JP2008082790A - Infrared sensor - Google Patents

Infrared sensor Download PDF

Info

Publication number
JP2008082790A
JP2008082790A JP2006261502A JP2006261502A JP2008082790A JP 2008082790 A JP2008082790 A JP 2008082790A JP 2006261502 A JP2006261502 A JP 2006261502A JP 2006261502 A JP2006261502 A JP 2006261502A JP 2008082790 A JP2008082790 A JP 2008082790A
Authority
JP
Japan
Prior art keywords
infrared
infrared sensor
base substrate
beam portion
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006261502A
Other languages
Japanese (ja)
Inventor
Yoshifumi Watabe
祥文 渡部
Koji Tsuji
幸司 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006261502A priority Critical patent/JP2008082790A/en
Publication of JP2008082790A publication Critical patent/JP2008082790A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared sensor capable of achieving higher sensitivity than before. <P>SOLUTION: On the side of one surface of a base substrate 10 having a cavity 15 for thermal insulation, an infrared light reception part 30 arranged inside an inner circumferential line 15a of the cavity 15 in a plan view is supported at the base substrate 10 via two beam parts 20 formed along the one surface. The beam parts 20 are made of a thermoelectric material, a type of a thermo-sensitive material, and each beam part 20 has one end part 21 layered on a peripheral part of the cavity 15 on the side of the one surface and connected to the base substrate 10 and the other end part 22 constituting part of the infrared light reception part 30. The infrared light reception part 30 is provided with an infrared absorbing part 40 made of only gold black, an infrared absorbing material which absorbs infrared radiation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロマシニング技術などを利用して形成される熱型の赤外線センサに関するものである。   The present invention relates to a thermal-type infrared sensor formed using a micromachining technique or the like.

従来から、この種の赤外線センサとして、熱絶縁用の空洞を有するベース基板の一表面側で平面視において空洞の内周線の内側に位置する赤外線受光部が複数の梁部を介してベース基板に支持され、当該赤外線受光部が、複数の梁部を介してベース基板に支持されたベース部と、ベース部上に形成された温度検知部と、温度検知部におけるベース部側とは反対側に形成された赤外線吸収部とで構成された赤外線センサが提案されている(例えば、特許文献1,2参照)。   Conventionally, as an infrared sensor of this type, an infrared light receiving unit positioned on the inner surface of a cavity in a plan view on one surface side of a base substrate having a thermal insulation cavity is formed through a plurality of beam portions. The infrared light receiving part is supported by the base part supported by the base substrate via a plurality of beam parts, the temperature detection part formed on the base part, and the side opposite to the base part side in the temperature detection part An infrared sensor composed of an infrared absorbing portion formed in the above has been proposed (see, for example, Patent Documents 1 and 2).

ところで、上記特許文献1に開示された赤外線センサは、ベース基板の上記一表面に平行な面内で赤外線受光部が2次元アレイ状に配列された赤外線画像センサであり、感度を高めるために、各梁部の断面形状をアーチ状の形状とすることで、各画素(セル)の開口率(赤外線受光部の面積が画素サイズの面積に占める割合)を変化させることなく各梁部の全長を長くして各梁部の熱コンダクタンスを低減している。ここにおいて、上記特許文献1に開示された赤外線センサは、シリコン基板を用いてベース基板を形成してあり、ベース部および各梁部を、シリコン窒化膜やシリコン酸化膜などの誘電体膜により構成した例や、多結晶シリコン膜とシリコン酸化膜からなる誘電体膜との積層膜により構成した例が開示されている。   By the way, the infrared sensor disclosed in Patent Document 1 is an infrared image sensor in which infrared light receiving portions are arranged in a two-dimensional array in a plane parallel to the one surface of the base substrate. By making the cross-sectional shape of each beam part an arched shape, the total length of each beam part can be reduced without changing the aperture ratio of each pixel (cell) (the ratio of the area of the infrared light receiving part to the area of the pixel size). The length is reduced to reduce the thermal conductance of each beam. Here, in the infrared sensor disclosed in Patent Document 1, a base substrate is formed using a silicon substrate, and the base portion and each beam portion are formed of a dielectric film such as a silicon nitride film or a silicon oxide film. And an example constituted by a laminated film of a polycrystalline silicon film and a dielectric film made of a silicon oxide film is disclosed.

また、上記特許文献1に開示された赤外線センサは、ベース部の外周方向において隣り合う梁部の一方の梁部に設けられたn形多結晶シリコン層からなるn形半導体エレメントと他方の梁部に設けられたp形多結晶シリコン層からなるp形半導体エレメントとがベース部上において金属材料(例えば、アルミニウムなど)からなる接合部を介して接続されており、n形半導体エレメントおよびp形半導体エレメントの各一端部と接合部とからなる温接点部が、温度検知部を構成している。   In addition, the infrared sensor disclosed in Patent Document 1 includes an n-type semiconductor element composed of an n-type polycrystalline silicon layer provided on one of the beam portions adjacent to each other in the outer peripheral direction of the base portion, and the other beam portion. A p-type semiconductor element made of a p-type polycrystalline silicon layer provided on the base is connected via a junction made of a metal material (for example, aluminum) on the base portion, and an n-type semiconductor element and a p-type semiconductor The hot junction part which consists of each one end part of an element and a junction part comprises the temperature detection part.

また、上記特許文献2に開示された赤外線センサは、応答速度の向上を図るために、赤外線吸収部と温接点部からなる温度検知部との間に高熱伝導層を形成することにより、赤外線吸収部から温度検知部への熱伝達速度を向上させている。ここにおいて、上記特許文献2に開示された赤外線センサは、シリコン基板を用いてベース基板を形成してあり、ベース部をシリコン窒化膜からなる誘電体膜により構成するとともに、梁部をシリコン窒化膜からなる第1の誘電体膜とシリコン酸化膜からなる第2の誘電体膜との積層膜で構成し、各梁部にn形半導体エレメントおよびp形半導体エレメントを埋設した例が開示されている。   In addition, the infrared sensor disclosed in the above-mentioned patent document 2 absorbs infrared rays by forming a high thermal conductive layer between the infrared absorbing part and the temperature detecting part composed of the hot contact part in order to improve the response speed. The heat transfer rate from the temperature sensor to the temperature detector is improved. Here, in the infrared sensor disclosed in Patent Document 2, a base substrate is formed using a silicon substrate, the base portion is formed of a dielectric film made of a silicon nitride film, and the beam portion is a silicon nitride film. An example in which an n-type semiconductor element and a p-type semiconductor element are embedded in each beam portion is disclosed in which the first dielectric film is made of a laminated film of a second dielectric film made of a silicon oxide film. .

なお、上記特許文献1,2には、サーモパイル型の赤外線センサに限らず、例えば、抵抗ボロメータ型の赤外線センサについても同様の技術を適用できることが記載されている。
特開平11−258039号公報 特許第3339276号公報
Note that Patent Documents 1 and 2 describe that the same technique can be applied to a resistance bolometer type infrared sensor as well as a thermopile type infrared sensor.
Japanese Patent Laid-Open No. 11-258039 Japanese Patent No. 3339276

ところで、上記特許文献1に開示された赤外線センサでは、梁部の断面形状をアーチ状の形状とすることにより、上記特許文献2に開示された赤外線センサに比べて、高感度化を図れるが、梁部の形成工程が複雑になりコストが高くなってしまう。   By the way, in the infrared sensor disclosed in the above-mentioned patent document 1, by making the cross-sectional shape of the beam part an arched shape, higher sensitivity can be achieved compared to the infrared sensor disclosed in the above-mentioned patent document 2, The beam forming process becomes complicated and the cost increases.

また、上記特許文献1,2に開示されたサーモパイル型の赤外線センサでは、各梁部が、少なくとも誘電体膜と半導体エレメントとで構成されており、誘電体膜の熱コンダクタンスに起因して高感度化が制限されてしまうという問題があった。同様に、抵抗ボロメータ型の赤外線センサにおいても、各梁部が、少なくとも誘電体膜と配線とで構成されるから、誘電体膜の熱コンダクタンスに起因して高感度化が制限されてしまうという問題があった。なお、上記特許文献1,2に開示された赤外線センサでは、赤外線受光部が温度検知部や赤外線吸収部を支持するベース部を備えているので、ベース部の熱容量に起因して応答速度が遅いという問題もあった。   Further, in the thermopile type infrared sensor disclosed in Patent Documents 1 and 2, each beam portion is composed of at least a dielectric film and a semiconductor element, and has high sensitivity due to the thermal conductance of the dielectric film. There was a problem that the conversion was limited. Similarly, in a resistance bolometer-type infrared sensor, each beam portion is composed of at least a dielectric film and a wiring, so that the high sensitivity is limited due to the thermal conductance of the dielectric film. was there. In the infrared sensors disclosed in Patent Documents 1 and 2, since the infrared light receiving unit includes a base unit that supports the temperature detection unit and the infrared absorption unit, the response speed is slow due to the heat capacity of the base unit. There was also a problem.

本発明は上記事由に鑑みて為されたものであり、その目的は、従来に比べて高感度化を図れる赤外線センサを提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the infrared sensor which can attain high sensitivity compared with the past.

請求項1の発明は、熱絶縁用の空洞を有するベース基板の一表面側で平面視において空洞の内周線の内側に位置する赤外線受光部が前記一表面に沿って形成された複数の梁部を介してベース基板に支持された赤外線センサであって、梁部が感熱材料もしくは配線材料のみにより形成されてなることを特徴とする。   According to a first aspect of the present invention, there is provided a plurality of beams in which an infrared light receiving portion positioned on the inner surface of a cavity in a plan view on one surface side of a base substrate having a thermal insulating cavity is formed along the one surface. An infrared sensor supported on a base substrate via a portion, wherein the beam portion is formed only of a heat sensitive material or a wiring material.

この発明によれば、梁部が感熱材料もしくは配線材料のみにより形成されているので、従来に比べて梁部の熱コンダクタンスを小さくすることができ、高感度化を図れる。   According to the present invention, since the beam portion is formed only of the heat-sensitive material or the wiring material, the thermal conductance of the beam portion can be reduced as compared with the conventional case, and high sensitivity can be achieved.

請求項2の発明は、請求項1の発明において、前記梁部は、前記感熱材料のみにより形成され、前記感熱材料は、熱電材料であることを特徴とする。   The invention of claim 2 is characterized in that, in the invention of claim 1, the beam portion is formed only of the heat-sensitive material, and the heat-sensitive material is a thermoelectric material.

この発明によれば、熱電材料は一般的な配線材料に比べて熱伝導率が低いので、前記梁部を一般的な配線材料のみにより形成する場合に比べて、前記梁部の熱コンダクタンスを小さくすることができ、高感度化を図れる。   According to the present invention, since the thermoelectric material has a lower thermal conductivity than a general wiring material, the thermal conductance of the beam portion is reduced compared to the case where the beam portion is formed of only a general wiring material. It is possible to achieve high sensitivity.

請求項3の発明は、請求項2の発明において、前記ベース基板は、シリコン基板を用いて形成されてなり、前記熱電材料は、多結晶シリコンもしくは単結晶シリコンであることを特徴とする。   The invention of claim 3 is the invention of claim 2, wherein the base substrate is formed using a silicon substrate, and the thermoelectric material is polycrystalline silicon or single crystal silicon.

この発明によれば、シリコンプロセスへの適合性が良く、前記梁部の薄膜化および微細化による熱コンダクタンスの低減が容易になるとともに、回路の一体化が容易になり、また、前記梁部の材料の機械物性(機械的性質)を前記ベース基板の材料の機械物性と同等にすることができ、環境変化による前記梁部の破損を防止することができる。   According to the present invention, the compatibility with the silicon process is good, the thermal conductance can be easily reduced by thinning and miniaturizing the beam portion, the circuit can be easily integrated, and the beam portion can be easily integrated. The mechanical properties (mechanical properties) of the material can be made equal to the mechanical properties of the material of the base substrate, and damage to the beam portion due to environmental changes can be prevented.

請求項4の発明は、請求項1ないし請求項3の発明において、前記赤外線受光部は、前記梁部を介して前記ベース基板に支持された温度検知部と、赤外線吸収材料のみにより形成され温度検知部に接触した赤外線吸収部とからなることを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the invention, the infrared light receiving portion is formed of only a temperature detecting portion supported by the base substrate via the beam portion and an infrared absorbing material. It is characterized by comprising an infrared absorption part in contact with the detection part.

この発明によれば、赤外線受光部が、前記梁部を介して前記ベース基板に支持された温度検知部と、赤外線吸収材料のみにより形成され温度検知部に接触した赤外線吸収部とで構成されており、温度検知部および赤外線吸収部を支持するためのベース部がないので、赤外線吸収部を備えた構成において前記赤外線受光部の熱容量を小さくでき、応答速度を向上することができる。   According to this invention, the infrared light receiving part is configured by a temperature detection part supported by the base substrate via the beam part, and an infrared absorption part formed of only an infrared absorbing material and in contact with the temperature detection part. And since there is no base part for supporting a temperature detection part and an infrared absorption part, in the structure provided with the infrared absorption part, the heat capacity of the said infrared light-receiving part can be made small, and a response speed can be improved.

請求項5の発明は、請求項4の発明において、前記赤外線吸収材料が多孔性材料であることを特徴とする。   The invention of claim 5 is characterized in that, in the invention of claim 4, the infrared absorbing material is a porous material.

この発明によれば、前記赤外線吸収材料が非多孔性材料である場合に比べて、単位体積当たりの前記赤外線吸収部の熱容量を小さくでき、応答速度の高速化を図れる。   According to this invention, compared with the case where the infrared absorbing material is a non-porous material, the heat capacity of the infrared absorbing portion per unit volume can be reduced, and the response speed can be increased.

請求項6の発明は、請求項4の発明において、前記赤外線吸収材料が貴金属であることを特徴とする。   The invention of claim 6 is characterized in that, in the invention of claim 4, the infrared absorbing material is a noble metal.

この発明によれば、製造時において前記空洞を形成するエッチング時に前記赤外線吸収部がエッチングダメージを受けにくいので、製造が容易になる。   According to the present invention, since the infrared absorbing portion is less susceptible to etching damage during the etching for forming the cavity during manufacturing, the manufacturing is facilitated.

請求項1の発明は、従来に比べて梁部の熱コンダクタンスを小さくすることができ、高感度化を図れるという効果がある。   The invention according to claim 1 has an effect that the thermal conductance of the beam portion can be reduced as compared with the prior art, and high sensitivity can be achieved.

(実施形態1)
本実施形態の赤外線センサは、図1(a),(b)に示すように、熱絶縁用の空洞15を有するベース基板10の一表面側で平面視において空洞15の内周線15aの内側に位置する赤外線受光部30が上記一表面に沿って形成された複数(本実施形態では、2つ)の梁部20を介してベース基板10に支持されている。
(Embodiment 1)
As shown in FIGS. 1A and 1B, the infrared sensor of the present embodiment has an inner side of an inner peripheral line 15a of the cavity 15 in a plan view on one surface side of the base substrate 10 having the cavity 15 for thermal insulation. The infrared light receiving portion 30 located at the base plate 10 is supported by the base substrate 10 via a plurality of (two in this embodiment) beam portions 20 formed along the one surface.

ベース基板10は、シリコン基板からなる半導体基板10aを用いて形成されており、半導体基板10aの一表面上に絶縁層11が形成されている。ここで、絶縁層11は、半導体基板10aの上記一表面上に形成されたシリコン酸化膜と当該シリコン酸化膜上に形成されたシリコン窒化膜との積層膜により構成してある。   The base substrate 10 is formed using a semiconductor substrate 10a made of a silicon substrate, and an insulating layer 11 is formed on one surface of the semiconductor substrate 10a. Here, the insulating layer 11 is composed of a laminated film of a silicon oxide film formed on the one surface of the semiconductor substrate 10a and a silicon nitride film formed on the silicon oxide film.

ところで、本実施形態の赤外線センサは、サーモパイル型の赤外線画像センサであり、各梁部20を感熱材料の一種である熱電材料のみにより形成してある。具体的には、一方の梁部20(20a)をn形の多結晶シリコンにより形成し、他方の梁部20(20b)をp形の多結晶シリコンにより形成してある。なお、本実施形態では、半導体基板10aとしてシリコン基板を用い、各梁部20を多結晶シリコンにより形成してあるが、いわゆるSOI(Silicon on Insulator)基板における絶縁膜上の単結晶シリコン層に不純物をドーピングして熱電材料とし各梁部20を形成し、SOI基板の上記絶縁膜が絶縁層11を構成し、SOI基板における上記絶縁膜直下のシリコン基板が半導体基板10aを構成するようにしてもよい。この場合には、各梁部20を構成する熱電材料のゼーベック係数が大きくなるだけでなく、梁部20の機械的性質と単結晶のシリコン基板からなる半導体基板10aとの機械的性質が適合しやすくなるという利点がある。   By the way, the infrared sensor of this embodiment is a thermopile type infrared image sensor, and each beam part 20 is formed only with the thermoelectric material which is a kind of heat sensitive material. Specifically, one beam portion 20 (20a) is formed of n-type polycrystalline silicon, and the other beam portion 20 (20b) is formed of p-type polycrystalline silicon. In this embodiment, a silicon substrate is used as the semiconductor substrate 10a, and each beam portion 20 is formed of polycrystalline silicon. However, impurities are contained in a single crystal silicon layer on an insulating film in a so-called SOI (Silicon on Insulator) substrate. As a thermoelectric material, each beam portion 20 is formed, the insulating film of the SOI substrate constitutes the insulating layer 11, and the silicon substrate immediately below the insulating film in the SOI substrate constitutes the semiconductor substrate 10a. Good. In this case, not only the Seebeck coefficient of the thermoelectric material constituting each beam portion 20 is increased, but also the mechanical properties of the beam portion 20 and the mechanical properties of the semiconductor substrate 10a made of a single crystal silicon substrate are matched. There is an advantage that it becomes easy.

各梁部20(20a),20(20b)は、一端部21(21a),21(21b)がベース基板1の上記一表面側において空洞15の周部上で金属材料(例えば、Al、Al−Siなど)により形成された金属配線13(13a),13(13b)と接続され、また、他端部22(22a),22(22b)が後述の赤外線吸収部40の一部に重なって形成されて赤外線受光部30の一部を構成している。本実施形態では、赤外線受光部30の平面視形状が矩形状(ここでは、正方形状)であり、各梁部20は、全ての梁部20で赤外線受光部30の外周縁の略全周を囲むような形状に形成されている。具体的には、各梁部20の平面視形状は、赤外線受光部30の隣り合う2辺に沿ったL字状となっている。   Each beam portion 20 (20a), 20 (20b) has one end portion 21 (21a), 21 (21b) on the peripheral surface of the cavity 15 on the one surface side of the base substrate 1 (for example, Al, Al -Si, etc.) are connected to the metal wirings 13 (13a) and 13 (13b), and the other end portions 22 (22a) and 22 (22b) are overlapped with a part of the infrared absorbing portion 40 described later. A part of the infrared light receiving unit 30 is formed. In the present embodiment, the shape of the infrared light receiving unit 30 in plan view is a rectangular shape (here, a square shape), and each beam unit 20 has a substantially entire circumference of the outer peripheral edge of the infrared light receiving unit 30 with all the beam units 20. It is formed in a surrounding shape. Specifically, the planar view shape of each beam portion 20 is an L shape along two adjacent sides of the infrared light receiving portion 30.

赤外線受光部30は、赤外線を吸収する赤外線吸収材料(本実施形態では、金黒などの貴金属)のみにより形成された赤外線吸収部40を備えている。ここにおいて、本実施形態では、上記赤外線吸収材料として貴金属(例えば、金黒など)を採用しており、赤外線吸収部40が、n形の多結晶シリコンにより形成された梁部20aとp形の多結晶シリコンにより形成された梁部20bとの上記他端部22a,22b同士を接続する接合部を兼ね、各梁部20a,20bの上記各他端部22a,22bと赤外線吸収部40とで構成される温接点部が温度検知部を構成し、各梁部20a,20bの上記一端部21a,21bと金属配線13a,13bとの接合部が冷接点部を構成している。したがって、赤外線吸収材料として、一般的なSiONやSiを採用し、梁部20a,20bの上記他端部22a,22b同士を接続する接合部を赤外線吸収部40とは別に設ける場合に比べて、熱容量を低減でき、応答速度の高速化を図れる。ただし、梁部20a,20bの上記他端部22a,22b同士を接続する接合部を赤外線吸収部40とは別に設ける場合においても、赤外線吸収部40の赤外線吸収材料として、例えばポーラスSiO(ポーラスシリカ)などの多孔性材料を採用すれば、SiONやSiなどの非多孔性材料を採用する場合に比べて、赤外線吸収部40の熱容量を小さくすることができる。なお、赤外線受光部30の平面視形状は赤外線吸収部40と同じである。 The infrared light receiving unit 30 includes an infrared absorbing unit 40 formed only of an infrared absorbing material that absorbs infrared rays (in this embodiment, a noble metal such as gold black). Here, in the present embodiment, a noble metal (for example, gold black) is used as the infrared absorbing material, and the infrared absorbing portion 40 is composed of a beam portion 20a formed of n-type polycrystalline silicon and a p-type. It also serves as a joint for connecting the other end portions 22a and 22b to the beam portion 20b formed of polycrystalline silicon. The other end portions 22a and 22b and the infrared ray absorbing portion 40 of the beam portions 20a and 20b The constructed hot junction part constitutes a temperature detection part, and the joint part between the one end part 21a, 21b of each beam part 20a, 20b and the metal wiring 13a, 13b constitutes a cold junction part. Therefore, when adopting general SiON or Si 3 N 4 as the infrared absorbing material and providing the joint portion connecting the other end portions 22a, 22b of the beam portions 20a, 20b separately from the infrared absorbing portion 40. In comparison, the heat capacity can be reduced and the response speed can be increased. However, even in the case where the joint portion that connects the other end portions 22a and 22b of the beam portions 20a and 20b is provided separately from the infrared absorbing portion 40, as the infrared absorbing material of the infrared absorbing portion 40, for example, porous SiO 2 (porous) If a porous material such as silica is employed, the heat capacity of the infrared absorbing portion 40 can be reduced as compared with the case where a non-porous material such as SiON or Si 3 N 4 is employed. The shape of the infrared light receiving unit 30 in plan view is the same as that of the infrared absorbing unit 40.

ここで、本実施形態の赤外線センサの製造方法の一例について簡単に説明する。   Here, an example of the manufacturing method of the infrared sensor of this embodiment is demonstrated easily.

まず、シリコン基板からなる半導体基板10aの上記一表面側の全面にシリコン酸化膜とシリコン窒化膜とからなる絶縁膜を形成し、その後、当該絶縁膜のうち空洞15の形成予定領域に対応する領域のシリコン窒化膜をエッチング除去する。続いて、半導体基板10aの上記一表面側の全面に各梁部20の基礎となる多結晶シリコン層を減圧CVD法により成膜した後、成膜時の残留応力を除去するための高温アニール処理(例えば、アニール温度を1150℃、アニール時間を2時間とする)を行う。この高温アニール処理は、最終的に多結晶シリコン単独で梁部20の構造を維持するうえで残留応力による梁部20の変形や破損を防止するために残留応力を低減する処理として極めて重要である。また、当該高温アニール処理は、環境温度変化による梁部20の変化や破損を防止するためにシリコン基板からなる半導体基板10aと梁部20との線膨張率差を低減する処理としても極めて重要である。   First, an insulating film made of a silicon oxide film and a silicon nitride film is formed on the entire surface of the semiconductor substrate 10a made of a silicon substrate, and then a region corresponding to a region where the cavity 15 is to be formed in the insulating film. The silicon nitride film is removed by etching. Subsequently, a polycrystalline silicon layer serving as the basis of each beam portion 20 is formed on the entire surface of the one surface side of the semiconductor substrate 10a by a low pressure CVD method, and then a high temperature annealing process for removing residual stress at the time of film formation. (For example, the annealing temperature is 1150 ° C. and the annealing time is 2 hours). This high-temperature annealing treatment is extremely important as a treatment for reducing the residual stress in order to prevent deformation and breakage of the beam portion 20 due to residual stress in finally maintaining the structure of the beam portion 20 with polycrystalline silicon alone. . The high-temperature annealing process is also extremely important as a process for reducing the difference in linear expansion coefficient between the semiconductor substrate 10a made of a silicon substrate and the beam part 20 in order to prevent the beam part 20 from being changed or damaged due to environmental temperature changes. is there.

上述の高温アニール処理の後、フォトリソグラフィ技術およびエッチング技術を利用して多結晶シリコン層を各梁部20(20a),20(20b)に対応する部分が残るようにパターニングし、続いて、上記一方の梁部20aに対応する多結晶シリコン層にp形不純物を例えばイオン注入法などによりドーピングし、さらに、上記他方の梁部20bに対応する多結晶シリコン層にn形不純物を例えばイオン注入法などによりドーピングする。   After the above-described high-temperature annealing treatment, the polycrystalline silicon layer is patterned using photolithography technology and etching technology so that portions corresponding to the beam portions 20 (20a) and 20 (20b) remain, and then, A polycrystalline silicon layer corresponding to one beam portion 20a is doped with a p-type impurity by, for example, an ion implantation method, and an n-type impurity is doped into the polycrystalline silicon layer corresponding to the other beam portion 20b, for example, with an ion implantation method. Doping by such as.

その後、半導体基板10aの上記一表面側の全面に、後に空洞15を形成するためのエッチングを行う際に各梁部20a,20bに対応する多結晶シリコン層を保護するためのシリコン酸化膜からなる表面保護層をCVD法などによって形成する。続いて、フォトリソグラフィ技術およびエッチング技術を利用して赤外線吸収部40と各梁部20の上記他端部22とのコンタクト用の開口部を形成した後、半導体基板10aの上記一表面側の全面に、空洞15を形成するためのエッチング時に赤外線吸収部40と各梁部20の上記他端部22とのコンタクト部がエッチングダメージを受けるのを防止するためのバリア層(例えば、Ti層)を形成し、続いて、半導体基板10aの上記一表面側の全面に、赤外線吸収部40の基礎となる多孔性の金黒層をガス中蒸着法によって形成する。   Thereafter, the entire surface on the one surface side of the semiconductor substrate 10a is made of a silicon oxide film for protecting the polycrystalline silicon layer corresponding to each of the beam portions 20a and 20b when etching for forming the cavity 15 is performed later. A surface protective layer is formed by a CVD method or the like. Subsequently, an opening for contact between the infrared absorbing portion 40 and the other end portion 22 of each beam portion 20 is formed using a photolithography technique and an etching technique, and then the entire surface on the one surface side of the semiconductor substrate 10a. In addition, a barrier layer (for example, a Ti layer) for preventing the contact portion between the infrared absorbing portion 40 and the other end portion 22 of each beam portion 20 from being damaged during etching to form the cavity 15 is provided. Then, a porous gold black layer serving as a basis for the infrared absorbing portion 40 is formed on the entire surface of the one surface side of the semiconductor substrate 10a by a gas evaporation method.

その後、半導体基板10aの上記一表面側の全面に高粘性の感光性レジストを塗布して形成した第1のレジスト層を赤外線吸収部40の形成予定領域が残るようにパターニングし、イオンミリングなどにより金黒層の不要部分を除去することで赤外線吸収部40を形成してから、第1のレジスト層をアセトンなどの有機溶剤により除去する。   Thereafter, the first resist layer formed by applying a high-viscosity photosensitive resist on the entire surface of the one surface side of the semiconductor substrate 10a is patterned so as to leave a region where the infrared absorption portion 40 is to be formed, and is subjected to ion milling or the like. After removing the unnecessary part of the gold black layer, the infrared absorption part 40 is formed, and then the first resist layer is removed with an organic solvent such as acetone.

その後、半導体基板10aの上記一表面側の全面に高粘性の感光性レジストを塗布して形成した第2のレジスト層を空洞15形成用のエッチング液導入孔の形成予定領域以外の部分が残るようにパターニングしてから、当該パターニングされた第2のレジスト層をマスクとして、半導体基板10aの上記一表面側のシリコン酸化膜にエッチング液導入孔を形成し、第2のレジスト層をアセトンなどの有機溶剤により除去する。   Thereafter, the second resist layer formed by applying a high-viscosity photosensitive resist on the entire surface of the one surface side of the semiconductor substrate 10a remains so as to leave a portion other than the region where the etching solution introduction hole for forming the cavity 15 is to be formed. Then, using the patterned second resist layer as a mask, an etchant introduction hole is formed in the silicon oxide film on the one surface side of the semiconductor substrate 10a, and the second resist layer is made of an organic material such as acetone. Remove with solvent.

その後、TMAH溶液などのアルカリ系溶液を用いエッチング液導入孔を通して半導体基板10aを異方性エッチングすることによって空洞15を形成する。その後、梁部20の周囲に残っている不要なシリコン酸化膜や赤外線吸収部40直下に残っている不要なシリコン酸化膜をHF系のエッチング液などを用いてエッチング除去すればよい。   Thereafter, the cavity 15 is formed by anisotropically etching the semiconductor substrate 10a through the etching solution introduction hole using an alkaline solution such as a TMAH solution. Thereafter, an unnecessary silicon oxide film remaining around the beam portion 20 and an unnecessary silicon oxide film immediately below the infrared absorbing portion 40 may be removed by etching using an HF-based etching solution or the like.

以上説明した本実施形態の赤外線センサでは、梁部20が感熱材料の一種である熱電材料のみにより形成されているので、従来に比べて梁部20の熱コンダクタンスを小さくすることができ、高感度化を図れる。また、熱電材料は一般的な配線材料(例えば、Al、Al−Siなど)に比べて熱伝導率が低いので、梁部20を一般的な配線材料のみにより形成する場合に比べて、梁部20の熱コンダクタンスを小さくすることができ、高感度化を図れる。   In the infrared sensor of the present embodiment described above, since the beam portion 20 is formed only from a thermoelectric material that is a kind of heat-sensitive material, the thermal conductance of the beam portion 20 can be reduced as compared with the conventional case, and the sensitivity is high. Can be realized. In addition, since the thermoelectric material has a lower thermal conductivity than a general wiring material (for example, Al, Al-Si, etc.), the beam portion is compared with a case where the beam portion 20 is formed only from a general wiring material. The thermal conductance of 20 can be reduced, and high sensitivity can be achieved.

また、本実施形態では、ベース基板10がシリコン基板からなる半導体基板10aを用いて形成され、上記熱電材料が多結晶シリコンもしくは単結晶シリコンなので、シリコンプロセスへの適合性が良く、梁部20の薄膜化および微細化による熱コンダクタンスの低減が容易になるとともに、回路(駆動回路、信号処理回路など)の一体化が容易になり、また、梁部20の材料の機械物性(機械的性質)をベース基板10の材料の機械物性と同等にすることができ、環境変化(例えば、温度変化など)による梁部20の破損を防止することができるから、信頼性が高くなる。また、本実施形態では、上記赤外線吸収材料として貴金属を採用していることにより、製造時において空洞15を形成するエッチング時に赤外線吸収部40がエッチングダメージを受けにくいので、製造が容易になる。   In the present embodiment, the base substrate 10 is formed using a semiconductor substrate 10a made of a silicon substrate, and the thermoelectric material is polycrystalline silicon or single crystal silicon. The thermal conductance can be easily reduced by thinning and miniaturization, and the integration of circuits (driving circuit, signal processing circuit, etc.) is facilitated, and the mechanical properties (mechanical properties) of the material of the beam portion 20 are reduced. Since the mechanical properties of the material of the base substrate 10 can be made equal, and damage to the beam portion 20 due to environmental changes (for example, temperature changes) can be prevented, the reliability becomes high. Further, in the present embodiment, since a noble metal is employed as the infrared absorbing material, the infrared absorbing portion 40 is not easily damaged during etching to form the cavity 15 at the time of manufacturing, which facilitates manufacturing.

(実施形態2)
本実施形態の赤外線センサの基本構成は実施形態1と略同じであって、図2(a),(b)に示すように、ベース基板10の上記一表面側で平面視において空洞15の内周線15aの内側に位置する赤外線受光部30が2つ設けられており、各赤外線受光部30それぞれが、2つの梁部20(20a),20(20b)を介してベース基板10に支持されている点などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the infrared sensor of the present embodiment is substantially the same as that of the first embodiment. As shown in FIGS. 2A and 2B, the inside of the cavity 15 in the plan view on the one surface side of the base substrate 10 is shown. Two infrared light receiving portions 30 located inside the peripheral line 15a are provided, and each infrared light receiving portion 30 is supported by the base substrate 10 via two beam portions 20 (20a) and 20 (20b). Is different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

また、本実施形態では、p形の多結晶シリコンからなる梁部20aとn形の多結晶シリコンからなる梁部20bと両梁部20,20bとの間に介在し導電性を有する赤外線吸収部40とで構成される熱電対が2つ形成されており、これら2つの熱電対がベース基板10における空洞15の周部上に形成された金属接続層14により直列に接続されている。   Further, in the present embodiment, the beam absorbing portion 20a made of p-type polycrystalline silicon, the beam portion 20b made of n-type polycrystalline silicon, and both the beam portions 20, 20b are interposed between the infrared absorbing portions having conductivity. Two thermocouples 40 are formed, and these two thermocouples are connected in series by a metal connection layer 14 formed on the periphery of the cavity 15 in the base substrate 10.

以上説明した本実施形態の赤外線センサにおいても、実施形態1と同様に、梁部20が感熱材料の一種である熱電材料のみにより形成されているので、従来に比べて梁部20の熱コンダクタンスを小さくすることができ、高感度化を図れる。   Also in the infrared sensor of this embodiment described above, since the beam portion 20 is formed only of a thermoelectric material which is a kind of heat-sensitive material, similarly to the first embodiment, the thermal conductance of the beam portion 20 is increased compared to the conventional case. It can be made small and high sensitivity can be achieved.

(実施形態3)
本実施形態の赤外線センサは、サーミスタ型の赤外線センサであって、図3(a),(b)に示すように、各梁部20が、配線材料(好ましくは、耐薬品性に優れたTi、W、Moなどの炭化物や窒化物、Pt、Irなどの貴金属)のみにより形成され、赤外線受光部30が、サーミスタ材料(例えば、アモルファスシリコン、チタン、酸化バナジウムなど)により形成された温度検知部35と、赤外線吸収材料(例えば、ポーラスシリカなどの多孔性材料など)のみにより形成された赤外線吸収部40とにより構成されている。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 3)
The infrared sensor of the present embodiment is a thermistor type infrared sensor, and as shown in FIGS. 3A and 3B, each beam portion 20 is made of a wiring material (preferably, Ti having excellent chemical resistance). , W, Mo and other carbides and nitrides, noble metals such as Pt and Ir), and the infrared light receiving unit 30 is formed of a thermistor material (for example, amorphous silicon, titanium, vanadium oxide, etc.). 35 and an infrared absorbing portion 40 formed only of an infrared absorbing material (for example, a porous material such as porous silica). In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

温度検知部35は、平面形状が蛇行した形状(本実施形態では、つづら折れ状の形状)に形成されており、両端部それぞれが、上記配線材料のみにより形成された梁部20と電気的に接続されている。   The temperature detection unit 35 is formed in a meandering shape (in this embodiment, a folded shape), and both ends are electrically connected to the beam unit 20 formed only from the wiring material. It is connected.

しかして、本実施形態の赤外線センサでは、梁部20が配線材料のみにより形成されているので、従来に比べて梁部20の熱コンダクタンスを小さくすることができ、高感度化を図れる。また、赤外線受光部30が、サーミスタ材料により形成され梁部20を介してベース基板10に支持された温度検知部35と、赤外線吸収材料のみにより形成され温度検知部35に熱伝導を阻害する中間層などを介さずに接触(つまり、直接接触)した赤外線吸収部40とで構成されており、温度検知部35および赤外線吸収部40を支持するためのベース部がないので、赤外線吸収部40を備えた構成において赤外線受光部30の熱容量を小さくでき、応答速度を向上することができる。なお、実施形態1の構成においても、従来のベース部がないので、赤外線受光部30の熱容量を小さくでき、応答速度を向上することができる。   Thus, in the infrared sensor according to the present embodiment, since the beam portion 20 is formed only of the wiring material, the thermal conductance of the beam portion 20 can be reduced as compared with the conventional case, and high sensitivity can be achieved. In addition, the infrared light receiving unit 30 is formed of a thermistor material and is supported by the base substrate 10 via the beam portion 20, and the intermediate formed of only the infrared absorbing material and obstructs heat conduction to the temperature detecting unit 35. Infrared absorbing portion 40 that is in contact (ie, directly contacted) without a layer or the like, and there is no base portion for supporting temperature detecting portion 35 and infrared absorbing portion 40. In the configuration provided, the heat capacity of the infrared light receiving unit 30 can be reduced, and the response speed can be improved. Even in the configuration of the first embodiment, since there is no conventional base portion, the heat capacity of the infrared light receiving portion 30 can be reduced, and the response speed can be improved.

また、本実施形態の赤外線センサでは、上記赤外線吸収材料が多孔性材料なので、非多孔性材料である場合に比べて、単位体積当たりの赤外線吸収部40の熱容量を小さくでき、応答速度の高速化を図れる。   Further, in the infrared sensor of the present embodiment, since the infrared absorbing material is a porous material, the heat capacity of the infrared absorbing unit 40 per unit volume can be reduced and the response speed can be increased as compared with the case of a non-porous material. Can be planned.

なお、本実施形態では、各梁部20を配線材料により形成してあるが、配線材料に限らず、感熱材料の一種であるサーミスタ材料により形成してもよく、この場合には、温度検知部35と各梁部20とを連続一体に形成することが可能となり、製造プロセスの簡略化を図れるという利点がある。   In this embodiment, each beam portion 20 is formed of a wiring material. However, the beam portion 20 is not limited to the wiring material, and may be formed of a thermistor material that is a kind of heat sensitive material. 35 and each beam part 20 can be formed continuously and integrally, and there is an advantage that the manufacturing process can be simplified.

ところで、各実施形態にて説明した赤外線センサは、赤外線受光部30を2次元アレイ状に配列した赤外線画像センサであり、高感度化および応答速度の高速化の効果が大きいが、赤外線受光部30を1つだけ設けた赤外線センサでもよいことは勿論である。   By the way, the infrared sensor described in each embodiment is an infrared image sensor in which the infrared light receiving units 30 are arranged in a two-dimensional array. The infrared light receiving unit 30 is highly effective in increasing sensitivity and response speed. Of course, an infrared sensor having only one sensor may be used.

実施形態1を示し、(a)は概略平面図、(b)は(a)のA−A’概略断面図である。Embodiment 1 is shown, (a) is a schematic plan view, and (b) is a schematic cross-sectional view taken along line A-A ′ of (a). 実施形態2を示し、(a)は概略平面図、(b)は(a)のA−A’概略断面図である。Embodiment 2 is shown, (a) is a schematic plan view, and (b) is a schematic cross-sectional view taken along line A-A ′ of (a). 実施形態3を示し、(a)は概略平面図、(b)は(a)のA−A’概略断面図である。Embodiment 3 is shown, (a) is a schematic plan view, (b) is an A-A 'schematic cross-sectional view of (a).

符号の説明Explanation of symbols

10 ベース基板
10a 半導体基板(シリコン基板)
15 空洞
15a 内周線
20 梁部
30 赤外線受光部
40 赤外線吸収部
10 Base substrate 10a Semiconductor substrate (silicon substrate)
15 Cavity 15a Inner circumference line 20 Beam part 30 Infrared light receiving part 40 Infrared absorbing part

Claims (6)

熱絶縁用の空洞を有するベース基板の一表面側で平面視において空洞の内周線の内側に位置する赤外線受光部が前記一表面に沿って形成された複数の梁部を介してベース基板に支持された赤外線センサであって、梁部が感熱材料もしくは配線材料のみにより形成されてなることを特徴とする赤外線センサ。   An infrared light receiving portion positioned on the inner surface of the cavity in a plan view on one surface side of the base substrate having a thermal insulating cavity is formed on the base substrate via a plurality of beams formed along the one surface. An infrared sensor supported, wherein the beam portion is formed only of a heat sensitive material or a wiring material. 前記梁部は、前記感熱材料のみにより形成され、前記感熱材料は、熱電材料であることを特徴とする請求項1記載の赤外線センサ。   The infrared sensor according to claim 1, wherein the beam portion is formed only of the heat-sensitive material, and the heat-sensitive material is a thermoelectric material. 前記ベース基板は、シリコン基板を用いて形成されてなり、前記熱電材料は、多結晶シリコンもしくは単結晶シリコンであることを特徴とする請求項2記載の赤外線センサ。   3. The infrared sensor according to claim 2, wherein the base substrate is formed by using a silicon substrate, and the thermoelectric material is polycrystalline silicon or single crystal silicon. 前記赤外線受光部は、前記梁部を介して前記ベース基板に支持された温度検知部と、赤外線吸収材料のみにより形成され温度検知部に接触した赤外線吸収部とからなることを特徴とする請求項1ないし請求項3のいずれか1項に記載の赤外線センサ。   The infrared light receiving unit includes a temperature detection unit supported by the base substrate through the beam unit, and an infrared absorption unit formed of only an infrared absorbing material and in contact with the temperature detection unit. The infrared sensor according to any one of claims 1 to 3. 前記赤外線吸収材料が多孔性材料であることを特徴とする請求項4記載の赤外線センサ。   The infrared sensor according to claim 4, wherein the infrared absorbing material is a porous material. 前記赤外線吸収材料が貴金属であることを特徴とする請求項4記載の赤外線センサ。   The infrared sensor according to claim 4, wherein the infrared absorbing material is a noble metal.
JP2006261502A 2006-09-26 2006-09-26 Infrared sensor Pending JP2008082790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261502A JP2008082790A (en) 2006-09-26 2006-09-26 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261502A JP2008082790A (en) 2006-09-26 2006-09-26 Infrared sensor

Publications (1)

Publication Number Publication Date
JP2008082790A true JP2008082790A (en) 2008-04-10

Family

ID=39353821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261502A Pending JP2008082790A (en) 2006-09-26 2006-09-26 Infrared sensor

Country Status (1)

Country Link
JP (1) JP2008082790A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261908A (en) * 2009-05-11 2010-11-18 Geomatec Co Ltd Laser power sensor
JP2013051233A (en) * 2011-08-30 2013-03-14 Panasonic Corp Thermoelectric conversion device
JP2013051232A (en) * 2011-08-30 2013-03-14 Panasonic Corp Thermoelectric conversion device
WO2020174732A1 (en) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 Infrared sensor and infrared sensor array
CN113015889A (en) * 2019-02-28 2021-06-22 松下知识产权经营株式会社 Infrared sensor, infrared sensor array, and method for manufacturing infrared sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297052A (en) * 1995-04-26 1996-11-12 Honda Motor Co Ltd Bolometer type infrared sensor and image sensor
JPH1151762A (en) * 1997-08-06 1999-02-26 Toshiba Corp Infrared solid-state image pick-up device and its manufacture
JP2001074549A (en) * 1999-06-29 2001-03-23 Denso Corp Infra-red sensor and manufacture thereof
JP2003133602A (en) * 2001-10-30 2003-05-09 Denso Corp Semiconductor device having membrane and manufacturing method thereof
JP2003166876A (en) * 2001-12-04 2003-06-13 Ihi Aerospace Co Ltd Thermal type infrared detection element, its manufacturing method and thermal type infrared detection element array
JP2006170937A (en) * 2004-12-20 2006-06-29 Nissan Motor Co Ltd Manufacturing method of infrared sensor, and infrared sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297052A (en) * 1995-04-26 1996-11-12 Honda Motor Co Ltd Bolometer type infrared sensor and image sensor
JPH1151762A (en) * 1997-08-06 1999-02-26 Toshiba Corp Infrared solid-state image pick-up device and its manufacture
JP2001074549A (en) * 1999-06-29 2001-03-23 Denso Corp Infra-red sensor and manufacture thereof
JP2003133602A (en) * 2001-10-30 2003-05-09 Denso Corp Semiconductor device having membrane and manufacturing method thereof
JP2003166876A (en) * 2001-12-04 2003-06-13 Ihi Aerospace Co Ltd Thermal type infrared detection element, its manufacturing method and thermal type infrared detection element array
JP2006170937A (en) * 2004-12-20 2006-06-29 Nissan Motor Co Ltd Manufacturing method of infrared sensor, and infrared sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261908A (en) * 2009-05-11 2010-11-18 Geomatec Co Ltd Laser power sensor
JP2013051233A (en) * 2011-08-30 2013-03-14 Panasonic Corp Thermoelectric conversion device
JP2013051232A (en) * 2011-08-30 2013-03-14 Panasonic Corp Thermoelectric conversion device
WO2020174732A1 (en) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 Infrared sensor and infrared sensor array
CN113015889A (en) * 2019-02-28 2021-06-22 松下知识产权经营株式会社 Infrared sensor, infrared sensor array, and method for manufacturing infrared sensor
EP3933358A4 (en) * 2019-02-28 2022-05-11 Panasonic Intellectual Property Management Co., Ltd. Infrared sensor, infrared sensor array, and infrared sensor manufacturing method
US11906363B2 (en) 2019-02-28 2024-02-20 Panasonic Intellectual Property Management Co., Ltd. Infrared sensor, infrared sensor array, and method of manufacturing infrared sensor
CN113015889B (en) * 2019-02-28 2024-04-02 松下知识产权经营株式会社 Infrared sensor, infrared sensor array, and method for manufacturing infrared sensor

Similar Documents

Publication Publication Date Title
JP3529596B2 (en) Infrared solid-state imaging device and method of manufacturing the same
US6541298B2 (en) Method of making infrared sensor with a thermoelectric converting portion
KR101024289B1 (en) Infrared sensor and manufacturing method thereof
JP3497797B2 (en) Manufacturing method of infrared sensor
JP6291760B2 (en) Thermocouple, thermopile, infrared sensor, and method for manufacturing infrared sensor
KR102609052B1 (en) Surface micro-machined infrared sensor using highly temperature stable interferometric absorber
EP3408630B1 (en) An ir detector array device
KR100313909B1 (en) IR sensor and method for fabricating the same
JPH10209418A (en) Infrared ray solid-state imaging element
EP1045232A2 (en) Infrared sensor and method of manufacturing the same
JP2006300623A (en) Infrared sensor
WO2006041081A1 (en) Infrared detector and production method therefor
JP2009174917A (en) Infrared detection element and manufacturing method for infrared detection element
JP3604130B2 (en) Thermal infrared detecting element, method of manufacturing the same, and thermal infrared detecting element array
JP2008082790A (en) Infrared sensor
JP2010048803A (en) Manufacturing method of infrared sensor, and infrared sensor
JP5728978B2 (en) Thermal photodetector, thermal photodetector, and electronic device
JP2008082791A (en) Infrared sensor
JP2005030871A (en) Method of manufacturing infrared sensor
JP2015169533A (en) Thermal infrared sensor and method for manufacturing the same
JP2012063222A (en) Infrared sensor, and manufacturing method of the same
JP5008580B2 (en) Infrared imaging device manufacturing method and infrared imaging device
JP2008292310A (en) Sensor device and method for manufacturing the same
JP4622511B2 (en) Infrared sensor
JP5624347B2 (en) Infrared sensor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090519

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Effective date: 20100823

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Effective date: 20110614

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A02 Decision of refusal

Effective date: 20120131

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20120501

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120511

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120803