculated from the biaxial current component on the rotating coordinate system, and even when the inverter control is performed based on the voltage phase, each phase It can be seen that a phase difference αx between the voltage command and the phase current is obtained. Therefore, the phase difference αx between the voltage command of each phase and the phase current can be obtained regardless of the polarity of the phase current, and dead time compensation can be performed easily and accurately. Also, even when the current level is near zero, highly accurate dead time compensation can be realized without the need for special processing such as setting of a forbidden band. Further, when the motor is driven, current ripple can be reduced and high efficiency can be realized. Further, when the noise in the actual environment is large, a filter may be used in the input / output of Equation 12.

一般座標系で扱う場合であっても、回転座標系との位相差分Δθを考慮することで、同様にαxを求めることができる。すなわち数11におけるθをθ+Δθとおき、d軸電流・q軸電流に相当するγ軸電流・δ軸電流より数13のようにαxを求めることができる。   Even in the case of handling in the general coordinate system, αx can be similarly obtained by considering the phase difference Δθ with respect to the rotating coordinate system. That is, θ in Equation 11 is set as θ + Δθ, and αx can be obtained as shown in Equation 13 from γ-axis current and δ-axis current corresponding to d-axis current and q-axis current.

Figure 2008086083
Figure 2008086083

このようにして得られた各相電圧指令と相電流の位相差αxとデッドタイム補償量特定次数成分算出手段71において得られた特定次数成分より、デッドタイム補償量ΔVx(x=U,V,W)を演算することで、相電流の極性に依らず、各相の電圧指令と相電流の位相差αxを求めることができ、デッドタイム補償が簡易かつ正確に行える。また、電流レベルが零付近であっても、禁止帯設定等特殊な処理を行う必要なく、高精度なデッドタイム補償が実現できる。さらに、実環境におけるノイズが大きい場合等には、数13の入出力においてフィルタを用いても良い。このようにして、位相差検出手段72において、相電流Iu〜Iwまたは固定子座標系上のα軸電流Iα・β軸電流Iβ、または回転子座標系のd軸電流Id・q軸電流Iq、または一般座標系のγ軸電流Iγ・δ軸電流Iδのいずれかを用いることで、αxを精度良く求めることができる。   From the phase difference αx of each phase voltage command and phase current obtained in this way and the specific order component obtained in the dead time compensation amount specific order component calculation means 71, the dead time compensation amount ΔVx (x = U, V, By calculating W), the phase difference αx between the voltage command of each phase and the phase current can be obtained regardless of the polarity of the phase current, and dead time compensation can be performed easily and accurately. Further, even when the current level is near zero, it is possible to realize highly accurate dead time compensation without requiring special processing such as setting a prohibited band. Further, when the noise in the actual environment is large, a filter may be used in the input / output of Equation 13. In this way, in the phase difference detection means 72, the phase currents Iu to Iw, the α-axis current Iα / β-axis current Iβ on the stator coordinate system, or the d-axis current Id · q-axis current Iq on the rotor coordinate system, Alternatively, αx can be obtained with high accuracy by using either the γ-axis current Iγ or the δ-axis current Iδ in the general coordinate system.

上述のようにして得られた方形波のフーリエ級数展開結果f(t)、及び各相の電圧指令の位相と電流位相の位相差αxよりデッドタイム補償量演算手段73において、デッドタイム補償量ΔVx(x=U,V,W)を演算する。数14に各相のデッドタイム補償量を示す。ただし、数14はU相電圧位相を基準とし、回転子回転方向を反時計周りとした場合の例である。なお、時計周りでも同様な考え方で求められる。   From the Fourier series expansion result f (t) of the square wave obtained as described above and the phase difference αx between the voltage command phase and the current phase of each phase, the dead time compensation amount calculating means 73 performs the dead time compensation amount ΔVx. (X = U, V, W) is calculated. Equation 14 shows the dead time compensation amount of each phase. However, Equation 14 is an example in which the U-phase voltage phase is used as a reference and the rotor rotation direction is counterclockwise. In addition, it is calculated | required by the same view also around the clock.

Figure 2008086083
Figure 2008086083

また、一例としてデッドタイム補償電圧の1次成分を数15で表す。   Also, as an example, the primary component of the dead time compensation voltage is expressed by Equation 15.

Figure 2008086083
Figure 2008086083

図4に、図3に対応する数15のデッドタイム補償電圧の1次成分波形例を示す。数14・数15で求まる各相補償成分ΔVu〜ΔVwを、加算器74a〜74cにて数16に示すように補償前の各相電圧指令Vu*〜Vw*に加算することでVu**〜Vw**を得る。 FIG. 4 shows a first-order component waveform example of the dead time compensation voltage of Formula 15 corresponding to FIG. By adding the phase compensation components ΔVu to ΔVw obtained by Equations 14 and 15 to the respective phase voltage commands Vu * to Vw * before compensation as shown in Equation 16 by the adders 74a to 74c, Vu ** to Obtain Vw ** .

Figure 2008086083
Figure 2008086083

補償後の各相電圧指令Vu**〜Vw**に基づき、PWM信号作成手段80にてスイッチング素子の1キャリア中の通電時間Tup〜Twnが得られる。その後、PWM信号発生手段81により、スイッチング素子4a〜4fに対しマイコンやCPU等から駆動信号Up〜Wnが発せられ、電動機1が駆動可能となる。このようにしてデッドタイム分を補償したインバータ制御が実現でき、相電流ゼロクロス付近でのリプル低減が可能となり、新たな装置を付加することなく、またゼロクロス付近に禁止帯を設けることによる補償性能の劣化なく、精度良くデッドタイム補償が行える、低騒音化・高効率化なモータ駆動が実現できる。 Based on the compensated phase voltage commands Vu ** to Vw ** , the PWM signal generating means 80 obtains energization times Tup to Twn in one carrier of the switching element. Thereafter, the PWM signal generating means 81 issues drive signals Up to Wn to the switching elements 4a to 4f from a microcomputer, a CPU or the like, and the electric motor 1 can be driven. Inverter control that compensates for the dead time can be realized in this way, ripple reduction near the phase current zero crossing becomes possible, and compensation performance can be improved by adding a forbidden band near the zero cross without adding a new device. Noise reduction and high efficiency motor drive that can accurately compensate for dead time without deterioration can be realized.

必要に応じて、デッドタイム誤差電圧の時間積分値と1次成分のデッドタイム補償電圧の時間積分値が等しくなるように、1次成分のデッドタイム補償電圧振幅を調整して補償を行っても良い。図2(c)に、1次成分のみを用いた際のデッドタイム補償電圧の様子を示す。今、図2(b)のデッドタイム誤差電圧に相当するデッドタイム補償電圧と、図2(c)のデッドタイム補償電圧を時間積分値で比較する。図2(b)のデッドタイム誤差電圧に相当するデッドタイム補償電圧の正極性側半周期の時間積分値S1は数2を時間積分することで πfcTdVdc/ω と求められる。
また、図2(c)のデッドタイム補償電圧の正極性側半周期の時間積分値S2も数15を時間積分することで、 8fcTdVdc/πω となる。
よって図2(c)のフーリエ級数展開による1次成分のみの補償では、図2(b)の方形波でデッドタイム補償を行う場合を基準とするとS2/S1=8/π2(約81[%])の補償が行える。そこで、補償量演算手段73は、図2(b)と図2(c)の時間積分値が一致するように、図2(c)の1次成分振幅を π2/8 倍して振幅を設定することで、時間積分値の誤差が少なく、特定次数調波による騒音への影響を軽減し、同時に起動性向上、制御性改善・高効率化が行える。また、補償量演算手段73は、前記補償量特定次数成分算出手段71が算出したデッドタイム誤差電圧の時間積分値とデッドタイム誤差電圧の少なくとも1つ以上の特定次数成分の時間積分値の和が等しくなるようにデッドタイム補償電圧を作成することで、デッドタイム補償電圧の含有高調波に起因する騒音を低減することができる。
If necessary, compensation may be performed by adjusting the dead time compensation voltage amplitude of the primary component so that the time integral value of the dead time error voltage is equal to the time integral value of the dead time compensation voltage of the primary component. good. FIG. 2C shows the state of the dead time compensation voltage when only the primary component is used. Now, the dead time compensation voltage corresponding to the dead time error voltage in FIG. 2B is compared with the dead time compensation voltage in FIG. The time integral value S1 of the positive-side half cycle of the dead time compensation voltage corresponding to the dead time error voltage in FIG. 2B is obtained as πfcTdVdc / ω by time-integrating Equation 2.
Further, the time integration value S 2 of the positive-side half cycle of the dead time compensation voltage in FIG. 2C is also 8fcTdVdc / πω by time-integrating Equation 15.
Therefore, in the compensation of only the first-order component by the Fourier series expansion of FIG. 2C, S2 / S1 = 8 / π 2 (about 81 [ %]). Accordingly, the compensation amount calculation means 73, so that the time integral value shown in FIG. 2 (b) and FIG. 2 (c) are matched, the amplitudes and times [pi 2/8 primary component amplitude shown in FIG. 2 (c) By setting, the error of the time integral value is small, the influence on noise by specific order harmonics is reduced, and at the same time, the startability, controllability improvement and high efficiency can be improved. The compensation amount calculation means 73 calculates the sum of the time integration value of the dead time error voltage calculated by the compensation amount specific order component calculation means 71 and the time integration value of at least one specific order component of the dead time error voltage. By creating the dead time compensation voltage so as to be equal, it is possible to reduce the noise caused by the contained harmonics of the dead time compensation voltage.

また、モータデバイス、アプリケーションによっては、騒音が発生する高調波の次数が定まっており、且つ可能な限りデッドタイムの影響による電流リップルを低減したい場合がある。この場合、1次以外のデッドタイム補償成分は約19%であるので、騒音が問題となる次数を除いた残りの次数を組み合わせてデッドタイム補償を行えばよい。数14に関して、次数成分を組み合わせて補償を行うことで、低騒音かつ高効率なデッドタイム補償が行える。
また、3n次成分は実際のデッドタイム補償に寄与しない。数17に、3次の場合のデッドタイム補償電圧を示す。
In addition, depending on the motor device and application, the order of the harmonics that generate noise is determined, and it may be desired to reduce current ripple due to the effect of dead time as much as possible. In this case, since the dead time compensation component other than the first order is about 19%, the dead time compensation may be performed by combining the remaining orders excluding the order in which noise is a problem. With respect to Equation 14, low-noise and high-efficiency dead time compensation can be performed by performing compensation by combining the order components.
Further, the 3n-order component does not contribute to actual dead time compensation. Equation 17 shows the dead time compensation voltage in the third-order case.

Figure 2008086083
Figure 2008086083

ここでA=−4・fc・Td・Vdc、x=θ−αxとおき、数17に数18のような3相2相変換を施すと、数19のα・β軸電圧成分が得られる。

Figure 2008086083
Here, when A = −4 · fc · Td · Vdc and x = θ−αx, and the three-phase two-phase conversion shown in Equation 18 is performed, the α · β-axis voltage component of Equation 19 is obtained. .
Figure 2008086083

Figure 2008086083
Figure 2008086083

次に、数20または数21に示す回転座標変換を施すと、数22のd・q軸電圧成分が得られ、結果両成分とも0となる。

Figure 2008086083
Next, when the rotational coordinate conversion shown in Equation 20 or 21 is performed, the d · q axis voltage component of Equation 22 is obtained, and as a result, both components become zero.
Figure 2008086083

Figure 2008086083
Figure 2008086083

Figure 2008086083
Figure 2008086083

3次の倍数も同様に導出でき、デッドタイム補償に寄与しないことが分かる。以上より、補償量演算手段73は、デッドタイム誤差電圧の特定次数成分のうち、3n次成分以外の少なくとも1つの奇数次成分を求めてデッドタイム補償を行うことで、計算負荷を軽減させたデッドタイム補償が行える。また、補償量演算手段73は、必要に応じて、デッドタイム誤差電圧の特定次数成分のうち、運転周波数または負荷トルクの大きさまたは出力電圧の大きさまたは母線電圧に対する出力電圧の割合(以後、変調率と称す)に応じて、少なくとも1つ以上のデッドタイム誤差電圧の特定次数成分のうちから、使用する少なくとも1つ以上の次数成分を選択してデッドタイム補償を行うことで、モータデバイス特有の騒音等に対しても低騒音に駆動できる。   It can be seen that the third order multiple can be derived in the same manner and does not contribute to the dead time compensation. As described above, the compensation amount calculation means 73 obtains at least one odd-order component other than the 3n-order component among the specific order components of the dead time error voltage, and performs dead time compensation, thereby reducing the calculation load. Time compensation can be performed. In addition, the compensation amount calculation means 73, if necessary, out of the specific order component of the dead time error voltage, the magnitude of the operating frequency or the load torque, the magnitude of the output voltage, or the ratio of the output voltage to the bus voltage (hereinafter, Depending on the modulation rate), at least one order component to be used is selected from at least one specific order component of the dead time error voltage to compensate for the dead time. It can be driven with low noise against the noise of the other.

図5は、本発明の実施の形態1に係る制御部100のデッドタイム補償の動作を示すフローチャートである。次に、制御部100の動作を図5を参照しながら説明する。
制御部100は、まず、各相の電流値を相電流検出手段10を用いて取得する。また、制御部100は、直流電圧検出手段90を用いて直流電源1の直流電圧を取得する。さらに、外部より周波数指令値を取得する。また、回転子センサがある場合には回転子の位置を検出する。(ステップ501)。次に、制御部100は、取得した相電流と直流電圧と周波数指令値と回転子位置とから相電流の位相と相電圧との位相差αxを演算する(ステップ502)。次に、制御部100は、取得した直流電圧と予め設定されているデッドタイムと周波数とから補償量特定次数成分を算出する(ステップ503)。次に、制御部100は、ステップ502で得られた相電流と相電圧の位相差αxと、ステップ503で得られた補償量特定次数成分を用いてデッドタイム補償量を算出する(ステップ504)。ただし、ステップ504のデッドタイム補償量算出に関して、デッドタイム誤差電圧と補償するデッドタイム補償電圧特定次数成分の時間積分値が一致するようにデッドタイム補償電圧特定次数成分の振幅を調整しても良い。次に、制御部100は、このデッドタイム補償量を周波数指令に基づいて算出した指令電圧に加え、この加算値に基づいてPWM信号を作成する(ステップ505)。次に、制御部100は、PWM信号をインバータ主回路2に出力する(ステップ506)。
FIG. 5 is a flowchart showing the dead time compensation operation of the control unit 100 according to Embodiment 1 of the present invention. Next, the operation of the control unit 100 will be described with reference to FIG.
First, the control unit 100 acquires the current value of each phase using the phase current detection means 10. In addition, the control unit 100 acquires the DC voltage of the DC power source 1 using the DC voltage detection unit 90. Furthermore, a frequency command value is acquired from the outside. If there is a rotor sensor, the position of the rotor is detected. (Step 501). Next, the control unit 100 calculates the phase difference αx between the phase of the phase current and the phase voltage from the acquired phase current, DC voltage, frequency command value, and rotor position (step 502). Next, the control unit 100 calculates a compensation amount specific order component from the acquired DC voltage, a preset dead time, and frequency (step 503). Next, the control unit 100 calculates a dead time compensation amount using the phase difference αx between the phase current and the phase voltage obtained in step 502 and the compensation amount specific order component obtained in step 503 (step 504). . However, regarding the dead time compensation amount calculation in step 504, the amplitude of the dead time compensation voltage specific order component may be adjusted so that the dead time error voltage and the time integral value of the dead time compensation voltage specific order component to be compensated match. . Next, the control unit 100 adds the dead time compensation amount to the command voltage calculated based on the frequency command, and creates a PWM signal based on the added value (step 505). Next, the control unit 100 outputs a PWM signal to the inverter main circuit 2 (step 506).

以上のように、実施の形態1によれば、3相電圧型PWMインバータ制御方法及び装置は、相電流または相電流の固定子座標系上の2軸成分または相電流の回転座標系上の2軸成分または相電流の一般座標系上の2軸成分と直流電圧とデッドタイムとキャリア周波数からデッドタイム誤差電圧の特定次数成分を求めてデッドタイム補償を行うので、新たな装置を付加することなく、相電流のゼロクロス付近においても検出時のハンチング無く、またゼロクロス付近に禁止帯を設けることによる補償性能の劣化なく、精度良くデッドタイム補償が行える。またPWM周波数に依らずに低騒音化が行え、運転周波数や駆動対象モータに対する適用制約が少なく、デッドタイム補償電圧を簡易な方法で生成し、電流リプルが少なく、高効率な運転を実現できるインバータ制御方法・装置を得ることができる。   As described above, according to the first embodiment, the three-phase voltage type PWM inverter control method and apparatus are the two-axis component on the phase coordinate or the stator coordinate system of the phase current or the two-axis component on the rotational coordinate system of the phase current. Since the specific order component of the dead time error voltage is obtained from the two axis components on the general coordinate system of the axis component or phase current, the DC voltage, the dead time, and the carrier frequency, dead time compensation is performed, so that a new device is not added. Even in the vicinity of the zero cross of the phase current, dead time compensation can be performed with high accuracy without hunting at the time of detection and without deterioration in compensation performance due to the provision of a forbidden band near the zero cross. Inverter that can reduce noise without depending on PWM frequency, has few restrictions on operation frequency and drive target motor, generates dead time compensation voltage in a simple way, has less current ripple, and realizes high-efficiency operation A control method and apparatus can be obtained.

実施の形態2.
図1では、2相3相変換手段60で得られる各相電圧指令値Vu*〜Vw*に対して、デッドタイム補償成分ΔVu〜ΔVwを加算器74a〜74cを介して各相に加算した後、PWM信号作成手段80によりPWM信号を作成し、PWM信号発生手段81でPWM信号を発生する例を示した。
デッドタイム補償量の演算は、固定子座標系から行っても良い。
本実施の形態2では、このデッドタイム補償量の演算を固定子座標系(αβ座標系)から行う場合について説明する。
図6は、本発明の実施の形態2にかかるPWMインバータの制御装置を示す図である。
図6は、図1と比較してデッドタイム補償を行う箇所が異なる
以下、本発明の実施の形態2にかかるインバータのデッドタイム補償方法・装置について実施の形態1と異なる点について図面を参照しながら説明する。
図6では、固定子座標系上の電圧指令の2軸成分に対して補償電圧成分を加算することでデッドタイム補償を行う。すなわち図6は、回転座標逆変換手段50で得られたα軸電圧指令Vα*とβ軸電圧指令Vβ*に対して、補償量演算手段71で算出したα軸電圧指令補償成分ΔVα*とβ軸電圧指令補償成分ΔVβ*を加算器76a〜76bを介してαβ軸の各成分に加算することでデッドタイム補償を行う。デッドタイム補償後のαβ軸の各電圧成分Vα**及びVβ**は数23で表せる。
Embodiment 2. FIG.
In FIG. 1, after the dead time compensation components ΔVu to ΔVw are added to the respective phases via the adders 74 a to 74 c with respect to the respective phase voltage command values Vu * to Vw * obtained by the two-phase / three-phase conversion means 60. In the example, a PWM signal is generated by the PWM signal generating means 80 and a PWM signal is generated by the PWM signal generating means 81.
The calculation of the dead time compensation amount may be performed from the stator coordinate system.
In the second embodiment, a case where the calculation of the dead time compensation amount is performed from the stator coordinate system (αβ coordinate system) will be described.
FIG. 6 is a diagram illustrating a PWM inverter control device according to the second embodiment of the present invention.
FIG. 6 differs from FIG. 1 in that the dead time compensation is performed. Hereinafter, the difference in the dead time compensation method and apparatus for the inverter according to the second embodiment of the present invention from the first embodiment will be described with reference to the drawings. While explaining.
In FIG. 6, dead time compensation is performed by adding a compensation voltage component to the biaxial component of the voltage command on the stator coordinate system. That is, FIG. 6 shows that the α-axis voltage command Vα * and β-axis voltage command Vβ * obtained by the rotating coordinate inverse conversion means 50 are compared with the α-axis voltage command compensation components ΔVα * and β calculated by the compensation amount calculating means 71. The dead time compensation is performed by adding the shaft voltage command compensation component ΔVβ * to each component of the αβ axis via the adders 76a to 76b. The voltage components Vα ** and Vβ ** on the αβ axis after the dead time compensation can be expressed by Equation 23.

Figure 2008086083
Figure 2008086083

以下、動作について説明する。数7をベースに、数14のようにして得られた各相のデッドタイム補償量を補償量演算手段73において数18の3相2相変換を施し、固定子座標系上の2軸成分に変換する。   The operation will be described below. Based on Equation 7, the dead time compensation amount of each phase obtained as shown in Equation 14 is subjected to the three-phase two-phase transformation of Equation 18 in the compensation amount calculation means 73, and the biaxial component on the stator coordinate system is converted into a biaxial component. Convert.

次に、回転座標逆変換50で得られるα軸電圧指令Vα*、β軸電圧指令Vβ*に対して、加算器76a〜76bを通して補償量各成分を加算し、Vα*'(=Vα*+ΔVα)、Vβ*'(=Vβ*+ΔVβ)を得る。Vα*'、Vβ*'を2相3相変換手段に用い、各相電圧指令Vu*〜Vw*を演算する。以後の動作は実施の形態1と同様である。
以上により、固定子座標系上でもデッドタイム補償を行うことができる。なお、数15では1次成分の例を示しているが、数14に示す特定次数成分についても同様の考え方で行える。
Next, the compensation amount components are added through the adders 76a to 76b to the α-axis voltage command Vα * and β-axis voltage command Vβ * obtained by the rotational coordinate inverse transform 50, and Vα * ′ (= Vα * + ΔVα ), Vβ * ′ (= Vβ * + ΔVβ) is obtained. Vα * ′ and Vβ * ′ are used for the two-phase / three-phase conversion means to calculate each phase voltage command Vu * to Vw * . Subsequent operations are the same as those in the first embodiment.
Thus, dead time compensation can be performed even on the stator coordinate system. In addition, although the example of the primary component is shown in Equation 15, the specific order component shown in Equation 14 can be performed in the same way.

実施の形態2によれば、実施の形態1と同様の効果に加え、加算器の数は実施の形態1よりも1つ少なくて済む。   According to the second embodiment, in addition to the same effects as those of the first embodiment, the number of adders is one less than that of the first embodiment.

実施の形態3.
デッドタイム補償量の演算は、回転座標系(dq座標系)から行っても良い。
本実施の形態3では、このデッドタイム補償量の演算を回転座標系(dq座標系)から行う場合について説明する。
図7は、本発明の実施の形態3にかかるPWMインバータの制御装置を示す図である。
図7は、図1と比較してデッドタイム補償を行う箇所が異なる。
以下、本発明の実施の形態3にかかるインバータのデッドタイム補償方法・装置について実施の形態1と異なる点について図面を参照しながら説明する。
図7では、回転座標系又は一般座標系上の電圧指令の2軸成分に対して補償電圧成分を加算することでデッドタイム補償を行う。すなわち図7は、電圧指令演算手段40で得られたd軸電圧指令Vd*(またはγ軸電圧指令Vγ*)とq軸電圧指令Vq*(またはδ軸電圧指令Vδ*)に対して、補償量演算部70で算出したd軸電圧指令補償成分ΔVd*(またはγ軸電圧指令補償成分ΔVγ*)とq軸電圧指令補償成分ΔVq*(またはδ軸電圧指令補償成分ΔVδ*)を加算器75a〜75bを介してd軸電圧・q軸電圧(またはγ軸電圧・δ軸電圧)の各成分に加算することでデッドタイム補償を行う。デッドタイム補償後のdq軸(γδ軸)の各電圧成分Vd**(Vγ**)及びVq**(Vδ**)は数24・数25で表せる。
Embodiment 3 FIG.
The calculation of the dead time compensation amount may be performed from the rotating coordinate system (dq coordinate system).
In the third embodiment, a case where the calculation of the dead time compensation amount is performed from the rotating coordinate system (dq coordinate system) will be described.
FIG. 7 is a diagram illustrating a PWM inverter control device according to the third embodiment of the present invention.
FIG. 7 differs from FIG. 1 in the point where dead time compensation is performed.
Hereinafter, the inverter dead time compensation method and apparatus according to the third embodiment of the present invention will be described with reference to the drawings, with respect to differences from the first embodiment.
In FIG. 7, dead time compensation is performed by adding a compensation voltage component to the biaxial component of the voltage command on the rotating coordinate system or the general coordinate system. That is, FIG. 7 shows compensation for the d-axis voltage command Vd * (or γ-axis voltage command Vγ * ) and q-axis voltage command Vq * (or δ-axis voltage command Vδ * ) obtained by the voltage command calculation means 40. The adder 75a adds the d-axis voltage command compensation component ΔVd * (or γ-axis voltage command compensation component ΔVγ * ) and q-axis voltage command compensation component ΔVq * (or δ-axis voltage command compensation component ΔVδ * ) calculated by the quantity calculation unit 70. The dead time compensation is performed by adding to each component of d-axis voltage and q-axis voltage (or γ-axis voltage and δ-axis voltage) through ˜75b. The voltage components Vd ** (Vγ ** ) and Vq ** (Vδ ** ) on the dq axis (γδ axis) after the dead time compensation can be expressed by Expression 24 and Expression 25.

Figure 2008086083
Figure 2008086083

Figure 2008086083
Figure 2008086083

以下、動作について説明する。数7をベースに、数14のようにして得られた各相のデッドタイム補償量を補償量演算手段73において数18の3相2相変換を施し、固定子座標系上の2軸成分に変換する。   The operation will be described below. Based on Equation 7, the dead time compensation amount of each phase obtained as shown in Equation 14 is subjected to the three-phase two-phase transformation of Equation 18 in the compensation amount calculation means 73, and the biaxial component on the stator coordinate system is converted into a biaxial component. Convert.

次に、数18によって得られたα軸電圧指令Vα*、β軸電圧指令Vβ*に数20の回転座標変換を施し、補償量成分を回転子座標系上の2軸成分に変換する。電圧指令演算手段40で得られたd軸電圧指令Vd*、q軸電圧指令Vq*に対して、加算器75a〜75bを介して補償量の各成分を数24のように加算することで、回転座標系上でもデッドタイム補償を行うことができる。 Next, the rotational coordinate transformation of Equation 20 is applied to the α-axis voltage command Vα * and β-axis voltage command Vβ * obtained by Equation 18, and the compensation amount component is transformed into a biaxial component on the rotor coordinate system. By adding each component of the compensation amount via the adders 75a to 75b to the d-axis voltage command Vd * and the q-axis voltage command Vq * obtained by the voltage command calculation means 40 as shown in Equation 24, Dead time compensation can be performed even on a rotating coordinate system.

また、デッドタイム補償量の演算は、一般座標系(γδ座標系)から行っても良い。実際の回転子位置に対して、Δθだけ位相差を持ってインバータが回転しているような位置センサレス制御の場合に関しても、数21のように回転子位置に対する制御位置のずれΔθ分を考慮し、同様な手法で行える。電圧指令演算手段40で得られたγ軸電圧指令Vγ*、δ軸電圧指令Vδ*に対して、加算器75a〜75bを介して補償量の各成分を数25のように加算することで、一般座標系上でもデッドタイム補償を行うことができる。また、Δθを考慮することで、加減速時にも高精度にデッドタイム補償を行える。また、アプリケーションや運転状態によっては、Δθを無視して行っても良い。 The calculation of the dead time compensation amount may be performed from a general coordinate system (γδ coordinate system). Even in the case of position sensorless control in which the inverter rotates with a phase difference of Δθ with respect to the actual rotor position, the control position deviation Δθ corresponding to the rotor position is taken into consideration as shown in Equation 21. This can be done in the same way. By adding each component of the compensation amount to the γ-axis voltage command Vγ * and the δ-axis voltage command Vδ * obtained by the voltage command calculation unit 40 via the adders 75a to 75b as shown in Equation 25, Dead time compensation can also be performed on a general coordinate system. Further, by taking Δθ into consideration, dead time compensation can be performed with high accuracy even during acceleration / deceleration. Further, depending on the application and operating state, Δθ may be ignored.

実施の形態3によれば、実施の形態1と同様の効果に加え、加算器は実施の形態1よりも1つ少なくて済む。   According to the third embodiment, in addition to the same effects as those of the first embodiment, the number of adders is one less than that of the first embodiment.

実施の形態4.
デッドタイム補償量の演算は、電圧指令から行っても良い。
本実施の形態4では、このデッドタイム補償量の演算を電圧指令から行う場合について説明する。
図8は、本発明の実施の形態4にかかるPWMインバータの制御装置を示す図である。
図8は、図1と比較してデッドタイム補償を行う箇所が異なる。
以下、本発明の実施の形態4にかかるインバータのデッドタイム補償方法・装置について実施の形態1と異なる点について図面を参照しながら説明する。
図8では、デッドタイム補償成分を考慮して電圧指令V**を作成する。デッドタイム補償前の電圧指令V*は数26のように表せる。
Embodiment 4 FIG.
The calculation of the dead time compensation amount may be performed from a voltage command.
In the fourth embodiment, a case where the calculation of the dead time compensation amount is performed from a voltage command will be described.
FIG. 8 is a diagram illustrating a PWM inverter control device according to the fourth embodiment of the present invention.
FIG. 8 differs from FIG. 1 in the point where dead time compensation is performed.
Hereinafter, the inverter dead time compensation method and apparatus according to the fourth embodiment of the present invention will be described with reference to the drawings, with respect to differences from the first embodiment.
In FIG. 8, the voltage command V ** is created in consideration of the dead time compensation component. The voltage command V * before dead time compensation can be expressed as shown in Equation 26.

Figure 2008086083
Figure 2008086083

以下、動作について説明する。
図8は、電圧指令演算手段40において、d軸電流Id(またはγ軸電流Iγ)、q軸電流Iq(またはδ軸電流Iδ)と周波数指令ωe*と直流電圧値Vdcの情報から各種ベクトル制御を行うことで得られたdq軸又はγδ軸のいずれかの電圧成分より数26を計算して得られる電圧指令V*に対し、補償量演算部70が数27を用いて算出した電圧指令補償成分ΔV*を用いて電圧指令値V**を作成する。デッドタイム補償後の電圧指令値V**は数28で表せる。上記ように補償された各電圧成分又は電圧指令を用いてPWMを作成し出力する。
The operation will be described below.
FIG. 8 shows various vector controls in the voltage command calculation means 40 from information on the d-axis current Id (or γ-axis current Iγ), the q-axis current Iq (or δ-axis current Iδ), the frequency command ωe *, and the DC voltage value Vdc. Voltage command compensation calculated by the compensation amount calculation unit 70 using Equation 27 for the voltage command V * obtained by calculating Equation 26 from the voltage component of either the dq axis or the γδ axis obtained by performing A voltage command value V ** is created using the component ΔV * . The voltage command value V ** after the dead time compensation can be expressed by Equation 28. A PWM is created and output using each voltage component or voltage command compensated as described above.

Figure 2008086083
Figure 2008086083

Figure 2008086083
Figure 2008086083

インバータ制御で良く用いられる空間ベクトル変調等のPWM方式では、数26で得られた電圧指令V*に基づいてPWM信号を作成するので、電圧指令V*に対して補償量を加算する方が制御アルゴリズム上都合が良い場合がある。よって、 本実施の形態4によれば、回転座標系上又は一般座標系上で得られた2軸補償量成分を数27のような電圧指令の補償量成分ΔV*として算出し、数28で指令電圧を計算することで、より柔軟に各種変調方式に対応することができる。 In a PWM method such as space vector modulation often used in inverter control, a PWM signal is created based on the voltage command V * obtained by Equation 26. Therefore, it is controlled to add a compensation amount to the voltage command V *. It may be convenient for the algorithm. Therefore, according to the fourth embodiment, the biaxial compensation amount component obtained on the rotating coordinate system or the general coordinate system is calculated as the compensation amount component ΔV * of the voltage command as shown in Equation 27, and By calculating the command voltage, various modulation methods can be handled more flexibly.

また、本実施の形態4によれば、 実施の形態1と同様の効果に加え、加算器は不要である。   Further, according to the fourth embodiment, in addition to the same effects as those of the first embodiment, an adder is unnecessary.

本発明の実施の形態1にかかるPWMインバータの制御装置を示す図である。It is a figure which shows the control apparatus of the PWM inverter concerning Embodiment 1 of this invention. 本発明の実施の形態1〜2による任意の相電圧指令と相電流の位相差の位置関係、デッドタイムによる誤差電圧の例およびフーリエ級数展開により求めた誤差電圧の1次成分を補償する補償電圧パターンの例を示す図である。Compensation voltage for compensating the primary component of the error voltage obtained by the positional relationship between the phase difference between the arbitrary phase voltage command and the phase current according to the first and second embodiments of the present invention, an example of the error voltage due to the dead time, and Fourier series expansion It is a figure which shows the example of a pattern. 本発明の実施の形態1〜2によるフーリエ級数展開を行う周期関数(デッドタイム誤差電圧)の例を示す図である。It is a figure which shows the example of the periodic function (dead time error voltage) which performs the Fourier series expansion by Embodiment 1-2 of this invention. 本発明の実施の形態1〜2によるデッドタイム補償電圧のU相電圧成分の例を示す図である。It is a figure which shows the example of the U-phase voltage component of the dead time compensation voltage by Embodiment 1-2 of this invention. 本発明の実施の形態1にかかるPWMインバータの制御部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control part of the PWM inverter concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかるPWMインバータの制御装置を示す図である。It is a figure which shows the control apparatus of the PWM inverter concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかるPWMインバータの制御装置を示す図である。It is a figure which shows the control apparatus of the PWM inverter concerning Embodiment 3 of this invention. 本発明の実施の形態4にかかるPWMインバータの制御装置を示す図である。It is a figure which shows the control apparatus of the PWM inverter concerning Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 直流電源、2 インバータ主回路、3a〜3c 電流検出手段、4a〜4f スイッチング素子、5a〜5f ダイオード、6 電動機、10 相電流検出手段、20 3相2相変換手段、30 回転座標変換手段、40 電圧指令演算手段、50 回転座標逆変換手段、60 2相3相変換手段、70 デッドタイム補償部、71 補償量特定次数成分算出手段、72 位相差検出手段、73 補償量演算手段、74a〜74c 加算器、75a〜75b 加算器、76a〜76b 加算器、80 PWM信号作成手段、81 PWM信号発生手段、90 直流電圧検出手段、100 インバータ制御部、113〜115 加算器、116 PWMパルス演算器、117 電圧指令演算器、121・131・141 比較器、122・132・142 補償量演算器、123・133・143 乗算器、124・134・144 積分器、151 周波数設定器。   DESCRIPTION OF SYMBOLS 1 DC power supply, 2 Inverter main circuit, 3a-3c Current detection means, 4a-4f Switching element, 5a-5f Diode, 6 Electric motor, 10 phase current detection means, 20 3 phase 2 phase conversion means, 30 Rotation coordinate conversion means, 40 voltage command calculation means, 50 rotational coordinate reverse conversion means, 60 two-phase three-phase conversion means, 70 dead time compensation section, 71 compensation amount specific order component calculation means, 72 phase difference detection means, 73 compensation amount calculation means, 74a- 74c adder, 75a to 75b adder, 76a to 76b adder, 80 PWM signal generation means, 81 PWM signal generation means, 90 DC voltage detection means, 100 inverter control unit, 113 to 115 adder, 116 PWM pulse calculator 117 Voltage command calculator, 121/131/141 comparator, 122/132/142 The amount calculator, 123, 133, 143 multipliers, 124, 134, 144 integrator 151 frequency setting device.

Claims (16)

直流電源とスイッチング手段とを有する電圧形PWMインバータの、前記直流電源の電圧を検出する直流電圧検出手段と、
前記電圧形PWMインバータの各相の出力電流を検出する電流検出手段と、
前記直流電圧検出手段の出力と前記電流検出手段の出力に基づいて前記スイッチング手段のアーム短絡防止用のデッドタイムに起因する、前記電圧形PWMインバータの電圧指令と出力電圧との間の誤差電圧を補償するための補償量を生成するデッドタイム補償部と、
周波数指令と前記直流電圧検出手段の出力と前記電流検出手段の出力に基づいて電圧指令を算出する電圧指令演算手段と、
この電圧指令演算手段の出力と前記デッドタイム補償部の出力とに基づいてPWM信号を作成するPWM信号作成手段と、
このPWM信号作成手段によって得られたPWM信号を発生するPWM信号発生手段と、を備え、
前記デッドタイム補償部は、前記電流検出手段の出力に基づいて相電圧と相電流の位相差を算出する位相差検出手段と、
前記スイッチング手段のキャリア周波数と前記直流電圧検出手段の出力と予め定めたデッドタイムとに基づいてデッドタイム誤差電圧の特定次数成分を算出する補償量特定次数成分算出手段と、
前記位相差検出手段の出力と前記補償量特定次数成分算出手段の出力に基づいて前記補償量を生成する補償量演算手段とを備えたことを特徴とするPWMインバータ制御装置。
DC voltage detection means for detecting the voltage of the DC power supply of a voltage source PWM inverter having a DC power supply and switching means;
Current detection means for detecting an output current of each phase of the voltage-type PWM inverter;
Based on the output of the DC voltage detection means and the output of the current detection means, an error voltage between the voltage command of the voltage-type PWM inverter and the output voltage caused by the dead time for preventing arm short circuit of the switching means is obtained. A dead time compensation unit for generating a compensation amount for compensation;
Voltage command calculation means for calculating a voltage command based on a frequency command, an output of the DC voltage detection means, and an output of the current detection means;
PWM signal creation means for creating a PWM signal based on the output of the voltage command calculation means and the output of the dead time compensation unit;
PWM signal generating means for generating a PWM signal obtained by the PWM signal generating means,
The dead time compensation unit includes a phase difference detection unit that calculates a phase difference between a phase voltage and a phase current based on an output of the current detection unit;
A compensation amount specific order component calculating means for calculating a specific order component of a dead time error voltage based on a carrier frequency of the switching means, an output of the DC voltage detecting means and a predetermined dead time;
A PWM inverter control apparatus comprising: a compensation amount calculation unit that generates the compensation amount based on an output of the phase difference detection unit and an output of the compensation amount specific order component calculation unit.
前記電流検出手段が検出した相電流を固定子座標系上の2軸成分に変換する3相2相変換手段を備え、
前記位相差検出手段は、前記3相2相変換手段の出力と前記直流電圧検出手段の出力に基づいて相電圧と相電流の位相差を算出することを特徴とする請求項1記載のPWMインバータ制御装置。
Comprising three-phase two-phase conversion means for converting the phase current detected by the current detection means into two-axis components on a stator coordinate system;
2. The PWM inverter according to claim 1, wherein the phase difference detection unit calculates a phase difference between the phase voltage and the phase current based on an output of the three-phase / two-phase conversion unit and an output of the DC voltage detection unit. Control device.
前記電流検出手段が検出した相電流を回転子の電気角周波数と同一周波数で回転する座標系上における相電流の2軸成分に変換する回転座標変換手段を備え、
前記位相差検出手段は、前記回転座標変換手段の出力と前記直流電圧検出手段の出力に基づいて相電圧と相電流の位相差を算出することを特徴とする請求項1記載のPWMインバータ制御装置。
Rotational coordinate conversion means for converting the phase current detected by the current detection means into a biaxial component of the phase current on a coordinate system that rotates at the same frequency as the electrical angular frequency of the rotor;
2. The PWM inverter control device according to claim 1, wherein the phase difference detection unit calculates a phase difference between a phase voltage and a phase current based on an output of the rotating coordinate conversion unit and an output of the DC voltage detection unit. .
前記電流検出手段が検出した相電流をインバータの出力電圧と同一周波数で回転する座標系上における相電流の2軸成分に変換する回転座標変換手段を備え、
前記位相差検出手段は、前記回転座標変換手段の出力と前記直流電圧検出手段の出力に基づいて相電圧と相電流の位相差を算出することを特徴とする請求項1記載のPWMインバータ制御装置。
A rotation coordinate conversion means for converting the phase current detected by the current detection means into a two-axis component of the phase current on a coordinate system rotating at the same frequency as the output voltage of the inverter;
2. The PWM inverter control device according to claim 1, wherein the phase difference detection unit calculates a phase difference between a phase voltage and a phase current based on an output of the rotating coordinate conversion unit and an output of the DC voltage detection unit. .
前記補償量演算手段は、前記補償量特定次数成分算出手段が算出したデッドタイム誤差電圧の少なくとも1つ以上の特定次数成分を用いてデッドタイム補償電圧を作成することを特徴とする請求項1〜4のいずれかに記載のPWMインバータ制御装置。   The compensation amount calculating means creates a dead time compensation voltage using at least one specific order component of the dead time error voltage calculated by the compensation amount specific order component calculating means. 4. The PWM inverter control device according to claim 4. 前記補償量演算手段は、前記補償量特定次数成分算出手段が算出したデッドタイム誤差電圧の時間積分値とデッドタイム誤差電圧の少なくとも1つ以上の特定次数成分の時間積分値の和が等しくなるように使用するデッドタイム誤差電圧の各次数成分振幅を設定することを特徴とする請求項1〜5のいずれかに記載のPWMインバータ制御装置。   The compensation amount calculation means is configured such that the sum of the time integration value of the dead time error voltage calculated by the compensation amount specific order component calculation means and the time integration value of at least one specific order component of the dead time error voltage is equal. The PWM inverter control device according to claim 1, wherein each order component amplitude of a dead time error voltage used in the step is set. 前記補償量演算手段は、前記補償量特定次数成分算出手段が算出したデッドタイム誤差電圧の特定次数成分のうち、3n(nは正の整数)次成分以外の少なくとも1つの奇数次成分を求めてデッドタイム補償を行うことを特徴とする請求項1〜6のいずれかに記載のPWMインバータ制御装置。   The compensation amount calculation means obtains at least one odd-order component other than the 3n (n is a positive integer) order component among the specific order components of the dead time error voltage calculated by the compensation amount specific order component calculation means. The PWM inverter control device according to claim 1, wherein dead time compensation is performed. 前記補償量演算手段は、前記補償量特定次数成分算出手段が算出したデッドタイム誤差電圧の特定次数成分のうち、運転周波数または負荷トルクの大きさまたは出力電圧の大きさまたは変調率に応じて、少なくとも1つ以上のデッドタイム誤差電圧の特定次数成分のうちから、使用する少なくとも1つ以上の次数成分を選択してデッドタイム補償を行うことを特徴とする請求項1〜7のいずれかに記載のPWMインバータ制御装置。   The compensation amount calculating means, among the specific order components of the dead time error voltage calculated by the compensation amount specific order component calculating means, according to the operating frequency or the magnitude of the load torque, the magnitude of the output voltage or the modulation rate, The dead time compensation is performed by selecting at least one order component to be used from among at least one specific order component of at least one dead time error voltage. PWM inverter control device. 前記電圧指令演算手段からの各相電圧指令に対して前記補償量演算手段のデッドタイム補償量の各相成分を加算する加算手段を備えたことを特徴とする請求項1〜8のいずれかに記載のPWMインバータ制御装置。   9. An adding means for adding each phase component of a dead time compensation amount of the compensation amount calculating means to each phase voltage command from the voltage command calculating means. The PWM inverter control device described. 前記デッドタイム補償部は、インバータの出力電圧と同一周波数で回転する座標系上の2軸電圧指令に対してデッドタイム補償量の各軸成分を加算することを特徴とする請求項4に記載のPWMインバータ制御装置。   The said dead time compensation part adds each axis | shaft component of a dead time compensation amount with respect to the biaxial voltage command on the coordinate system which rotates with the same frequency as the output voltage of an inverter. PWM inverter control device. 前記請求項1〜10のいずれかに記載のPWMインバータ制御装置を備えたことを特徴とする冷凍空調装置。   A refrigeration air conditioner comprising the PWM inverter control device according to any one of claims 1 to 10. 直流電圧と、この直流電圧から電圧形PWMインバータによって得られた交流出力電流とに基づいて前記電圧形PWMインバータのスイッチング手段のアーム短絡防止用のデッドタイムに起因する、前記電圧形PWMインバータの電圧指令と出力電圧との間の誤差電圧を補償するための補償量を生成するデッドタイム補償ステップと、
周波数指令と前記直流電圧と前記交流出力電流に基づいて電圧指令を算出する電圧指令演算ステップと、
この電圧指令演算ステップによって得られた電圧指令と前記デッドタイム補償ステップによって得られた補償量とに基づいてPWM信号を作成するPWM信号作成ステップと、
このPWM信号作成ステップにより作成されたPWM信号を発生するPWM信号発生ステップと、
を備え、
前記デッドタイム補償ステップは、前記直流電圧と、前記電圧形PWMインバータの出力電流とに基づいて相電圧と相電流の位相差を算出する位相差算出ステップと、
前記スイッチング手段のキャリア周波数と前記直流電圧と予め定められたデッドタイムとに基づいてデッドタイム誤差電圧の特定次数成分を算出する補償量特定次数成分算出ステップと、
前記位相差算出ステップの出力と前記補償量特定次数成分算出ステップの出力に基づいて前記補償量を生成する補償量演算ステップとを備えたことを特徴とするPWMインバータ制御方法。
The voltage of the voltage source PWM inverter caused by the dead time for preventing arm short circuit of the switching means of the voltage source PWM inverter based on the DC voltage and the AC output current obtained from the DC voltage by the voltage source PWM inverter. A dead time compensation step for generating a compensation amount for compensating an error voltage between the command and the output voltage;
A voltage command calculation step for calculating a voltage command based on the frequency command, the DC voltage, and the AC output current;
A PWM signal creating step for creating a PWM signal based on the voltage command obtained by the voltage command calculation step and the compensation amount obtained by the dead time compensation step;
A PWM signal generating step for generating the PWM signal generated by the PWM signal generating step;
With
The dead time compensation step calculates a phase difference between a phase voltage and a phase current based on the DC voltage and an output current of the voltage source PWM inverter, and
A compensation amount specific order component calculating step for calculating a specific order component of a dead time error voltage based on a carrier frequency of the switching means, the DC voltage, and a predetermined dead time;
A PWM inverter control method comprising: a compensation amount calculating step for generating the compensation amount based on an output of the phase difference calculating step and an output of the compensation amount specific order component calculating step.
前記位相差検出ステップにおいて、相電流を固定子座標系上の2軸成分と前記直流電圧に基づいて相電圧と相電流の位相差を算出することを特徴とする請求項12記載のPWMインバータ制御方法。   13. The PWM inverter control according to claim 12, wherein in the phase difference detection step, a phase difference between the phase voltage and the phase current is calculated based on the two-axis component on the stator coordinate system and the DC voltage in the phase difference detection step. Method. 前記位相差検出ステップにおいて、相電流を回転子の電気角周波数と同一周波数で回転する座標系上における相電流の2軸成分と前記直流電圧に基づいて相電圧と相電流の位相差を算出することを特徴とする請求項12記載のPWMインバータ制御方法。   In the phase difference detection step, the phase difference between the phase voltage and the phase current is calculated based on the two-axis component of the phase current on the coordinate system that rotates the phase current at the same frequency as the electrical angular frequency of the rotor and the DC voltage. The PWM inverter control method according to claim 12. 前記位相差検出ステップにおいて、相電流をインバータの出力電圧と同一周波数で回転する座標系上における相電流の2軸成分と前記直流電圧に基づいて相電圧と相電流の位相差を算出することを特徴とする請求項12記載のPWMインバータ制御方法。   In the phase difference detection step, calculating the phase difference between the phase voltage and the phase current based on the two-axis component of the phase current on the coordinate system rotating the phase current at the same frequency as the output voltage of the inverter and the DC voltage. The PWM inverter control method according to claim 12, wherein: 前記補償量演算ステップにおいて前記デッドタイム誤差電圧の少なくとも1つ以上の特定次数成分を用いてデッドタイム補償電圧を作成することを特徴とする請求項12〜15のいずれかに記載のPWMインバータ制御方法。   16. The PWM inverter control method according to claim 12, wherein in the compensation amount calculation step, a dead time compensation voltage is created using at least one specific order component of the dead time error voltage. .
JP2006261109A 2006-09-26 2006-09-26 PWM inverter control device, PWM inverter control method, and refrigeration air conditioner Active JP4722002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261109A JP4722002B2 (en) 2006-09-26 2006-09-26 PWM inverter control device, PWM inverter control method, and refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261109A JP4722002B2 (en) 2006-09-26 2006-09-26 PWM inverter control device, PWM inverter control method, and refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2008086083A true JP2008086083A (en) 2008-04-10
JP4722002B2 JP4722002B2 (en) 2011-07-13

Family

ID=39356369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261109A Active JP4722002B2 (en) 2006-09-26 2006-09-26 PWM inverter control device, PWM inverter control method, and refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4722002B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901577A (en) * 2015-06-03 2015-09-09 安庆师范学院 Three-phase inverter dead band time online adjustment and compensation method
WO2017119214A1 (en) * 2016-01-08 2017-07-13 株式会社村田製作所 Electric power converting device
JP2018126021A (en) * 2017-02-03 2018-08-09 株式会社豊田自動織機 Motor controller
CN110323813A (en) * 2019-06-19 2019-10-11 国网电动汽车服务(福建)有限公司 A kind of electric automobile charging pile prime PWM rectifier control strategy based on guaranteed cost control
JP2020524971A (en) * 2017-06-14 2020-08-20 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Method for determining the phase current of a rotating polyphase electric device fed by a PWM control type inverter
CN115776262A (en) * 2023-02-13 2023-03-10 中国科学院宁波材料技术与工程研究所 Dynamic compensation method and compensation system for dead zone of rim motor and rim motor system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118081A (en) * 1983-11-29 1985-06-25 Meidensha Electric Mfg Co Ltd Vector controller of induction motor
JPH01274682A (en) * 1988-04-27 1989-11-02 Hitachi Ltd Controlling method for voltage type inverter
JP2003125594A (en) * 2001-10-15 2003-04-25 Fuji Electric Co Ltd Controller of permanent magnet synchronous motor
JP2006050815A (en) * 2004-08-05 2006-02-16 Denso Corp Control unit of synchronous motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118081A (en) * 1983-11-29 1985-06-25 Meidensha Electric Mfg Co Ltd Vector controller of induction motor
JPH01274682A (en) * 1988-04-27 1989-11-02 Hitachi Ltd Controlling method for voltage type inverter
JP2003125594A (en) * 2001-10-15 2003-04-25 Fuji Electric Co Ltd Controller of permanent magnet synchronous motor
JP2006050815A (en) * 2004-08-05 2006-02-16 Denso Corp Control unit of synchronous motor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901577A (en) * 2015-06-03 2015-09-09 安庆师范学院 Three-phase inverter dead band time online adjustment and compensation method
CN104901577B (en) * 2015-06-03 2018-08-17 安庆师范学院 A kind of three-phase inverter dead time on-line tuning and compensation method
WO2017119214A1 (en) * 2016-01-08 2017-07-13 株式会社村田製作所 Electric power converting device
JPWO2017119214A1 (en) * 2016-01-08 2018-09-20 株式会社村田製作所 Power converter
US10148195B2 (en) 2016-01-08 2018-12-04 Murata Manufacturing Co., Ltd. Power converter for outputting three-phase alternating-current voltages to a power system
JP2018126021A (en) * 2017-02-03 2018-08-09 株式会社豊田自動織機 Motor controller
JP2020524971A (en) * 2017-06-14 2020-08-20 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Method for determining the phase current of a rotating polyphase electric device fed by a PWM control type inverter
CN110323813A (en) * 2019-06-19 2019-10-11 国网电动汽车服务(福建)有限公司 A kind of electric automobile charging pile prime PWM rectifier control strategy based on guaranteed cost control
CN110323813B (en) * 2019-06-19 2023-09-19 国网电动汽车服务(福建)有限公司 Electric vehicle charging pile pre-stage PWM rectifier control method based on performance protection control
CN115776262A (en) * 2023-02-13 2023-03-10 中国科学院宁波材料技术与工程研究所 Dynamic compensation method and compensation system for dead zone of rim motor and rim motor system

Also Published As

Publication number Publication date
JP4722002B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4961292B2 (en) Motor control device
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JP4631672B2 (en) Magnetic pole position estimation method, motor speed estimation method, and motor control apparatus
JP6617500B2 (en) Electric power steering control method, electric power steering control device, electric power steering device and vehicle
WO2013124991A1 (en) Magnetic-pole position estimation device for motor, and control apparatus using same
JP2011147287A (en) Estimation device of magnetic pole position of motor
US20170264227A1 (en) Inverter control device and motor drive system
JP2007202365A (en) Power converter device and motor drive unit using it
JP3783695B2 (en) Motor control device
EP3070836B1 (en) Methods of auto tuning machine parameters and systems thereof
JP4722002B2 (en) PWM inverter control device, PWM inverter control method, and refrigeration air conditioner
JP5813934B2 (en) Power converter
JP5511700B2 (en) Inverter device, fan drive device, compressor drive device, and air conditioner
JP6233428B2 (en) Motor control device and motor control method
JP5165545B2 (en) Electric motor magnetic pole position estimation device
JP2010068581A (en) Electric motor drive unit
JP2008206330A (en) Device and method for estimating magnetic pole position of synchronous electric motor
JP2019170095A (en) Motor controller
JP2000175483A (en) Sensorless control method for synchronous motor and its apparatus
JP2018007390A (en) Motor control device
JP6563135B2 (en) Motor control device
JP6116449B2 (en) Electric motor drive control device
JP2011109848A (en) Motor drive control device
JP5186352B2 (en) Electric motor magnetic pole position estimation device
JP2021164279A (en) Motor controller, motor system, and motor control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4722002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250