JP2008082527A - Solenoid valve - Google Patents

Solenoid valve Download PDF

Info

Publication number
JP2008082527A
JP2008082527A JP2006266761A JP2006266761A JP2008082527A JP 2008082527 A JP2008082527 A JP 2008082527A JP 2006266761 A JP2006266761 A JP 2006266761A JP 2006266761 A JP2006266761 A JP 2006266761A JP 2008082527 A JP2008082527 A JP 2008082527A
Authority
JP
Japan
Prior art keywords
plunger
core member
cylindrical portion
sleeve
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006266761A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakane
浩幸 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006266761A priority Critical patent/JP2008082527A/en
Publication of JP2008082527A publication Critical patent/JP2008082527A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-size and high-performance solenoid valve 1 capable of easily managing the machining accuracy and assembling accuracy of a sliding part, superior in productivity with one-way assembly and less in cost increase. <P>SOLUTION: The solenoid valve 1 comprises a first core member 11 having a cylinder part 10 passed therethrough in the axial direction and an assembling flange part 17 on one side thereof, a second core member 12 provided separately from the first core member 11, and having a cylinder part 20 coaxially stored on one side of the cylinder part 10 and provided with a suction face 22 on the other side and an assembling flange part 18, and a yoke 16 for holding a non-magnetic member 30 having a predetermined thickness and having an assembling flange part 31 on one side and a cylinder part 32 on the other side for storing a plunger 6, between the first core member 11 and the second core member 12 so that the cylinder part 32 of the non-magnetic member 30 stores the plunger 6 to be reciprocative in opposition to the suction face 22 and the flange parts are encircled in sequence from one side and caulked and joined to a flange part 8a of a sleeve 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ソレノイドからの磁力により弁体が駆動される電磁弁に関する。   The present invention relates to an electromagnetic valve in which a valve element is driven by a magnetic force from a solenoid.

従来より、ソレノイドからの磁力により弁体が駆動される電磁弁を用いて、流路の切替えや開閉が行われたり、流体(作動油)を所定の流量や圧力に制御したりしている。この電磁弁は、例えば自動車用自動変速機の油圧制御装置に供給する作動油の油圧の制御や、内燃機関のカムシャフトの進角位相を油圧によって可変するバルブ可変タイミング装置等に用いられている。   Conventionally, the flow path is switched and opened and closed, or the fluid (hydraulic oil) is controlled to a predetermined flow rate and pressure using an electromagnetic valve whose valve element is driven by a magnetic force from a solenoid. This solenoid valve is used in, for example, control of the hydraulic pressure of hydraulic oil supplied to a hydraulic control device of an automatic transmission for automobiles, a variable valve timing device that varies the advance phase of a camshaft of an internal combustion engine by hydraulic pressure, and the like. .

〔第1の従来技術〕
従来の電磁弁100は、例えば図3に示すように、複数の油路(ポート)107を備えたスリーブ111に収容されてポート107の開閉を行う弁体(スプール)110と、このスプール110を他方側に付勢するスプリング119からなる弁体部120と、その他方側に配置されるとともに、ソレノイド101から磁力を受けて軸方向一方側へ変位することができる可動子(プランジャ)102と、プランジャ102を摺動自在に収容するプランジャ収容部103を備えた固定コア(コアステータ)104とソレノイド101を内部に収容するヨーク114との間に磁気回路を構成して、スプール110を一方側へ駆動する駆動部105とからなる。
[First prior art]
For example, as shown in FIG. 3, a conventional solenoid valve 100 includes a valve body (spool) 110 that is accommodated in a sleeve 111 having a plurality of oil passages (ports) 107 to open and close the port 107, and the spool 110. A valve body 120 formed of a spring 119 that biases the other side; a mover (plunger) 102 that is disposed on the other side and can be displaced to one side in the axial direction by receiving a magnetic force from the solenoid 101; A magnetic circuit is configured between a fixed core (core stator) 104 provided with a plunger accommodating portion 103 that slidably accommodates the plunger 102 and a yoke 114 that accommodates the solenoid 101 therein, and the spool 110 is driven to one side. Drive unit 105.

プランジャ収容部103の軸方向一方側には、プランジャ102とスプール110とを連動させるシャフト106を摺動自在に支持する軸受部112が形成される。軸受部112の他端面は吸引面108が形成され、ソレノイド101の内周側においてプランジャ102の一方側端面109との間に磁気回路が構成される。プランジャ102の一方側端面109と軸受部112の吸引面108とは対向して有限の間隙を有して配置されるので、ソレノイド101からの磁力による吸引力を高め、かつ、プランジャ102の変位量にかかわらず略一定の値に維持することができる。この結果、スプール110の変位による油圧等の制御性能を安定させることができる(例えば、特許文献1参照)。   A bearing portion 112 that slidably supports a shaft 106 that interlocks the plunger 102 and the spool 110 is formed on one side in the axial direction of the plunger housing portion 103. A suction surface 108 is formed on the other end surface of the bearing portion 112, and a magnetic circuit is formed between the inner peripheral side of the solenoid 101 and the one end surface 109 of the plunger 102. Since the one end surface 109 of the plunger 102 and the suction surface 108 of the bearing portion 112 are arranged to have a finite gap, the suction force by the magnetic force from the solenoid 101 is increased, and the displacement amount of the plunger 102 is increased. Regardless of, it can be maintained at a substantially constant value. As a result, the control performance such as hydraulic pressure due to the displacement of the spool 110 can be stabilized (for example, see Patent Document 1).

流路の切替えや作動油の油圧制御が確実、かつ安定して実施できるためには、プランジャ収容部103の内周面は、プランジャ102が精密に変位できるように、できるだけ高精度に加工される必要がある。しかし、内周面の先端には軸受部112の吸引面108が形成されるため、吸引面108近傍の内周面に、例えばバニッシュ加工のような高精度な加工を施すことが困難であり、内周面の加工精度を上げることができない。従って、プランジャ収容部103と軸受部112を一体に構成するのではなく、プランジャ収容部103を有する第1コア部材104Aと、第1コア部材104Aとは別体であって、プランジャ収容部103の一方側に固定されて軸受部112を構成する第2コア部材104Bとの嵌合により、コアステータ104を形成させている(特許文献2参照)。   In order to switch the flow path and control the hydraulic pressure of the hydraulic oil reliably and stably, the inner peripheral surface of the plunger housing portion 103 is processed as accurately as possible so that the plunger 102 can be displaced precisely. There is a need. However, since the suction surface 108 of the bearing portion 112 is formed at the tip of the inner peripheral surface, it is difficult to perform high-precision processing such as burnishing on the inner peripheral surface in the vicinity of the suction surface 108, The processing accuracy of the inner peripheral surface cannot be increased. Therefore, the plunger housing portion 103 and the bearing portion 112 are not integrally formed, but the first core member 104A having the plunger housing portion 103 and the first core member 104A are separate from each other, and the plunger housing portion 103 The core stator 104 is formed by fitting with the second core member 104B which is fixed to one side and constitutes the bearing portion 112 (see Patent Document 2).

これにより、第1コア部材104Aに第2コア部材104Bを嵌合固定する前に、プランジャ収容部103の内周面にバニッシュ加工等の高精度の加工を施すことができ、プランジャ102の精密な変位が可能となる。さらに、第2コア部材104Bの吸引面108とプランジャ102の一方側端面109とをソレノイド101の内周側で対向させることができるので、プランジャ102とコアステータ104との間の磁力による吸引力を高め、かつ、プランジャ102の変位量にかかわらず略一定の値にすることができ、安定した制御性能を確保できる。   Thus, before the second core member 104B is fitted and fixed to the first core member 104A, the inner peripheral surface of the plunger housing portion 103 can be subjected to high-precision processing such as burnishing, and the plunger 102 can be precisely processed. Displacement is possible. Furthermore, since the suction surface 108 of the second core member 104B and the one end surface 109 of the plunger 102 can be opposed to each other on the inner peripheral side of the solenoid 101, the suction force by the magnetic force between the plunger 102 and the core stator 104 is increased. In addition, it can be set to a substantially constant value regardless of the displacement amount of the plunger 102, and stable control performance can be ensured.

また、第1コア部材104Aと第2コア部材104Bとが別体になることにより、第2コア部材104Bの単体にて、シャフト106を摺動自在に支持する軸受部112の摺動面への硬化処理や、外周面に呼吸孔113の溝を付設することは容易にできるので、呼吸孔113を設ける加工の煩雑さを低減して、加工効率を向上させることができる。   In addition, since the first core member 104A and the second core member 104B are separated, the second core member 104B alone is attached to the sliding surface of the bearing portion 112 that slidably supports the shaft 106. Since the hardening process and the groove of the breathing hole 113 can be easily provided on the outer peripheral surface, the complexity of the process of providing the breathing hole 113 can be reduced and the processing efficiency can be improved.

このように、第1の従来技術には上記するような特徴のある効果を有しているものの、しかし、第1コア部材104Aと第2コア部材104Bとを別体にして、互いに精密仕上げを施し嵌合固定することによってコアステータ104を形成しているので、部品点数が増えるとともに精度管理の煩わしさと嵌合組付けの工数アップが生産性を低下させてコスト高となる懸念があった。   As described above, the first prior art has the advantageous effects as described above. However, the first core member 104A and the second core member 104B are separated from each other and precision finished with each other. Since the core stator 104 is formed by performing fitting and fixing, there is a concern that the number of parts increases and the trouble of accuracy control and the increase in the number of fitting assembly steps reduce productivity and increase costs.

〔第2の従来技術〕
プランジャ102とコアステータ104との間の磁力による吸引力を高め、かつ、プランジャ102の変位量にかかわらず略一定の値にすることができ、安定した制御性能を確保できる小型化可能な電磁弁では、プランジャ収容部103の内周側とプランジャ102の外周側との間に径方向に形成される間隙(サイドギャップという)が、プランジャ102が往復移動するときプランジャ収容部103に対し偏心すると、局所的に小さくなるところが発生し、プランジャ102をプランジャ収容部103の径方向に吸引される力(サイドフォースという)が大きくなり、プランジャ102とプランジャ収容部103との間に生じる摺動抵抗が大きくなる。
[Second prior art]
In a solenoid valve that can be reduced in size, it is possible to increase the attraction force due to the magnetic force between the plunger 102 and the core stator 104 and to maintain a substantially constant value regardless of the displacement amount of the plunger 102 and to ensure stable control performance. If a gap (referred to as a side gap) formed radially between the inner circumferential side of the plunger housing portion 103 and the outer circumferential side of the plunger 102 is eccentric with respect to the plunger housing portion 103 when the plunger 102 reciprocates, As a result, a force (referred to as a side force) that attracts the plunger 102 in the radial direction of the plunger housing portion 103 increases, and a sliding resistance generated between the plunger 102 and the plunger housing portion 103 increases. .

そして、ソレノイド101に供給する電流値を増加させると磁力が増え、サイドフォースが大きくなり、摺動抵抗も大きくなる。従って、ソレノイド101に供給する電流の増減方向において、電流値に対しプランジャ102の往復移動位置のヒステリシスが大きくなる。ヒステリシスが大きい電磁弁を油圧制御装置などに用いると、同じ電流値に対し、電流の増加方向と減少方向において作動油の流量または油圧が異なる、つまり油圧を高精度に制御できないという問題が生じる。   When the current value supplied to the solenoid 101 is increased, the magnetic force increases, the side force increases, and the sliding resistance also increases. Accordingly, the hysteresis of the reciprocating position of the plunger 102 increases with respect to the current value in the increasing / decreasing direction of the current supplied to the solenoid 101. When an electromagnetic valve having a large hysteresis is used in a hydraulic control device or the like, there arises a problem that the flow rate or hydraulic pressure of the hydraulic oil is different between the increasing direction and decreasing direction of the current with respect to the same current value, that is, the hydraulic pressure cannot be controlled with high accuracy.

このため、ソレノイド101に供給する電流値に対しプランジャ102の往復移動位置のヒステリシスが小さく小型化可能な電磁弁として、プランジャ収容部103の内周側およびプランジャ102の外周側にそれぞれ非磁性材の樹脂コーティングあるいはニッケル・リン(NiP)めっき等を被覆して、プランジャ102のプランジャ収容部103に対する偏心率を20%以上、60%以下に抑え、さらに、ソレノイド101に供給する電流値が増加し、最大電流値の略50%になると吸引面108が磁気飽和するような構造の電磁弁が開示されている(特許文献3参照)。   For this reason, a non-magnetic material is provided on the inner peripheral side of the plunger housing portion 103 and on the outer peripheral side of the plunger 102 as a solenoid valve that has a small hysteresis in the reciprocating position of the plunger 102 relative to the current value supplied to the solenoid 101 and can be reduced in size. Covering with resin coating or nickel / phosphorus (NiP) plating, etc., the eccentricity of the plunger 102 with respect to the plunger housing portion 103 is suppressed to 20% or more and 60% or less, and the current value supplied to the solenoid 101 is increased. An electromagnetic valve having a structure in which the attracting surface 108 is magnetically saturated when it reaches about 50% of the maximum current value is disclosed (see Patent Document 3).

特許文献3に開示される電磁弁は、自動車用自動変速機の油圧制御装置に供給する作動油の油圧の制御に適用される例が示されている。特許文献3に開示される電磁弁においても、電流を供給することにより磁気吸引力を発生するソレノイド101等磁気回路とプランジャ102とともにスプール110が往復移動することにより、作動油の油圧を制御するスプール型油圧制御弁であることは、第1の従来技術で述べた電磁弁と構成・作用は変わるところはない。従って、第1の従来例と実質的に同一構成部分に同一符号を付して、構成の詳細な説明は省略する。   An example in which the solenoid valve disclosed in Patent Document 3 is applied to control the hydraulic pressure of hydraulic fluid supplied to a hydraulic control device of an automatic transmission for an automobile is shown. Also in the solenoid valve disclosed in Patent Document 3, the spool 110 reciprocally moves together with the plunger 102 and the magnetic circuit such as the solenoid 101 that generates a magnetic attractive force by supplying current, thereby controlling the hydraulic pressure of the hydraulic oil. The type hydraulic control valve is the same as the electromagnetic valve described in the first prior art in the configuration and operation. Accordingly, substantially the same components as those in the first conventional example are denoted by the same reference numerals, and detailed description of the configurations is omitted.

このような電磁弁では、ソレノイド101に供給する電流値が最大電流値の50%以上に増加しても、サイドフォースが増加することを抑制しているので、プランジャ収容部103に対しプランジャ102が偏心しても、サイドフォースの上限値を低減し、プランジャ収容部103とプランジャ102との間に働く摺動抵抗の上限値を低減でき、従って、ソレノイド101に供給する電流の増減方向において、同じ電流値におけるプランジャ102およびスプール110の往復移動位置、つまり油圧の値の差が小さく、ヒステリシスが小さくなる。従って、電流値を調整することにより精度よく油圧を制御することが可能となる。   In such a solenoid valve, even if the current value supplied to the solenoid 101 is increased to 50% or more of the maximum current value, the side force is suppressed from increasing. Even if it is eccentric, the upper limit value of the side force can be reduced, and the upper limit value of the sliding resistance acting between the plunger accommodating portion 103 and the plunger 102 can be reduced. The difference between the reciprocating positions of the plunger 102 and the spool 110 in terms of values, that is, the value of the hydraulic pressure is small, and the hysteresis is small. Therefore, it is possible to control the hydraulic pressure with high accuracy by adjusting the current value.

このように、第2の従来技術には上記するような特徴のある効果を有しているものの、しかし、偏心率を20%以上、60%以下に抑えるには、プランジャ収容部103の内周側とプランジャ102の外周側との磁気ギャップを100μmとしたときに、プランジャ収容部103の内周側およびプランジャ102の外周側のそれぞれの非磁性層の厚みの和が40μm以上、80μm以下に抑えることが必要となり、非磁性層を樹脂コーティングあるいはNiPめっき等で加工するには、加工厚みが過大であり、加工処理時間が長くなって生産性が低下するとともに、高価な材料使用量も増えてコスト高となる懸念があった。   As described above, although the second conventional technique has the effects as described above, in order to suppress the eccentricity to 20% or more and 60% or less, the inner circumference of the plunger housing portion 103 can be reduced. When the magnetic gap between the side and the outer peripheral side of the plunger 102 is 100 μm, the sum of the thicknesses of the nonmagnetic layers on the inner peripheral side of the plunger housing portion 103 and the outer peripheral side of the plunger 102 is suppressed to 40 μm or more and 80 μm or less. In order to process the non-magnetic layer by resin coating or NiP plating, etc., the processing thickness is excessive, the processing time becomes longer, the productivity decreases, and the amount of expensive material used also increases. There was concern that the cost would be high.

〔第3の従来技術〕
上記するように、第2の従来技術として特許文献3に開示された電磁弁は、プランジャ102のプランジャ収容部103に対する偏心率を20%以上、60%以下に抑え、さらに、ソレノイド101に供給する電流値が増加し、最大電流値の略50%になると吸引面108が磁気飽和するような構造の電磁弁である。しかし、ここで磁気飽和特性と偏心率60%以下抑制特性は同時成立する必要はなく、磁気飽和特性と偏心率60%以下抑制特性のいずれか一方だけを実現してもよく、また、プランジャ収容部103およびプランジャ102の好ましくは両方に非磁性層を加工しているが、一方だけに40μm以上、80μm以下の非磁性層を加工してもよい。
[Third prior art]
As described above, the electromagnetic valve disclosed in Patent Document 3 as the second prior art suppresses the eccentricity of the plunger 102 with respect to the plunger accommodating portion 103 to 20% or more and 60% or less, and further supplies the solenoid 101 with it. The electromagnetic valve has a structure in which the suction surface 108 is magnetically saturated when the current value increases and reaches approximately 50% of the maximum current value. However, the magnetic saturation characteristic and the eccentricity 60% or less suppression characteristic do not need to be simultaneously established, and either the magnetic saturation characteristic or the eccentricity 60% or less suppression characteristic may be realized, and the plunger is accommodated. A nonmagnetic layer is preferably processed on both the portion 103 and the plunger 102, but a nonmagnetic layer of 40 μm or more and 80 μm or less may be processed on only one of them.

これにより、第2の従来技術として、特許文献3に開示された電磁弁の非磁性層の加工厚みが過大ゆえの生産性の低下の懸念を、非磁性材のSUSカップの採用によって解消した電磁弁が開示されている(特許文献4参照)。ここで、SUSカップとは、ステンレス鋼(SUS)等の非磁性材で形成され、筒部としての有底円筒部、および連結部としてのフランジ部を有してカップ状に形成された非磁性部材である。   Thus, as a second conventional technique, an electromagnetic wave that has been solved by adopting a SUS cup made of a non-magnetic material has been solved by the use of a SUS cup made of a non-magnetic material, because the processing thickness of the non-magnetic layer of the electromagnetic valve disclosed in Patent Document 3 is excessive. A valve is disclosed (see Patent Document 4). Here, the SUS cup is formed of a nonmagnetic material such as stainless steel (SUS), and has a bottomed cylindrical portion as a cylindrical portion and a flange portion as a connecting portion, and is formed in a cup shape. It is a member.

特許文献4に開示される電磁弁は、内燃機関のバルブ可変タイミング装置の油圧制御弁に適用される例が示されている。特許文献4に開示される電磁弁においても、電流を供給することにより磁気吸引力を発生するソレノイド101等磁気回路とプランジャ102とともにスプール110が往復移動することにより、作動油の流路の切替えや流量の調整をするスプール型油圧制御弁であることは、第1、2の従来技術で述べた電磁弁と構成・作用は変わるところはない。従って、第1の従来例と実質的に同一構成部分に同一符号を付して、構成の詳細な説明は省略する。   The electromagnetic valve disclosed by patent document 4 has shown the example applied to the hydraulic control valve of the valve variable timing apparatus of an internal combustion engine. Also in the solenoid valve disclosed in Patent Document 4, when the spool 110 reciprocates together with the magnetic circuit such as the solenoid 101 and the plunger 102 that generate a magnetic attractive force by supplying an electric current, the flow path of the hydraulic oil can be switched. The spool type hydraulic control valve that adjusts the flow rate is the same as the electromagnetic valve described in the first and second prior arts in terms of configuration and action. Accordingly, substantially the same components as those in the first conventional example are denoted by the same reference numerals, and detailed description of the configurations is omitted.

ただ、異なるのは、ステンレス鋼(SUS)等の非磁性材で形成されたSUSカップ状の非磁性部材が、コアステータ104の内側に配置されている。非磁性部材はスリーブ111の他方端(フランジ部)開口部を覆い、有底円筒部の底部側はプランジャ102の往復移動方向の一方側を覆っている。さらに、有底円筒部はコアステータ104の吸引面108を覆っている。非磁性部材のフランジ部はコアステータ104のフランジ部とスリーブ111のフランジ部との間に挟持されており、ヨーク114の締結手段としてのかしめ加工によって、それぞれのフランジ部は液密的に連結されて電磁弁が形成されている。   However, the difference is that a SUS cup-shaped nonmagnetic member formed of a nonmagnetic material such as stainless steel (SUS) is disposed inside the core stator 104. The nonmagnetic member covers the other end (flange portion) opening of the sleeve 111, and the bottom side of the bottomed cylindrical portion covers one side of the plunger 102 in the reciprocating direction. Further, the bottomed cylindrical portion covers the suction surface 108 of the core stator 104. The flange portion of the nonmagnetic member is sandwiched between the flange portion of the core stator 104 and the flange portion of the sleeve 111, and each flange portion is liquid-tightly connected by caulking as a fastening means of the yoke 114. A solenoid valve is formed.

そして、ソレノイド101に電流が供給されると、付勢手段の付勢力に抗して、プランジャ102が一方側、つまり吸引面108に向けて吸引される。一方、プランジャ102とシャフト106を介して軸方向に連動するスプール110は、同様にスリーブ111内を移動して、ポート107の連通、および遮断を生じて、作動油の流れの切替えを実行する。   When a current is supplied to the solenoid 101, the plunger 102 is attracted toward one side, that is, toward the suction surface 108 against the biasing force of the biasing means. On the other hand, the spool 110 that is interlocked in the axial direction via the plunger 102 and the shaft 106 moves in the sleeve 111 in the same manner, causing communication and blocking of the port 107, and switching the flow of hydraulic oil.

スプール110の位置は、プランジャ102に働く磁気吸引力と付勢手段の付勢力との釣合いにより決定される。ソレノイド101に供給する電流値と発生する磁力とは比例するので、ソレノイド101に供給する電流値を制御することにより、スプール110の位置を線形制御できる。これにより、制御装置への供給または排出する作動油量はスプール110の位置、つまり電流値によって簡単に、精度よく制御される。また、このとき、プランジャ102側に漏れてきた作動油は、非磁性部材によって非磁性部材の外側、例えばソレノイド101側に漏れることを防止する。また、同時に所定の厚みを有する非磁性部材によって適正なサイドギャップが維持され、プランジャ102に作用するサイドフォースが低下するので、プランジャ102もスプール110も精度よく移動でき、安定した流量制御が可能となる。   The position of the spool 110 is determined by the balance between the magnetic attractive force acting on the plunger 102 and the biasing force of the biasing means. Since the current value supplied to the solenoid 101 is proportional to the generated magnetic force, the position of the spool 110 can be linearly controlled by controlling the current value supplied to the solenoid 101. As a result, the amount of hydraulic oil supplied to or discharged from the control device is easily and accurately controlled by the position of the spool 110, that is, the current value. At this time, the hydraulic oil leaking to the plunger 102 side is prevented from leaking to the outside of the nonmagnetic member, for example, the solenoid 101 side by the nonmagnetic member. At the same time, an appropriate side gap is maintained by a non-magnetic member having a predetermined thickness, and the side force acting on the plunger 102 is reduced. Therefore, both the plunger 102 and the spool 110 can move with high accuracy, and stable flow rate control is possible. Become.

しかし、SUSカップ状の非磁性部材がその有底円筒部の内側にプランジャ102を収容し、外側にコアステータ104の吸引面108を覆い、所定のサイドギャップを呈してプランジャ102の往復移動を実現しているが、第1の従来技術で説明した吸引力を増加させるための対向した吸引面108の設定が困難なことがある。そのため、特許文献4には、段付SUSカップ状の非磁性部材を採用して、段付SUSカップの小径円筒部の内側にプランジャ102を収容し、外側にはヨーク114の内筒を覆い、また、段付SUSカップの大径円筒部の内側にコアステータ104の円筒部を収容し、コアステータ104の円筒部の一方端はフランジ部を、他方端には吸引力を増加させるための吸引面108を備えて配置される例が示されている。そして、段付SUSカップの大径円筒部の外側には樹脂でモールド成形されたソレノイド101を覆い、そのソレノイド101を二重筒状に形成されるヨーク114の外筒にて収容される電磁弁が開示されている。   However, the SUS cup-shaped non-magnetic member accommodates the plunger 102 inside the bottomed cylindrical portion, covers the suction surface 108 of the core stator 104 outside, and exhibits a predetermined side gap to realize the reciprocating movement of the plunger 102. However, it may be difficult to set the opposing suction surfaces 108 for increasing the suction force described in the first prior art. Therefore, Patent Document 4 adopts a stepped SUS cup-shaped nonmagnetic member, accommodates the plunger 102 inside the small diameter cylindrical portion of the stepped SUS cup, covers the inner cylinder of the yoke 114 on the outside, Further, the cylindrical portion of the core stator 104 is accommodated inside the large diameter cylindrical portion of the stepped SUS cup. One end of the cylindrical portion of the core stator 104 is a flange portion, and the other end is a suction surface 108 for increasing a suction force. An example is shown which is arranged with And the solenoid 101 molded with resin is covered outside the large-diameter cylindrical portion of the stepped SUS cup, and the solenoid 101 is accommodated in the outer cylinder of the yoke 114 formed in a double cylinder shape. Is disclosed.

この電磁弁では、段付SUSカップ状の非磁性部材の大径円筒部がハウジングとしてのスリーブ111のフランジ部の開口部を覆い、また、段付SUSカップ状のフランジ部がスリーブ111のフランジ部とかしめにより連結されている。従って、プランジャ102側に漏れてきた作動油がカップ状部材の外側、例えばソレノイド101側に漏れることを防止できる。さらに、プランジャ102が段付SUSカップ状の非磁性部材に直接支持されているので、プランジャ102の芯ずれが発生せず、従来技術のように芯ずれを吸収するために間隙を大きくする必要がないので、磁気回路つまり駆動部105を小型化できる。さらに、ヨーク114の内筒とプランジャ102との間に形成されるサイドギャップを小さくできるので、小型化しても磁気吸引力が低下しないという特徴がある。   In this solenoid valve, the large diameter cylindrical portion of the stepped SUS cup-shaped non-magnetic member covers the opening of the flange portion of the sleeve 111 as a housing, and the stepped SUS cup-shaped flange portion is the flange portion of the sleeve 111. It is connected by caulking. Accordingly, it is possible to prevent the hydraulic oil leaking to the plunger 102 side from leaking to the outside of the cup-shaped member, for example, the solenoid 101 side. Furthermore, since the plunger 102 is directly supported by the stepped SUS cup-shaped non-magnetic member, the plunger 102 is not misaligned, and it is necessary to increase the gap to absorb the misalignment as in the prior art. Therefore, the magnetic circuit, that is, the driving unit 105 can be downsized. Further, since the side gap formed between the inner cylinder of the yoke 114 and the plunger 102 can be reduced, the magnetic attraction force does not decrease even if the size is reduced.

このように、第3の従来技術には上記するような特徴のある効果を有しているものの、しかし、プランジャ102はカップ状部材を介してヨーク114の内筒に収容するため、ヨーク114は内筒と外筒を有する二重筒構造が必要となり、内筒および外筒の同軸度を確保するには大規模なプレス設備等による精密製造が必要でコスト高となる懸念がある。また、電磁弁の組付けにおいても、円環状のソレノイド101を二重筒構造のヨーク114の外筒と内筒の間に挿入し、さらに挿入したソレノイド101の内周面とヨーク114の内筒の内周面に同時に嵌入する段付SUSキャップの形状精度の管理が必要となり、段付き構造の形状複雑化とともにコスト高となる懸念がある。加えて、一方向組付けが難しく、組付け生産性の低下の懸念がある。
特開2001−227669号公報 特開2005−214236号公報 特開2002−222710号公報 特開2001−187979号公報
As described above, although the third prior art has the advantageous effects described above, since the plunger 102 is accommodated in the inner cylinder of the yoke 114 via the cup-shaped member, the yoke 114 is A double cylinder structure having an inner cylinder and an outer cylinder is required, and in order to ensure the coaxiality of the inner cylinder and the outer cylinder, there is a concern that precision manufacturing by a large-scale press facility or the like is required and the cost is increased. Also in the assembly of the solenoid valve, the annular solenoid 101 is inserted between the outer cylinder and the inner cylinder of the yoke 114 having a double cylinder structure, and the inner peripheral surface of the inserted solenoid 101 and the inner cylinder of the yoke 114 are also inserted. Therefore, it is necessary to manage the shape accuracy of the stepped SUS cap that is simultaneously fitted to the inner peripheral surface, and there is a concern that the shape of the stepped structure is complicated and the cost is increased. In addition, one-way assembly is difficult, and assembly productivity may be reduced.
JP 2001-227669 A JP 2005-214236 A JP 2002-222710 A Japanese Patent Laid-Open No. 2001-18779

本発明は、上記複数の従来技術がもつ問題点に鑑みてなされたもので、摺動部の加工精度や組付精度管理が簡単で、一方向組付ができて生産性が高く、コスト高を抑えた小型高性能な電磁弁の提供を目的とする。   The present invention has been made in view of the problems of the above-mentioned plurality of conventional techniques. The processing accuracy and assembly accuracy management of the sliding portion is simple, one-way assembly is possible, productivity is high, and cost is high. The purpose is to provide a small, high-performance solenoid valve with reduced noise.

〔請求項1の手段〕
請求項1の手段を採用する電磁弁では、プランジャと磁気回路を形成するコアステータであって、軸方向に貫通された筒部を備え、筒部の一方側に、スリーブの他方端とかしめ固定されるフランジ部を有する第1コア部材と、第1コア部材とは別体であって、第1コア部材の筒部の一方側に同軸に収容される筒部を有し、筒部の他方側にプランジャを吸引する吸引面を備え、一方側にスリーブの他方端とかしめ固定されるフランジ部を有する第2コア部材と、第1コア部材と第2コア部材との間に配設され、所定の厚さを有し、一方側に組付けのためのフランジ部と、他方側に第1コア部材の筒部に収容される筒部を有し、筒部の他方側に所定の間隙を有してプランジャを往復移動自在に収容し、一方側は第2コア部材の筒部の吸引面をプランジャと対向するように配置する非磁性部材と、ソレノイドを収容し、各フランジ部を一方側から順次包囲して、スリーブの他方側端部とかしめ結合をするヨークと、からなることを特徴としている。
[Means of Claim 1]
The solenoid valve adopting the means of claim 1 is a core stator that forms a magnetic circuit with the plunger, and includes a cylindrical portion penetrating in the axial direction, and is caulked and fixed to the other end of the sleeve on one side of the cylindrical portion. The first core member having a flange portion and the first core member are separate from each other and have a cylindrical portion that is accommodated coaxially on one side of the cylindrical portion of the first core member, and the other side of the cylindrical portion Is provided between the first core member and the second core member, the second core member having a suction surface for sucking the plunger and having a flange portion that is caulked and fixed to the other end of the sleeve on one side. A flange portion for assembly on one side, a cylinder portion accommodated in the cylinder portion of the first core member on the other side, and a predetermined gap on the other side of the cylinder portion. The plunger is accommodated in a reciprocating manner, and the suction side of the cylindrical portion of the second core member is plugged on one side. Characterized in that it comprises a non-magnetic member disposed so as to face the jaws, and a yoke that accommodates solenoids, sequentially surrounds each flange portion from one side, and is caulked with the other end portion of the sleeve. Yes.

これにより、第1、および第2コア部材に分割し、第1コア部材の内側に第2コア部材を同軸に挿着できるので、第2コア部材の他方端である吸引面を第1コア部材に往復移動可能に収容されるプランジャの一方端に対向して配置することが容易となって、プランジャとコアステータとの間の磁力による吸引力を高め、かつ、プランジャの変位量にかかわらず略一定の値にすることができ、安定した制御性能を確保するとともに、小型高性能な電磁弁が可能となる。   Thereby, since it can divide | segment into a 1st and 2nd core member and a 2nd core member can be coaxially inserted inside a 1st core member, the suction surface which is the other end of a 2nd core member is made into a 1st core member It is easy to place it facing one end of the plunger accommodated so as to be able to reciprocate, enhances the attractive force due to the magnetic force between the plunger and the core stator, and is substantially constant regardless of the displacement amount of the plunger Thus, stable control performance can be ensured, and a small and high performance solenoid valve can be realized.

また、第1コア部材の内周と第2コア部材の外周との間に、所定の厚みを有した非磁性部材を挟持し、非磁性部材の内周側にプランジャを往復移動自在に収容するので、プランジャとコアステータとの間の磁気ギャップは非磁性部材の厚さまで小さくすることができ、プランジャの吸引力を容易に増加できる。これにより、小型高性能な電磁弁が実現できる。また、非磁性部材の厚みを薄くすることによってもプランジャのコアステータに対する偏心率を20%以上、60%以下に抑制することが、従来のように大量の樹脂コーティングやNiPめっきを加工することなく実現できるので、容易にヒステリシスの発生を低下させることができる。これにより、電流値の増減による線形制御性能を向上するとともに、生産性が向上し、コスト高を抑えた小型高性能な電磁弁が実現できる。   Further, a nonmagnetic member having a predetermined thickness is sandwiched between the inner periphery of the first core member and the outer periphery of the second core member, and the plunger is reciprocally accommodated on the inner periphery side of the nonmagnetic member. Therefore, the magnetic gap between the plunger and the core stator can be reduced to the thickness of the nonmagnetic member, and the attractive force of the plunger can be easily increased. Thereby, a small high-performance solenoid valve can be realized. Also, by reducing the thickness of the nonmagnetic member, the eccentricity of the plunger relative to the core stator can be suppressed to 20% or more and 60% or less without processing a large amount of resin coating or NiP plating as in the past. Therefore, the occurrence of hysteresis can be easily reduced. Thereby, while improving the linear control performance by the increase / decrease in electric current value, productivity can improve and the small high performance solenoid valve which suppressed the high cost is realizable.

さらに、第1および第2コア部材ならびに非磁性部材は、それぞれ一方側にフランジ部を有しており、一方側から順次包囲するヨークによるかしめ結合により密着固定される構造であるので、加工精度や組付精度管理が簡単となり、一方向同軸組付けが可能となり、生産性が向上してコスト高が抑制できる。   Furthermore, each of the first and second core members and the non-magnetic member has a flange portion on one side and is closely fixed by caulking with a yoke that sequentially surrounds from one side. Assembling accuracy management becomes simple and one-way coaxial assembling becomes possible, productivity is improved and high cost can be suppressed.

〔請求項2の手段〕
請求項2の手段を採用する電磁弁では、往復移動する摺動面に非磁性材の被覆部を備えたプランジャと、プランジャとともに連動して往復移動し、スリーブに収容されて、スリーブの流路を開閉することにより流体の流量または圧力を制御するスプールと、往復移動方向の他方側にプランジャを付勢する付勢手段と、往復移動方向の一方側にプランジャを吸引する磁力を発生するソレノイドと、プランジャと磁気回路を形成するコアステータであって、プランジャの外周側面を覆う筒部と、スリーブの他方端にかしめ固定されるフランジ部、ならびに筒部との間にプランジャの往復移動方向に所定の間隙を有する第1コア部材と、往復移動方向の他方側にプランジャを吸引する吸引面を有し、第1コア部材の筒部に同軸に収容され、スリーブの他方端にかしめ固定されるフランジ部を有する第2コア部材と、プランジャを第1コア部材の筒部の他方側に、第2コア部材の筒部の他方側の吸引面と対向させて、往復移動自在に収容し、ソレノイドを収容し、各フランジ部を一方側から順次包囲して、スリーブの他方側端部とかしめ結合をするヨークと、からなることを特徴としている。
[Means of claim 2]
In the solenoid valve adopting the means of claim 2, a plunger having a nonmagnetic material covering portion on a reciprocating sliding surface, and reciprocating together with the plunger, being accommodated in the sleeve, A spool that controls the flow rate or pressure of the fluid by opening and closing, a biasing means that biases the plunger to the other side in the reciprocating direction, and a solenoid that generates a magnetic force to attract the plunger to one side in the reciprocating direction; A core stator that forms a magnetic circuit with the plunger, and a predetermined distance in the reciprocating direction of the plunger between the cylindrical portion that covers the outer peripheral side surface of the plunger, the flange portion that is caulked and fixed to the other end of the sleeve, and the cylindrical portion A sleeve having a first core member having a gap and a suction surface for sucking a plunger on the other side in the reciprocating direction; and being accommodated coaxially in a cylindrical portion of the first core member; A second core member having a flange portion that is caulked and fixed to the other end, and a reciprocation with a plunger facing the other side of the cylindrical portion of the first core member and a suction surface on the other side of the cylindrical portion of the second core member It is characterized by comprising a yoke that is movably accommodated, a solenoid is accommodated, and each flange portion is sequentially surrounded from one side to be caulked with the other end portion of the sleeve.

これによれば、請求項1の手段を採用する電磁弁との違いは、非磁性部材のコアステータ内への配設の有無だけとなり、非磁性部材を配置して好適なサイドギャップを設定することは、プランジャに所定の厚みの非磁性材の被覆部を設けることによって略実現されるので、請求項1と同様な作用・効果が得られ、特に、組付け部品点数が削減でき、組付工数が低減できて生産性が向上し、コスト高を抑えた小型高性能な電磁弁が実現できる。   According to this, the only difference from the solenoid valve adopting the means of claim 1 is whether or not the nonmagnetic member is disposed in the core stator, and the nonmagnetic member is disposed to set a suitable side gap. Is substantially realized by providing the plunger with a coating portion of a non-magnetic material having a predetermined thickness. Thus, the same actions and effects as in claim 1 can be obtained, and in particular, the number of parts to be assembled can be reduced and the number of assembling steps can be reduced. Can be reduced, productivity can be improved, and a small high-performance solenoid valve can be realized at a low cost.

この発明の最良の実施形態は、軸方向に貫通された筒部を備え、その一方側に組付けのためのフランジ部を有する第1コア部材と、この第1コア部材とは別体であって、第1コア部材の筒部の一方側に同軸に収容される筒部を備え、第1コア部材のフランジ部と密着して固定されるフランジ部を有する第2コア部材と、第1コア部材と第2コア部材との間に、所定の厚さを有し、第1コア部材の筒部に収容され、一方側に組付けのためのフランジ部と他方側にプランジャを収容する筒部を有する非磁性部材を挟持し、第1コア部材の筒部の外側に配置されてプランジャと第2コア部材の他方側吸引面との間に磁力を発生させるソレノイドと、このソレノイドを収容し、各フランジ部を一方側から順次包囲、密着して、スリーブの他方側端部とかしめ結合するヨークと、プランジャの駆動をシャフトを介して連動して軸方向に変位するスプールと、からなる電磁弁である。   The best embodiment of the present invention includes a first core member having a cylindrical portion penetrating in the axial direction and having a flange portion for assembly on one side thereof, and the first core member is a separate body. A second core member having a flange portion that is coaxially accommodated on one side of the tube portion of the first core member and has a flange portion that is fixed in close contact with the flange portion of the first core member; A cylindrical portion having a predetermined thickness between the member and the second core member, accommodated in the cylindrical portion of the first core member, and a flange portion for assembly on one side and a plunger on the other side A solenoid that sandwiches the non-magnetic member and is disposed outside the cylindrical portion of the first core member to generate a magnetic force between the plunger and the other side suction surface of the second core member, and contains the solenoid, Enclose each flange part sequentially from one side and closely contact the other end part of the sleeve A yoke for closing coupling, the spool is displaced in the axial direction of the drive of the plunger in conjunction through the shaft, an electromagnetic valve comprising a.

〔実施例1の構成〕
実施例1の電磁弁を図1に基づいて説明する。図1は、本実施例における電磁弁の軸方向断面図である。電磁弁1は、ソレノイド2からの磁力によってスプール3を駆動することによって流路の開閉や、作動油の流量や圧力の調整を行う。この電磁弁1は例えば、自動車用自動変速機の油圧制御装置における油圧の制御に用いられる。
[Configuration of Example 1]
The solenoid valve of Example 1 is demonstrated based on FIG. FIG. 1 is an axial sectional view of a solenoid valve in the present embodiment. The solenoid valve 1 opens and closes the flow path and adjusts the flow rate and pressure of hydraulic oil by driving the spool 3 with the magnetic force from the solenoid 2. The electromagnetic valve 1 is used for controlling hydraulic pressure in a hydraulic control device for an automatic transmission for automobiles, for example.

電磁弁1は、図1に示すように、流路の開閉を図るスプール3が収容された弁体部4と、その他方側に配置されるとともに、ソレノイド2からの磁力を用いてスプール3を駆動する駆動部5とからなる。なお、本実施例の棒状の形状を有する電磁弁1において、軸方向の弁体部4側を一方側と称し、駆動部5側を他方側と称して、以下軸方向の位置関係はこれに従うものとする。   As shown in FIG. 1, the electromagnetic valve 1 is arranged on the other side with a valve body portion 4 in which a spool 3 that opens and closes a flow path is accommodated, and the spool 3 is moved by using magnetic force from the solenoid 2. The driving unit 5 is driven. In the electromagnetic valve 1 having the rod-like shape of the present embodiment, the axial valve body 4 side is referred to as one side, the drive unit 5 side is referred to as the other side, and the axial positional relationship follows this. Shall.

弁体部4は、後記するプランジャ6と連動して軸方向に変位する異径段差構造のスプール3と、スプール3を軸方向へ摺動自在に収容するとともに、作動油の流入口または流出口であるポート7が形成されたスリーブ8と、スプール3を他方側へ付勢するスプリング9とを備えている。   The valve body 4 accommodates a spool 3 having a different diameter step structure which is displaced in the axial direction in conjunction with a plunger 6 which will be described later, and the spool 3 is slidable in the axial direction, and also has a hydraulic oil inlet or outlet. And a spring 8 for urging the spool 3 to the other side.

駆動部5は、固定子としてのヨーク16とコアステータ15と円筒状ボビンにコイルを巻回して樹脂でモールド成形したソレノイド2および非磁性部材30と、可動子としてのプランジャ6を有している。
ヨーク16とコアステータ15およびプランジャ6は、通電によりソレノイド2に励磁された磁束を流す(循環する)磁気回路を構成し、磁性材で作られる。
The drive unit 5 includes a yoke 16 as a stator, a core stator 15, a solenoid 2 and a nonmagnetic member 30 formed by molding a coil around a cylindrical bobbin, and a plunger 6 as a mover.
The yoke 16, the core stator 15 and the plunger 6 constitute a magnetic circuit that flows (circulates) the magnetic flux excited in the solenoid 2 by energization, and is made of a magnetic material.

ヨーク16は、一方側が開口し、他方側が有底の筒型の中空筒体で、その一方側の開口筒部には後記するコアステータ15および非磁性部材30を包囲してスリーブ8にかしめ結合するための肉盗みがされたかしめ部16aを備えている。また、他方側の有底筒部には段差を設けて径小の筒状部を形成し、コアステータ15の筒部10と嵌着されて、磁気回路としてのコアリング16bを兼ねている。   The yoke 16 is a cylindrical hollow cylinder having an opening on one side and a bottom on the other side. The opening cylinder portion on one side surrounds a core stator 15 and a nonmagnetic member 30 which will be described later and is caulked and coupled to the sleeve 8. For this reason, a caulking portion 16a for stealing meat is provided. Further, the bottomed cylindrical portion on the other side is provided with a step to form a small-diameter cylindrical portion, which is fitted to the cylindrical portion 10 of the core stator 15 and also serves as a core ring 16b as a magnetic circuit.

コアステータ15は、2つのコア部材から構成され、軸方向に貫通された筒部10を備え、その一方側に組付けのためのフランジ部17を有する第1コア部材11と、第1コア部材11とは別体であって、第1コア部材11の筒部10の一方側の内周に同軸に収容される筒部20とフランジ部17と密着して固定されるフランジ部18を有する第2コア部材12とからなる。   The core stator 15 is composed of two core members, includes a cylindrical portion 10 that is penetrated in the axial direction, and includes a first core member 11 having a flange portion 17 for assembly on one side thereof, and the first core member 11. And a second portion having a flange portion 18 that is tightly fixed to the cylindrical portion 20 and the flange portion 17 that are coaxially accommodated on the inner circumference of one side of the cylindrical portion 10 of the first core member 11. It consists of a core member 12.

第1コア部材11の筒部10には、プランジャ6を往復移動自在に収容するプランジャ収容部14と、プランジャ6を往復移動方向の一方側に吸引する大きな力を発生するためにプランジャ6に磁束を流し、プランジャ収容部14には磁束を流れにくくする磁気抵抗部としての薄肉部19が形成されている。ここで、薄肉部19の余肉厚さは十分磁気抵抗が大きくなるよう薄く設定されるが、本実施例では後記するように、ソレノイド2に供給する最大電流値の略50%になると第2コア部材12に設けられた吸引面22が磁束飽和するように形状が設定されることを考慮して、余肉厚さが決められている。   The cylindrical portion 10 of the first core member 11 has a plunger accommodating portion 14 that accommodates the plunger 6 in a reciprocating manner, and a magnetic flux in the plunger 6 to generate a large force that attracts the plunger 6 to one side in the reciprocating direction. The plunger accommodating portion 14 is formed with a thin portion 19 as a magnetic resistance portion that makes it difficult for the magnetic flux to flow. Here, the surplus thickness of the thin portion 19 is set so as to be sufficiently large in magnetic resistance, but in this embodiment, as will be described later, when the maximum current value supplied to the solenoid 2 becomes approximately 50%, the second thickness is set. The surplus thickness is determined in consideration of the shape being set so that the suction surface 22 provided on the core member 12 is saturated with magnetic flux.

第2コア部材12は、同様に、軸方向に貫通された筒部20を備え、筒部20の外周側は第1コア部材11の内周に同軸に嵌着可能な筒状であり、内周側にはシャフト13を往復移動自在に収容する軸受部21と、その軸方向他方側にはプランジャ6を往復移動方向の一方側に吸引する力を発生するための吸引面22が形成されている。第2コア部材12は、第1コア部材11と同軸に嵌着してコアステータ15を構成したとき、丁度、吸引面22が第1コア部材11の薄肉部19の設定位置に達するよう長さが決められ、また、後記するように、ソレノイド2に供給する最大電流値の略50%になると吸引面22が磁束飽和するように筒部20の他方側端部が軸心に向かってテーパ状に加工調整されている。   Similarly, the second core member 12 includes a cylindrical portion 20 penetrating in the axial direction, and the outer peripheral side of the cylindrical portion 20 is a cylindrical shape that can be coaxially fitted to the inner periphery of the first core member 11. A bearing portion 21 that accommodates the shaft 13 in a reciprocating manner is formed on the circumferential side, and a suction surface 22 for generating a force that attracts the plunger 6 to the one side in the reciprocating direction is formed on the other side in the axial direction. Yes. When the second core member 12 is fitted coaxially with the first core member 11 to form the core stator 15, the length is such that the suction surface 22 reaches the set position of the thin portion 19 of the first core member 11. Also, as will be described later, the other end of the cylindrical portion 20 is tapered toward the axis so that the suction surface 22 is saturated with magnetic flux when the maximum current value supplied to the solenoid 2 reaches about 50%. The processing has been adjusted.

また、第2コア部材12の筒部20の軸受部21は、シャフト13を軸方向へ摺動自在に支持するとともに、軸受部21とシャフト13との摺動面には有限の隙間が形成され、プランジャ6の変位に伴う空気もしくは作動油の連通を確保している。   The bearing portion 21 of the cylindrical portion 20 of the second core member 12 supports the shaft 13 so as to be slidable in the axial direction, and a finite gap is formed on the sliding surface between the bearing portion 21 and the shaft 13. The communication of air or hydraulic oil accompanying the displacement of the plunger 6 is ensured.

さらに、本実施例では、ステンレス鋼等の非磁性材で形成され、所定の厚さを有した非磁性部材30が第1コア部材11と第2コア部材12との間に配設されている。非磁性部材30は、軸方向に貫通された筒部32を備え、その一方側に組付けのためのフランジ部31を有している。筒部32は第1コア部材11の内周に嵌着して第1コア部材11の内周面の略全領域を覆う長さを有している。そして、筒部32の内周面の軸方向他方側には、第1コア部材11のプランジャ収容部14に相当する領域(部位)に滑らかで精度あるプランジャ収容部34を備えている。そして、プランジャ収容部34に所定の間隙を有してプランジャ6を往復移動自在に収容できるようになっている。また、筒部32の軸方向一方側は第2コア部材12の筒部20全域を覆って嵌着している。   Furthermore, in this embodiment, a nonmagnetic member 30 formed of a nonmagnetic material such as stainless steel and having a predetermined thickness is disposed between the first core member 11 and the second core member 12. . The nonmagnetic member 30 includes a cylindrical portion 32 penetrating in the axial direction, and has a flange portion 31 for assembly on one side thereof. The cylindrical portion 32 has a length that fits over the inner periphery of the first core member 11 and covers substantially the entire region of the inner peripheral surface of the first core member 11. A smooth and accurate plunger accommodating portion 34 is provided in a region (part) corresponding to the plunger accommodating portion 14 of the first core member 11 on the other axial side of the inner peripheral surface of the cylindrical portion 32. The plunger accommodating portion 34 has a predetermined gap so that the plunger 6 can be reciprocally moved. Further, one side in the axial direction of the cylindrical portion 32 is fitted to cover the entire cylindrical portion 20 of the second core member 12.

また、非磁性部材30は非磁性材による成形やプレスによるフランジ部31と筒部32の一体成形が可能で、筒部32の肉厚の設定自由度は高く、加えて寸法精度も良好である。非磁性部材30の筒部32を形成する非磁性材の厚みは、プランジャ収容部34に収容されるプランジャ6とコアステータ15との径方向の磁気ギャップを決定する。磁気ギャップを小さくすることは、筒部32の厚さを薄くすることにより簡単にできるので、プランジャ6の吸引力を容易に増加できる。   Further, the nonmagnetic member 30 can be molded with a nonmagnetic material or can be integrally formed with the flange portion 31 and the cylindrical portion 32 by pressing, and the thickness of the cylindrical portion 32 can be set freely, and in addition, the dimensional accuracy is also good. . The thickness of the nonmagnetic material forming the cylindrical portion 32 of the nonmagnetic member 30 determines the radial magnetic gap between the plunger 6 accommodated in the plunger accommodating portion 34 and the core stator 15. Since it is easy to reduce the magnetic gap by reducing the thickness of the cylindrical portion 32, the attractive force of the plunger 6 can be easily increased.

また、後記するプランジャ6の外周側面に摺動抵抗低減のために被覆する非磁性材のコーティングまたはNiPめっき等の加工厚さを考慮しても、プランジャ6のコアステータ15に対する偏心率が20%以上、60%以下に設定でき、これにより、プランジャ6がプランジャ収容部34に対し偏心しにくくなる。従って、偏心によりサイドギャップが小さくなって、径方向に流れる磁束が増加してサイドフォースが増加し、摺動抵抗が増えてプランジャ6が滑らかに摺動しなくなることを防止する。   Further, the eccentricity of the plunger 6 with respect to the core stator 15 is 20% or more even when the processing thickness of the nonmagnetic material coating or NiP plating or the like to cover the outer peripheral side surface of the plunger 6 to be described later is reduced. , 60% or less, which makes it difficult for the plunger 6 to be eccentric with respect to the plunger housing portion 34. Accordingly, the side gap is reduced due to the eccentricity, the magnetic flux flowing in the radial direction is increased, the side force is increased, the sliding resistance is increased, and the plunger 6 is prevented from sliding smoothly.

また、一方、供給する電流値が最大電流値の略50%を超えて増加しても、プランジャ6およびプランジャ収容部14の磁束密度は一様に増加して、最大電流値まで磁気飽和することがないように構成されている。従って、ソレノイド2に通電する電流値が増え、略50%までは電流値が増加し各部位の磁束密度も増加して吸引力が増す。しかし、電流値は略50%と低いのでサイドフォースは大きくはない。そして、電流値が略50%を超えると、プランジャ6およびプランジャ収容部14の磁束密度は増加可能であるので、プランジャ収容部14に対してプランジャ6が偏心しても、プランジャ収容部14とプランジャ6との間を径方向に流れる磁束の増加量が減少する。これにより、局所的にサイドフォースが増加することを抑制する。   On the other hand, even if the current value to be supplied exceeds approximately 50% of the maximum current value, the magnetic flux density of the plunger 6 and the plunger housing portion 14 increases uniformly, and the magnetic saturation occurs up to the maximum current value. It is configured so that there is no. Therefore, the current value for energizing the solenoid 2 increases, the current value increases up to about 50%, the magnetic flux density at each part increases, and the attractive force increases. However, since the current value is as low as about 50%, the side force is not large. If the current value exceeds approximately 50%, the magnetic flux density of the plunger 6 and the plunger housing portion 14 can be increased. Therefore, even if the plunger 6 is eccentric with respect to the plunger housing portion 14, the plunger housing portion 14 and the plunger 6 The amount of increase of the magnetic flux flowing in the radial direction between the two decreases. Thereby, it is suppressed that side force increases locally.

つまり、サイドフォースによるプランジャ6の摺動抵抗の大小が生じると、電流値の増減方向において、同じ電流値に対してプランジャ6の往復移動位置が異なるという所謂ヒステリシスが生じ、油圧を高精度に制御できなくなる。本実施例の電磁弁1では、このヒステリシスを減少させ、高精度な油圧制御を可能としている。また、所定の厚みを有する非磁性部材30、または挿着後のコアステータ15は、加工精度や組付精度管理が簡単となり、また、第2コア部材12と同様に一方向組付けが簡単、かつ、確実に実施でき、小さく、均一な磁気ギャップを維持するには良好な構造部材といえる。   In other words, when the sliding resistance of the plunger 6 is increased or decreased due to the side force, so-called hysteresis is generated in which the reciprocating position of the plunger 6 is different with respect to the same current value in the increasing / decreasing direction of the current value, and the hydraulic pressure is controlled with high accuracy. become unable. In the solenoid valve 1 of the present embodiment, this hysteresis is reduced to enable highly accurate hydraulic pressure control. Further, the non-magnetic member 30 having a predetermined thickness or the core stator 15 after being inserted can be easily managed in processing accuracy and assembly accuracy, and can be easily assembled in one direction in the same manner as the second core member 12. This is a good structural member that can be reliably implemented and maintains a small and uniform magnetic gap.

プランジャ6は、第1コア部材11に同軸に挿着された非磁性部材30の筒部32に形成されるプランジャ収容部34に、所定の間隙を有して往復移動可能に配置される柱状部材である。非磁性部材30の筒部32の内周面は滑らかな、かつ、精度よい摺動面を形成しているが、さらに、好適には、プランジャ6の往復移動に伴う摺動抵抗を低減するために、プランジャ6の外周側面に樹脂材料のコーティング処理や、あるいはNiPめっき等で高硬度に被覆されることがあり、また、プランジャ6の両端面にも被覆されて使用されることがある。なお、プランジャ6の被覆厚さは、プランジャ6とコアステータ15との磁気ギャップをその厚さ分だけ大きくするので、吸引力を低下させることとなり、このためにプランジャ6の被覆厚さは極力薄く設定されることが望ましく、非磁性層の薄膜化に有効となる。また、プランジャ6の外周面または内部に、プランジャ6の往復移動方向の両空間を連通する呼吸孔23が形成され、プランジャ6の迅速かつ円滑な往復移動を可能なものとしている。   The plunger 6 is a columnar member that is disposed in a plunger accommodating portion 34 formed in the cylindrical portion 32 of the nonmagnetic member 30 coaxially inserted in the first core member 11 so as to be reciprocally movable with a predetermined gap. It is. Although the inner peripheral surface of the cylindrical portion 32 of the nonmagnetic member 30 forms a smooth and accurate sliding surface, more preferably, in order to reduce the sliding resistance associated with the reciprocating movement of the plunger 6. In addition, the outer peripheral side surface of the plunger 6 may be coated with a resin material with high hardness by NiP plating or the like, and both end surfaces of the plunger 6 may be coated and used. In addition, the coating thickness of the plunger 6 increases the magnetic gap between the plunger 6 and the core stator 15 by the thickness, so that the attractive force is reduced. For this reason, the coating thickness of the plunger 6 is set as thin as possible. It is desirable that the nonmagnetic layer be made thin. In addition, a breathing hole 23 that communicates both spaces in the reciprocating direction of the plunger 6 is formed on the outer peripheral surface or inside of the plunger 6 so that the plunger 6 can be reciprocated quickly and smoothly.

また、プランジャ6の軸方向一方側端面は軸方向と直角であり、第2コア部材12の他方側端面に形成される吸引面22と対向して均一な間隙を形成し、大きな吸引力と、プランジャ6の変位にかかわらず略一様な吸引力が生じるようになっている。なお、プランジャ6の摺動抵抗低減のための外周側面の被覆厚さは、上記したようにプランジャ6の偏心率に影響を与えるが、非磁性部材30の筒部32の厚さの設定自由度が高いので、プランジャ6の外周面には十分に薄い被覆厚さによっても偏心率条件を満たす(成立)ことが可能となる。   Further, the end surface on one side in the axial direction of the plunger 6 is perpendicular to the axial direction, forms a uniform gap facing the suction surface 22 formed on the other end surface of the second core member 12, and has a large suction force. A substantially uniform suction force is generated regardless of the displacement of the plunger 6. Although the coating thickness of the outer peripheral side surface for reducing the sliding resistance of the plunger 6 affects the eccentricity of the plunger 6 as described above, the degree of freedom in setting the thickness of the cylindrical portion 32 of the nonmagnetic member 30 Therefore, the eccentricity condition can be satisfied (established) even with a sufficiently thin coating thickness on the outer peripheral surface of the plunger 6.

そして、ソレノイド2、コアステータ15などはヨーク16により包囲されて収容されている。ヨーク16の一方側のかしめ部16aは、第1コア部材11のフランジ部17と第2コア部材12のフランジ部18および非磁性部材30のフランジ部31の外周を一方側から順次包囲して、スリーブ8のフランジ部8aとともにかしめ結合されることにより、互いのフランジ部を密着させて液密を維持して弁体部4と駆動部5とを連結している。   The solenoid 2, the core stator 15 and the like are surrounded and accommodated by the yoke 16. The caulking portion 16a on one side of the yoke 16 sequentially surrounds the outer periphery of the flange portion 17 of the first core member 11, the flange portion 18 of the second core member 12, and the flange portion 31 of the nonmagnetic member 30 from one side, By caulking and joining together with the flange portion 8a of the sleeve 8, the flange portions are brought into close contact with each other to maintain liquid tightness, and the valve body portion 4 and the drive portion 5 are connected.

〔実施例1の作用〕
ソレノイド2が通電されるとコイルを励磁することで磁束が発生する。発生した磁束は、コアステータ15とプランジャ6およびヨーク16の磁路を循環して流れる。しかし、第1コア部材11の薄肉部19においては磁気抵抗が大きく、磁束は第2コア部材12の吸引面22からプランジャ6に流れ込むこととなる。このとき吸引面22とプランジャ6の一方側端面6aとの間の間隙に磁気吸引力が発生する。この磁気吸引力はプランジャ6の一方側に作用し、プランジャ6はスプール3を付勢手段であるスプリング9の付勢力に抗して移動し、スプール3がシャフト13を介してプランジャ6と連動して一方側に移動する。
[Operation of Example 1]
When the solenoid 2 is energized, a magnetic flux is generated by exciting the coil. The generated magnetic flux circulates through the magnetic paths of the core stator 15, the plunger 6 and the yoke 16. However, in the thin portion 19 of the first core member 11, the magnetic resistance is large, and the magnetic flux flows into the plunger 6 from the suction surface 22 of the second core member 12. At this time, a magnetic attractive force is generated in the gap between the attractive surface 22 and the one end surface 6a of the plunger 6. This magnetic attractive force acts on one side of the plunger 6, and the plunger 6 moves against the urging force of the spring 9, which is an urging means, and the spool 3 is interlocked with the plunger 6 via the shaft 13. Move to one side.

スプール3の移動によって、スプール3はスリーブ8の各ポート7をそれぞれ遮断または連通させ、あるいは開閉割合を変えて、作動油の流入および流出量、つまり、流量もしくは圧力を制御する。   By the movement of the spool 3, the spool 3 blocks or communicates with each port 7 of the sleeve 8, or changes the open / close ratio to control the inflow and outflow amount of hydraulic oil, that is, the flow rate or pressure.

そして、通電がオフされると、磁束が消滅し、プランジャ6に作用する磁気吸引力がなくなって、スプール3とプランジャ6は弁体部4の付勢手段であるスプリング9の付勢力によって、初期位置まで押し戻され停止することとなる。   When the energization is turned off, the magnetic flux disappears, the magnetic attractive force acting on the plunger 6 disappears, and the spool 3 and the plunger 6 are initialized by the biasing force of the spring 9 which is the biasing means of the valve body 4. It is pushed back to the position and stops.

以上より、主に吸引力と付勢力の均衡によりプランジャ6の変位は略決まる。吸引力は電流値の増加に比例するので、所望の流量もしくは圧力の設定には、ソレノイド2の印加電流の線形制御で簡単に、かつ、迅速に設定できる。このとき、プランジャ6は滑らかで均一な厚みのプランジャ収容部34内を大きなサイドフォースを生じることなく精度よく移動できる。この結果、正確に、安定して、応答性の高い流量もしくは圧力の設定が可能となる。   From the above, the displacement of the plunger 6 is substantially determined mainly by the balance between the attractive force and the biasing force. Since the attractive force is proportional to the increase in the current value, the desired flow rate or pressure can be set easily and quickly by linear control of the current applied to the solenoid 2. At this time, the plunger 6 can be accurately moved in the plunger accommodating portion 34 having a smooth and uniform thickness without generating a large side force. As a result, it is possible to set the flow rate or pressure with high accuracy and stability.

〔実施例1の効果〕
本実施例では、プランジャと磁気回路を形成するコアステータであって、軸方向に貫通された筒部を備え、筒部の一方側に、スリーブの他方端とかしめ固定されるフランジ部を有する第1コア部材と、第1コア部材とは別体であって、第1コア部材の筒部の一方側に同軸に収容される筒部を有し、筒部の他方側にプランジャを吸引する吸引面を備え、一方側にスリーブの他方端とかしめ固定されるフランジ部を有する第2コア部材と、第1コア部材と第2コア部材との間に配設され、所定の厚さを有し、一方側に組付けのためのフランジ部と、他方側に第1コア部材の筒部に収容される筒部を有し、筒部の他方側に所定の間隙を有してプランジャを往復移動自在に収容し、一方側は第2コア部材の筒部の吸引面をプランジャと対向するように配置する非磁性部材と、ソレノイドを収容し、各フランジ部を一方側から順次包囲して、スリーブの他方側端部とかしめ結合をするヨークと、からなる電磁弁を構成している。
[Effect of Example 1]
In this embodiment, a core stator that forms a magnetic circuit with a plunger is provided with a cylindrical portion that penetrates in the axial direction, and has a flange portion that is caulked and fixed to the other end of the sleeve on one side of the cylindrical portion. A suction surface that separates the core member and the first core member, has a cylindrical portion accommodated coaxially on one side of the cylindrical portion of the first core member, and sucks the plunger on the other side of the cylindrical portion A second core member having a flange portion that is caulked and fixed to the other end of the sleeve on one side, and is disposed between the first core member and the second core member, and has a predetermined thickness, It has a flange part for assembly on one side and a cylinder part accommodated in the cylinder part of the first core member on the other side, and has a predetermined gap on the other side of the cylinder part so that the plunger can be reciprocated freely. So that the suction surface of the cylindrical portion of the second core member faces the plunger. And a nonmagnetic member for location, housing the solenoid, sequentially surrounding each flange portion from one side to constitute a yoke for the caulking and the other side end portion of the sleeve, the solenoid valve comprising a.

これにより、第1、および第2コア部材に分割し、第1コア部材の内側に第2コア部材を同軸に挿着できるので、第2コア部材の他方端である吸引面を第1コア部材に往復移動可能に収容されるプランジャの一方端に対向して配置することが容易となって、プランジャとコアステータとの間の磁力による吸引力を高め、かつ、プランジャの変位量にかかわらず略一定の値にすることができ、安定した制御性能を確保するとともに、小型高性能な電磁弁が可能となる。   Thereby, since it can divide | segment into a 1st and 2nd core member and a 2nd core member can be coaxially inserted inside a 1st core member, the suction surface which is the other end of a 2nd core member is made into a 1st core member It is easy to place it facing one end of the plunger accommodated so as to be able to reciprocate, enhances the attractive force due to the magnetic force between the plunger and the core stator, and is substantially constant regardless of the displacement amount of the plunger Thus, stable control performance can be ensured, and a small and high performance solenoid valve can be realized.

また、第1コア部材の内周と第2コア部材の外周との間に、所定の厚みを有した非磁性部材を挟持し、非磁性部材の内周側にプランジャを往復移動自在に収容するので、プランジャとコアステータとの間の磁気ギャップは非磁性部材の厚さまで小さくすることができ、プランジャの吸引力を容易に増加できる。これにより、小型高性能な電磁弁が実現できる。また、非磁性部材の厚みを薄くすることによってもプランジャのコアステータに対する偏心率を20%以上、60%以下に抑制することが、従来のように大量の樹脂コーティングやNiPめっきを加工することなく実現できるので、容易にヒステリシスの発生を低下させることができる。これにより、電流値の増減による線形制御性能を向上させるとともに、生産性が向上し、コスト高を抑えた小型高性能な電磁弁が実現できる。   Further, a nonmagnetic member having a predetermined thickness is sandwiched between the inner periphery of the first core member and the outer periphery of the second core member, and the plunger is reciprocally accommodated on the inner periphery side of the nonmagnetic member. Therefore, the magnetic gap between the plunger and the core stator can be reduced to the thickness of the nonmagnetic member, and the attractive force of the plunger can be easily increased. Thereby, a small high-performance solenoid valve can be realized. Also, by reducing the thickness of the nonmagnetic member, the eccentricity of the plunger relative to the core stator can be suppressed to 20% or more and 60% or less without processing a large amount of resin coating or NiP plating as in the past. Therefore, the occurrence of hysteresis can be easily reduced. Thereby, while improving the linear control performance by increase / decrease in an electric current value, productivity improves and the small high performance solenoid valve which suppressed the cost increase is realizable.

さらに、第1および第2コア部材ならびに非磁性部材は、それぞれ別体で各筒部の内周面の精密仕上げや、吸引面のテーパ仕上げ、および表面処理等が単体にて加工でき、また、組付けは、各フランジ部を一方側から順次包囲するヨークによるかしめ結合により密着固定される構造であるので、単体での加工効率が向上するとともに、加工精度や組付精度管理が簡単となり、また、一方向同軸組付けが可能となり、生産性が向上してコスト高が抑制できる。   In addition, the first and second core members and the non-magnetic member can be processed separately by precision finishing of the inner peripheral surface of each cylindrical portion, taper finishing of the suction surface, surface treatment, etc. Assembling is a structure in which each flange is tightly fixed by caulking with a yoke that sequentially surrounds the flanges from one side, so that the machining efficiency of the unit is improved and machining accuracy and assembly accuracy management are simplified. As a result, one-way coaxial assembly is possible, productivity is improved, and high costs can be suppressed.

〔実施例2の構成〕
本発明の実施例2を図2に示す。図2は、実施例2における電磁弁の軸方向断面図である。実施例1と実質的に同一構成部分に同一符号を付して、詳細な説明は省略する。
[Configuration of Example 2]
A second embodiment of the present invention is shown in FIG. FIG. 2 is an axial cross-sectional view of the solenoid valve according to the second embodiment. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

実施例1では、プランジャ6と磁気回路を構成するコアステータ15を、第1コア部材11と第2コア部材12の2つに分けて、互いに組付けのためのフランジ部17、18を備え、第2コア部材12の筒部20を、第1コア部材11の筒部10の内周側に同軸に挿着し、第1コア部材11と第2コア部材12との間に所定の厚みを有する非磁性部材30を挟持し、非磁性部材30の筒部他方側に備えられるプランジャ収容部34にプランジャ6を往復移動自在に収容し、第2コア部材12の筒部他方側端面に形成された吸引面22と対向して、軸方向並びに径方向に所定の磁気ギャップを設けて配置していた。   In Example 1, the core stator 15 constituting the magnetic circuit with the plunger 6 is divided into two parts, a first core member 11 and a second core member 12, and provided with flange portions 17 and 18 for assembly to each other. The cylindrical portion 20 of the two-core member 12 is coaxially inserted into the inner peripheral side of the cylindrical portion 10 of the first core member 11 and has a predetermined thickness between the first core member 11 and the second core member 12. The non-magnetic member 30 is sandwiched, and the plunger 6 is reciprocally accommodated in a plunger accommodating portion 34 provided on the other side of the cylindrical portion of the non-magnetic member 30, and is formed on the other end face of the cylindrical portion of the second core member 12. A predetermined magnetic gap is provided in the axial direction and the radial direction so as to face the attraction surface 22.

しかし、これに限ることなく、本実施例では、プランジャ6とコアステータ15との間の所定の径方向の磁気ギャップを、単にプランジャ6の外周側面での非磁性材による被覆部6bの厚さによって確保し、非磁性部材30の採用を止めたことを特徴とする電磁弁である。本実施例が実施例1と異なるのは主にこのことのみで、他の構成は大きく変わるところはない。   However, the present invention is not limited to this, and in the present embodiment, a predetermined radial magnetic gap between the plunger 6 and the core stator 15 is simply determined by the thickness of the covering portion 6b made of a nonmagnetic material on the outer peripheral side surface of the plunger 6. This is a solenoid valve characterized in that the use of the nonmagnetic member 30 is stopped. This is the main difference between the present embodiment and the first embodiment, and other configurations are not greatly changed.

図2に示すように、コアステータ15は、2つのコア部材から構成され、軸方向に貫通された筒部10を備え、その一方側に組付けのためのフランジ部17を有する第1コア部材11と、第1コア部材11とは別体であって、第1コア部材11の筒部10の一方側の内周に同軸に収容される筒部20とフランジ部17と密着して固定されるフランジ部18を有する第2コア部材12とからなる。   As shown in FIG. 2, the core stator 15 is composed of two core members, includes a cylindrical portion 10 penetrating in the axial direction, and has a first core member 11 having a flange portion 17 for assembly on one side thereof. The first core member 11 is separate from the first core member 11 and is tightly fixed to the cylindrical portion 20 and the flange portion 17 accommodated coaxially on the inner circumference of one side of the cylindrical portion 10 of the first core member 11. The second core member 12 has a flange portion 18.

第1コア部材11の筒部10には、所定の間隙を有してプランジャ6を往復移動自在に収容するプランジャ収容部14と、プランジャ6を往復移動方向の一方側に吸引する大きな力を発生するために、プランジャ収容部14への磁束の流れを低減する磁気抵抗部としての薄肉部19が形成されている。   The cylindrical portion 10 of the first core member 11 has a plunger accommodating portion 14 that accommodates the plunger 6 in a reciprocating manner with a predetermined gap and a large force that attracts the plunger 6 to one side in the reciprocating direction. In order to do so, a thin portion 19 is formed as a magnetoresistive portion that reduces the flow of magnetic flux to the plunger housing portion 14.

第2コア部材12は、同様に、軸方向に貫通された筒部20を備え、筒部20の外周側は第1コア部材11の内周に同軸に嵌着可能な筒状であり、内周側にはシャフト13を往復移動自在に収容する軸受部21と、その軸方向他方側にはプランジャ6を往復移動方向の一方側に吸引する力を発生するための吸引面22が形成されている。第2コア部材12は、第1コア部材11と同軸に嵌着してコアステータ15を構成したとき、丁度、吸引面22が第1コア部材11の薄肉部19の設定位置に達するよう長さが決められ、また、ソレノイド2に供給する最大電流値の略50%になると吸引面22が磁束飽和するように筒部20の他方側端部が軸心に向かってテーパ状に加工調整されている。   Similarly, the second core member 12 includes a cylindrical portion 20 penetrating in the axial direction, and the outer peripheral side of the cylindrical portion 20 is a cylindrical shape that can be coaxially fitted to the inner periphery of the first core member 11. A bearing portion 21 that accommodates the shaft 13 in a reciprocating manner is formed on the circumferential side, and a suction surface 22 for generating a force that attracts the plunger 6 to the one side in the reciprocating direction is formed on the other side in the axial direction. Yes. When the second core member 12 is fitted coaxially with the first core member 11 to form the core stator 15, the length is such that the suction surface 22 reaches the set position of the thin portion 19 of the first core member 11. The other end of the cylindrical portion 20 is tapered and adjusted toward the axis so that the suction surface 22 is saturated with the magnetic flux when the maximum current value supplied to the solenoid 2 reaches approximately 50%. .

また、第2コア部材12の筒部20の軸受部21は、シャフト13を軸方向へ摺動自在に支持するとともに、軸受部21とシャフト13との摺動面には有限の隙間が形成され、プランジャ6の変位に伴う空気もしくは作動油の連通を確保している。   The bearing portion 21 of the cylindrical portion 20 of the second core member 12 supports the shaft 13 so as to be slidable in the axial direction, and a finite gap is formed on the sliding surface between the bearing portion 21 and the shaft 13. The communication of air or hydraulic oil accompanying the displacement of the plunger 6 is ensured.

プランジャ6は、第1コア部材11の筒部10の他方側に形成されたプランジャ収容部14に所定の間隙を有して往復移動可能に配置される柱状部材である。プランジャ収容部14の内周面と摺動するプランジャ6の外周面は、所定の径方向の磁気ギャップを形成するための、また、摺動抵抗の低減を図るための樹脂材料のコーティング処理や、あるいはNiPめっき等で、均一の厚さに被覆されている。この被覆厚さは、プランジャ収容部14にプランジャ6を所定の間隙を有して配置する間隙との和によって磁気ギャップを決定し、また、被覆厚さの設定自由度は高いので、プランジャ6のプランジャ収容部14に対する偏心率を20%以上、60%以下に抑制することは容易であり、また、適正なサイドギャップを構成することも容易である。   The plunger 6 is a columnar member that is disposed so as to be reciprocally movable with a predetermined gap in a plunger accommodating portion 14 formed on the other side of the cylindrical portion 10 of the first core member 11. The outer peripheral surface of the plunger 6 that slides with the inner peripheral surface of the plunger accommodating portion 14 is formed with a resin material coating process for forming a predetermined radial magnetic gap and reducing sliding resistance, Alternatively, it is coated with NiP plating or the like to a uniform thickness. This coating thickness determines the magnetic gap based on the sum of the gap in which the plunger 6 is arranged in the plunger accommodating portion 14 with a predetermined gap, and since the degree of freedom in setting the coating thickness is high, It is easy to suppress the eccentricity with respect to the plunger accommodating portion 14 to 20% or more and 60% or less, and it is easy to configure an appropriate side gap.

なお、プランジャ6の外周面の被覆は、樹脂材料のコーティング処理や、あるいはNiPめっき等に限ることなく、ステンレス鋼(SUS)等の非磁性材で形成されたSUSカップで被覆されてもよく、あるいは非磁性材で四角形状に形成された薄板を円筒状に丸め、これをプランジャ6に嵌合して被覆してもよい。円筒状の薄板は、プランジャ6に弾性力で嵌合しているだけでもよいし、接着または溶接等によりプランジャ6に固定されてもよい。   The outer peripheral surface of the plunger 6 may be covered with a SUS cup formed of a non-magnetic material such as stainless steel (SUS) without being limited to a resin material coating process or NiP plating. Alternatively, a thin plate formed of a nonmagnetic material in a quadrangular shape may be rolled into a cylindrical shape and fitted to the plunger 6 to be covered. The cylindrical thin plate may be merely fitted to the plunger 6 with an elastic force, or may be fixed to the plunger 6 by adhesion or welding.

また、プランジャ6の軸方向一方側端面は軸方向と直角であり、第2コア部材12の他方側端面に形成される吸引面22と対向して均一な間隙を形成し、大きな吸引力と、プランジャ6の変位にかかわらず略一様な吸引力が生じるようになっている。なお、プランジャ6の外周面または内部に、プランジャ6の往復移動方向の両空間を連通する呼吸孔23が形成され、プランジャ6の迅速かつ円滑な往復移動を可能なものとしている。   Further, the end surface on one side in the axial direction of the plunger 6 is perpendicular to the axial direction, forms a uniform gap facing the suction surface 22 formed on the other end surface of the second core member 12, and has a large suction force. A substantially uniform suction force is generated regardless of the displacement of the plunger 6. Note that a breathing hole 23 that communicates both spaces in the reciprocating direction of the plunger 6 is formed on the outer peripheral surface or inside of the plunger 6 so that the plunger 6 can be reciprocated quickly and smoothly.

そして、ソレノイド2、コアステータ15などはヨーク16により包囲されて収容されている。ヨーク16の一方側のかしめ部16aは、第1コア部材11のフランジ部17と第2コア部材12のフランジ部18の外周を一方側から順次包囲して、スリーブ8のフランジ部8aとともにかしめ結合されることにより、互いのフランジ部を密着させて液密を維持して弁体部4と駆動部5とを連結している。   The solenoid 2, the core stator 15 and the like are surrounded and accommodated by the yoke 16. The caulking portion 16a on one side of the yoke 16 surrounds the outer periphery of the flange portion 17 of the first core member 11 and the flange portion 18 of the second core member 12 sequentially from one side, and is caulked and joined together with the flange portion 8a of the sleeve 8. By doing so, the valve body part 4 and the drive part 5 are connected to each other by keeping the flange parts in close contact with each other and maintaining liquid tightness.

〔実施例2の効果〕
本実施例での電磁弁は、実施例1における電磁弁と異なって、非磁性部材をコアステータ内、つまり第1コア部材と第2コア部材との間へ挿着し、非磁性部材の内周に往復移動自在にプランジャを収容して、プランジャの外周側面の径方向に好適なサイドギャップを設定するのではなく、プランジャの外周側面の径方向に所定の厚みの非磁性材の被覆部を設けることによってプランジャの外周側面の径方向に好適なサイドギャップを設定している。これにより、サイドギャップが小さくでき吸引力を増加させることが容易にでき、また、プランジャの偏心が抑制でき、サイドフォースを低下できるので、電流値の増減に対するヒステリシスを低減することができる。また、主な違いは、この非磁性部材の挿着の有無のみであり、他の構造は大きく変わることがなく、実施例1と同様な作用・効果が得られ、特に、非磁性部材の採用を止めることによる組付け部品点数が削減でき、組付工数が低減できて生産性が向上し、コスト高を抑えた小型高性能な電磁弁が実現できる。
[Effect of Example 2]
Unlike the solenoid valve in the first embodiment, the solenoid valve in the present embodiment inserts a nonmagnetic member into the core stator, that is, between the first core member and the second core member, and the inner circumference of the nonmagnetic member. Instead of setting the side gap suitable for the radial direction of the outer peripheral side surface of the plunger, a coating portion of a nonmagnetic material having a predetermined thickness is provided in the radial direction of the outer peripheral side surface of the plunger. Thus, a suitable side gap is set in the radial direction of the outer peripheral side surface of the plunger. As a result, the side gap can be reduced, the suction force can be easily increased, the eccentricity of the plunger can be suppressed, and the side force can be reduced, so that hysteresis with respect to increase / decrease in the current value can be reduced. Further, the main difference is only whether or not the nonmagnetic member is inserted, and other structures are not greatly changed, and the same operation and effect as in the first embodiment can be obtained. By stopping the operation, the number of parts to be assembled can be reduced, the number of assembling steps can be reduced, the productivity can be improved, and a small high-performance solenoid valve with reduced cost can be realized.

電磁弁の軸方向断面図である(実施例1)。(Example 1) which is an axial sectional view of a solenoid valve. 電磁弁の軸方向断面図である(実施例2)。(Example 2) which is an axial sectional view of a solenoid valve. 電磁弁の軸方向断面図である(従来例)。It is an axial sectional view of a solenoid valve (conventional example).

符号の説明Explanation of symbols

1 電磁弁
2 ソレノイド
3 スプール(弁体)
4 弁体部
5 駆動部
6 プランジャ(可動子)
6b 被覆部
7 ポート(油路)
8 スリーブ(ハウジング)
8a、17、18、31 フランジ部
9 スプリング
10、20、32 筒部
11 第1コア部材
12 第2コア部材
13 シャフト
14、34 プランジャ収容部
15 コアステータ(固定コア)
16 ヨーク
16a かしめ部
21 軸受部
22 吸引面
30 非磁性部材
1 Solenoid valve 2 Solenoid 3 Spool (valve)
4 Valve body part 5 Drive part 6 Plunger (mover)
6b Cover 7 port (oil passage)
8 Sleeve (housing)
8a, 17, 18, 31 Flange portion 9 Spring 10, 20, 32 Tube portion 11 First core member 12 Second core member 13 Shaft 14, 34 Plunger accommodating portion 15 Core stator (fixed core)
16 Yoke 16a Caulking portion 21 Bearing portion 22 Suction surface 30 Nonmagnetic member

Claims (2)

可動子と、
該可動子と連動して、スリーブ内を往復移動し、前記スリーブの流路を開閉することにより流体の流量または圧力を制御する弁体と、
往復移動方向の一方側に前記可動子を付勢する付勢手段と、
往復移動方向の他方側に前記可動子を吸引する磁力を発生するソレノイドと、
前記可動子と磁気回路を形成する固定コアであって、軸方向に貫通された筒部を備え、前記筒部の一方側に、前記スリーブの他方端とかしめ固定されるフランジ部を有する第1コア部材と、
前記第1コア部材とは別体であって、前記第1コア部材の前記筒部の一方側に同軸に収容される筒部を有し、該筒部の他方側に前記可動子を吸引する吸引面を備え、一方側に前記スリーブの他方端とかしめ固定されるフランジ部を有する第2コア部材と、
前記第1コア部材と前記第2コア部材との間に配設され、所定の厚さを有し、一方側に組付けのためのフランジ部と、他方側に前記第1コア部材の前記筒部に収容される筒部を有し、該筒部の他方側に所定の間隙を有して前記可動子を往復移動自在に収容し、一方側は前記第2コア部材の前記筒部の吸引面を前記可動子と対向するように配置する非磁性部材と、
前記ソレノイドを収容し、前記各フランジ部を一方側から順次包囲して、前記スリーブの他方側端部とかしめ結合をするヨークと、
からなる電磁弁。
A mover,
In conjunction with the mover, reciprocates in the sleeve, and opens and closes the flow path of the sleeve to control the flow rate or pressure of the fluid; and
Urging means for urging the mover to one side in the reciprocating direction;
A solenoid that generates a magnetic force to attract the mover to the other side in the reciprocating direction;
A fixed core that forms a magnetic circuit with the mover, and includes a cylindrical portion that penetrates in an axial direction, and a flange portion that is caulked and fixed to the other end of the sleeve on one side of the cylindrical portion. A core member;
The first core member is separate from the first core member and has a cylindrical portion that is coaxially accommodated on one side of the cylindrical portion, and the movable element is sucked to the other side of the cylindrical portion. A second core member having a suction surface and having a flange portion that is caulked and fixed to the other end of the sleeve on one side;
A flange portion is disposed between the first core member and the second core member, has a predetermined thickness, has a flange portion for assembly on one side, and the tube of the first core member on the other side. A cylindrical portion that is accommodated in the portion, and has a predetermined gap on the other side of the cylindrical portion to accommodate the movable element so as to be able to reciprocate. One side is the suction of the cylindrical portion of the second core member A nonmagnetic member having a surface disposed so as to face the mover;
A yoke that accommodates the solenoid, sequentially surrounds the flanges from one side, and is caulked with the other side end of the sleeve;
A solenoid valve consisting of
往復移動する摺動面に非磁性材の被覆部を備えた可動子と、
該可動子とともに連動して往復移動し、スリーブに収容されて、前記スリーブの流路を開閉することにより流体の流量または圧力を制御する弁体と、
往復移動方向の他方側に前記可動子を付勢する付勢手段と、
往復移動方向の一方側に前記可動子を吸引する磁力を発生するソレノイドと、
前記可動子と磁気回路を形成する固定コアであって、前記可動子の外周側面を覆う筒部と、前記スリーブの他方端にかしめ固定されるフランジ部、ならびに前記筒部との間に前記可動子の往復移動方向に所定の間隙を有する第1コア部材と、
往復移動方向の他方側に前記可動子を吸引する吸引面を有し、前記第1コア部材の前記筒部に同軸に収容され、前記スリーブの他方端にかしめ固定されるフランジ部を有する第2コア部材と、
前記可動子を前記第1コア部材の前記筒部の他方側に、前記第2コア部材の前記筒部の他方側の吸引面と対向させて、往復移動自在に収容し、
前記ソレノイドを収容し、前記各フランジ部を一方側から順次包囲して、前記スリーブの他方側端部とかしめ結合をするヨークと、
からなる電磁弁。
A mover having a nonmagnetic material coating on the reciprocating sliding surface;
A valve body that reciprocates in conjunction with the mover, is accommodated in a sleeve, and controls the flow rate or pressure of the fluid by opening and closing the flow path of the sleeve;
Urging means for urging the mover to the other side in the reciprocating direction;
A solenoid that generates a magnetic force to attract the mover to one side in the reciprocating direction;
A fixed core that forms a magnetic circuit with the mover, the movable part being interposed between a cylindrical part that covers an outer peripheral side surface of the movable element, a flange part that is caulked and fixed to the other end of the sleeve, and the cylindrical part A first core member having a predetermined gap in the reciprocating direction of the child;
A second surface having a suction surface for sucking the movable element on the other side in the reciprocating direction, having a flange portion coaxially accommodated in the cylindrical portion of the first core member and caulked and fixed to the other end of the sleeve. A core member;
The movable element is reciprocally accommodated on the other side of the cylindrical portion of the first core member so as to face the suction surface on the other side of the cylindrical portion of the second core member,
A yoke that accommodates the solenoid, sequentially surrounds the flanges from one side, and is caulked with the other side end of the sleeve;
A solenoid valve consisting of
JP2006266761A 2006-09-29 2006-09-29 Solenoid valve Pending JP2008082527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266761A JP2008082527A (en) 2006-09-29 2006-09-29 Solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266761A JP2008082527A (en) 2006-09-29 2006-09-29 Solenoid valve

Publications (1)

Publication Number Publication Date
JP2008082527A true JP2008082527A (en) 2008-04-10

Family

ID=39353595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266761A Pending JP2008082527A (en) 2006-09-29 2006-09-29 Solenoid valve

Country Status (1)

Country Link
JP (1) JP2008082527A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022163A1 (en) * 2015-08-06 2017-02-09 株式会社デンソー Fuel injection device
JP2019029548A (en) * 2017-07-31 2019-02-21 日本電産トーソク株式会社 Solenoid device and control valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022163A1 (en) * 2015-08-06 2017-02-09 株式会社デンソー Fuel injection device
JP2017031963A (en) * 2015-08-06 2017-02-09 株式会社デンソー Fuel injection device
US10309356B2 (en) 2015-08-06 2019-06-04 Denso Corporation Fuel injection device
US10941739B2 (en) 2015-08-06 2021-03-09 Denso Corporation Fuel injection device
JP2019029548A (en) * 2017-07-31 2019-02-21 日本電産トーソク株式会社 Solenoid device and control valve

Similar Documents

Publication Publication Date Title
US6498416B1 (en) Electromagnetic actuator permanent magnet
JP5125441B2 (en) Linear solenoid device and solenoid valve
JP5299499B2 (en) Electromagnetic solenoid
JP4058749B2 (en) Electromagnetic drive device and electromagnetic valve using the same
JP2002222710A (en) Electromagnetic drive device and flow rate control device using the same
JP2002027723A (en) Manufacturing method for electromagnetic drive
JP2012204574A (en) Linear solenoid
JPH11287349A (en) Solenoid control valve
US20210278007A1 (en) Solenoid
JP2008089080A (en) Electromagnetic driving device and solenoid valve using the same
JP2003130246A (en) Solenoid valve device
US20210278008A1 (en) Solenoid
JP4058604B2 (en) Solenoid valve device
JP5351603B2 (en) Linear solenoid and valve device using the same
JP2011077356A (en) Linear solenoid and valve device using the same
JP2008082527A (en) Solenoid valve
JP2009174623A (en) Solenoid valve
JP2010025217A (en) Solenoid valve
US20210327626A1 (en) Solenoid
JP2016054273A (en) Solenoid and solenoid valve
JP2001263524A (en) Solenoid valve
JP2001332419A (en) Electromagnetic driving device, flow rate controller using it, and method of manufacturing it
JP4013440B2 (en) Electromagnetic drive device and electromagnetic valve using the same
JP2003207067A (en) Solenoid valve device
JP2011009381A (en) Linear solenoid and valve device using the same