JP2008085362A - Semiconductor device and semiconductor module - Google Patents

Semiconductor device and semiconductor module Download PDF

Info

Publication number
JP2008085362A
JP2008085362A JP2007306999A JP2007306999A JP2008085362A JP 2008085362 A JP2008085362 A JP 2008085362A JP 2007306999 A JP2007306999 A JP 2007306999A JP 2007306999 A JP2007306999 A JP 2007306999A JP 2008085362 A JP2008085362 A JP 2008085362A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
semiconductor
inductor
semiconductor device
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007306999A
Other languages
Japanese (ja)
Inventor
Mitsuo Umemoto
光雄 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Sanyo Semiconductors Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Kanto Sanyo Semiconductors Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Sanyo Semiconductors Co Ltd, Sanyo Electric Co Ltd filed Critical Kanto Sanyo Semiconductors Co Ltd
Priority to JP2007306999A priority Critical patent/JP2008085362A/en
Publication of JP2008085362A publication Critical patent/JP2008085362A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the packaging efficiency of a semiconductor device while suppressing the interference of the inductor that may destabilize an electronic device. <P>SOLUTION: The semiconductor device 1' includes a semiconductor substrate 100 having an electronic device 140 formed on the surface of the substrate, an inductor 160 formed on the back side of the semiconductor substrate, a through electrode extending through the semiconductor substrate and connecting the electronic device and the inductor, and a conductive pattern for stabilizing the inductance of the inductor formed at a position on the surface side of the semiconductor substrate that is opposite to the inductor formed position in the back side of the semiconductor substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、半導体装置及び半導体モジュールに関し、とくに半導体装置の実装効率を向上する技術に関する。   The present invention relates to a semiconductor device and a semiconductor module, and more particularly to a technique for improving the mounting efficiency of a semiconductor device.

携帯機器の小型化、多機能化に伴い、半導体装置にはより一層の実装効率向上が求められている。例えば特許文献1には、チップサイズを増大させることなく、所望の容量値、あるいは所望のインダクタンス値を得ることが可能なガリウム砒素(GaAs)MMIC等の集積回路(IC)が開示されている。
特開平8−97375号公報
As mobile devices become smaller and more multifunctional, semiconductor devices are required to have higher mounting efficiency. For example, Patent Document 1 discloses an integrated circuit (IC) such as gallium arsenide (GaAs) MMIC that can obtain a desired capacitance value or a desired inductance value without increasing the chip size.
JP-A-8-97375

ところで、電子デバイスに与える影響を考慮して、通常は半導体装置を構成している半導体基板のうち電子デバイスが形成される側の面(以下、表面という)には、インダクタや容量素子、抵抗素子等の回路素子を配置しないように設計がなされる。また半導体装置を携帯機器等の対象機器の回路基板に実装した状態では、半導体基板と回路基板との間に隙間がほとんど存在せず、半導体基板の裏面側に回路素子を設けることは困難である。このように、半導体装置の実装効率の向上に際しては、電子デバイスに与える影響や、半導体装置の対象機器への実装状態を考慮する必要がある。   By the way, in consideration of the influence on an electronic device, an inductor, a capacitive element, and a resistive element are usually formed on a surface (hereinafter referred to as a surface) on a side where an electronic device is formed in a semiconductor substrate constituting a semiconductor device. Design is made so as not to arrange circuit elements such as. In addition, when the semiconductor device is mounted on a circuit board of a target device such as a portable device, there is almost no gap between the semiconductor substrate and the circuit board, and it is difficult to provide a circuit element on the back side of the semiconductor substrate. . Thus, when improving the mounting efficiency of the semiconductor device, it is necessary to consider the influence on the electronic device and the mounting state of the semiconductor device on the target device.

本発明はこのような背景に鑑みてなされたもので、半導体装置の実装効率を向上することができる半導体装置を提供することを目的とする。   The present invention has been made in view of such a background, and an object thereof is to provide a semiconductor device capable of improving the mounting efficiency of the semiconductor device.

上記目的を達成するための本発明のうちの主たる発明は、表面側に電子デバイスが形成されてなる半導体基板と、前記半導体基板の裏面側に形成されるインダクタと、前記半導体基板の表面と裏面との間を貫通し、前記電子デバイスと前記インダクタとを電気的に接続する貫通電極と、前記半導体基板の裏面側の前記インダクタの形成位置と相反する前記半導体基板の表面側の位置に形成される、前記インダクタのインダクタンスを安定化させるための導電パターンと、を有してなる半導体装置である。   The main invention of the present invention for achieving the above object includes a semiconductor substrate having an electronic device formed on the front surface side, an inductor formed on the back surface side of the semiconductor substrate, and a front surface and a back surface of the semiconductor substrate. And a through electrode that electrically connects the electronic device and the inductor, and a position on the front surface side of the semiconductor substrate that is opposite to the formation position of the inductor on the back surface side of the semiconductor substrate. And a conductive pattern for stabilizing the inductance of the inductor.

尚、半導体基板の表面側に形成されることは、この半導体基板の表面の上に形成されることと、この半導体基板の厚さ方向中央から表面の側に形成されることとの何れを意味してもよい。   In addition, being formed on the surface side of the semiconductor substrate means either being formed on the surface of the semiconductor substrate or being formed on the surface side from the center in the thickness direction of the semiconductor substrate. May be.

この半導体装置によれば、インダクタと相互インダクタンス結合し得る主たる導電体は、当該半導体基板を挟んでインダクタと相反する位置に形成される導電パターンとなる。よって、半導体装置単体においてインダクタが所定のインダクタンス特性を有するように予め導電パターンを設計しておけば、この半導体装置を例えば導電体等から遠ざけて実装する限り、インダクタの所定のインダクタンス特性が保持される。インダクタンスが安定に保持されれば、電子デバイスに対するインダクタの干渉がたとえある場合でも、この度合いを一定に保持できることになる。従って、この半導体装置によれば、電子デバイスを不安定にするようなインダクタの干渉を抑制しつつ、実装効率を向上させることができる。   According to this semiconductor device, the main conductor capable of mutual inductance coupling with the inductor is a conductive pattern formed at a position opposite to the inductor across the semiconductor substrate. Therefore, if the conductive pattern is designed in advance so that the inductor has a predetermined inductance characteristic in the semiconductor device alone, the predetermined inductance characteristic of the inductor is maintained as long as the semiconductor device is mounted away from, for example, a conductor. The If the inductance is kept stable, this degree can be kept constant even if there is interference of the inductor with the electronic device. Therefore, according to this semiconductor device, it is possible to improve the mounting efficiency while suppressing the interference of the inductor that makes the electronic device unstable.

また、上記目的を達成するための本発明のうちの主たる発明は、表面側に電子デバイスが形成されてなる半導体基板と、前記半導体基板の裏面側に形成されるインダクタと、前記半導体基板の表面と裏面との間を貫通し、前記電子デバイスと前記インダクタとを電気的に接続する貫通電極と、前記半導体基板の裏面側の前記インダクタの形成位置と対向する位置に絶縁材料を介して形成される、前記インダクタのインダクタンスを安定化させるための導電パターンと、を有してなる半導体装置である。   Further, the main invention of the present invention for achieving the above object is to provide a semiconductor substrate having an electronic device formed on the front surface side, an inductor formed on the back surface side of the semiconductor substrate, and a surface of the semiconductor substrate. A through electrode that penetrates between the semiconductor device and the back surface, and electrically connects the electronic device and the inductor, and is formed through an insulating material at a position facing the formation position of the inductor on the back surface side of the semiconductor substrate. And a conductive pattern for stabilizing the inductance of the inductor.

この半導体装置によれば、インダクタと相互インダクタンス結合し得る主たる導電体は、絶縁材料を挟んでインダクタと対向するように形成される導電パターンとなる。よって、半導体装置単体においてインダクタが所定のインダクタンス特性を有するように予め導電パターンを設計しておけば、インダクタの所定のインダクタンス特性が保持される。また、この半導体装置によれば、半導体基板は、表面側から裏面側へ向かう磁力線を遮蔽し、導電パターンは、裏面側から表面側へ向かう磁力線を遮蔽するため、インダクタの所定のインダクタンス特性が保持される。インダクタンスが安定に保持されれば、電子デバイスに対するインダクタの干渉の度合いを一定に保持できることになる。従って、この半導体装置によれば、電子デバイスを不安定にするようなインダクタの干渉を抑制しつつ、実装効率を向上させることができる。   According to this semiconductor device, the main conductor capable of mutual inductance coupling with the inductor is a conductive pattern formed so as to face the inductor with the insulating material interposed therebetween. Therefore, if the conductive pattern is designed in advance so that the inductor has a predetermined inductance characteristic in a single semiconductor device, the predetermined inductance characteristic of the inductor is maintained. Further, according to this semiconductor device, the semiconductor substrate shields the magnetic lines of force from the front side to the back side, and the conductive pattern shields the magnetic lines of force from the back side to the front side, so that the predetermined inductance characteristic of the inductor is maintained. Is done. If the inductance is kept stable, the degree of interference of the inductor with the electronic device can be kept constant. Therefore, according to this semiconductor device, it is possible to improve the mounting efficiency while suppressing the interference of the inductor that makes the electronic device unstable.

また、上記目的を達成するための本発明のうちの主たる発明は、表面側に電子デバイスが形成されてなる半導体基板と、前記半導体基板の裏面側に形成されるインダクタと、前記半導体基板の表面と裏面との間を貫通し、前記電子デバイスと前記インダクタとを電気的に接続する貫通電極と、を有する半導体装置と、前記半導体基板の裏面側の前記インダクタの形成位置と対向する位置に形成される、前記インダクタのインダクタンスを安定化させるための導電パターンを有し、前記半導体装置が実装される実装基板と、からなる半導体モジュールである。   Further, the main invention of the present invention for achieving the above object is to provide a semiconductor substrate having an electronic device formed on the front surface side, an inductor formed on the back surface side of the semiconductor substrate, and a surface of the semiconductor substrate. And a back surface of the semiconductor substrate, the semiconductor device having a through electrode that electrically connects the electronic device and the inductor, and formed at a position facing the formation position of the inductor on the back surface side of the semiconductor substrate A semiconductor module having a conductive pattern for stabilizing the inductance of the inductor, and a mounting substrate on which the semiconductor device is mounted.

この半導体モジュールによれば、インダクタと相互インダクタンス結合し得る主たる導電体は、実装基板上におけるインダクタの形成位置と対向する位置に形成される導電パターンとなる。よって、半導体装置を実装基板に実装するに際し、インダクタが所定のインダクタンス特性を有するように実装基板上の導電パターンを設計すれば、インダクタの所定のインダクタンス特性が保持される。また、この半導体モジュールによれば、半導体基板は、表面側から裏面側へ向かう磁力線を遮蔽し、導電パターンは、裏面側から表面側へ向かう磁力線を遮蔽するため、インダクタの所定のインダクタンス特性が保持される。インダクタンスが安定に保持されれば、電子デバイスに対するインダクタの干渉の度合いを一定に保持できることになる。従って、この半導体モジュールによれば、電子デバイスを不安定にするようなインダクタの干渉を抑制しつつ、半導体装置の実装効率を向上させることができる。   According to this semiconductor module, the main conductor capable of mutual inductance coupling with the inductor is a conductive pattern formed at a position opposite to the inductor formation position on the mounting substrate. Therefore, when the semiconductor device is mounted on the mounting board, if the conductive pattern on the mounting board is designed so that the inductor has a predetermined inductance characteristic, the predetermined inductance characteristic of the inductor is maintained. In addition, according to this semiconductor module, the semiconductor substrate shields the magnetic lines of force from the front side to the back side, and the conductive pattern shields the magnetic lines of force from the back side to the front side, so that the predetermined inductance characteristic of the inductor is maintained. Is done. If the inductance is kept stable, the degree of interference of the inductor with the electronic device can be kept constant. Therefore, according to this semiconductor module, it is possible to improve the mounting efficiency of the semiconductor device while suppressing the interference of the inductor that makes the electronic device unstable.

本発明によれば、半導体装置の実装効率を向上することができる。   According to the present invention, the mounting efficiency of a semiconductor device can be improved.

図1に一実施形態として説明する半導体装置1の断面模式図を示している。シリコン(Si)からなる半導体基板10の所定位置に、半導体基板10を表面11から裏面12に貫通して設けられた貫通電極13が形成されている。半導体基板10の表面11には、CMOS(Complementary Metal Oxide Semiconductor)、リニア(バイポーラ)、バイCMOS、MOS、ディスクリート等の素子や集積回路等である電子デバイス14が形成されている。電子デバイス14は、例えば半導体基板10に熱酸化法やCVD(Chemical Vapor Deposition)、スパッタ、リソグラフィ、不純物拡散等の各種前工程を行うことにより形成されたものである。   FIG. 1 is a schematic cross-sectional view of a semiconductor device 1 described as an embodiment. A through electrode 13 is formed at a predetermined position of the semiconductor substrate 10 made of silicon (Si). The through electrode 13 extends through the semiconductor substrate 10 from the front surface 11 to the back surface 12. On the surface 11 of the semiconductor substrate 10, an electronic device 14, which is an element such as a complementary metal oxide semiconductor (CMOS), linear (bipolar), bi-CMOS, MOS, discrete, or an integrated circuit, is formed. The electronic device 14 is formed, for example, by performing various pre-processes such as a thermal oxidation method, CVD (Chemical Vapor Deposition), sputtering, lithography, and impurity diffusion on the semiconductor substrate 10.

半導体基板10の裏面12側の貫通電極13が形成される部分には、配線パターン(以下、裏面パターン15という)が形成されている。もし半導体基板10が接地されている場合、裏面パターン15は半導体基板10から電気的に絶縁されている必要があるため、この裏面パターン15は、シリコン酸化膜(SiO)や絶縁性樹脂等を介して、半導体基板10上に形成される。一方、半導体基板10がコレクタ電極として機能し、裏面パターン15がこのコレクタ電極と電気的に接続される場合には、裏面パターン15と半導体基板10とは同電位になるため、絶縁処理は不要である。裏面パターン15の素材としては、例えば銅、金、銀、錫、インジウム、アルミニウム、ニッケル、クロム、又はこれらの合金等が用いられる。半導体基板10の裏面12側には、裏面パターン15に接続する、回路素子16(例えば抵抗やインダクタ、コンデンサ等の受動素子)が設けられている。回路素子16は、ワイヤーボンディング19を介して裏面パターン15の所定位置に接続されている。なお、ワイヤーボンディング19だけでなく、回路素子16は、導電ペースト又はろう材等によって裏面パターン15に固着又は接続されることもある。 A wiring pattern (hereinafter referred to as a back surface pattern 15) is formed in a portion where the through electrode 13 on the back surface 12 side of the semiconductor substrate 10 is formed. If the semiconductor substrate 10 is grounded, the back surface pattern 15 needs to be electrically insulated from the semiconductor substrate 10, so the back surface pattern 15 is made of silicon oxide film (SiO 2 ), insulating resin, or the like. And formed on the semiconductor substrate 10. On the other hand, when the semiconductor substrate 10 functions as a collector electrode and the back surface pattern 15 is electrically connected to the collector electrode, the back surface pattern 15 and the semiconductor substrate 10 are at the same potential, so that no insulation treatment is required. is there. As a material of the back surface pattern 15, for example, copper, gold, silver, tin, indium, aluminum, nickel, chromium, or an alloy thereof is used. On the back surface 12 side of the semiconductor substrate 10, a circuit element 16 (for example, a passive element such as a resistor, an inductor, or a capacitor) connected to the back surface pattern 15 is provided. The circuit element 16 is connected to a predetermined position of the back surface pattern 15 through the wire bonding 19. In addition to the wire bonding 19, the circuit element 16 may be fixed or connected to the back pattern 15 with a conductive paste or a brazing material.

半導体基板10の表面11側の、貫通電極13が形成される部分には、電子デバイス14のボンディングパッドとなる配線パターン(以下、表面パターン17という)が形成されている。なお、表面パターン17の素材としては、例えば、銅、金、銀、錫、インジウム、アルミニウム、ニッケル、クロム、又はこれらの合金等が用いられる。半導体基板10の表面11の上記ボンディングパッドとなる部分以外の部分には、ソルダーレジスト20が施されている。また表面パターン17のボンディングパッドとなる部分には、はんだバンプ18が形成されている。この表面パターン17は、図示の都合上、シリコン(Si)からなる半導体基板10に直接形成されて、いわゆる活性領域とコンタクトしているが、実際には、電気的に絶縁が必要とされる活性領域とは少なくとも一層の絶縁膜を介して形成されている。   On the surface 11 side of the semiconductor substrate 10, a wiring pattern (hereinafter referred to as a surface pattern 17) serving as a bonding pad of the electronic device 14 is formed in a portion where the through electrode 13 is formed. In addition, as a material of the surface pattern 17, for example, copper, gold, silver, tin, indium, aluminum, nickel, chromium, or an alloy thereof is used. A solder resist 20 is applied to a portion of the surface 11 of the semiconductor substrate 10 other than the portion serving as the bonding pad. Solder bumps 18 are formed on portions of the surface pattern 17 that serve as bonding pads. For convenience of illustration, the surface pattern 17 is directly formed on the semiconductor substrate 10 made of silicon (Si) and is in contact with a so-called active region. The region is formed via at least one insulating film.

以上の構成からなる半導体装置1を、例えば携帯機器の回路基板に実装しようとする場合には、半導体基板10の表面11側、すなわち電子デバイス14が形成されている(はんだバンプ18が形成されている)半導体基板10の表面11側を携帯機器の回路基板に対向させるようにして、すなわちフェイスダウンさせた状態で実装することになる。ここで本実施形態の半導体装置1にあっては、電子デバイス14に接続する回路素子16を、貫通電極13を介して半導体基板10の裏面12側に設け、一方、はんだバンプ18はその表面11側に設けるようにしているので、半導体基板10の裏面12側が回路素子16を実装するためのスペースとして開放されることとなる。このため、本実施形態の半導体装置1にあっては、半導体基板10の裏面12側のスペースを有効に利用することができる。またこのことにより半導体装置1を小型化することが可能となる。また従来、実装することが難しかったサイズの大きな回路素子16を実装することも可能となり、これにより設計自由度が増大する。   When the semiconductor device 1 having the above configuration is to be mounted on, for example, a circuit board of a portable device, the surface 11 side of the semiconductor substrate 10, that is, the electronic device 14 is formed (the solder bump 18 is formed). The semiconductor substrate 10 is mounted in such a manner that the front surface 11 side of the semiconductor substrate 10 faces the circuit board of the portable device, that is, in a face-down state. Here, in the semiconductor device 1 of the present embodiment, the circuit element 16 connected to the electronic device 14 is provided on the back surface 12 side of the semiconductor substrate 10 via the through electrode 13, while the solder bump 18 has the front surface 11. Therefore, the back surface 12 side of the semiconductor substrate 10 is opened as a space for mounting the circuit element 16. For this reason, in the semiconductor device 1 of the present embodiment, the space on the back surface 12 side of the semiconductor substrate 10 can be used effectively. This also makes it possible to reduce the size of the semiconductor device 1. In addition, it is possible to mount a circuit element 16 having a large size, which has been difficult to mount in the past, and this increases the degree of design freedom.

なお、本実施形態の半導体装置1にあっては、回路素子16が裏面12側に実装されているため、回路素子16が電子デバイス14に与える影響は回路素子16を表面11側に実装する場合に比べて少ない。このため、通常は周辺回路に対する影響が懸念される、例えばインダクタやコンデンサ等の受動素子を、回路素子16として半導体装置1に設けることも可能である。なお、回路素子16は、半導体装置1とは独立して動作する外付け部品であってもよいし、半導体装置1とともに動作する実装部品であってもよい。   In the semiconductor device 1 of the present embodiment, since the circuit element 16 is mounted on the back surface 12 side, the influence of the circuit element 16 on the electronic device 14 is when the circuit element 16 is mounted on the front surface 11 side. Less than For this reason, it is also possible to provide the semiconductor device 1 as a circuit element 16 with passive elements such as an inductor and a capacitor, which are usually concerned about the influence on peripheral circuits. The circuit element 16 may be an external component that operates independently of the semiconductor device 1 or may be a mounting component that operates together with the semiconductor device 1.

ところで、上記回路素子16は、チップ素子のような裏面パターン15とは独立した構造のものに限られない。例えば上記回路素子16は裏面パターン15自体によって構成されるものであってもよい。図2Aに裏面パターン15自体によって構成される回路素子16として、スパイラルインダクタ(平面状コイル)を設けた一例を示す。なお、半導体基板10が薄い場合には、半導体基板10の歪みにより回路素子16の特性が変化することもあるので、例えば図2Bに示すように、半導体基板10と裏面パターン15との間に緩衝層21を介在させるようにしてもよい。ここで緩衝層21は、半導体基板10の裏面12側に設けられることになるため、電子デバイス14に与える影響が少ない。従って緩衝層21の素材として様々なものを選択できる。例えばQ値の向上を目的としてピュアシリコン(Si)等の比抵抗の小さなものを緩衝層21の素材として用いることができる。また高周波特性を向上させるべく誘電率の低いものを選択してもよい。また応力を緩和すべく、樹脂シート等を緩衝層21として用いてもよい。   By the way, the circuit element 16 is not limited to a structure independent of the back surface pattern 15 such as a chip element. For example, the circuit element 16 may be constituted by the back pattern 15 itself. FIG. 2A shows an example in which a spiral inductor (planar coil) is provided as the circuit element 16 constituted by the back surface pattern 15 itself. When the semiconductor substrate 10 is thin, the characteristics of the circuit element 16 may change due to distortion of the semiconductor substrate 10, so that, for example, as shown in FIG. 2B, a buffer is provided between the semiconductor substrate 10 and the back surface pattern 15. The layer 21 may be interposed. Here, since the buffer layer 21 is provided on the back surface 12 side of the semiconductor substrate 10, the influence on the electronic device 14 is small. Accordingly, various materials can be selected as the material for the buffer layer 21. For example, a material having a small specific resistance such as pure silicon (Si) can be used as the material of the buffer layer 21 for the purpose of improving the Q value. Moreover, you may select a thing with a low dielectric constant in order to improve a high frequency characteristic. A resin sheet or the like may be used as the buffer layer 21 in order to relieve stress.

次に、以上に説明した構造からなる半導体装置1の製造方法について説明する。なお、以下の説明では、半導体基板10としてシリコン基板を用いるものとする。またベースとなるウェハとして、表面11及び裏面12に熱酸化法やプラズマCVD(Plasma Chemical Vapor Deposition)、スパッタリング法等により5μm厚のシリコン酸化膜(SiO)による絶縁層155,156が施された、130μm厚のシリコンウェハを用いるものとする。また半導体基板10の表面には、熱酸化法やCVD(Chemical Vapor Deposition)、スパッタ、リソグラフィ、不純物拡散等の前工程により、MOS(Metal Oxide Semiconductor)構造又はBIP(Bipolar)構造の能動素子や集積回路等の電子デバイスが形成されているものとする。 Next, a method for manufacturing the semiconductor device 1 having the structure described above will be described. In the following description, a silicon substrate is used as the semiconductor substrate 10. Further, as the base wafer, insulating layers 155 and 156 made of a silicon oxide film (SiO 2 ) having a thickness of 5 μm were applied to the front surface 11 and the back surface 12 by thermal oxidation, plasma CVD (plasma chemical vapor deposition), sputtering, or the like. A silicon wafer having a thickness of 130 μm is used. Further, active elements and integrated circuits having a MOS (Metal Oxide Semiconductor) structure or a BIP (Bipolar) structure are formed on the surface of the semiconductor substrate 10 by a pre-process such as a thermal oxidation method, CVD (Chemical Vapor Deposition), sputtering, lithography, and impurity diffusion. Assume that an electronic device such as a circuit is formed.

図3に半導体基板10に貫通電極13を形成するプロセスを示している。貫通電極13の形成に際しては、まず半導体基板10の表面11のうち、貫通電極13が形成される部分(40μm径)以外の部分にフォトレジストを施した後、四フッ化炭素(CF)等のエッチングガスを用いてエッチングを行い、貫通電極13が形成される部分に形成されている絶縁層155を除去する。貫通電極13が形成される部分に形成されている絶縁層155が除去された後の状態を図3(a)に示している。 FIG. 3 shows a process for forming the through electrode 13 in the semiconductor substrate 10. When the through electrode 13 is formed, first, a photoresist is applied to a portion of the surface 11 of the semiconductor substrate 10 other than a portion (40 μm diameter) where the through electrode 13 is formed, and then carbon tetrafluoride (CF 4 ) or the like. Etching is performed using this etching gas to remove the insulating layer 155 formed in the portion where the through electrode 13 is formed. FIG. 3A shows a state after the insulating layer 155 formed in the portion where the through electrode 13 is formed is removed.

次に六フッ化炭素(CF)等のエッチングガスを用いてエッチングを行うことにより、半導体基板10に貫通孔151を形成する(図3(b))。これにより貫通孔151の底部に絶縁層156が露出する。次に四フッ化炭素(CF)等のエッチングガスを用いてエッチングを行い、貫通孔151の底部に露出する部分となる部分の絶縁層156を除去する(図3(c))。 Next, etching is performed using an etching gas such as carbon hexafluoride (CF 6 ) to form a through hole 151 in the semiconductor substrate 10 (FIG. 3B). As a result, the insulating layer 156 is exposed at the bottom of the through hole 151. Next, etching is performed using an etching gas such as carbon tetrafluoride (CF 4 ) to remove the portion of the insulating layer 156 that is exposed at the bottom of the through-hole 151 (FIG. 3C).

次に貫通孔151の内側面に露出しているシリコン表面を絶縁すべく、貫通孔151の内側面にCVD(Chemical Vapor Deposition)、熱酸化法、スパッタ法等により、SiOからなる絶縁膜157を形成する(図3(d))。なお、この工程を行うことにより貫通孔151の底部に再びSiO158が付着してしまうこととなる。 Next, in order to insulate the silicon surface exposed on the inner surface of the through hole 151, the insulating film 157 made of SiO 2 is formed on the inner surface of the through hole 151 by CVD (Chemical Vapor Deposition), thermal oxidation method, sputtering method or the like. (FIG. 3D). In addition, by performing this process, SiO 2 158 adheres to the bottom of the through hole 151 again.

次に貫通孔151の底部に付着したSiO158を除去する。この際、貫通孔151の表面11近傍に形成されている絶縁膜157が剥がれてしまわないように、あらかじめCVD、熱酸化法、スパッタ法等により貫通孔151の表面11近傍に保護膜159を形成しておく(図3(e))。保護膜159を形成した後は、表面11からエッチバックを行う。これにより貫通孔151の底部に形成されているSiO158が除去されることとなる。図3(f)にSiO158が除去された後の状態を示す。 Next, SiO 2 158 attached to the bottom of the through hole 151 is removed. At this time, a protective film 159 is previously formed in the vicinity of the surface 11 of the through hole 151 by CVD, thermal oxidation, sputtering, or the like so that the insulating film 157 formed in the vicinity of the surface 11 of the through hole 151 is not peeled off. (FIG. 3E). After the protective film 159 is formed, etch back is performed from the surface 11. As a result, the SiO 2 158 formed at the bottom of the through hole 151 is removed. FIG. 3F shows a state after SiO 2 158 is removed.

次にCVDによって貫通孔151の内側面に、下から順にTiN、Cuを形成してなるバリア層152(バリアシード層)を形成する(図3(g))。次にバリア層152の表面に半導体基板10の第2面側から導電材153をめっきする(図3(h))。以上の工程を経ることにより、半導体基板10に貫通電極13が形成されることとなる。   Next, a barrier layer 152 (barrier seed layer) formed by forming TiN and Cu in order from the bottom is formed on the inner surface of the through-hole 151 by CVD (FIG. 3G). Next, a conductive material 153 is plated on the surface of the barrier layer 152 from the second surface side of the semiconductor substrate 10 (FIG. 3H). Through the above steps, the through electrode 13 is formed in the semiconductor substrate 10.

次に以上のようにした貫通電極13が形成された半導体基板10の裏面12に裏面パターン15を形成する。図4に裏面パターン15を形成する際のプロセスフローを示している。なお、同図では貫通電極13は省略している。裏面パターン15の形成に際しては、まず半導体基板10の裏面12全面に導電材となるCuをめっきする(S410)。次に裏面12の全面にフォトレジストを施し(S411)、露光・現像を行って裏面パターン15となる部分をマスクする(S412)。次にエッチングを行って、裏面パターン15となる部分以外の部分のCuを除去する(S413)。次にフォトレジストを除去する(S414)。以上により半導体基板10の第2面に裏面パターン15が形成される。   Next, a back surface pattern 15 is formed on the back surface 12 of the semiconductor substrate 10 on which the through electrode 13 as described above is formed. FIG. 4 shows a process flow for forming the back surface pattern 15. In the figure, the through electrode 13 is omitted. When forming the back pattern 15, first, Cu as a conductive material is plated on the entire back surface 12 of the semiconductor substrate 10 (S410). Next, a photoresist is applied to the entire back surface 12 (S411), and exposure / development is performed to mask a portion that becomes the back surface pattern 15 (S412). Next, etching is performed to remove Cu in portions other than the portion that becomes the back pattern 15 (S413). Next, the photoresist is removed (S414). Thus, the back surface pattern 15 is formed on the second surface of the semiconductor substrate 10.

次に半導体基板10の表面11に表面パターン17を形成する。図5に表面パターン17を形成する際のプロセスフローを示している。なお、同図では貫通電極15は省略している。表面パターン17の形成に際しては、まず半導体基板10の表面11全面に導電材となるCuをめっきする(S510)。次に表面11にフォトレジストを施して(S511)、露光・現像を行うことにより表面パターン17を形成する部分をマスクする(S512)。次にエッチングを行って表面パターン17を形成する部分以外の部分に施されているCuを除去する(S513)。そして更にフォトレジストを除去する(S514)。以上により半導体基板10の表面11に表面パターン17が形成される。   Next, a surface pattern 17 is formed on the surface 11 of the semiconductor substrate 10. FIG. 5 shows a process flow when the surface pattern 17 is formed. In the figure, the through electrode 15 is omitted. When forming the surface pattern 17, first, Cu serving as a conductive material is plated on the entire surface 11 of the semiconductor substrate 10 (S 510). Next, a photoresist is applied to the surface 11 (S511), and a portion where the surface pattern 17 is formed is masked by performing exposure and development (S512). Next, etching is performed to remove Cu applied to portions other than the portion where the surface pattern 17 is formed (S513). Further, the photoresist is removed (S514). Thus, the surface pattern 17 is formed on the surface 11 of the semiconductor substrate 10.

回路素子16は、以上のプロセスを経た後、半導体基板10に実装されることになる。また必要に応じて、回路素子16と半導体基板10間を電気的に接続するためのワイヤーボンディング19等を介した配線処理が施される。なお、上述したスパイラルインダクタのように、裏面パターン15自体によって構成される回路素子16を設ける場合には、回路素子16は、図4に示した裏面パターン15の形成プロセスの過程で形成される。   The circuit element 16 is mounted on the semiconductor substrate 10 after the above process. Further, if necessary, a wiring process is performed through a wire bonding 19 or the like for electrically connecting the circuit element 16 and the semiconductor substrate 10. When the circuit element 16 constituted by the back surface pattern 15 itself is provided like the spiral inductor described above, the circuit element 16 is formed in the process of forming the back surface pattern 15 shown in FIG.

以上のプロセスの後は、半導体基板10の表面11側及び裏面側12にさらにソルダーレジスト20が施される。また裏面側12にははんだバンプ18が形成される。その後、ダイシングを行ってチップ化することにより半導体基板10が完成する。   After the above process, the solder resist 20 is further applied to the front surface 11 side and the back surface side 12 of the semiconductor substrate 10. Solder bumps 18 are formed on the back side 12. Thereafter, the semiconductor substrate 10 is completed by dicing into chips.

なお、以上の実施形態の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。   The above description of the embodiment is for facilitating understanding of the present invention, and does not limit the present invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof.

例えば以上に説明した構造からなる半導体基板10は、電子デバイス14及び回路素子16を造り込んだ後に貫通電極13を形成することもできる。すなわち、まずシリコン基板に半導体製造プロセスを施して単相構造もしくは多層構造の電子デバイス14を形成した後、回路素子16を設ける。次に図3に示したプロセスを施して、裏面側12から貫通電極13を形成する。なお、このように電子デバイス14及び回路素子16を造り込んだ後に貫通電極13を形成した場合には、貫通電極13の底部に、例えば表面側11に形成されている絶縁膜20が露出することになる。   For example, in the semiconductor substrate 10 having the above-described structure, the through electrode 13 can be formed after the electronic device 14 and the circuit element 16 are built. That is, first, a semiconductor manufacturing process is performed on a silicon substrate to form an electronic device 14 having a single-phase structure or a multilayer structure, and then a circuit element 16 is provided. Next, the through electrode 13 is formed from the back side 12 by performing the process shown in FIG. When the through electrode 13 is formed after the electronic device 14 and the circuit element 16 are formed in this way, the insulating film 20 formed on the surface side 11 is exposed at the bottom of the through electrode 13, for example. become.

===導電パターンを備えた半導体装置(1)===
<<<半導体装置単体>>>
前述した半導体装置1(図2A)のソルダーレジスト20の表側において、回路素子16であるスパイラルインダクタ(平面状コイル)と相反する面上に、以下述べるダミーパターン(導電パターン)220が設けられていてもよい。
=== Semiconductor Device with Conductive Pattern (1) ===
<<< Semiconductor device alone >>>
On the surface side of the solder resist 20 of the semiconductor device 1 (FIG. 2A) described above, a dummy pattern (conductive pattern) 220 described below is provided on the surface opposite to the spiral inductor (planar coil) that is the circuit element 16. Also good.

図6の断面模式図に例示されるように、本実施の形態の半導体装置1’は、主として、電子デバイス140が形成された半導体基板100と、貫通電極130と、コイル(インダクタ)160と、ダミーパターン220と、を備えて構成されている。ここで、半導体基板100、貫通電極130、及びコイル160は、図2Aに例示された半導体装置1における半導体基板10、貫通電極13、及び回路素子16と同様の構成を備えたものである。図6に直接図示されてはいないが、コイル160は、裏面パターン150、貫通電極130、表面パターン170を介して、電子デバイス140に対し電気的に接続されている。また、半導体基板100の表側(−Z側)において、電子デバイス140のボンディングパッドとなる部分以外の部分に設けられたソルダーレジスト(絶縁材料)200も前述したソルダーレジスト20と同じ構成を備えたものである。   As illustrated in the schematic cross-sectional view of FIG. 6, the semiconductor device 1 ′ of the present embodiment mainly includes a semiconductor substrate 100 on which an electronic device 140 is formed, a through electrode 130, a coil (inductor) 160, And a dummy pattern 220. Here, the semiconductor substrate 100, the through electrode 130, and the coil 160 have the same configuration as the semiconductor substrate 10, the through electrode 13, and the circuit element 16 in the semiconductor device 1 illustrated in FIG. 2A. Although not illustrated directly in FIG. 6, the coil 160 is electrically connected to the electronic device 140 via the back surface pattern 150, the through electrode 130, and the front surface pattern 170. In addition, on the front side (−Z side) of the semiconductor substrate 100, a solder resist (insulating material) 200 provided in a portion other than the portion serving as the bonding pad of the electronic device 140 has the same configuration as the solder resist 20 described above. It is.

本実施の形態のダミーパターン220は、半導体基板100の裏側(+Z側)のコイル160と相反するように、ソルダーレジスト200の表側に設けられている。このダミーパターン220は、具体的には、例えば銅(Cu)を主材料とし、コイル160の輪郭と整合するようになっている。つまり、このダミーパターン220は、コイル160の外周枠と同じ又はこれを越えた位置に外縁を有するものである。また、例えば本実施の形態のコイル160が、半導体基板100の裏面に並んだ複数のコイル(不図示)を接続した構成を有している場合、このダミーパターン220は、この複数のコイル全体の輪郭と整合するような形状を有している。これにより、後述するように、コイル160の動作時にもしコイル160から−Z方向へ電磁界が発生した場合でも、これがダミーパターン220により吸収される。尚、本実施の形態のダミーパターン220は、ソルダーレジスト200の表側に、例えば圧延銅箔が貼着されたものであってもよいし、或いは、例えば銅めっき形成されたものであってもよい。また、本実施の形態のダミーパターン220の主材料は、銅に限定されるものではなく、例えば、金、銀、錫、インジウム、アルミニウム、ニッケル、クロム、又はこれらの合金等が主材料であってもよい。   The dummy pattern 220 of the present embodiment is provided on the front side of the solder resist 200 so as to conflict with the coil 160 on the back side (+ Z side) of the semiconductor substrate 100. Specifically, the dummy pattern 220 is made of, for example, copper (Cu) as a main material and matches the contour of the coil 160. That is, the dummy pattern 220 has an outer edge at a position that is the same as or exceeds the outer peripheral frame of the coil 160. For example, when the coil 160 of the present embodiment has a configuration in which a plurality of coils (not shown) arranged on the back surface of the semiconductor substrate 100 are connected, the dummy pattern 220 is formed on the entire plurality of coils. It has a shape that matches the contour. As a result, as will be described later, even when an electromagnetic field is generated in the −Z direction from the coil 160 during operation of the coil 160, this is absorbed by the dummy pattern 220. Note that the dummy pattern 220 of the present embodiment may be one in which, for example, a rolled copper foil is adhered to the front side of the solder resist 200, or may be one in which, for example, copper plating is formed. . In addition, the main material of the dummy pattern 220 of the present embodiment is not limited to copper. For example, gold, silver, tin, indium, aluminum, nickel, chromium, or an alloy thereof is the main material. May be.

尚、図6に例示された半導体装置1’では、半導体基板100の表面の内側(+Z側)に電子デバイス140が形成され、電子デバイス140の表面と対向するようにソルダーレジスト20の層が形成され、更にこの層の表面と対向するように導電パターン220が形成されるものであったが、これに限定されるものではない。例えば、電子デバイス140は、半導体基板100の表面において、インダクタ160と相反する位置からXY方向に外れた位置に形成されていてもよい。この外れた位置とは、電子デバイス140とダミーパターン220とがXY方向に全く重ならない位置P1(不図示)であってもよいし、電子デバイス140とダミーパターン220とがXY方向に一部重なる位置P2(不図示)であってもよい。特に、位置P1における場合、電子デバイス140は、更に−Z方向に突出するように形成されていてもよい。上記何れの場合でも、電子デバイス140とダミーパターン220とが電気的に絶縁されるように、ソルダーレジスト200をパターン形成すればよい。特に、電子デバイス140が前記位置P1において−Z方向に突出している場合、ソルダーレジスト200及びダミーパターン220を、半導体基板100の表面の上で電子デバイス140と例えば並列するようにパターン形成してもよい。   In the semiconductor device 1 ′ illustrated in FIG. 6, the electronic device 140 is formed on the inside (+ Z side) of the surface of the semiconductor substrate 100, and the solder resist 20 layer is formed so as to face the surface of the electronic device 140. In addition, although the conductive pattern 220 is formed so as to face the surface of this layer, it is not limited to this. For example, the electronic device 140 may be formed on the surface of the semiconductor substrate 100 at a position deviating from the position opposite to the inductor 160 in the XY direction. This deviated position may be a position P1 (not shown) where the electronic device 140 and the dummy pattern 220 do not overlap at all in the XY direction, or the electronic device 140 and the dummy pattern 220 partially overlap in the XY direction. It may be a position P2 (not shown). In particular, in the case of the position P1, the electronic device 140 may be formed so as to protrude further in the −Z direction. In any case, the solder resist 200 may be patterned so that the electronic device 140 and the dummy pattern 220 are electrically insulated. In particular, when the electronic device 140 protrudes in the −Z direction at the position P1, the solder resist 200 and the dummy pattern 220 may be patterned so as to be parallel to the electronic device 140 on the surface of the semiconductor substrate 100, for example. Good.

本実施の形態の半導体装置1’単体では、コイル160と相互インダクタンス結合し得る主たる導電体はダミーパターン220である。よって、半導体装置1’単体のコイル160が所定のインダクタンス特性を有するように例えばメーカ側で予めダミーパターン220を設計しておけば、例えばユーザ側で半導体装置1’を導電体等から遠ざけて実装する限り、コイル160の所定のインダクタンス特性が保持される。コイル160のインダクタンス特性が安定に保持されれば、電子デバイス140に対するコイル160の干渉がたとえある場合でも、この度合いを一定に保持できることになる。従って、本実施の形態の半導体装置1’によれば、電子デバイス140を不安定にするようなコイル160の干渉を抑制しつつ、実装効率を向上させることができる。   In the semiconductor device 1 ′ alone according to the present embodiment, the main conductor capable of mutual inductance coupling with the coil 160 is the dummy pattern 220. Therefore, if the dummy pattern 220 is designed in advance on the manufacturer side so that the coil 160 of the single semiconductor device 1 ′ has a predetermined inductance characteristic, for example, the semiconductor device 1 ′ is mounted away from the conductor on the user side. As long as this is done, the predetermined inductance characteristic of the coil 160 is maintained. If the inductance characteristic of the coil 160 is stably maintained, this degree can be kept constant even if there is interference of the coil 160 with the electronic device 140. Therefore, according to the semiconductor device 1 ′ of the present embodiment, it is possible to improve the mounting efficiency while suppressing the interference of the coil 160 that makes the electronic device 140 unstable.

尚、前述した半導体装置1(図2B)の場合と同様に、半導体基板100が薄い場合には半導体基板100の歪みによりコイル160の特性が変化する虞があるため、半導体基板100と裏面パターン150との間に前述した緩衝層21(図2B)と同様の緩衝層(不図示)を介在させてもよい。この緩衝層には、例えば、Q値の向上を目的としてピュアシリコン(Si)等の比抵抗の小さなものを用いてもよいし、或いは、高周波特性を向上させるべく誘電率の低いものを用いてもよい。また、この緩衝層には、応力を緩和すべく、樹脂シート等を用いてもよい。   As in the case of the semiconductor device 1 (FIG. 2B) described above, when the semiconductor substrate 100 is thin, the characteristics of the coil 160 may change due to distortion of the semiconductor substrate 100. A buffer layer (not shown) similar to the buffer layer 21 (FIG. 2B) described above may be interposed between the two. For this buffer layer, for example, a material having a small specific resistance such as pure silicon (Si) may be used for the purpose of improving the Q value, or a material having a low dielectric constant to improve high frequency characteristics. Also good. In addition, a resin sheet or the like may be used for the buffer layer in order to relieve stress.

<<<回路基板への実装>>>
図7(a)の断面模式図に例示されるように、前述した半導体装置1’は、例えばはんだバンプ180を介して例えば携帯機器の回路基板300に実装可能である。同図の例示では、半導体装置1’の表面パターン170と、回路基板300上に形成された導電路(電極)310とが、はんだバンプ180を介して電気的に接続されている。一方、同図の例示では、回路基板300上には、半導体装置1’とともに、半導体部品230が実装されており、半導体装置1’は、そのダミーパターン220が半導体部品230と対向するような位置に実装されている。尚、同図の例示では、半導体部品230は、導電路310及びはんだバンプ180を介して半導体装置1’に対し電気的に接続されているが、これに限定されるものではなく、半導体部品230は半導体装置1’から電気的に独立した素子であってもよい。また、この半導体部品230は、前述したMOS構造の能動素子や集積回路等であってもよいし、前述した抵抗やインダクタ、コンデンサ等の受動素子であってもよい。
<<< Mounting on circuit board >>>
As illustrated in the schematic cross-sectional view of FIG. 7A, the semiconductor device 1 ′ described above can be mounted on, for example, a circuit board 300 of a portable device via, for example, a solder bump 180. In the illustration of the figure, the surface pattern 170 of the semiconductor device 1 ′ and a conductive path (electrode) 310 formed on the circuit board 300 are electrically connected via a solder bump 180. On the other hand, in the illustration of FIG. 5, the semiconductor component 230 is mounted on the circuit board 300 together with the semiconductor device 1 ′, and the semiconductor device 1 ′ is positioned so that the dummy pattern 220 faces the semiconductor component 230. Has been implemented. In the example shown in the figure, the semiconductor component 230 is electrically connected to the semiconductor device 1 ′ via the conductive path 310 and the solder bump 180. However, the present invention is not limited to this, and the semiconductor component 230 is not limited thereto. May be an element electrically independent of the semiconductor device 1 ′. The semiconductor component 230 may be an active element or an integrated circuit having the above-described MOS structure, or a passive element such as the above-described resistor, inductor, or capacitor.

以上の構成により、コイル160の動作により発生し得る電磁界がダミーパターン220により吸収されるため、本実施の形態の半導体装置1’の実装先である回路基板300における半導体部品230等への電磁干渉が抑制される。また、半導体基板100の主材料である例えばシリコンは、例えば大気(空気)に比べて高い誘電率を有するため、コイル160から漏洩する電磁界を、ダミーパターン220とともに効果的に吸収し閉じ込めることができる。更に、この半導体装置1’は、回路基板300との間隙に半導体部品230があるように実装できるため、回路基板300における実装効率が向上する。   With the above configuration, an electromagnetic field that can be generated by the operation of the coil 160 is absorbed by the dummy pattern 220, and therefore, electromagnetic waves to the semiconductor components 230 and the like on the circuit board 300 on which the semiconductor device 1 ′ according to the present embodiment is mounted. Interference is suppressed. Further, for example, silicon, which is the main material of the semiconductor substrate 100, has a higher dielectric constant than, for example, the atmosphere (air). Therefore, the electromagnetic field leaking from the coil 160 can be effectively absorbed and confined together with the dummy pattern 220. it can. Further, since the semiconductor device 1 ′ can be mounted such that the semiconductor component 230 is in the gap with the circuit board 300, the mounting efficiency on the circuit board 300 is improved.

図7(b)の断面模式図に例示されるように、前述した半導体装置1’は、例えばはんだバンプ180を介して回路基板300に実装可能である。同図の例示では、半導体装置1’の裏面パターン150と、回路基板300上に形成された導電路310とが、はんだバンプ180を介して電気的に接続されている。一方、同図の例示では、回路基板300上には、半導体装置1’とともに、前述した半導体部品230が実装されており、半導体装置1’は、そのコイル160が半導体部品230と対向するような位置に実装されている。尚、同図の例示では、半導体部品230は、導電路310及びはんだバンプ180を介して半導体装置1’に対し電気的に接続されているが、これに限定されるものではなく、半導体部品230は半導体装置1’から電気的に独立した素子であってもよい。   As illustrated in the schematic cross-sectional view of FIG. 7B, the semiconductor device 1 ′ described above can be mounted on the circuit board 300 via, for example, solder bumps 180. In the illustration of the figure, the back surface pattern 150 of the semiconductor device 1 ′ and the conductive path 310 formed on the circuit board 300 are electrically connected via the solder bumps 180. On the other hand, in the example shown in the figure, the semiconductor component 230 described above is mounted together with the semiconductor device 1 ′ on the circuit board 300, and the semiconductor device 1 ′ has a coil 160 facing the semiconductor component 230. Implemented in position. In the example shown in the figure, the semiconductor component 230 is electrically connected to the semiconductor device 1 ′ via the conductive path 310 and the solder bump 180. However, the present invention is not limited to this, and the semiconductor component 230 is not limited thereto. May be an element electrically independent of the semiconductor device 1 ′.

以上の構成により、ダミーパターン220は、コイル160のインダクタンス特性を安定させることにより、半導体部品230に対するコイル160の干渉の度合いを一定に保持できることになる。従って、本実施の形態の半導体装置1’によれば、半導体部品230を不安定にするようなコイル160の干渉を抑制しつつ、実装効率を向上させることができる。   With the above configuration, the dummy pattern 220 can keep the degree of interference of the coil 160 with respect to the semiconductor component 230 constant by stabilizing the inductance characteristics of the coil 160. Therefore, according to the semiconductor device 1 ′ of the present embodiment, it is possible to improve the mounting efficiency while suppressing the interference of the coil 160 that makes the semiconductor component 230 unstable.

前述した実施の形態では、半導体装置1’は、回路基板300に対し、はんだバンプ180を介して実装されるものであったが、これに限定されるものではない。例えば、半導体装置1’と回路基板300とがワイヤーボンディングで電気的に接続されるものであってもよい。但し、はんだバンプ180を使用した方が、実装効率をより向上させることができる。   In the above-described embodiment, the semiconductor device 1 ′ is mounted on the circuit board 300 via the solder bumps 180, but is not limited to this. For example, the semiconductor device 1 ′ and the circuit board 300 may be electrically connected by wire bonding. However, mounting efficiency can be further improved by using the solder bumps 180.

===導電パターンを備えた半導体装置(2)===
前述した半導体装置1(図2A)の裏側において、回路素子16であるスパイラルインダクタ(平面状コイル)と対向するように、以下述べるダミーパターン(導電パターン)420が設けられていてもよい。
=== Semiconductor Device with Conductive Pattern (2) ===
On the back side of the semiconductor device 1 (FIG. 2A) described above, a dummy pattern (conductive pattern) 420 described below may be provided so as to face the spiral inductor (planar coil) that is the circuit element 16.

図8の断面模式図に例示されるように、本実施の形態の半導体装置1001は、主として、素子(電子デバイス)402が形成された、チップとしての半導体基板401と、貫通電極406a、406bと、コイル(インダクタ)400と、ダミーパターン420と、を備えて構成されている。ここで、半導体基板401、貫通電極406a、406b、及びコイル400は、図2Aに例示された半導体装置1における半導体基板10、貫通電極13、及び回路素子16と類似の構成を備え、後述する製造プロセスにより製造されるものである。   As illustrated in the schematic cross-sectional view of FIG. 8, the semiconductor device 1001 of the present embodiment mainly includes a semiconductor substrate 401 as a chip on which an element (electronic device) 402 is formed, and through electrodes 406a and 406b. , A coil (inductor) 400 and a dummy pattern 420 are provided. Here, the semiconductor substrate 401, the through-electrodes 406a and 406b, and the coil 400 have a configuration similar to that of the semiconductor substrate 10, the through-electrode 13, and the circuit element 16 in the semiconductor device 1 illustrated in FIG. It is manufactured by a process.

本実施の形態の半導体基板401の表面(−Z側の面)にはP型、N型の拡散領域が形成され、この表面は少なくとも1つの素子(電子デバイス)402が形成されたディスクリート又は集積回路(IC)をなすものである。この表面が例えばディスクリート・トランジスタである場合、絶縁層403を介してエミッタ電極404及びベース電極405が形成されており、再配線を介して、貫通電極406a、406bの形成領域までそれぞれ延在し、延在した先には、貫通電極406a、406bとコンタクトするコンタクト電極407a、407bがそれぞれ形成されている。   A P-type or N-type diffusion region is formed on the surface (-Z side surface) of the semiconductor substrate 401 of the present embodiment, and this surface is a discrete or integrated structure on which at least one element (electronic device) 402 is formed. A circuit (IC) is formed. When this surface is, for example, a discrete transistor, the emitter electrode 404 and the base electrode 405 are formed through the insulating layer 403, and extend through the rewiring to the formation regions of the through electrodes 406a and 406b, Contact electrodes 407a and 407b that are in contact with the through electrodes 406a and 406b are formed at the extended ends, respectively.

本実施の形態の半導体基板401の裏面(+Z側の面)からコンタクト電極407a、407bにかけては貫通領域が形成されており、その内壁には絶縁層408が形成されている。また、シリコン(Si)からなる半導体基板401の裏面との電気的絶縁のために、裏面に対しシリコン酸化膜(SiO)409を介してコイル400が設けられている。また、本実施の形態では、コイル400と半導体基板401との熱膨張係数の相違によりこの境界に発生し得る応力を低減するために、当該境界には柔軟性を有する絶縁性樹脂(緩衝層)410が形成されている。 A through region is formed from the back surface (+ Z side surface) of the semiconductor substrate 401 of this embodiment to the contact electrodes 407a and 407b, and an insulating layer 408 is formed on the inner wall thereof. In addition, a coil 400 is provided on the back surface via a silicon oxide film (SiO 2 ) 409 for electrical insulation from the back surface of the semiconductor substrate 401 made of silicon (Si). In the present embodiment, in order to reduce the stress that can be generated at the boundary due to the difference in thermal expansion coefficient between the coil 400 and the semiconductor substrate 401, the boundary has a flexible insulating resin (buffer layer). 410 is formed.

本実施の形態の貫通電極406a、406bは、半導体基板401の裏面から貫通領域の内壁にかけて形成され、更に半導体基板401の表面でコンタクト電極407a、407bと電気的に接続されるように形成されている。尚、コイル400は、貫通電極406a、406bの形成と同時に形成されてもよいし、別途形成されてもよい。   The through electrodes 406a and 406b of this embodiment are formed from the back surface of the semiconductor substrate 401 to the inner wall of the through region, and are further formed so as to be electrically connected to the contact electrodes 407a and 407b on the surface of the semiconductor substrate 401. Yes. The coil 400 may be formed simultaneously with the formation of the through electrodes 406a and 406b, or may be formed separately.

以上の構成により、半導体基板401の表面の活性領域に形成される素子402と電気的に接続された電極404、405は、再配線、コンタクト電極407a、407b、貫通電極406a、406b、及び半導体基板401の裏面の電極415と電気的に接続される。   With the above structure, the electrodes 404 and 405 that are electrically connected to the element 402 formed in the active region on the surface of the semiconductor substrate 401 include the rewiring, the contact electrodes 407a and 407b, the through electrodes 406a and 406b, and the semiconductor substrate. It is electrically connected to the electrode 415 on the back surface of 401.

本実施の形態の半導体基板401の裏面には、例えばはんだバンプ(又ははんだボール)412(図9)を形成するためにソルダーレジスト(絶縁材料)413が形成されている。これにより、コイル400は、ソルダーレジスト413により被覆される。このコイル400は、不図示の貫通電極により、半導体基板401の表面の一電極と電気的に接続される。例えば、コイル400がICの裏面に配置される場合は、このICの一電極と接続されることになる。   A solder resist (insulating material) 413 is formed on the back surface of the semiconductor substrate 401 of the present embodiment in order to form, for example, solder bumps (or solder balls) 412 (FIG. 9). As a result, the coil 400 is covered with the solder resist 413. The coil 400 is electrically connected to one electrode on the surface of the semiconductor substrate 401 by a through electrode (not shown). For example, when the coil 400 is disposed on the back surface of the IC, it is connected to one electrode of the IC.

尚、本実施の形態の半導体装置1001は、はんだバンプ(又はボール)412を備えるものであってもよいし、或いは、実装先の回路基板(例えば、回路基板300)がはんだバンプ(又はボール)412を備えるものであってもよい。   Note that the semiconductor device 1001 of this embodiment may include a solder bump (or ball) 412, or a circuit board (for example, the circuit board 300) as a mounting destination may be a solder bump (or ball). 412 may be provided.

本実施の形態のダミーパターン420は、コイル400と対向するように、ソルダーレジスト413の+Z側に設けられている。このダミーパターン420は、具体的には、例えば銅(Cu)を主材料とし、コイル400の輪郭と整合するようになっている。つまり、このダミーパターン420は、コイル400の外周枠と同じ又はこれを越えた位置に外縁を有するものである。また、例えば本実施の形態のコイル400が、半導体基板401の裏面に並んだ複数のコイル(不図示)を接続した構成を有している場合、このダミーパターン420は、この複数のコイル全体の輪郭と整合するような形状を有している。尚、本実施の形態のダミーパターン420は、ソルダーレジスト413の表側に、例えば圧延銅箔が貼着されたものであってもよいし、或いは、例えば銅めっき形成されたものであってもよい。また、本実施の形態のダミーパターン420の主材料は、銅に限定されるものではなく、例えば、金、銀、錫、インジウム、アルミニウム、ニッケル、クロム、又はこれらの合金等が主材料であってもよい。   The dummy pattern 420 of the present embodiment is provided on the + Z side of the solder resist 413 so as to face the coil 400. Specifically, the dummy pattern 420 is made of, for example, copper (Cu) as a main material and matches the contour of the coil 400. That is, the dummy pattern 420 has an outer edge at the same position as or beyond the outer peripheral frame of the coil 400. For example, when the coil 400 of the present embodiment has a configuration in which a plurality of coils (not shown) arranged on the back surface of the semiconductor substrate 401 are connected, the dummy pattern 420 is formed on the entire plurality of coils. It has a shape that matches the contour. Note that the dummy pattern 420 of the present embodiment may be one in which, for example, a rolled copper foil is attached to the front side of the solder resist 413, or may be one in which, for example, copper plating is formed. . In addition, the main material of the dummy pattern 420 of the present embodiment is not limited to copper. For example, gold, silver, tin, indium, aluminum, nickel, chromium, or an alloy thereof is the main material. May be.

本実施の形態の半導体装置1001によれば、コイル400と相互インダクタンス結合し得る主たる導電体は、ソルダーレジスト413を挟んでコイル400と対向するように形成されるダミーパターン420である。よって、半導体装置1001単体においてコイル400が所定のインダクタンス特性を有するように予めダミーパターン420を設計しておけば、コイル400の所定のインダクタンス特性が保持される。また、この半導体装置1001によれば、半導体基板401を形成するシリコン(Si)は+Z方向の磁力線を遮蔽し、ダミーパターン420は−Z方向の磁力線を遮蔽する。一般に、磁場(磁力線)は電磁誘導によりコイル400のインダクタンス値を大きく変化させる虞があるが、この遮蔽により、コイル400の近傍に磁場が発生し難くなり(即ち、コイル400に磁力線が到達し難くなり)、コイル400の所定のインダクタンス値が保持される。インダクタンス値が安定に保持されれば、例えば素子402に対するコイル400の干渉の度合いを一定に保持できることになる。従って、この半導体装置1001によれば、素子402を不安定にするようなコイル400の干渉を抑制しつつ、実装効率を向上させることができる。   According to the semiconductor device 1001 of the present embodiment, the main conductor capable of mutual inductance coupling with the coil 400 is the dummy pattern 420 formed so as to face the coil 400 with the solder resist 413 interposed therebetween. Therefore, if the dummy pattern 420 is designed in advance so that the coil 400 has a predetermined inductance characteristic in the semiconductor device 1001 alone, the predetermined inductance characteristic of the coil 400 is maintained. Further, according to the semiconductor device 1001, silicon (Si) forming the semiconductor substrate 401 shields magnetic lines in the + Z direction, and the dummy pattern 420 shields magnetic lines in the -Z direction. In general, the magnetic field (lines of magnetic force) may greatly change the inductance value of the coil 400 due to electromagnetic induction, but this shielding makes it difficult for a magnetic field to be generated in the vicinity of the coil 400 (that is, the lines of magnetic force hardly reach the coil 400). The predetermined inductance value of the coil 400 is maintained. If the inductance value is held stably, for example, the degree of interference of the coil 400 with the element 402 can be held constant. Therefore, according to the semiconductor device 1001, it is possible to improve the mounting efficiency while suppressing the interference of the coil 400 that makes the element 402 unstable.

===導電パターンを備えた半導体モジュール===
前述した半導体装置1(図2A)を回路基板300に実装する際に、回路素子16であるスパイラルインダクタ(平面状コイル)が、回路基板(実装基板)300上のダミーパターン(導電パターン)500と対向するように実装されてもよい。
=== Semiconductor Module with Conductive Pattern ===
When the semiconductor device 1 (FIG. 2A) described above is mounted on the circuit board 300, the spiral inductor (planar coil) that is the circuit element 16 is connected to the dummy pattern (conductive pattern) 500 on the circuit board (mounting board) 300. You may mount so that it may oppose.

図9の断面模式図に例示されるように、本実施の形態の半導体モジュール2は、半導体装置1002と、ダミーパターン500を有する回路基板300と、からなるものである。半導体装置1002は、主として、素子(電子デバイス)402が形成された、チップとしての半導体基板401と、貫通電極406a、406bと、コイル(インダクタ)400と、を備えて構成されており、回路基板300に実装される際に、コイル400の形成位置と、回路基板300上のダミーパターン500の形成位置とが対向するようになっている。尚、本実施の形態の半導体装置1002は、ダミーパターン420(図8)を備えていない以外は、図8に例示された半導体装置1001と同じ構成を備えたものである。また、本実施の形態の半導体装置1002の裏面(+Z側の面)の電極415は、回路基板300上に形成された導電路310と、例えばはんだバンプ(又はボール)412を介して電気的に接続されている。   As illustrated in the schematic cross-sectional view of FIG. 9, the semiconductor module 2 of this embodiment includes a semiconductor device 1002 and a circuit board 300 having a dummy pattern 500. The semiconductor device 1002 mainly includes a semiconductor substrate 401 as a chip on which an element (electronic device) 402 is formed, through electrodes 406a and 406b, and a coil (inductor) 400, and a circuit board. When mounted on 300, the formation position of the coil 400 and the formation position of the dummy pattern 500 on the circuit board 300 are opposed to each other. The semiconductor device 1002 of this embodiment has the same configuration as the semiconductor device 1001 illustrated in FIG. 8 except that the dummy pattern 420 (FIG. 8) is not provided. In addition, the electrode 415 on the back surface (+ Z side surface) of the semiconductor device 1002 of this embodiment is electrically connected to the conductive path 310 formed on the circuit board 300 via, for example, a solder bump (or ball) 412. It is connected.

本実施の形態の半導体モジュール2によれば、コイル400と相互インダクタンス結合し得る主たる導電体は、回路基板300上におけるコイル400の形成位置と対向する位置に形成されるダミーパターン500である。よって、半導体装置1002を回路基板300に実装するに際し、コイル400が所定のインダクタンス特性を有するように回路基板300上のダミーパターン500を設計すれば、コイル400の所定のインダクタンス特性が保持される。また、本実施の形態の半導体モジュール2によれば、半導体基板401は+Z方向の磁力線を遮蔽し、ダミーパターン500は−Z方向の磁力線を遮蔽するため、コイル400の所定のインダクタンス特性が保持される。インダクタンス値が安定に保持されれば、例えば素子402に対するコイル400の干渉の度合いを一定に保持できることになる。従って、本実施の形態の半導体モジュール2によれば、素子402を不安定にするようなコイル400の干渉を抑制しつつ、半導体装置1002の実装効率を向上させることができる。   According to the semiconductor module 2 of the present embodiment, the main conductor capable of mutual inductance coupling with the coil 400 is the dummy pattern 500 formed at a position opposite to the position where the coil 400 is formed on the circuit board 300. Therefore, when the semiconductor device 1002 is mounted on the circuit board 300, if the dummy pattern 500 on the circuit board 300 is designed so that the coil 400 has a predetermined inductance characteristic, the predetermined inductance characteristic of the coil 400 is maintained. Further, according to the semiconductor module 2 of the present embodiment, the semiconductor substrate 401 shields the magnetic field lines in the + Z direction, and the dummy pattern 500 shields the magnetic field lines in the -Z direction, so that the predetermined inductance characteristic of the coil 400 is maintained. The If the inductance value is held stably, for example, the degree of interference of the coil 400 with the element 402 can be held constant. Therefore, according to the semiconductor module 2 of the present embodiment, the mounting efficiency of the semiconductor device 1002 can be improved while suppressing the interference of the coil 400 that makes the element 402 unstable.

===半導体装置の製造方法===
前述した構成を備える半導体装置1001、1002の製造方法について説明する。尚、以下の説明では、半導体基板401としてシリコン基板を用いるものとする。また、ベースとなるウェハとして、表面及び裏面に熱酸化法やプラズマCVD(Plasma Chemical Vapor Deposition)、スパッタリング法等により5μm厚のシリコン酸化膜(SiO)による絶縁層155”,156”が施された、130μm厚のシリコンウェハを用いるものとする。また、半導体基板401の表面には、熱酸化法やCVD(Chemical Vapor Deposition)、スパッタ、リソグラフィ、不純物拡散等の前工程により、MOS(Metal Oxide Semiconductor)構造又はBIP(Bipolar)構造の能動素子や集積回路等の電子デバイスが形成されているものとする。
=== Semiconductor Device Manufacturing Method ===
A method for manufacturing the semiconductor devices 1001 and 1002 having the above-described configuration will be described. In the following description, a silicon substrate is used as the semiconductor substrate 401. Further, as the base wafer, insulating layers 155 ″ and 156 ″ made of a silicon oxide film (SiO 2 ) having a thickness of 5 μm are applied to the front and back surfaces by thermal oxidation, plasma CVD (plasma chemical vapor deposition), sputtering, or the like. A silicon wafer having a thickness of 130 μm is used. The active surface of the semiconductor substrate 401 has a MOS (Metal Oxide Semiconductor) structure or a BIP (Bipolar) structure by pre-processes such as thermal oxidation, CVD (Chemical Vapor Deposition), sputtering, lithography, and impurity diffusion. Assume that an electronic device such as an integrated circuit is formed.

<<<貫通電極>>>
図10において、半導体基板401に貫通電極(例えば、貫通電極406a、406b)を形成するプロセスを示している。前述したように、半導体基板401の裏面(拡散により形成された表面と反対の面)には、シリコン酸化膜(SiO)や絶縁性の樹脂膜等の絶縁層155”が形成されている。貫通電極の形成に際しては、先ずこの裏面の貫通電極が形成される部分(40μm径)以外の部分にフォトレジスト(PR)を施した後、四フッ化炭素(CF)等のエッチングガスを用いてエッチングを行い、貫通電極が形成される部分に形成されている絶縁層155”を除去する。貫通電極が形成される部分に形成されている絶縁層155”が除去された後の状態を図10(a)に示している。尚、電極MLは、金属材料からなる電極又は配線であり、例えば、Al、Cu、又は、下地から順にTi−TiN−Alを形成してなる層等からなるものである。
<<< Through electrode >>>
FIG. 10 shows a process of forming through electrodes (for example, through electrodes 406 a and 406 b) in the semiconductor substrate 401. As described above, the insulating layer 155 ″ such as a silicon oxide film (SiO 2 ) or an insulating resin film is formed on the back surface of the semiconductor substrate 401 (the surface opposite to the surface formed by diffusion). When forming the through electrode, first, a photoresist (PR) is applied to a portion other than the portion (40 μm diameter) where the through electrode on the back surface is formed, and then an etching gas such as carbon tetrafluoride (CF 4 ) is used. Etching is performed to remove the insulating layer 155 ″ formed in the portion where the through electrode is formed. FIG. 10A shows a state after the insulating layer 155 ″ formed in the portion where the through electrode is formed. The electrode ML is an electrode or a wiring made of a metal material, For example, it is made of Al, Cu, or a layer formed by forming Ti—TiN—Al sequentially from the base.

次に、六フッ化炭素(CF)等のエッチングガスを用いてエッチングを行うことにより、半導体基板401に貫通孔151”を形成する(図10(b))。これにより、貫通孔151”の底部に絶縁層156”が露出する。ここでは、絶縁層156”の例えばシリコン酸化膜と、半導体基板401のシリコンとでは、エッチングレートが異なるため、図10(b)の例示では、オーバーエッチングにより、絶縁層156”側で若干横方向に広がっている。 Next, etching is performed using an etching gas such as carbon hexafluoride (CF 6 ) to form a through hole 151 ″ in the semiconductor substrate 401 (FIG. 10B). Thereby, the through hole 151 ″ is formed. The insulating layer 156 ″ is exposed at the bottom of the semiconductor substrate. Here, for example, the silicon oxide film of the insulating layer 156 ″ and the silicon of the semiconductor substrate 401 have different etching rates. Therefore, in the example of FIG. As a result, it slightly spreads in the lateral direction on the insulating layer 156 ″ side.

次に、四フッ化炭素(CF)等のエッチングガスを用いてエッチングを行い、貫通孔151”の底部に露出する部分となる部分の絶縁層156”を除去する(図10(c))。ここでは、電極MLが底部から露出することになる。 Next, etching is performed using an etching gas such as carbon tetrafluoride (CF 4 ) to remove a portion of the insulating layer 156 ″ that is exposed at the bottom of the through hole 151 ″ (FIG. 10C). . Here, the electrode ML is exposed from the bottom.

次に、貫通孔151”の内側面に露出しているシリコン表面を絶縁するべく、貫通孔151”の内側面にCVD(Chemical Vapor Deposition)、熱酸化法、スパッタ法等により、SiOからなる絶縁膜157”を形成する(図10(d))。尚、この工程を行うことにより、貫通孔151”の底部に再びSiO158”が付着してしまうこととなる。 Next, in order to insulate the silicon surface exposed to the inner surface of the through hole 151 ″, the inner surface of the through hole 151 ″ is made of SiO 2 by CVD (Chemical Vapor Deposition), thermal oxidation method, sputtering method or the like. An insulating film 157 ″ is formed (FIG. 10D). By performing this step, SiO 2 158 ″ is again attached to the bottom of the through hole 151 ″.

次に、貫通孔151”の底部に付着したSiO158”を除去する。この際、貫通孔151”の表面近傍に形成されている絶縁膜157”が剥がれてしまわないように、予めCVD、熱酸化法、スパッタ法等により貫通孔151”の表面近傍に保護膜159”を形成しておく(図10(e))。ただし、この保護膜159”の形成は必須ではなく、これを使用しない場合もある。 Next, the SiO 2 158 ″ attached to the bottom of the through hole 151 ″ is removed. At this time, in order to prevent the insulating film 157 ″ formed in the vicinity of the surface of the through hole 151 ″ from being peeled off, a protective film 159 ″ is formed in the vicinity of the surface of the through hole 151 ″ by CVD, thermal oxidation method, sputtering method or the like in advance. Is formed (FIG. 10E). However, the formation of the protective film 159 ″ is not essential and may not be used.

続いて、裏面から異方性エッチングを行う。これにより貫通孔151”の底部に形成されているSiO158”が除去されることとなる。異方性エッチングにより、側壁よりも底部の方がエッチングされやすいため、絶縁膜156”に対し、貫通孔151”の開口部と実質同じサイズの開口部を形成するエッチングが可能である。これにより、貫通孔151”の開口部に保護膜159”を形成しておけば、絶縁膜156”側に対し、この保護膜159”で狭められた、より小さい開口部が内側に形成される。図10(f)にSiO158”が除去された後の状態を示す。 Subsequently, anisotropic etching is performed from the back surface. As a result, the SiO 2 158 ″ formed at the bottom of the through hole 151 ″ is removed. Since the bottom is easier to etch than the side wall by anisotropic etching, the insulating film 156 ″ can be etched to form an opening having substantially the same size as the opening of the through hole 151 ″. Thus, if the protective film 159 ″ is formed in the opening of the through hole 151 ″, a smaller opening narrowed by the protective film 159 ″ is formed on the inner side of the insulating film 156 ″. . FIG. 10F shows a state after SiO 2 158 ″ is removed.

次に、CVDによって貫通孔151”の内側面に、下地から順にTiN又はTi、TiNを形成してなるバリア層152”を形成する。(図10(g))。尚、このバリア層152”は、バリア層として機能すればよいため、例えば他の金属でもよい。   Next, a barrier layer 152 ″ formed by forming TiN or Ti and TiN sequentially from the base is formed on the inner side surface of the through hole 151 ″ by CVD. (FIG. 10 (g)). The barrier layer 152 ″ only needs to function as a barrier layer, and may be other metal, for example.

次に、CVD法又は無電解めっき等の成膜法で導電層を形成する。つまり、バリア層152”の表面に導電材153”をめっきする(図10(h))。以上の工程を経ることにより、半導体基板401に貫通電極(例えば、貫通電極406a、406b)が形成されることとなる。   Next, a conductive layer is formed by a film formation method such as CVD or electroless plating. That is, the conductive material 153 ″ is plated on the surface of the barrier layer 152 ″ (FIG. 10H). Through the above steps, through electrodes (for example, through electrodes 406a and 406b) are formed in the semiconductor substrate 401.

<<<裏面パターン>>>
次に、以上のような貫通電極が形成された半導体基板401の裏面に裏面パターン(例えば、電極415)を形成する。裏面パターンを形成する際のプロセスフローは、図4に例示されるものと略同様であるため、同図に基づいて説明する。
<<< Backside pattern >>>
Next, a back surface pattern (for example, electrode 415) is formed on the back surface of the semiconductor substrate 401 on which the through electrode as described above is formed. The process flow for forming the back surface pattern is substantially the same as that illustrated in FIG. 4 and will be described with reference to FIG.

裏面パターンの形成に際しては、先ず、図10(h)で説明したように、半導体基板401の裏面の全面に導電材となるCuをめっきする(S410)。次に、裏面の全面にフォトレジストを施し(S411)、露光・現像を行って裏面パターンとなる部分をマスクする(S412)。次に、エッチングを行って、裏面パターンとなる部分以外の部分のCu及びバリア層152”を除去する(S413)。次に、フォトレジストを除去する(S414)。以上により、半導体基板401の裏面に裏面パターンが形成される。ここで、図9に例示されるように、裏面にはんだバンプ(又はボール)412が形成される場合は、裏面パターンにおいて、はんだバンプ(又はボール)412とコンタクトする領域を除いて、例えばソルダーレジスト413が形成され、その開口部にはんだバンプ(又はボール)412等が形成される。ここで、はんだバンプ(又はボール)412と電極415のCuとの間には、Ni等のバリアが形成されてもよい。尚、図8に例示される半導体装置1001の場合、前述したように、コイル400は、貫通電極406a、406b及び電極415の形成と同時に形成されてもよいし、別途形成されてもよい。   In forming the back surface pattern, first, as described with reference to FIG. 10H, Cu serving as a conductive material is plated on the entire back surface of the semiconductor substrate 401 (S410). Next, a photoresist is applied to the entire back surface (S411), and exposure / development is performed to mask a portion that becomes the back surface pattern (S412). Next, etching is performed to remove Cu and the barrier layer 152 ″ other than the portion to be the back surface pattern (S413). Next, the photoresist is removed (S414). 9, a solder bump (or ball) 412 is formed in contact with the solder bump (or ball) 412 in the back surface pattern, as illustrated in FIG. Except for the region, for example, a solder resist 413 is formed, and a solder bump (or ball) 412 or the like is formed in the opening, where the solder bump (or ball) 412 and the electrode 415 are between Cu. In the case of the semiconductor device 1001 illustrated in Fig. 8, as described above, the coil 400 may be formed. Through electrodes 406a, it may be formed simultaneously with the formation of 406b and the electrode 415 may be formed separately.

<<<表面パターン>>>
次に、半導体基板401の表面に表面パターン(例えば、電極404、405)を形成する。表面パターンを形成する際のプロセスフローは、図5に例示されるものと略同様であるため、同図に基づいて説明する。
<<< Surface pattern >>>
Next, a surface pattern (for example, electrodes 404 and 405) is formed on the surface of the semiconductor substrate 401. The process flow for forming the surface pattern is substantially the same as that illustrated in FIG. 5 and will be described with reference to FIG.

表面パターンの形成に際しては、先ず、半導体基板401の表面の全面に導電材となるCuをめっきする(S510)。当然のことであるが、半導体基板401上には、絶縁層を介して複数層の電極や配線等が形成されて、通常のディスクリートデバイス又はLSIデバイスをなすものである。そして、その上には、例えば絶縁性樹脂やSiN等の絶縁層が形成され、この絶縁層を介して、所望の電極と電気的に接続されてなるCuが全面に形成されることになる。この表面にフォトレジストを施して(S511)、露光・現像を行うことにより表面パターンを形成する部分をマスクする(S512)。次にエッチングを行って表面パターンを形成する部分以外の部分に施されているCuを除去する(S513)。そして更にフォトレジストを除去する(S514)。以上により、半導体基板401の表面に表面パターンが形成される。   In forming the surface pattern, first, Cu as a conductive material is plated on the entire surface of the semiconductor substrate 401 (S510). As a matter of course, a plurality of layers of electrodes, wirings, and the like are formed on the semiconductor substrate 401 via an insulating layer to form a normal discrete device or LSI device. An insulating layer made of, for example, an insulating resin or SiN is formed thereon, and Cu that is electrically connected to a desired electrode is formed on the entire surface through this insulating layer. Photoresist is applied to the surface (S511), and exposure / development is performed to mask a portion where a surface pattern is to be formed (S512). Next, etching is performed to remove Cu applied to portions other than the portion where the surface pattern is to be formed (S513). Further, the photoresist is removed (S514). As a result, a surface pattern is formed on the surface of the semiconductor substrate 401.

前述した回路素子16(図1)と同様の回路素子(不図示)は、以上のプロセスを経た後、半導体基板401に実装されることになる。また必要に応じて、回路素子と半導体基板401との間を電気的に接続するためのワイヤーボンディング(不図示)等を介した配線処理が施される。尚、この回路素子が前述したコイル400のような場合、この回路素子は、図10に例示される裏面パターンの形成プロセスと同様のプロセスで形成される。   A circuit element (not shown) similar to the circuit element 16 (FIG. 1) described above is mounted on the semiconductor substrate 401 after the above process. Further, if necessary, a wiring process is performed through wire bonding (not shown) for electrically connecting the circuit element and the semiconductor substrate 401. When this circuit element is like the coil 400 described above, this circuit element is formed by the same process as the back surface pattern formation process illustrated in FIG.

以上のプロセスの後は、半導体基板401の表面側に更にソルダーレジスト(不図示)が施される。また、表面側にはんだバンプ(又はボール)412が形成されてもよい。その後、ダイシングを行ってチップ化することにより半導体装置1001、1002が完成する。   After the above process, a solder resist (not shown) is further applied to the surface side of the semiconductor substrate 401. In addition, solder bumps (or balls) 412 may be formed on the surface side. Thereafter, dicing is performed to form chips, whereby the semiconductor devices 1001 and 1002 are completed.

尚、以上の実施形態の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。   The above description of the embodiment is for facilitating the understanding of the present invention, and does not limit the present invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof.

前述した回路素子16、160は、例えば抵抗やインダクタ、コンデンサ等の受動素子であるが、これに限定されるものではなく、例えば水晶振動子であってもよい。   The circuit elements 16 and 160 described above are passive elements such as resistors, inductors, and capacitors, but are not limited thereto, and may be crystal resonators, for example.

また、前述した実施の形態では、半導体装置1001、1002は、回路基板300に対し、はんだバンプ412を介して実装されるものであったが、これに限定されるものではない。例えば、半導体装置1001、1002と回路基板300とがワイヤーボンディングで電気的に接続されるものであってもよい。但し、はんだバンプ412を使用した方が、実装効率をより向上させることができる。   In the above-described embodiment, the semiconductor devices 1001 and 1002 are mounted on the circuit board 300 via the solder bumps 412. However, the present invention is not limited to this. For example, the semiconductor devices 1001 and 1002 and the circuit board 300 may be electrically connected by wire bonding. However, mounting efficiency can be further improved by using the solder bumps 412.

一実施形態として説明する半導体装置1の断面模式図である。1 is a schematic cross-sectional view of a semiconductor device 1 described as an embodiment. 一実施形態として説明する、回路素子16が裏面パターン15自体によって構成される半導体装置1の一例を示す図である。It is a figure which shows an example of the semiconductor device 1 in which the circuit element 16 comprised by the back surface pattern 15 itself demonstrated as one Embodiment. 一実施形態として説明する、回路素子16が裏面パターン15自体によって構成される半導体装置1の一例であり、半導体基板10と裏面パターン15との間に緩衝層21を介在させるようにした場合の一例を示す図である。An example of the semiconductor device 1 in which the circuit element 16 is configured by the back surface pattern 15 itself, described as an embodiment, and in which the buffer layer 21 is interposed between the semiconductor substrate 10 and the back surface pattern 15. FIG. 一実施形態として説明する半導体基板10に貫通電極13を形成するプロセスを説明する図である。It is a figure explaining the process of forming the penetration electrode 13 in the semiconductor substrate 10 demonstrated as one Embodiment. 一実施形態として説明する裏面パターン15を形成するためのプロセスフローである。It is a process flow for forming the back surface pattern 15 demonstrated as one Embodiment. 一実施形態として説明する表面パターン17を形成するためのプロセスフローである。It is a process flow for forming the surface pattern 17 demonstrated as one Embodiment. 一実施形態として説明する半導体装置1’の断面模式図である。1 is a schematic cross-sectional view of a semiconductor device 1 ′ described as an embodiment. 一実施形態として説明する回路基板300上に実装された半導体装置1’の断面模式図である。It is a cross-sectional schematic diagram of a semiconductor device 1 ′ mounted on a circuit board 300 described as an embodiment. 一実施形態として説明する半導体装置1001の断面模式図である。1 is a schematic cross-sectional view of a semiconductor device 1001 described as an embodiment. 一実施形態として説明する半導体モジュール2の断面模式図である。It is a cross-sectional schematic diagram of the semiconductor module 2 demonstrated as one Embodiment. 一実施形態として説明する半導体基板401に貫通電極を形成するプロセスを説明する図である。It is a figure explaining the process which forms a penetration electrode in the semiconductor substrate 401 demonstrated as one Embodiment.

符号の説明Explanation of symbols

1’、1001、1002 半導体装置
2 半導体モジュール
100 半導体基板
130 貫通電極
140 電子デバイス
150 裏面パターン
160 回路素子
170 表面パターン
180 はんだバンプ
200、413 ソルダーレジスト
220、420 ダミーパターン
230 半導体部品
300 回路基板
310 導電路
400 コイル
401 半導体基板
403、408 絶縁層
404 エミッタ電極
405 ベース電極
406a、406b 貫通電極
407a、407b コンタクト電極
409 シリコン酸化膜
410 絶縁性樹脂
412 はんだバンプ
415 電極
500 ダミーパターン
1 ', 1001, 1002 Semiconductor device 2 Semiconductor module 100 Semiconductor substrate 130 Through electrode 140 Electronic device 150 Back surface pattern 160 Circuit element 170 Surface pattern 180 Solder bump 200, 413 Solder resist 220, 420 Dummy pattern 230 Semiconductor component 300 Circuit substrate 310 Conductivity Path 400 Coil 401 Semiconductor substrate 403, 408 Insulating layer 404 Emitter electrode 405 Base electrode 406a, 406b Through electrode 407a, 407b Contact electrode 409 Silicon oxide film 410 Insulating resin 412 Solder bump 415 Electrode 500 Dummy pattern

Claims (10)

表面側に電子デバイスが形成されてなる半導体基板と、
前記半導体基板の裏面側に形成されるインダクタと、
前記半導体基板の表面と裏面との間を貫通し、前記電子デバイスと前記インダクタとを電気的に接続する貫通電極と、
前記半導体基板の裏面側の前記インダクタの形成位置と相反する前記半導体基板の表面側の位置に形成される、前記インダクタのインダクタンスを安定化させるための導電パターンと、
を有することを特徴とする半導体装置。
A semiconductor substrate having an electronic device formed on the surface side;
An inductor formed on the back side of the semiconductor substrate;
A through electrode that penetrates between the front surface and the back surface of the semiconductor substrate and electrically connects the electronic device and the inductor;
A conductive pattern for stabilizing the inductance of the inductor, which is formed at a position on the front surface side of the semiconductor substrate opposite to the formation position of the inductor on the back surface side of the semiconductor substrate;
A semiconductor device comprising:
請求項1に記載の半導体装置であって、
前記導電パターンは、絶縁材料を介して前記半導体基板の表面と接続されることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the conductive pattern is connected to a surface of the semiconductor substrate through an insulating material.
請求項2に記載の半導体装置であって、
前記半導体基板の表面側の前記導電パターンは回路基板上の半導体部品と対向し、
前記貫通電極は、はんだバンプを介して前記回路基板上の電極と接続される、ことを特徴とする半導体装置。
The semiconductor device according to claim 2,
The conductive pattern on the surface side of the semiconductor substrate faces a semiconductor component on the circuit board,
The semiconductor device, wherein the through electrode is connected to an electrode on the circuit board through a solder bump.
請求項2に記載の半導体装置であって、
前記半導体基板の裏面側の前記インダクタは回路基板上の半導体部品と対向し、
前記貫通電極は、はんだバンプを介して前記回路基板上の電極と接続される、ことを特徴とする半導体装置。
The semiconductor device according to claim 2,
The inductor on the back side of the semiconductor substrate faces a semiconductor component on the circuit board,
The semiconductor device, wherein the through electrode is connected to an electrode on the circuit board through a solder bump.
表面側に電子デバイスが形成されてなる半導体基板と、
前記半導体基板の裏面側に形成されるインダクタと、
前記半導体基板の表面と裏面との間を貫通し、前記電子デバイスと前記インダクタとを電気的に接続する貫通電極と、
前記半導体基板の裏面側の前記インダクタの形成位置と対向する位置に絶縁材料を介して形成される、前記インダクタのインダクタンスを安定化させるための導電パターンと、
を有することを特徴とする半導体装置。
A semiconductor substrate having an electronic device formed on the surface side;
An inductor formed on the back side of the semiconductor substrate;
A through electrode that penetrates between the front surface and the back surface of the semiconductor substrate and electrically connects the electronic device and the inductor;
A conductive pattern for stabilizing the inductance of the inductor, which is formed via an insulating material at a position facing the formation position of the inductor on the back side of the semiconductor substrate;
A semiconductor device comprising:
請求項5に記載の半導体装置であって、
前記半導体基板は、当該半導体基板の表面側から裏面側へ向かう磁力線を遮蔽するための素材からなり、
前記導電パターンは、前記半導体基板の裏面側から表面側へ向かう磁力線を遮蔽するための素材からなる、
ことを特徴とする半導体装置。
The semiconductor device according to claim 5,
The semiconductor substrate is made of a material for shielding lines of magnetic force directed from the front surface side to the back surface side of the semiconductor substrate,
The conductive pattern is made of a material for shielding lines of magnetic force from the back side to the front side of the semiconductor substrate.
A semiconductor device.
請求項5又は6に記載の半導体装置であって、
前記半導体基板の裏面と前記インダクタとの間に形成される、前記半導体基板の裏面と前記インダクタとの間の応力を低減するための緩衝層、を有することを特徴とする半導体装置。
The semiconductor device according to claim 5, wherein:
A semiconductor device comprising: a buffer layer formed between a back surface of the semiconductor substrate and the inductor, for reducing stress between the back surface of the semiconductor substrate and the inductor.
表面側に電子デバイスが形成されてなる半導体基板と、前記半導体基板の裏面側に形成されるインダクタと、前記半導体基板の表面と裏面との間を貫通し、前記電子デバイスと前記インダクタとを電気的に接続する貫通電極と、を有する半導体装置と、
前記半導体基板の裏面側の前記インダクタの形成位置と対向する位置に形成される、前記インダクタのインダクタンスを安定化させるための導電パターンを有し、前記半導体装置が実装される実装基板と、
からなることを特徴とする半導体モジュール。
A semiconductor substrate in which an electronic device is formed on the front surface side, an inductor formed on the back surface side of the semiconductor substrate, and between the front surface and the back surface of the semiconductor substrate, and electrically connecting the electronic device and the inductor. A semiconductor device having a through electrode electrically connected,
A mounting substrate formed on a back surface side of the semiconductor substrate at a position opposite to the inductor forming position, for stabilizing the inductance of the inductor, and on which the semiconductor device is mounted;
A semiconductor module comprising:
請求項8に記載の半導体モジュールであって、
前記半導体基板は、当該半導体基板の表面側から裏面側へ向かう磁力線を遮蔽するための素材からなり、
前記導電パターンは、前記半導体基板の裏面側から表面側へ向かう磁力線を遮蔽するための素材からなる、
ことを特徴とする半導体モジュール。
The semiconductor module according to claim 8,
The semiconductor substrate is made of a material for shielding lines of magnetic force directed from the front surface side to the back surface side of the semiconductor substrate,
The conductive pattern is made of a material for shielding lines of magnetic force from the back side to the front side of the semiconductor substrate.
A semiconductor module characterized by that.
請求項8又は9に記載の半導体モジュールであって、
前記半導体基板の裏面と前記インダクタとの間に形成される、前記半導体基板の裏面と前記インダクタとの間の応力を低減するための緩衝層、を有することを特徴とする半導体モジュール。
The semiconductor module according to claim 8 or 9, wherein
A semiconductor module, comprising: a buffer layer formed between the back surface of the semiconductor substrate and the inductor for reducing stress between the back surface of the semiconductor substrate and the inductor.
JP2007306999A 2004-12-20 2007-11-28 Semiconductor device and semiconductor module Withdrawn JP2008085362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306999A JP2008085362A (en) 2004-12-20 2007-11-28 Semiconductor device and semiconductor module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004367523 2004-12-20
JP2007306999A JP2008085362A (en) 2004-12-20 2007-11-28 Semiconductor device and semiconductor module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005354656A Division JP4290158B2 (en) 2004-12-20 2005-12-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2008085362A true JP2008085362A (en) 2008-04-10

Family

ID=39355810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306999A Withdrawn JP2008085362A (en) 2004-12-20 2007-11-28 Semiconductor device and semiconductor module

Country Status (1)

Country Link
JP (1) JP2008085362A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277879A (en) * 2008-05-14 2009-11-26 Fujikura Ltd Semiconductor device
FR2960702A1 (en) * 2009-11-09 2011-12-02 St Microelectronics Sa Semiconductor component for electronic device, has vias connected to array and inductor on rear face of substrate, where face is separated from front face of another substrate by space filled with layer having magnetic material particles
JP2014500627A (en) * 2010-12-03 2014-01-09 ザイリンクス インコーポレイテッド Semiconductor device having stack power converter
JP2014146780A (en) * 2013-01-28 2014-08-14 Win Semiconductors Corp Semiconductor integrated circuit
WO2021038824A1 (en) * 2019-08-30 2021-03-04 三菱電機株式会社 Semiconductor device
WO2024024933A1 (en) * 2022-07-29 2024-02-01 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device, method for manufacturing same, and electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277879A (en) * 2008-05-14 2009-11-26 Fujikura Ltd Semiconductor device
FR2960702A1 (en) * 2009-11-09 2011-12-02 St Microelectronics Sa Semiconductor component for electronic device, has vias connected to array and inductor on rear face of substrate, where face is separated from front face of another substrate by space filled with layer having magnetic material particles
JP2014500627A (en) * 2010-12-03 2014-01-09 ザイリンクス インコーポレイテッド Semiconductor device having stack power converter
KR101531120B1 (en) * 2010-12-03 2015-06-23 자일링크스 인코포레이티드 Semiconductor device with stacked power converter
US9177944B2 (en) 2010-12-03 2015-11-03 Xilinx, Inc. Semiconductor device with stacked power converter
JP2014146780A (en) * 2013-01-28 2014-08-14 Win Semiconductors Corp Semiconductor integrated circuit
WO2021038824A1 (en) * 2019-08-30 2021-03-04 三菱電機株式会社 Semiconductor device
WO2024024933A1 (en) * 2022-07-29 2024-02-01 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device, method for manufacturing same, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP4290158B2 (en) Semiconductor device
JP4979213B2 (en) Circuit board, circuit board manufacturing method, and circuit device
JP4844391B2 (en) Semiconductor device, wiring board and manufacturing method thereof
TWI302027B (en) A wafer level packaging structure with inductors and manufacture method thereof
US9437542B2 (en) Chip package structure
JP2007157844A (en) Semiconductor device, and method of manufacturing same
WO2004047167A1 (en) Semiconductor device, wiring substrate, and method for manufacturing wiring substrate
WO2010050091A1 (en) Semiconductor device
JP2008085362A (en) Semiconductor device and semiconductor module
JP3459234B2 (en) Semiconductor device and manufacturing method thereof
JP2004311574A (en) Interposer, manufacturing method thereof, and electronic device
WO2005122257A1 (en) Semiconductor device incorporating capacitor and process for manufacturing same
JP2018006507A (en) Semiconductor device and manufacturing method of the same
JP2002305246A (en) Inductance element and semiconductor device
US10453774B1 (en) Thermally enhanced substrate
JP2005158959A (en) Semiconductor device
JPWO2005114729A1 (en) Semiconductor device and wiring board
JP2003007910A (en) Semiconductor device
JP4502564B2 (en) Semiconductor device having flip-chip mounted semiconductor bare chip, and substrate member with thin film structure capacitor for flip-chip mounted semiconductor bare chip
KR100577527B1 (en) Radio frequency integrated circuits and method of manufacturing the same
US20080036045A1 (en) Package-base structure of power semiconductor device and manufacturing process of the same
JP2006049557A (en) Semiconductor device
JP2006173525A (en) Semiconductor device
JP2007081267A (en) Semiconductor device and manufacturing method therefor
JP2003124430A (en) Integrated circuit device and capacitor for integrated circuit

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090706