JP2008080282A - Sizing and classification apparatus - Google Patents

Sizing and classification apparatus Download PDF

Info

Publication number
JP2008080282A
JP2008080282A JP2006265013A JP2006265013A JP2008080282A JP 2008080282 A JP2008080282 A JP 2008080282A JP 2006265013 A JP2006265013 A JP 2006265013A JP 2006265013 A JP2006265013 A JP 2006265013A JP 2008080282 A JP2008080282 A JP 2008080282A
Authority
JP
Japan
Prior art keywords
transfer gas
sizing
classification
louver
louver blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006265013A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamagata
一弘 山形
Takuji Uchida
拓治 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Earthtechnica Co Ltd
Original Assignee
Earthtechnica Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Earthtechnica Co Ltd filed Critical Earthtechnica Co Ltd
Priority to JP2006265013A priority Critical patent/JP2008080282A/en
Publication of JP2008080282A publication Critical patent/JP2008080282A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sizing and classification apparatus capable of precisely and efficiently separating fine particles from a particle mixture containing fine particles after sizing by increasing neither annex facilities nor running cost. <P>SOLUTION: The sizing and classification apparatus 1 comprises sizing means 4 for sizing object material M containing fine particles and classification means for circulating a transfer gas to the fine particles for classifying the fine particles immediately after sizing by making the fine particles following the current 5 of the transfer gas and louver blades 6 in multi-stages are installed slantingly as a whole to a transfer gas flow channel of the classification means to narrow the cross-sectional surface area where the transfer gas passes and thus the speed of the transfer gas passing the aperture parts between neighboring louver blades 6 is increased. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、分粒分級装置の改善に関するものであり、詳細には、粗大粒、粗粒、細粒および微粉を含む被処理物を、粗大粒と粗粒、細粒および微粉(微粉が混ざった粗粒および細粒、即ち、粗粒と細粒と微粉との混合体)とに分粒し、更に、この粗粒と細粒と微粉とからなる混合体から微粉を分離して、粗粒と細粒とを乾式分級する分粒分級装置の改善に関する。   The present invention relates to an improvement of a size classification apparatus, and more specifically, an object to be treated including coarse particles, coarse particles, fine particles, and fine powders is obtained by mixing coarse particles with coarse particles, fine particles, and fine particles (a mixture of fine particles). Coarse particles and fine particles, that is, a mixture of coarse particles, fine particles, and fine powder), and further separating the fine powder from the mixture of coarse particles, fine particles, and fine powder, The present invention relates to an improvement of a classification apparatus for dry classification of grains and fine grains.

粗粒、細粒および微粉を含む被処理物、例えば岩石を破砕してなる破砕物から粗粒と細粒とを分離して製品化しようとする場合、先ず、篩(ふるい)分粒装置により前記被処理物を、粗粒と細粒および微粉(以下、細粒・微粉と記述する)とに分粒して、粗粒と細粒・微粉とを別々に回収し、次に、この細粒・微粉をベルトコンベアにて湿式分級機に移送し、この湿式分級機にて細粒・微粉から微粉を湿式分級して除去し、これにより、細粒を分離して得る方法が採用されていた。   When separating coarse particles and fine particles from a processed material containing coarse particles, fine particles and fine powder, for example, crushed material obtained by crushing rocks, first, a sieve (sieving) sizing device is used. The object to be treated is divided into coarse particles, fine particles, and fine powder (hereinafter referred to as fine particles / fine powder), and the coarse particles, fine particles / fine powder are separately collected, and then the fine particles are collected. A method is adopted in which the particles and fine powder are transferred to a wet classifier by a belt conveyor, and fine particles are removed from the fine particles and fine powder by this wet classifier to remove the fine particles, thereby separating the fine particles. It was.

しかし、このような方法においては、湿式分級により除去した微粉の沈降分離に広い用地を要したり、沈降分離したものを圧搾して水分を除去するための装置が必要になって処理費用が高くなるという欠点があり、また、前記圧搾により得られる脱水ケーキの処理が必要であるという欠点がある。   However, in such a method, a large site is required for the sedimentation separation of the fine powder removed by wet classification, or an apparatus for removing the water by pressing the sedimentation separation is required, resulting in high processing costs. In addition, there is a disadvantage that it is necessary to treat the dehydrated cake obtained by the pressing.

そこで、分級機として前記湿式分級機に代えて空気分級機(エアセパレータ)等の乾式分級機を用い、この乾式分級機にて細粒・微粉から微粉を乾式分級して除去し、これにより、細粒を分離して得る方法が提案され、採用されるようになってきた。このような従来例に係る分粒分級技術に関し、添付図4を参照しながら以下説明する。図4は、従来例に係る分粒分級装置の概要を示す側断面図である。   Therefore, instead of the wet classifier as a classifier, a dry classifier such as an air classifier (air separator) is used, and the dry classifier removes fine powder from the fine particles / fine powder by dry classification, A method for obtaining fine particles separately has been proposed and adopted. Such a conventional sizing technique will be described below with reference to FIG. FIG. 4 is a side sectional view showing an outline of a conventional sizing / classifying apparatus.

この従来例に係る分粒分級技術は、微粉を含む被処理物を分粒するための分粒要素(篩網)54と、分粒直後の微粉を移送気体の流れに伴送させて分級するべく微粉に対して移送気体を流通させる分級手段とを有した分粒分級装置であり、また、前記被処理物を分粒要素54により分粒し、分粒による分散状態において移送気体を流通させることにより微粉を移送気体の流れに伴送させて分級する分粒分級方法である。   In the classification and classification technique according to this conventional example, a classification element (sieving mesh) 54 for classifying an object to be processed including fine powder and fine powder immediately after the classification are accompanied by the flow of the transfer gas and classified. And a classifying unit having a classifying means for circulating the transfer gas to the fine powder as much as possible, and classifying the object to be processed by the size dividing element 54 and circulating the transfer gas in a dispersed state by the size classification. In this way, the fine powder is sent along with the flow of the transfer gas and classified.

しかしながら、このような従来技術に係る分粒分級装置および方法においては、前記移送気体に伴送されなかった微粉(例えば、分散状態が悪い微粉)の存在により、微粉の分離効率が低下するという問題があるため、気体噴射ノズル59,60を設けて、前記移送気体の流れに逆らったり、助成する方向に気体を部分的に噴射させている(特許文献1参照)。
特開2002−254035号公報
However, in such a sizing / classifying apparatus and method according to the prior art, there is a problem that the separation efficiency of the fine powder decreases due to the presence of the fine powder (for example, fine powder having a poor dispersion state) that was not accompanied by the transfer gas. Therefore, gas injection nozzles 59 and 60 are provided, and the gas is partially injected in the direction of assisting against the flow of the transfer gas (see Patent Document 1).
JP 2002-254035 A

しかしながら、前記従来技術に係る分粒分級装置および方法は、気体噴射ノズル59,60、コンプレッサー等の圧縮空気源およびこれらを制御するための制御装置等の付帯設備を必要とするとともに、前記圧縮空気を生成するためのランニングコストの増加が問題となる。   However, the classification and classification device and method according to the prior art require gas injection nozzles 59 and 60, a compressed air source such as a compressor, and ancillary equipment such as a control device for controlling these sources, and the compressed air. The increase in running cost for generating is a problem.

本発明は、このような事情に着目してなされたものであって、その目的は、付帯設備やランニングコストを増加させることなく、微粉を含む分粒後の粒子混合体から微粉を精度良く、かつ効率的に分離し得る分粒分級装置を提供しようとするものである。   The present invention has been made paying attention to such circumstances, the purpose is to increase the fine powder from the particle mixture after the sizing containing fine powder without increasing incidental equipment and running cost, An object of the present invention is to provide a sizing / sorting device that can be separated efficiently.

上記目的を達成するために、本発明の請求項1が採用した分粒分級装置は、微粉を含む被処理物を分粒するための分粒手段と、分粒直後の微粉を移送気体の流れに伴送させて分級するべく前記微粉に対して移送気体を流通させる分級手段とを有する分粒分級装置において、前記分級手段の移送気体流路に多段のルーバ翼を全体的に傾斜して設けることによって前記移送気体の通過断面積を減少させ、前記ルーバ翼間の開口部を通過する移送気体を増速させるよう構成されたことを特徴とするものである。   In order to achieve the above-mentioned object, the classification apparatus adopted in claim 1 of the present invention includes a sizing means for sizing the object to be processed including fine powder, and a fine gas immediately after sizing, and a flow of gas. And a classification means having a classification means for circulating a transfer gas with respect to the fine powder to classify and classify the pulverized powder, the multistage louver blades are provided in a generally inclined manner in the transfer gas flow path of the classification means. Thus, the cross-sectional area of the transfer gas is reduced, and the transfer gas passing through the opening between the louver blades is accelerated.

本発明の請求項2が採用した分粒分級装置は、請求項1記載の分粒分級装置において、
前記ルーバ翼毎の傾斜角度が可変な構造を有し、この傾斜角度を制御することによって、当該ルーバ翼上を滑落する被処理物の慣性力を変化させるよう構成されたことを特徴とするものである。
The size classification device employed in claim 2 of the present invention is the size classification device according to claim 1,
The tilt angle of each louver blade has a variable structure, and by controlling the tilt angle, the inertial force of the workpiece sliding down on the louver blade is changed. It is.

本発明の請求項3が採用した分粒分級装置は、請求項1または2に記載の分粒分級装置において、前記ルーバ翼の各々に略水平方向に配設された水平軸が設けられ、この水平軸を回動させることによって前記ルーバ翼毎の傾斜角度を制御するよう構成されたことを特徴とするものである。   The size classification apparatus employed in claim 3 of the present invention is the size classification apparatus according to claim 1 or 2, wherein each of the louver blades is provided with a horizontal shaft disposed in a substantially horizontal direction. The tilt angle of each louver blade is controlled by rotating a horizontal axis.

本発明の請求項4が採用した分粒分級装置は、請求項1乃至3のうちの何れか一つの項に記載の分粒分級装置において、前記ルーバ翼毎の傾斜角度を一定に保ったまま当該ルーバ翼間の開口部寸法が可変な構造を有し、このルーバ翼間開口部寸法を制御することによって、前記移送気体の通過断面積を変化させ、前記移送気体に伴送される粒子の大きさを制御するよう構成されたことを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a classification apparatus according to any one of the first to third aspects, wherein the inclination angle of each louver blade is kept constant. The size of the opening between the louver blades is variable, and by controlling the size of the opening between the louver blades, the cross-sectional area of the transfer gas is changed, and the particles to be entrained in the transfer gas are changed. It is characterized by being configured to control the size.

本発明の請求項5が採用した分粒分級装置は、請求項1乃至4のうちの何れか一つの項に記載の分粒分級装置において、前記ルーバ翼と前記移送気体の流れ方向下流側の分級部側壁とから構成されるルーバ翼下流側空間における前記移送気体の流路断面積が、前記移送気体の流れ方向に沿って拡大するよう構成されたことを特徴とするものである。   The size classification device employed in claim 5 of the present invention is the size classification device according to any one of claims 1 to 4, wherein the louver blade and the transfer gas downstream in the flow direction. The flow path cross-sectional area of the transfer gas in the louver blade downstream space constituted by the classification part side wall is configured to expand along the flow direction of the transfer gas.

本発明の請求項6が採用した分粒分級装置は、請求項5に記載の分粒分級装置において、移送気体流路のルーバ翼下流側空間の上方に移送気体・微粉排出口を配置し、かつ下方に粒子排出口を配置するとともに、前記多段のルーバ翼の全体的な傾斜角度が可変な構造を有し、この傾斜角度を制御することによって、前記ルーバ翼下流側空間における移送気体の流れ方向に沿った流路断面積を変化させるよう構成されたことを特徴とするものである。   The size classification device adopted by claim 6 of the present invention is the size classification device according to claim 5, wherein the transfer gas / fine powder discharge port is arranged above the space on the downstream side of the louver blade of the transfer gas flow path, In addition, the particle discharge port is disposed below, and the overall inclination angle of the multi-stage louver blade is variable, and the flow of the transfer gas in the louver blade downstream space is controlled by controlling the inclination angle. The flow path cross-sectional area along the direction is changed.

本発明の請求項1に係る分粒分級装置によれば、微粉を含む被処理物を分粒するための分粒手段と、分粒直後の微粉を移送気体の流れに伴送させて分級するべく前記微粉に対して移送気体を流通させる分級手段とを有する分粒分級装置において、前記分級手段の移送気体流路に多段のルーバ翼を全体的に傾斜して設けることによって前記移送気体の通過断面積を減少させ、前記ルーバ翼間の開口部を通過する移送気体を増速させるよう構成されたので、分粒後の分散状態において、移送気体に伴送されなかった粒子(分散状態が悪い微粉)を移送気体の流れに乗せることが出来、かつ、前記多段のルーバ翼によって分粒後の粒子に高速の移送気体を複数回衝突させ得るので、前記微粉の分離効率を向上させることが出来る。   According to the classification apparatus according to claim 1 of the present invention, the classification means for classifying the object to be processed including fine powder, and the fine powder immediately after the classification is accompanied by the flow of the transfer gas and classified. In the classifying device having a classification means for circulating the transfer gas to the fine powder, the transfer gas passes by providing a multistage louver blade in the transfer gas flow path of the classification means as a whole. Since the cross-sectional area is reduced and the transfer gas passing through the opening between the louver blades is accelerated, particles that have not been entrained by the transfer gas in the dispersed state after sizing (the dispersion state is poor) Fine powder) can be put on the flow of the transfer gas, and the high-speed transfer gas can collide with the particles after sizing a plurality of times by the multi-stage louver blade, so that the separation efficiency of the fine powder can be improved. .

また、本発明の請求項2に係る分粒分級装置によれば、前記ルーバ翼毎の傾斜角度が可変な構造を有し、この傾斜角度を制御することによって、当該ルーバ翼上を滑落する被処理物の慣性力を変化させるよう構成されたので、前記粒子の滑落による慣性力と風速との関係から、前記ルーバ翼を越える粒子径を制御することによって、得られる製品の細かさ(あるいは、微粉の混合量)を変化させることが出来る。   Further, according to the sizing / classifying apparatus according to claim 2 of the present invention, the louver blade has a structure in which the inclination angle is variable, and by controlling the inclination angle, the object to slide down on the louver wing is controlled. Since the inertial force of the processed product is changed, the fineness of the product obtained (or alternatively, by controlling the particle diameter exceeding the louver blade from the relationship between the inertial force due to the sliding of the particles and the wind speed) The mixing amount of fine powder) can be changed.

更に、本発明の請求項3に係る分粒分級装置によれば、前記ルーバ翼の各々に略水平方向に配設された水平軸が設けられ、この水平軸を回動させることによって前記ルーバ翼毎の傾斜角度を制御するよう構成されたので、前記ルーバ翼の傾斜角度の確実な制御が可能となる。   Furthermore, according to the classification apparatus according to claim 3 of the present invention, each of the louver blades is provided with a horizontal shaft disposed in a substantially horizontal direction, and the louver blade is rotated by rotating the horizontal shaft. Since each tilt angle is controlled, the tilt angle of the louver blade can be reliably controlled.

また更に、本発明の請求項4に係る分粒分級装置によれば、前記ルーバ翼毎の傾斜角度を一定に保ったまま当該ルーバ翼間の開口部寸法が可変な構造を有し、このルーバ翼間開口部寸法を制御することによって、前記移送気体の通過断面積を変化させ、前記移送気体に伴送される粒子の大きさを制御するよう構成されたので、前記請求項2と同様に、得られる製品の細かさ(あるいは、微粉の混合量)を変化させることが出来る。また、ルーバ翼毎の傾斜角度を合わせて制御可能とすれば、変化させる際の微調整が容易となる。   Furthermore, according to the sizing / classifying apparatus according to claim 4 of the present invention, the louver has a structure in which the opening size between the louver blades is variable while keeping the inclination angle of each louver blade constant. Since the cross sectional area of the transfer gas is changed by controlling the size of the opening between the blades, the size of the particles accompanying the transfer gas is controlled. The fineness of the product obtained (or the amount of fine powder mixed) can be changed. Further, if the tilt angle of each louver blade can be controlled in accordance with the control, fine adjustment when changing is facilitated.

本発明の請求項5に係る分粒分級装置によれば、前記ルーバ翼と前記移送気体の流れ方向下流側の分級部側壁とから構成されるルーバ翼下流側空間における前記移送気体の流路断面積が、前記移送気体の流れ方向に沿って拡大するよう構成されたので、伴送気体の流れに乗った粒子から分離不要な粒径を有する粒子を再度回収することが出来、分離粒子径の精度良い制御が可能となる。   According to the classification device according to claim 5 of the present invention, the flow passage of the transfer gas in the louver blade downstream space constituted by the louver blade and the classification unit side wall on the downstream side in the flow direction of the transfer gas. Since the area is configured to expand along the flow direction of the transfer gas, particles having a particle size that does not need to be separated can be recovered again from the particles riding on the flow of the accompanying gas. Accurate control is possible.

本発明の請求項6に係る分粒分級装置によれば、移送気体流路のルーバ翼下流側空間の上方に移送気体・微粉排出口を配置し、かつ下方に粒子排出口を配置するとともに、前記多段のルーバ翼の全体的な傾斜角度が可変な構造を有し、この傾斜角度を制御することによって、前記ルーバ翼下流側空間における移送気体の流れ方向に沿った流路断面積を変化させるよう構成されたので、前記粒子排出口から排出される粒子径を制御することが出来る。   According to the classification apparatus according to claim 6 of the present invention, the transfer gas / fine powder discharge port is disposed above the louver blade downstream side space of the transfer gas channel, and the particle discharge port is disposed below, The multi-stage louver blade has a structure in which the overall inclination angle is variable. By controlling the inclination angle, the flow path cross-sectional area along the flow direction of the transfer gas in the downstream space of the louver blade is changed. Thus, the particle diameter discharged from the particle discharge port can be controlled.

先ず、本発明の実施の形態1に係る分粒分級装置の構成について、添付図1〜3を参照しながら以下説明する。図1は本発明の実施の形態1に係る分粒分級装置の概要を示す側断面図、図2は本発明の実施の形態1に係る分粒分級装置の分級部分を模式的に示した模式的側断面図である。   First, the configuration of the sizing / classifying apparatus according to Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a side sectional view showing an outline of a classification device according to Embodiment 1 of the present invention, and FIG. 2 is a schematic diagram schematically showing a classification portion of the classification device according to Embodiment 1 of the present invention. FIG.

図1において、本発明に係る分粒分級装置1は、被処理物から粗大粒を排除する分粒手段を収納した篩部分2と、この篩部分2の下部に配置されて、前記分粒手段によって分粒された粗粒および細粒・微粉を夫々分離する分級手段を収納した分級部分3とにより構成される。   In FIG. 1, the sizing / classifying device 1 according to the present invention includes a sieving portion 2 containing a sizing means for removing coarse particles from an object to be treated, and a sizing means 2 disposed below the sieving portion 2. And a classification portion 3 containing classification means for separating coarse particles, fine particles, and fine particles.

即ち、前記篩部分2の内部には、粗大粒、粗粒、細粒および微粉を含む被処理物(原料)Mを、粗大粒と粗粒および細粒・微粉とに分粒する分粒手段として、目開きの異なる上網4aと下網4bとからなる篩網4が、後述する被処理物Mの投入口2aの下部から斜め下方向に向けて配置されている。   That is, the sieving portion 2 has a sizing means for dividing an object (raw material) M containing coarse particles, coarse particles, fine particles and fine powder into coarse particles, coarse particles and fine particles / fine powder. As shown, a sieve mesh 4 composed of an upper mesh 4a and a lower mesh 4b having different mesh openings is disposed obliquely downward from a lower portion of an input port 2a for an object M to be described later.

前記篩部分2の頂部側(上流端側)には、被処理物Mの投入口2aが設けられるとともに、斜め下方向に配置された前記篩網4の下端側(下流端側)には、粗大粒M1を網上物として排出する排出口2bが設けられている。そして、前記篩網4に振動を与えるため図示しない加振機が設けられ、投入された被処理物Mは、加振されて前記篩網4上を下流側に向けて移動(下降)しながら、粗大粒M1未満の粒径を有する粒子、即ち、粗粒および細粒・微粉を網下物Maとして篩い落として分粒される。   On the top side (upstream end side) of the sieve part 2 is provided with an inlet 2a for the workpiece M, and on the lower end side (downstream end side) of the sieve mesh 4 arranged obliquely downward, A discharge port 2b for discharging the coarse particles M1 as a net is provided. Further, a vibrator (not shown) is provided to apply vibration to the sieve mesh 4, and the charged workpiece M is vibrated and moved (lowered) on the sieve mesh 4 toward the downstream side. The particles having a particle size smaller than the coarse particles M1, that is, the coarse particles and the fine particles / fine powders are sieved off as the meshwork Ma and divided.

そして、分級部分3の下部には、移送気体を導入するための移送気体導入口3aが設けられるとともに、前記移送気体導入口3aよりも上方の分級部分3の対向面には、移送気体および微粉M4の排出口(以下、移送気体・微粉排出口と称す)3bが設けられ、図示しない吸込ファン等の吸引装置にダクト接続されている。また、前記分級部分3の下端には、前記移送気体5に乗らない粗粒M2を回収するための粗粒排出口3cが設けられている。   A transfer gas introduction port 3a for introducing a transfer gas is provided at the lower part of the classification portion 3, and the transfer gas and fine powder are formed on the opposing surface of the classification portion 3 above the transfer gas introduction port 3a. An M4 discharge port (hereinafter referred to as a transfer gas / fine powder discharge port) 3b is provided, and is duct-connected to a suction device such as a suction fan (not shown). In addition, a coarse particle outlet 3c for collecting coarse particles M2 that do not get on the transfer gas 5 is provided at the lower end of the classification portion 3.

更に、前記分級部分3において、前記移送気体の流れ5が形成される流路空間に、この移送気体の流れ5を部分的に遮るように多段のルーバ翼6を設けることによって通過断面積を減少させ、前記移送気体が前記ルーバ翼6間のスリット状の開口部6aを通過する際、このスリット状の隙間によって増速された移送気体の流れ5aが形成されるよう構成されている。   Furthermore, in the classification part 3, the passage cross-sectional area is reduced by providing multistage louver blades 6 so as to partially block the flow 5 of the transfer gas in the flow path space where the flow 5 of the transfer gas is formed. When the transfer gas passes through the slit-like opening 6 a between the louver blades 6, the transfer gas flow 5 a accelerated by the slit-like gap is formed.

次に、このように構成された本発明に係る分粒分級装置1の分粒分級作用について、以下プロセスを追って説明する。上記分粒分級装置1において、加振機を起動させて篩網4を振動させるとともに、吸引装置を起動させる。そして、投入口2aから粗大粒、粗粒、細粒および微粉を含む被処理物Mを連続的に投入開始するとともに、前記吸引装置の吸引作用により移送気体導入口3aから移送気体を導入する。   Next, the sizing / classifying action of the sizing / classifying apparatus 1 according to the present invention configured as described above will be described below by following the process. In the above sizing / classifying device 1, the vibration generator 4 is activated to vibrate the sieve screen 4, and the suction device is activated. And the to-be-processed object M containing a coarse grain, a coarse grain, a fine grain, and a fine powder is started continuously from the inlet 2a, and the transfer gas is introduced from the transfer gas inlet 3a by the suction action of the suction device.

そうすると、前記投入口2aは被処理物Mの連続的投入により空気の出入りが少ない、被処理物Mがほぼ充満した状態になる。この状態で吸引装置により吸引されるので、図1に示す如く移送気体(空気)流れ5ができる。即ち、前記篩網4下部において、前記移送気体導入口3aから移送気体・微粉排出口3bに向かう斜め上方方向の移送気体流路が形成された状態となる。   If it does so, the said to-be-processed object 2 will be in the state with which the to-be-processed object M was substantially filled with few entry / exit of air by the continuous input of the to-be-processed object M. Since it is sucked by the suction device in this state, a transfer gas (air) flow 5 is generated as shown in FIG. That is, in the lower part of the sieve screen 4, a transfer gas flow path in an obliquely upward direction from the transfer gas introduction port 3a toward the transfer gas / fine powder discharge port 3b is formed.

前記投入口2aから投入された被処理物Mは、篩網4によって粗大粒M1と粗粒および細粒・微粉とに分粒される。即ち、前記被処理物M中の粗大粒は、前記篩網4を通過することなく網上物(ふるいオーバ)M1として、粗大粒排出口2bからシュータ7を介して排出される。同時に、前記処理物M中の粗粒、細粒および微粉は、前記篩網4を通過し分散されて網下物Maとなり、この網下物Maは前記篩手段4下部に配置された分級部分3に落下する。   The workpiece M input from the input port 2a is divided into coarse particles M1, coarse particles, fine particles, and fine particles by the sieve screen 4. That is, the coarse particles in the workpiece M are discharged from the coarse particle discharge port 2b through the shooter 7 as a meshed product (sieving over) M1 without passing through the sieve mesh 4. At the same time, the coarse particles, fine particles and fine powder in the treated product M pass through the sieve mesh 4 and are dispersed to become a mesh product Ma. The mesh product Ma is a classification part arranged at the lower part of the sieve means 4. Fall to 3.

前記分級部分3において、落下してきたこの網下物Maは、分級部分3内部に形成された前記移送気体の流れ5によって移送方向に流されて多段のルーバ翼6上に落下し、このルーバ翼6上を滑落する。この時、前記網下物Ma中の比較的小さな粒子Mbは、前記移送気体に伴送されてルーバ翼6間の開口部6aを、増速された移送気体の流れ5aとともに通過して、前記分級部分3内のルーバ翼6上流側空間Aから前記ルーバ翼6下流側空間Bに移動する。一方、前記移送気体に伴送されなかった比較的大きな粒子は、そのまま落下して粗粒M2として粗粒排出口3cから回収される。   The net object Ma that has fallen in the classification portion 3 is caused to flow in the transfer direction by the flow 5 of the transfer gas formed inside the classification portion 3 and falls onto the multi-stage louver blade 6, and this louver blade 6 Slide down. At this time, the relatively small particles Mb in the meshwork Ma pass along the opening 6a between the louver blades 6 along with the transfer gas and pass through the flow 5a of the transfer gas that has been accelerated. The louver blade 6 upstream space A in the classifying portion 3 moves to the louver blade 6 downstream space B. On the other hand, relatively large particles that have not been accompanied by the transfer gas fall as they are and are recovered as coarse particles M2 from the coarse particle discharge port 3c.

その際、前記ルーバ翼6下流側空間Bに移動する最大粒子径は、ルーバ翼6を滑落する時の慣性力と前記ルーバ翼6間の開口部6aを流れる移送気体の流速Vとにより決まってくる。ところが、前記開口部6aを通過する移送気体の流れ5aの流速のVは、開口部6aにおいて通過断面積を減少されているため、前記ルーバ翼6のない移送気体流路における流速より増速されている。 At that time, the maximum particle size moving to the downstream space B of the louver blade 6 is determined by the inertial force when sliding down the louver blade 6 and the flow velocity VL of the transfer gas flowing through the opening 6a between the louver blades 6. Come. However, the flow velocity VL of the flow 5a of the transfer gas passing through the opening 6a is increased more than the flow velocity in the transfer gas flow path without the louver blade 6 because the passage cross-sectional area is reduced in the opening 6a. Has been.

そのため、分粒後の分散状態において、移送気体の流れ5に伴送されなかった粒子(分散状態が悪い微粉)を、前記開口部6aを通過する増速された移送気体の流れ5aに乗せることが出来、かつ、前記多段のルーバ翼6によって分粒後の粒子に高速の移送気体を複数回衝突させ得るので、前記微粉M4の分離効率を向上させることが出来る。   Therefore, in the dispersed state after the sizing, the particles that have not been accompanied by the transfer gas flow 5 (fine powder having a poor dispersion state) are put on the accelerated transfer gas flow 5a passing through the opening 6a. In addition, since the multistage louver blade 6 can cause the high-speed transfer gas to collide with the particles after sizing a plurality of times, the separation efficiency of the fine powder M4 can be improved.

そして、前記ルーバ翼6下流側空間Bに移動した粒子Mb中の微粉M4は、移送気体の流れ5に伴送されて、前記移送気体とともに移送気体・微粉排出口3bより排出される。一方、前記空間Bにおいて移送気体の流れ5に伴送されなかった粒子は、細粒M3として細粒排出孔3dから回収される。   Then, the fine powder M4 in the particles Mb moved to the downstream space B of the louver blade 6 is accompanied by the flow 5 of the transfer gas, and is discharged from the transfer gas / fine powder discharge port 3b together with the transfer gas. On the other hand, the particles that have not been accompanied by the flow 5 of the transfer gas in the space B are recovered as fine particles M3 from the fine particle discharge holes 3d.

この様に、前記分級手段3の移送気体流路に多段のルーバ翼6を設けることによって、前記ルーバ翼6間の開口部6aを通過する移送気体を増速させるよう構成されたので、前記微粉の分離効率を向上させることが出来る。このようにして、粗大粒や微粉を含む被処理物Mから、前記粗大粒子M1や微粉M4を効率的に排除した粗粒M2や細粒M3を得ることが出来るのである。   As described above, the multi-stage louver blade 6 is provided in the transfer gas flow path of the classifying means 3 so that the transfer gas passing through the opening 6a between the louver blades 6 is accelerated. The separation efficiency can be improved. In this way, coarse particles M2 and fine particles M3 from which the coarse particles M1 and fine particles M4 have been efficiently eliminated can be obtained from the workpiece M containing coarse particles and fine particles.

次に、このように構成された本発明に係る分粒分級装置1の更に好ましい構成について、図2を参照しながら以下説明する。即ち、本発明に係る分粒分級装置1の前記ルーバ翼6は、水平面となす傾斜角度θが可変な構造とし、この傾斜角度θを制御することによって、前記ルーバ翼6上を滑落する被処理物の慣性力を変えるように構成するのが好ましい。 Next, a more preferable configuration of the particle classification device 1 according to the present invention configured as described above will be described below with reference to FIG. That is, the louver blades 6 of sizing classifier 1 according to the present invention, horizontal and forms the inclination angle theta L is a variable structure, by controlling the inclination angle theta L, slides down on the louver blades 6 It is preferable that the inertial force of the workpiece is changed.

この様な構成は、前記ルーバ翼6の各々に略水平方向に配設された水平軸6bを設け、この水平軸6bを回動させることによって達成することが出来る。前記開口部寸法δとは、ルーバ翼6間に形成された開口部6aにおいて、前記移送気体の流れ方向に直角方向な開口寸法をいう。   Such a configuration can be achieved by providing each of the louver blades 6 with a horizontal shaft 6b disposed in a substantially horizontal direction and rotating the horizontal shaft 6b. The opening size δ is an opening size perpendicular to the flow direction of the transfer gas in the opening 6 a formed between the louver blades 6.

あるいはまた、図示はしないが、各段の前記ルーバ翼6毎の傾斜角度を一定に保った状態で、各段の前記ルーバ翼6を翼の配置方向と平行方向に可動し得る構造として、ルーバ翼6間の開口部寸法δが可変な構造とし、このルーバ翼6間の開口部寸法δを制御することによっても達成し得る。例えば、ルーバ翼6の左右両端側における分級部分3の側壁に対して、多数のルーバ翼固定位置を前記ルーバ翼6の配置方向と平行方向に設定しておき、当該固定位置に対するルーバ翼6の設置位置を適宜変更可能な構成とすれば良い。   Alternatively, although not shown in the drawings, as a structure in which the louver blades 6 at each stage can be moved in a direction parallel to the direction in which the blades are arranged in a state where the inclination angle of each louver blade 6 at each stage is kept constant, This can also be achieved by making the opening dimension δ between the blades 6 variable and controlling the opening dimension δ between the louver blades 6. For example, a number of louver blade fixing positions are set in parallel to the arrangement direction of the louver blade 6 with respect to the side walls of the classification portion 3 on the left and right ends of the louver blade 6, and the louver blade 6 What is necessary is just to set it as the structure which can change an installation position suitably.

これらのような構成をなすことによって、前記開口部6aにおける移送気体の流速Vとルーバ翼6を滑落する粒子の落下速度(慣性力)との関係を制御し、前記移送気体の流れ5aに伴送される粒子の大きさ、逆に言えば、粗粒M2の下限粒径を制御することが出来る。 By configuring as described above, the relationship between the flow velocity V L of the transfer gas in the opening 6a and the drop speed (inertial force) of the particles sliding down the louver blade 6 is controlled, and the flow 5a of the transfer gas is controlled. In other words, the lower limit particle size of the coarse particles M2 can be controlled.

更に、本発明に係る分粒分級装置1の前記ルーバ翼6と前記移送気体の流れ5方向下流側の分級部側壁3eとから構成される前記ルーバ翼6下流側空間Bの流路断面積が、前記移送気体の流れ5方向に従って拡大するよう構成するのが好ましい。このような構成は、前記ルーバ翼6が全体として水平面となす傾斜角度θが、分級部側壁3eが水平面となす傾斜角度θを越える角度とする(θ>θ)ことによって達成される。 Further, the flow passage cross-sectional area of the downstream space B of the louver blade 6 constituted by the louver blade 6 of the sizing / classifying device 1 according to the present invention and the classification portion side wall 3e on the downstream side in the flow 5 direction of the transfer gas is It is preferable that the flow gas expands in accordance with the five flow directions. Such an arrangement, the horizontal plane formed inclination angle louver blades 6 as a whole theta L is, the classification unit side wall 3e is an angle exceeding the horizontal plane and forms the inclination angle θ 0 (θ L> θ 0 ) is accomplished by The

前記下流側空間Bにおけるルーバ翼6通過直後の移送気体流速は、一般的に流速が高く乱流となり易く、微粉の分離効率に悪影響を与える。このため、前記ルーバ翼6下流側空間Bの流路断面積を、前記移送気体の流れ5方向に沿って連続的に拡大するよう構成する
ことによって、前記下流側空間BにVaからVbに緩やかに流速が低下する安定的な移送気体の流れ5が形成される。このように移送気体の流速が減速していく過程で、本来細粒M3として分級されるべき粒子が伴送されることなく前記移送気体の流れ5から離脱し、効率的に分離されるのである。
The transfer gas flow velocity immediately after passing the louver blade 6 in the downstream space B is generally high in flow velocity and tends to be turbulent, and adversely affects fine powder separation efficiency. For this reason, by configuring the flow passage cross-sectional area of the downstream space B of the louver blade 6 to continuously expand along the direction 5 of the flow of the transfer gas, the downstream space B is gradually reduced from Va to Vb. As a result, a stable transfer gas flow 5 is formed at a reduced flow rate. Thus, in the process of decelerating the flow velocity of the transfer gas, the particles to be classified as the fine particles M3 are separated from the transfer gas flow 5 without being accompanied and efficiently separated. .

更にまた、移送気体流路のルーバ翼6下流側空間の上方には、移送気体・微粉排出口3bが配置され、かつ下方には粒子排出口である粗粒排出口3cおよび細粒排出口3dが配置されるとともに、前記多段のルーバ翼6の全体的な傾斜角度θが可変な構造を有し、この傾斜角度θを制御することによって、前記ルーバ翼6下流側空間における移送気体の流れ5方向に沿った流路断面積を変化させるよう構成されるのが好ましい。 Furthermore, a transfer gas / fine powder discharge port 3b is disposed above the space on the downstream side of the louver blade 6 of the transfer gas channel, and a coarse particle discharge port 3c and a fine particle discharge port 3d which are particle discharge ports are disposed below. together but are arranged, the overall inclination angle theta L of the multi-louver blades 6 has a variable structure, by controlling the inclination angle theta L, the transport gas in the louver blades 6 downstream space It is preferable that the flow path cross-sectional area along the flow 5 direction is changed.

例えば、ルーバ翼6全体をルーバ翼6上端部回りに揺動させて前記傾斜角度θを変更する構成とすれば良い。このような構成をなすことによって、前記移送気体・微粉排出口3bから排出される粒子径を制御することが出来る。 For example, may be configured to change the inclination angle theta L is swung across louver blades 6 in louver blades 6 upper end around. By making such a configuration, the particle diameter discharged from the transfer gas / fine powder discharge port 3b can be controlled.

そしてまた、移送気体導入口3aには送気装置(押込ファン等)8を設けるのが好ましい。移送気体・微粉排出口3bからの吸気のみによる場合、前記ルーバ翼6間の開口部6aにおける移送気体流速Vを必要速度とするには、前記ルーバ翼6の圧損を考慮すると静圧の大きな吸気装置(吸気ファン等)が必要となって運転動力も大きくなる。しかしながら、前記ルーバ翼6の上流側から送気装置8によって送気する場合は、静圧の大きな送気装置を使用しなくとも、前記開口部6aにおける必要流速を得易く、総合的な効率が良くなるからである。 Moreover, it is preferable to provide an air supply device (pushing fan or the like) 8 at the transfer gas introduction port 3a. When only the intake air from the transfer gas / fine powder discharge port 3b is used, in order to set the transfer gas flow velocity V L at the opening 6a between the louver blades 6 to the required speed, the static pressure is large in consideration of the pressure loss of the louver blades 6. An intake device (such as an intake fan) is required, and the driving power increases. However, when air is supplied from the upstream side of the louver blade 6 by the air supply device 8, it is easy to obtain the required flow velocity in the opening 6a without using an air supply device with a large static pressure, and overall efficiency is improved. Because it gets better.

次に、本発明の実施の形態2に係る分粒分級装置について、以下添付図3を参照しながら図1も併用して説明する。図3は、本発明の実施の形態2に係る分粒分級装置の分級手段を模式的に示した模式的側断面図である。   Next, a sizing / classifying apparatus according to Embodiment 2 of the present invention will be described below with reference to FIG. FIG. 3 is a schematic side cross-sectional view schematically showing the classification means of the particle classification device according to Embodiment 2 of the present invention.

但し、本発明の実施の形態2が上記実施の形態1と相違するところは、前記ルーバ翼6の配置に相違があり、これ以外は上記実施の形態1と全く同構成であるから、上記実施の形態1と同一のものに同一符号を付して、以下その相違する点について説明する。   However, the second embodiment of the present invention differs from the first embodiment in that the arrangement of the louver blades 6 is different, and the other configuration is exactly the same as in the first embodiment. The same reference numerals are given to the same components as those of the first embodiment, and the different points will be described below.

即ち、上記実施の形態1に係る分粒分級装置1のルーバ翼6が、同一の傾斜角度θと同一の開口部寸法δをなして配置されているのに対し、本実施の形態2に係る分粒分級装置1のルーバ翼6は、図3に示す如く、上方から順に夫々が異なる傾斜角度θ〜θと異なる開口部寸法δ〜δとをなしている。そして、前記ルーバ翼6の前記傾斜角度θ〜θと前記開口部寸法δ〜δとは、夫々次式(1),(2)を満足するよう配置されるのが好ましい。
θ>θ>θ>θ>θ (1)
δ<δ<δ<δ (2)
That is, the louver blades 6 of sizing classifier 1 according to the first embodiment is, while being arranged in the same inclined angle theta L identical opening size and [delta], the second embodiment As shown in FIG. 3, the louver blade 6 of the sizing / classifying apparatus 1 has different inclination angles θ 1 to θ 5 and different opening sizes δ 1 to δ 4 in order from the top. The inclination angles θ 1 to θ 5 of the louver blade 6 and the opening dimensions δ 1 to δ 4 are preferably arranged so as to satisfy the following expressions (1) and (2), respectively.
θ 1 > θ 2 > θ 3 > θ 4 > θ 5 (1)
δ 1234 (2)

前記分粒部分2に設けられた篩網4による分粒においては、投入口2a近傍の篩網5上流側では細粒M3や微粉M4を多く含む粒子が前記篩網4を通過し、網上物排出口2b近傍の下流側に近付くにつれて網目に近い粗粒が多く通過する傾向にある。逆に、前記篩網4を通過する通過量は、網上物排出口2b近傍の下流側に近付くにつれて少なくなる傾向にある。   In the sizing by the sieving mesh 4 provided in the sizing part 2, particles containing a large amount of fine particles M3 and fine powder M4 pass through the sieving mesh 4 on the upstream side of the sieving mesh 5 in the vicinity of the inlet 2a. There is a tendency that more coarse particles close to the mesh pass as it approaches the downstream side in the vicinity of the product discharge port 2b. On the contrary, the passing amount passing through the sieve screen 4 tends to decrease as it approaches the downstream side in the vicinity of the net outlet port 2b.

一方、前記ルーバ翼6の前記傾斜角度θ〜θと前記開口部寸法δ〜δとが、夫々前式(1),(2)を満足するよう配置することによって、前記開口部寸法δ〜δ各々における移送気体流速V〜Vは、次式(3)の様な関係となる。
>V>V>V (3)
その結果、前記上流側の微粉を多く含み、かつ通過量も多い部分の移送気体流速を大きくし、前記下流側の微粉も少なく、かつ通過量も少ない部分の移送気体流速は小さくなるので、同一風量でも効率の良い分離が可能となるのである。
On the other hand, by arranging the inclination angles θ 1 to θ 5 of the louver blade 6 and the opening dimensions δ 1 to δ 4 so as to satisfy the expressions (1) and (2), respectively, the openings transporting the gas flow velocity V 1 ~V in size δ 14 each 4 becomes such the following relationship (3).
V 1 > V 2 > V 3 > V 4 (3)
As a result, the transfer gas flow rate of the portion containing a large amount of the fine powder on the upstream side and having a large amount of passage is increased, and the transfer gas flow velocity of the portion having a small amount of the fine powder on the downstream side and a small amount of passage is reduced. Efficient separation is possible even with air volume.

本発明において、粗大粒、微粉を含む被処理物については、何れもその種類は特には限定されず、種々のものを用いることができ、例えば岩石を破砕してなる破砕物を用いることができる。尚、粗大粒および微粉を含む被処理物としては、粗粒、細粒、粗大粒および微粉を含むものの他、細粒、粗大粒および微粉を含むもの、粗粒、粗大粒および微粉を含むもの等がある。   In the present invention, the types of treatment objects including coarse particles and fine powders are not particularly limited, and various types can be used. For example, crushed materials obtained by crushing rocks can be used. . In addition, as a to-be-processed object containing a coarse grain and a fine powder, what contains a fine grain, a coarse grain, and a fine powder other than a coarse grain, a fine grain, a coarse grain, and a fine powder, a thing containing a coarse grain, a coarse grain, and a fine powder Etc.

本発明における微粉とは、移送気体の流れに乗ることが可能な程度に小さくて軽量な粉状体または粒状体のことである。また、細粒とは、前記微粉よりも大きくかつ重く、移送気体の流れに乗り難い粒状体のことである。粗粒とは、前記微粉および細粒よりも大きい粒状体のことである。粗大粒とは、前記細粒および粗粒よりも大きい粒状体または棒状体のことである。   The fine powder in the present invention is a powder or granule that is small and light enough to be able to ride the flow of the transfer gas. The fine particles are particles that are larger and heavier than the fine powder and are difficult to ride the flow of the transfer gas. Coarse grains are granular bodies larger than the fine powders and fine grains. Coarse grains are grains or rods larger than the fine grains and coarse grains.

これらの各々の大きさについては、被処理物の種類や分粒分級の目的等によって相違し、変動し、また、定まってくるものであるが、多くの場合その平均径は、粗大粒は10mm以上、粗粒は10mm未満3mm以上、細粒は3mm未満0.1mm以上、微粉は0.1mm未満である。製砂設備において岩石を破砕してなる破砕物の場合、例えば、下限3〜5mm程度以上の平均径のものが粗大粒、上限3〜5〜下限0.6〜1.2mm程度の平均径のものが粗粒、上限0.6〜0.075mmあるいは1.2〜0.075mm程度の平均径のものが細粒、0.075mm(75μm )未満の平均径のものが微粉に相当することが多い。   The size of each of these differs depending on the type of object to be processed and the purpose of classification, etc., varies, and is determined. In many cases, the average diameter is 10 mm for coarse particles. As described above, the coarse particles are less than 10 mm, 3 mm or more, the fine particles are less than 3 mm, 0.1 mm or more, and the fine particles are less than 0.1 mm. In the case of a crushed material obtained by crushing rocks in a sandmaking facility, for example, those having an average diameter of about 3 to 5 mm or less are coarse particles, and an average diameter of about 3 to 5 or less is about 0.6 to 1.2 mm. A thing with a coarse grain, a thing with an average diameter of about 0.6-0.075mm or 1.2-0.075mm upper limit, and a thing with an average diameter less than 0.075mm (75 micrometers) may correspond to a fine powder. Many.

また、粗大粒、粗粒、細粒および微粉を含む被処理物を粗大粒と粗粒、細粒および微粉とに分粒する篩網とは、前記被処理物中の粗大粒およびそれ以上の大きさのものを通過させず網上物となし、粗粒、細粒および微粉を通過させ得る大きさの篩目(目開き)を有する篩網のことである。従って、この篩の目開きの大きさは、被処理物の種類、即ち粗大粒、粗粒および細粒並びに微粉の大きさによって異なる。   Further, the sieve mesh for classifying the object to be treated including coarse particles, coarse particles, fine particles and fine powders into coarse particles and coarse particles, fine particles and fine powders is the coarse particles in the object to be treated or more. It is a sieve mesh having a mesh size (opening) of a size that allows passage of coarse particles, fine particles, and fine powder without passing a large size. Therefore, the size of the openings of the sieve varies depending on the type of the object to be processed, that is, the size of coarse particles, coarse particles and fine particles, and fine powder.

本発明に係る実施の形態1および2においては、篩目の異なる篩網を上下2段に斜め下方に向けて配置した分粒手段を有する実施例を用いて説明したが、前記分粒手段における篩網の段数や斜め下方向への配置は特に限定されるものではなく、必要に応じた篩網段数と配置が可能である。また、本発明に係る実施の形態1および2においては、ルーバ翼の段数が5段の実施例を用いて説明したが、前記ルーバ翼の段数は特に限定されず、必要に応じて増減可能である。   In Embodiments 1 and 2 according to the present invention, the description has been given using the example having the sizing means in which the sieve screens having different sieve meshes are arranged in two upper and lower stages and obliquely downward. In the sizing means, The number of stages of the mesh screen and the arrangement in the obliquely downward direction are not particularly limited, and the number of mesh screen stages and the arrangement can be made as necessary. In Embodiments 1 and 2 according to the present invention, the number of stages of the louver blades is described using an example having five stages. However, the number of stages of the louver blades is not particularly limited, and can be increased or decreased as necessary. is there.

更に、移送気体の種類は特には限定されず、種々のものを用いることができるが、還元性雰囲気とする必要がある場合等の特段の事情がなければ、通常は空気を用いる。   Further, the kind of the transfer gas is not particularly limited, and various types can be used. However, air is usually used unless there is a special circumstance such as a case where a reducing atmosphere is required.

以上、本発明に係る分粒分級装置によれば、分級手段の移送気体流路に多段のルーバ翼を全体的に傾斜して設けることによって前記移送気体の通過断面積を減少させ、前記ルーバ翼間の開口部を通過する移送気体を増速させるよう構成したので、分粒後の分散状態において、移送気体に伴送されなかった粒子を移送気体の流れに乗せることが出来、かつ、前記多段のルーバ翼によって分粒後の粒子に高速の移送気体を複数回衝突させ得るので、前記微粉の分離効率を向上させることが出来る。   As described above, according to the sizing / classifying apparatus according to the present invention, the cross section area of the transfer gas is reduced by providing the transfer gas flow path of the classification means with multi-stage louver blades as a whole, and the louver blade Since the transfer gas passing through the opening in between is accelerated, particles that have not been entrained in the transfer gas can be placed in the flow of the transfer gas in the dispersed state after sizing, and the multistage Since the high-speed transport gas can collide with the particles after sizing a plurality of times by the louver blade, the separation efficiency of the fine powder can be improved.

また、本発明に係る分粒分級装置によれば、前記ルーバ翼の傾斜角度が可変な構造を有し、この傾斜角度を制御することによって当該ルーバ翼上を滑落する被処理物の慣性力を変化させ、前記移送気体に伴送される粒子の大きさを制御するよう構成したので、前記粒子の落下による慣性力と風速との関係から、前記ルーバ翼を越える粒子径を制御することによって、得られる製品の細かさ(あるいは、微粉の混合量)を変化させることが出来るのである。   Further, according to the sizing / classifying apparatus according to the present invention, the louver blade has a variable inclination angle, and the inertial force of the workpiece sliding down on the louver blade is controlled by controlling the inclination angle. By changing, and configured to control the size of the particles accompanying the transfer gas, from the relationship between the inertial force due to the drop of the particles and the wind speed, by controlling the particle diameter beyond the louver blade, The fineness (or the amount of fine powder mixed) of the product obtained can be changed.

本発明の実施の形態1に係る分粒分級装置の概要を示す側断面図である。It is a sectional side view which shows the outline | summary of the classification apparatus based on Embodiment 1 of this invention. 本発明の実施の形態1に係る分粒分級装置の分級手段を模式的に示した模式的側断面図である。It is the typical sectional side view which showed typically the classification means of the classification apparatus based on Embodiment 1 of this invention. 本発明の実施の形態2に係る分粒分級装置の分級手段を模式的に示した模式的側断面図である。It is the typical sectional side view which showed typically the classification means of the classification apparatus based on Embodiment 2 of this invention. 従来例に係る分粒分級装置の概要を示す側断面図である。It is a sectional side view which shows the outline | summary of the classification device based on a prior art example.

符号の説明Explanation of symbols

A:分級部分内のルーバ翼上流側空間, B:分級部分内のルーバ翼下流側空間
M:被処理物(原料),
M1:粗大粒(網上物), M2:粗粒, M3:細粒, M4:微粉,
Ma:網下物, Mb:ルーバ翼下流側空間に移動した粒子
,V〜V:ルーバ翼間開口部における移送気体流速
θ:分級部側壁が水平面となす角度,
θ,θ〜θ:ルーバ翼が水平面となす傾斜角度
δ,δ〜δ:ルーバ翼間の開口部寸法
1:分粒分級装置
2:分粒部分, 2a:原料投入口, 2b:網上物排出口
3:分級部分, 3a:移送気体導入口, 3b:移送気体・微粉排出口,
3c:粗粒排出口(粒子排出口), 3d:細粒排出口(粒子排出口),
3e:分級部側壁
4:分粒手段, 4a:上網, 4b:下網
5:移送気体の流れ,5a:増速(流速が変更)された移送気体の流れ
6:ルーバ翼, 6a:ルーバ翼間開口部,6b:水平軸
7:シュータ, 8:押込ファン(送気装置)
A: Space on the upstream side of the louver blade in the classification part, B: Space on the downstream side of the louver blade in the classification part M: Material to be treated (raw material),
M1: Coarse grain (net product), M2: Coarse grain, M3: Fine grain, M4: Fine powder,
Ma: Reticulated object, Mb: Particles moving to the space downstream of the louver blade V L , V 1 to V 4 : Transfer gas flow velocity at the opening between the louver blades θ 0 : Angle formed by the side wall of the classification portion and the horizontal plane,
θ L , θ 1 to θ 5 : Inclination angle between louver blades and horizontal plane δ, δ 1 to δ 4 : Opening size between louver blades 1: Size classification device 2: Size division part, 2a: Raw material inlet, 2b: Net object discharge port 3: Classification part, 3a: Transfer gas introduction port, 3b: Transfer gas / fine powder discharge port,
3c: Coarse grain outlet (particle outlet), 3d: Fine grain outlet (particle outlet),
3e: classification part side wall 4: sizing means, 4a: upper net, 4b: lower net 5: flow of transfer gas, 5a: flow of transfer gas increased in speed (change in flow velocity) 6: louver blade, 6a: louver blade Opening 6b: Horizontal shaft 7: Shooter 8: Pushing fan (air supply device)

Claims (6)

微粉を含む被処理物を分粒するための分粒手段と、分粒直後の微粉を移送気体の流れに伴送させて分級するべく前記微粉に対して移送気体を流通させる分級手段とを有する分粒分級装置において、前記分級手段の移送気体流路に多段のルーバ翼を全体的に傾斜して設けることによって前記移送気体の通過断面積を減少させ、前記ルーバ翼間の開口部を通過する移送気体を増速させるよう構成されたことを特徴とする分粒分級装置。   There is a sizing means for sizing the object to be treated containing fine powder, and a classifying means for circulating the transfer gas to the fine powder so that the fine powder immediately after sizing is sent along with the flow of the transfer gas. In the sizing / classifying device, the transfer gas passage of the classification means is provided with a multi-stage louver blade inclined overall, thereby reducing the cross-sectional area of the transfer gas and passing through the opening between the louver blades. A sizing / classifying device configured to increase the speed of a transfer gas. 前記ルーバ翼毎の傾斜角度が可変な構造を有し、この傾斜角度を制御することによって、当該ルーバ翼上を滑落する被処理物の慣性力を変化させるよう構成されたことを特徴とする請求項1に記載の分粒分級装置。   The tilt angle of each louver blade has a variable structure, and the inertial force of the object sliding down on the louver blade is changed by controlling the tilt angle. Item 2. The size classification apparatus according to Item 1. 前記ルーバ翼の各々に略水平方向に配設された水平軸が設けられ、この水平軸を回動させることによって前記ルーバ翼毎の傾斜角度を制御するよう構成されたことを特徴とする請求項1または2に記載の分粒分級装置。   The horizontal axis disposed in a substantially horizontal direction is provided in each of the louver blades, and the inclination angle of each louver blade is controlled by rotating the horizontal shaft. The size classification apparatus according to 1 or 2. 前記ルーバ翼毎の傾斜角度を一定に保ったまま当該ルーバ翼間の開口部寸法が可変な構造を有し、このルーバ翼間開口部寸法を制御することによって、前記移送気体の通過断面積を変化させ、前記移送気体に伴送される粒子の大きさを制御するよう構成されたことを特徴とする請求項1乃至3のうちの何れか一つの項に記載の分粒分級装置。   The opening size between the louver blades is variable while keeping the inclination angle of each louver blade constant. By controlling the size of the opening between the louver blades, the cross sectional area of the transfer gas can be reduced. The size classification device according to any one of claims 1 to 3, wherein the size classification device is configured to change and control the size of the particles accompanying the transfer gas. 前記ルーバ翼と前記移送気体の流れ方向下流側の分級部側壁とから構成されるルーバ翼下流側空間における前記移送気体の流路断面積が、前記移送気体の流れ方向に沿って拡大するよう構成されたことを特徴とする請求項1乃至4のうちの何れか一つの項に記載の分粒分級装置。   A configuration in which a cross-sectional area of the flow path of the transfer gas in the louver blade downstream space configured by the louver blade and the classification unit side wall on the downstream side in the flow direction of the transfer gas expands along the flow direction of the transfer gas. The sizing / classifying apparatus according to any one of claims 1 to 4, wherein the sizing / classifying apparatus is performed. 移送気体流路のルーバ翼下流側空間の上方に移送気体・微粉排出口を配置し、かつ下方に粒子排出口を配置するとともに、前記多段のルーバ翼の全体的な傾斜角度が可変な構造を有し、この傾斜角度を制御することによって、前記ルーバ翼下流側空間における移送気体の流れ方向に沿った流路断面積を変化させるよう構成されたことを特徴とする請求項5に記載の分粒分級装置。
A structure in which the transfer gas / fine powder discharge port is arranged above the space on the downstream side of the louver blade of the transfer gas flow path and the particle discharge port is arranged below, and the overall inclination angle of the multistage louver blade is variable. The flow path cross-sectional area along the flow direction of the transfer gas in the louver blade downstream space is changed by controlling the inclination angle. Grain classification device.
JP2006265013A 2006-09-28 2006-09-28 Sizing and classification apparatus Withdrawn JP2008080282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006265013A JP2008080282A (en) 2006-09-28 2006-09-28 Sizing and classification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006265013A JP2008080282A (en) 2006-09-28 2006-09-28 Sizing and classification apparatus

Publications (1)

Publication Number Publication Date
JP2008080282A true JP2008080282A (en) 2008-04-10

Family

ID=39351669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006265013A Withdrawn JP2008080282A (en) 2006-09-28 2006-09-28 Sizing and classification apparatus

Country Status (1)

Country Link
JP (1) JP2008080282A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100937980B1 (en) * 2008-04-23 2010-01-21 인선기업 주식회사 Blowing type separating device of recycled aggregate
CN102335656A (en) * 2011-06-22 2012-02-01 江苏吉能达建材设备有限公司 Quadric-separated winnowing grader
CN102419079A (en) * 2011-11-11 2012-04-18 中国科学院工程热物理研究所 Solid particle material composite grading and drying device and method
CN104475395A (en) * 2009-04-10 2015-04-01 株式会社川田 Powder washing apparatus
CN109433623A (en) * 2018-10-02 2019-03-08 赵青 The quick sorting unit of agricultural product and sorting machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100937980B1 (en) * 2008-04-23 2010-01-21 인선기업 주식회사 Blowing type separating device of recycled aggregate
CN104475395A (en) * 2009-04-10 2015-04-01 株式会社川田 Powder washing apparatus
CN102335656A (en) * 2011-06-22 2012-02-01 江苏吉能达建材设备有限公司 Quadric-separated winnowing grader
CN102335656B (en) * 2011-06-22 2014-03-12 江苏吉能达建材设备有限公司 Quadric-separated winnowing grader
CN102419079A (en) * 2011-11-11 2012-04-18 中国科学院工程热物理研究所 Solid particle material composite grading and drying device and method
CN109433623A (en) * 2018-10-02 2019-03-08 赵青 The quick sorting unit of agricultural product and sorting machine

Similar Documents

Publication Publication Date Title
CA2566835C (en) Classification of splinters and wood chips
CN109641217B (en) Method for operating a multi-cyclone separation device for separating fine and ultrafine particles and multi-cyclone separation device
CN112654437B (en) Bulk material cleaning device with integrated air separator
JP2008080282A (en) Sizing and classification apparatus
JP4288651B2 (en) Aggregate grinding system
JP5497443B2 (en) Material particle size selection and / or drying equipment
RU2386489C1 (en) Pneumatic sizing screen
JP2002282790A (en) Crushed sand manufacturing device
JP2007275712A (en) Classifier
JP2008086917A (en) Sizing and classification apparatus
JP2003010725A (en) Apparatus and method for manufacturing sand
CN110662610B (en) Powder classifying device and classifying system
RU2600749C1 (en) Mesh pneumatic classifier
CN108348923B (en) Pneumatically connected cascade sifter and circulation grinding device with pneumatically connected cascade sifter
JP2002254035A (en) Sizing and classification device and its method
RU2659296C1 (en) Device of pneumatic separation, method and installation of dry coal concentration
JP3089243B1 (en) Cement clinker grinding equipment
RU2223857C2 (en) Method of and device for cleaning rubber crumb from textile cord
JPH1099715A (en) Crushed sand production equipment
JP3458479B2 (en) Fluidized bed classifier
JP4686309B2 (en) Size classification device
RU2403990C1 (en) Device for classification of under-sieve material (sand) of screen aspiration system
RU2196012C2 (en) Method of size air-separation of finely dispersed loose materials and device for method embodiment (versions)
JP6722478B2 (en) Aggregate for concrete, method of manufacturing aggregate for concrete, and concrete
Weigel et al. Development of an air classifier for the classification of crushed aggregates

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080709

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201