JP2008078671A - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP2008078671A
JP2008078671A JP2007259911A JP2007259911A JP2008078671A JP 2008078671 A JP2008078671 A JP 2008078671A JP 2007259911 A JP2007259911 A JP 2007259911A JP 2007259911 A JP2007259911 A JP 2007259911A JP 2008078671 A JP2008078671 A JP 2008078671A
Authority
JP
Japan
Prior art keywords
tank
water channel
channel forming
main body
reserve tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007259911A
Other languages
Japanese (ja)
Other versions
JP4437148B2 (en
Inventor
Motoyasu Utsunomiya
基恭 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp NEC Display Solutions Ltd
Original Assignee
NEC Display Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Display Solutions Ltd filed Critical NEC Display Solutions Ltd
Priority to JP2007259911A priority Critical patent/JP4437148B2/en
Publication of JP2008078671A publication Critical patent/JP2008078671A/en
Application granted granted Critical
Publication of JP4437148B2 publication Critical patent/JP4437148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem, wherein the application of the liquid-cooled system to such electronic devices as operated in different operating positions in each of users are performed in a quite different mode, because it is mounted with restricted conditions so that air is not contained in a circulation at a reserve tank where retained air layer is formed internally, when the liquid-cooled system is provided for the cooling system in the electronic devices. <P>SOLUTION: A cross-linkage 20a is provided as a water passage forming portion so that a water passage for a coolant circulation passes through the center inside a reserve tank 5e, and at the center of the tank, a step 23a for air trapping is formed by decoupling the cross-linkage 20a at a narrow gap. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発熱素子を搭載した電子機器の冷却構造に関し、特に循環型の液冷システムにおける冷媒液貯留用タンク(以下、「リザーブタンク」と称する。)の構造に関する。   The present invention relates to a cooling structure for an electronic device equipped with a heating element, and more particularly to a structure of a refrigerant liquid storage tank (hereinafter referred to as a “reserve tank”) in a circulation type liquid cooling system.

近年、電子機器の高性能化にともない、電子機器に搭載される部品の発熱量は増加の一途をたどっている。その結果、デバイス冷却技術に対する要求はより厳しくなってきている。コンピュータ分野では、CPUの演算処理能力の高速化を図るために、プロセッサ上のトランジスタ数を増やし動作クロックを引き上げた結果、チップ電力密度が増加し、TDP(Thermal Design Power:熱設計消費電力)はモバイル用途でさえ30Wを超過してきている。このため、筐体内で発生する熱の効果的な冷却技術の確立が急務となっている。   In recent years, as the performance of electronic devices has increased, the amount of heat generated by components mounted on the electronic devices has been steadily increasing. As a result, the demand for device cooling technology has become more severe. In the computer field, the chip power density has increased as a result of increasing the number of transistors on the processor and raising the operation clock in order to speed up the CPU's processing power. TDP (Thermal Design Power) Even mobile applications have exceeded 30W. For this reason, there is an urgent need to establish an effective cooling technique for heat generated in the housing.

従来、パソコン等の電子機器の冷却においては、CPUなどの発熱素子にヒートシンクを接続して熱を拡散し、強制空冷を利用して筐体外への排熱を行っていた。ところが、最近ではその放熱性能と静粛性から液冷技術を利用したデバイス冷却方法が検討されている。   Conventionally, in cooling electronic devices such as personal computers, a heat sink is connected to a heat generating element such as a CPU to diffuse the heat, and forced air cooling is used to exhaust the heat outside the casing. However, recently, a device cooling method using a liquid cooling technique has been studied because of its heat dissipation performance and quietness.

図34に、主にパソコンに適用されている液冷システムの構成を示す。   FIG. 34 shows a configuration of a liquid cooling system mainly applied to a personal computer.

液冷システム1は、受熱ジャケット2aと、ラジエータ3aおよび循環ポンプ4aと、リザーブタンク5aから構成されている。受熱ジャケット2aは、CPUやGPUといった発熱素子6に接続され、吸熱を行い、ジャケット内部を流れる冷媒液を介して受熱した熱量をラジエータ3aへ輸送する。ラジエータ3aでは、自然空冷もしくは強制空冷との組み合わせにより外気との間で熱交換を行い放熱する。ラジエータ3aにより冷却された冷媒液は循環ポンプ4aにより、再度受熱ジャケット2aに輸送される。このようにして構築された循環系の液冷システムには、構成部材(主に樹脂チューブ7a)からの揮発による冷媒消失を補償するために必要な液量を確保したリザーブタンク5aが用意されている。   The liquid cooling system 1 includes a heat receiving jacket 2a, a radiator 3a, a circulation pump 4a, and a reserve tank 5a. The heat receiving jacket 2a is connected to a heat generating element 6 such as a CPU or GPU, absorbs heat, and transports the amount of heat received through the refrigerant liquid flowing inside the jacket to the radiator 3a. The radiator 3a radiates heat by exchanging heat with the outside air in combination with natural air cooling or forced air cooling. The refrigerant liquid cooled by the radiator 3a is transported again to the heat receiving jacket 2a by the circulation pump 4a. In the circulation-type liquid cooling system constructed in this way, a reserve tank 5a is prepared in which a liquid amount necessary to compensate for the disappearance of the refrigerant due to volatilization from the constituent members (mainly the resin tube 7a) is secured. Yes.

図35及び図36は、このような液冷システムのモジュール構造を示しており、図35がディスクトップPC等に適用される汎用型の液冷モジュールを示した図、図36がノートPC等に適用される薄型の液冷モジュールを示した図である。両モジュールの構成部品は共通であるが、実装する筐体の特性にあわせてラジエータ形状などが変更される。   35 and 36 show the module structure of such a liquid cooling system. FIG. 35 shows a general-purpose liquid cooling module applied to a desktop PC or the like, and FIG. 36 shows a notebook PC or the like. It is the figure which showed the thin liquid cooling module applied. Although the components of both modules are common, the radiator shape and the like are changed according to the characteristics of the housing to be mounted.

ところで、上述した液冷システムを構成するリザーブタンクには、次の3つの役割が課せられている。すなわち、1)装置保証期間内における必要冷媒液量の確保、2)冷媒液受熱に伴う体積膨張による循環系圧力変動の緩和、3)循環系内に発生する気泡の捕捉と除去 である。   By the way, the following three roles are imposed on the reserve tank constituting the liquid cooling system described above. That is, 1) securing the necessary amount of refrigerant liquid within the device warranty period, 2) mitigating circulation system pressure fluctuation due to volume expansion associated with refrigerant liquid heat reception, and 3) capturing and removing bubbles generated in the circulation system.

液冷システムの構成部品を相互に接続する樹脂チューブは、その分子隙間から冷媒液の水分揮発を許す。このため、長期使用にともない不凍液の凝縮が生じ、濃度変化による粘性変動が冷媒循環性能を悪化させ、システムの冷却性能を低下させる。したがって一定期間の動作保証を行うためには、揮発水分量を見越した余剰液を確保しておく必要があり、冷媒液の貯留用としてリザーブタンクが用意される。   The resin tube that connects the components of the liquid cooling system with each other allows moisture evaporation of the refrigerant liquid through the molecular gap. For this reason, the antifreeze liquid condenses with long-term use, and the viscosity fluctuation due to the concentration change deteriorates the refrigerant circulation performance and lowers the cooling performance of the system. Therefore, in order to guarantee the operation for a certain period, it is necessary to secure a surplus liquid in anticipation of the amount of volatile water, and a reserve tank is prepared for storing the refrigerant liquid.

また装置動作中、高温デバイスから熱を吸収した冷媒液は温度上昇にともない体積が膨張して循環水路の内圧を増加させる。このとき、モジュール連結部からの液漏れ(リーク)を避けるためにも系内に圧力緩和用の空気層を用意しておく必要がある。そこで、リザーブタンク内の液面位置(液体と空気層の境界線)を調整して必要空気容量を確保するようにしている。 同じく装置動作中は、系外空気の侵入、キャビテーション、液体分解等により水路内に気泡が発生することがある。この気泡が水路内に滞留して流路を塞ぐと、冷媒液が循環せず、システムの冷却機能が損なわれる危険がある。また液中の気泡が循環ポンプの回転体と主軸の間に流れる薄流に紛れ込むと、気泡によって間隙が封鎖され主軸と回転体の間が半乾燥潤滑または固体潤滑状態になり、ポンプ軸受部が急激な摩耗発熱により損傷しポンプ寿命を低下させる。さらには気泡が滞積し回転体が全て空気層に浸ると、ポンプの圧送自体が不可能になり冷媒液が循環できなくなる恐れがある。したがって、リザーブタンク内で、系内に存在する気泡を上記圧力緩衝用の空気層へと開放している。   Further, during operation of the apparatus, the refrigerant liquid that has absorbed heat from the high-temperature device expands in volume as the temperature rises, increasing the internal pressure of the circulation channel. At this time, it is necessary to prepare an air layer for pressure relaxation in the system in order to avoid liquid leakage from the module connecting portion. Therefore, the required air capacity is ensured by adjusting the liquid level position (the boundary line between the liquid and the air layer) in the reserve tank. Similarly, during operation of the apparatus, bubbles may be generated in the water channel due to intrusion of outside air, cavitation, liquid decomposition, and the like. If the bubbles stay in the water channel and block the flow channel, the refrigerant liquid does not circulate and there is a risk that the cooling function of the system is impaired. When bubbles in the liquid are mixed into a thin flow flowing between the rotating body and the main shaft of the circulation pump, the gap is sealed by the bubbles, and the space between the main shaft and the rotating body becomes a semi-dry lubrication or solid lubrication state. It will be damaged by sudden wear and heat, and the pump life will be reduced. Furthermore, if the bubbles are stagnated and the entire rotating body is immersed in the air layer, the pump itself cannot be pumped and the refrigerant liquid may not be circulated. Therefore, bubbles existing in the system are opened to the pressure buffering air layer in the reserve tank.

このような液冷システムを応用した例としては、特許文献1〜5などに記載の構成が知られている。図37に特許文献4で開示されている従来例を示す。ノート型のパーソナルコンピュータ10の本体側に受熱ジャケット2dを実装しCPU11を冷却するとともに、ディスプレイケース12に放熱パイプ13と金属放熱板14からなる薄型のラジエータを実装して排熱を行っている。   As examples of applying such a liquid cooling system, configurations described in Patent Documents 1 to 5 and the like are known. FIG. 37 shows a conventional example disclosed in Patent Document 4. A heat receiving jacket 2d is mounted on the main body side of the notebook personal computer 10 to cool the CPU 11, and a thin radiator including a heat radiating pipe 13 and a metal heat radiating plate 14 is mounted on the display case 12 to exhaust heat.

このとき冷媒液貯留用のリザーブタンク5dはラジエータ側に固定され、保証期間内における必要液量の維持と循環系に発生する気泡の除去を行い、循環ポンプの正常動作を助けている。
特開平6-266474号 特開2002-366260号 特開2003-022148号 特開2003-209210号 特開2004-047842号 特開2003-304086号 特開2004-84958号 特開2003-78271号
At this time, the reserve tank 5d for storing the refrigerant liquid is fixed to the radiator side, maintains the necessary liquid amount within the guarantee period and removes bubbles generated in the circulation system, and helps the normal operation of the circulation pump.
JP-A-6-266474 JP 2002-366260 JP2003-022148 JP2003-209210 JP2004-047842 JP2003-304086 JP2004-84958 JP2003-78271

設置姿勢がユーザー毎に異なるような電子機器の冷却手段にこのような液冷システムを採用する場合、上述したリザーブタンクの機能が上手く働かない状況が生じる。   When such a liquid cooling system is adopted as a cooling means for an electronic device whose installation posture differs for each user, a situation occurs in which the function of the reserve tank described above does not work well.

たとえば、スクリーンに画像を投写するプロジェクタ装置では、図38(a)に示すように装置を床置きにして使用する場合と、図38(b)に示すように天井に逆さ吊りに設置して使用する場合がある。また条件によっては装置を直立させて直角反射で投写させる使い方も想定されている。   For example, in a projector device that projects an image on a screen, the projector is used while being placed on the floor as shown in FIG. 38 (a), and installed on the ceiling upside down as shown in FIG. 38 (b). There is a case. Also, depending on the conditions, it is assumed that the device is projected upright and projected with right angle reflection.

しかしながら、従来の液冷システムは動作姿勢が一意であることを前提に設計されている。また、リザーブタンクも、図37(b)の開示例に示すように、密閉ケースに流入口および流出口を設け、内部に適量の冷媒液24aを充填した構造になっているだけで、全方位姿勢に対応した構造(リザーブタンクの設置姿勢が360度自在な構造)とはなっていない。   However, the conventional liquid cooling system is designed on the assumption that the operation posture is unique. In addition, as shown in the disclosure example of FIG. 37 (b), the reserve tank also has a structure in which an inflow port and an outflow port are provided in a sealed case and an appropriate amount of the refrigerant liquid 24a is filled therein. It does not have a structure corresponding to the attitude (a structure in which the reserve tank can be installed 360 degrees freely).

このような従来構造のリザーブタンクでは、装置姿勢の変化により、タンク内の空気層が容易に水路出入口を遮断して冷媒液の循環を妨げ、冷却性能を著しく損なう危険がある。特に、特許文献6及び7のリザーブタンクは、流出管のタンク内の開口端面のみがタンク中央に位置しており、流入管のタンク内の開口端面は流出管のタンク内の開口端面から大きく離間して設定されている。この構造では、特定範囲の姿勢変化(0度から90度)であれば、タンク内空気層が流入管のタンク内の開口端面に干渉することなく機能するが、0度から360度の姿勢変化には対応することはできない。   In the reserve tank having such a conventional structure, there is a risk that the air layer in the tank easily shuts off the water channel inlet / outlet and hinders the circulation of the refrigerant liquid due to the change in the posture of the apparatus, thereby remarkably impairing the cooling performance. In particular, in the reserve tanks of Patent Documents 6 and 7, only the open end face in the tank of the outflow pipe is located in the center of the tank, and the open end face in the tank of the inflow pipe is greatly separated from the open end face in the tank of the outflow pipe. Is set. In this structure, if the posture changes within a specific range (0 to 90 degrees), the air layer in the tank functions without interfering with the opening end face in the tank of the inflow pipe, but the posture changes from 0 to 360 degrees. Can not cope with.

0度から360度の姿勢変化に対応することのできるリザーブタンクの構成例としては特許文献8に記載の発明がある。しかし、この発明は、タンク内の中央にて流入管の開口端と流出管の開口端を同一方向に並列に並べた構成である。このような構成は、流入管および流出管の開口端が剥き出しの状態であるため、タンク姿勢を変更した場合にリザーブタンク内の滞留空気が管水路に再流入する確率が高い。つまり、水路内の気泡を捕捉してタンク内の空気層に貯留しても、姿勢を変化させたときに水路に気泡が逆流し、水路の気泡詰まり、ポンプ破損などの弊害を引き起こす可能性が高い。   As an example of the configuration of the reserve tank that can cope with a posture change from 0 degrees to 360 degrees, there is an invention described in Patent Document 8. However, according to the present invention, the opening end of the inflow pipe and the opening end of the outflow pipe are arranged in parallel in the same direction at the center of the tank. In such a configuration, since the open ends of the inflow pipe and the outflow pipe are exposed, there is a high probability that the retained air in the reserve tank will re-flow into the pipe channel when the tank posture is changed. In other words, even if air bubbles in the water channel are captured and stored in the air layer in the tank, when the posture is changed, the air bubbles may flow back into the water channel, causing bubbles such as clogging of the water channel and damage to the pump. high.

本発明の目的は、液冷システムを利用した電子機器の冷却装置において、全方位の設置姿勢に対応し、かつ姿勢変化において滞留空気を水路へ再流入させない構造のリザーブタンクを提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a reserve tank that is compatible with all orientations in an electronic device cooling apparatus using a liquid cooling system and has a structure that prevents stagnant air from flowing again into a water channel when the orientation changes. .

上記目的を達成するために本発明の態様の一つは、内部に冷媒液を貯留するとともに空気層を有するタンクと、発熱部品に接触させて受熱を行う受熱手段と、冷媒液が吸収した熱を放熱する放熱手段と、冷媒液を受熱部材からタンク及び放熱手段を介して再び受熱部材に循環させる循環機構とを有する冷却装置において、タンクは、側面を有する本体タンク部と、タンクカバーからなり、当該タンクの内部には、本体タンク部の一側面からタンク内の中央位置を通って該一側面と相対する側面へ冷媒液循環用水路を形成する水路形成部と、タンク内の中央位置およびその近傍において前記水路形成部を分断する狭小隙間と、狭小隙間を隔てた水路形成部の分断面にそれぞれ互いに向き合っている冷媒液循環用水路の開口部と、を有し、水路形成部のタンクカバーと対向する側には、狭小隙間と該一側面との間、および、狭小隙間と該一側面と相対する側面との間に、滞留空気を移動させるための溝を有し、さらに、水路形成部の溝と反対側の部分は、本体タンク部と全長にわたって当接していることを特徴とする。また、本発明の別の態様は、タンクが、側面を有する第一の本体タンク部と、側面を有する第二の本体タンク部からなり、当該タンクの内部には、第一の本体タンク部の一側面からタンク内の中央位置近傍まで延びる冷媒液循環用水路を形成する第一の水路形成部と、第二の本体タンク部の一側面からタンク内の中央位置近傍まで延びる冷媒液循環用水路を形成する第二の水路形成部と、タンク内の中央位置およびその近傍において第一の水路形成部と第二の水路形成部とを分断する狭小隙間と、狭小隙間を隔てた第一の水路形成部の分断面と第二の水路形成部の分断面にそれぞれ互いに向き合っている冷媒液循環用水路の開口部と、前記第一の水路形成部と前記第二の水路形成部の分断面並びに前記第二の本体タンク部とで囲まれた第一の空隙と、前記第二の水路形成部と前記第一の水路形成部の分断面並びに前記第一の本体タンク部とで囲まれた第二の空隙と、を有し、第一の水路形成部は第一の本体タンク部と全長にわたって当接し、さらに、第二の水路形成部は第二の本体タンク部と全長にわたって当接していることを特徴とする。   In order to achieve the above object, one aspect of the present invention includes a tank having a liquid refrigerant stored therein and an air layer, a heat receiving means for receiving heat by contacting the heat generating component, and heat absorbed by the refrigerant liquid. In a cooling device having a heat radiating means for radiating heat and a circulation mechanism for circulating the refrigerant liquid from the heat receiving member to the heat receiving member again through the tank and the heat radiating means, the tank includes a main body tank portion having a side surface and a tank cover. The tank has a water passage forming portion for forming a coolant circulation water passage from one side surface of the main body tank portion to a side surface facing the one side surface through a central position in the tank, and a central position in the tank and the A narrow gap that divides the water channel forming portion in the vicinity, and an opening portion of the coolant liquid circulation water channel that faces each other on the divided cross section of the water channel forming portion that is separated from the narrow gap, and has a water channel shape. On the side facing the tank cover, there is a groove for moving the staying air between the narrow gap and the one side surface, and between the narrow gap and the side surface facing the one side surface, Furthermore, the portion of the water channel forming portion opposite to the groove is in contact with the main body tank portion over the entire length. Further, according to another aspect of the present invention, the tank includes a first main body tank portion having a side surface and a second main body tank portion having a side surface, and the tank includes a first main body tank portion. Forms a first water channel forming part that forms a coolant liquid circulation channel extending from one side surface to the vicinity of the center position in the tank, and a coolant liquid circulation channel extending from one side surface of the second main body tank unit to the vicinity of the center position in the tank. A second water channel forming part, a narrow gap that divides the first water channel forming part and the second water channel forming part at and near the center position in the tank, and a first water channel forming part that separates the narrow gap An opening of the coolant liquid circulation water channel facing each other to the cross section of the second water channel forming part and the second water channel forming part, the split surfaces of the first water channel forming part and the second water channel forming part, and the second The first tank surrounded by the tank section And a second gap surrounded by the second water channel forming portion and the divided cross section of the first water channel forming portion and the first main body tank portion, and the first water channel forming portion Is in contact with the first main body tank part over the entire length, and the second water channel forming part is in contact with the second main body tank part over the entire length.

このような構成では、タンク内にてその中央位置を通るように冷媒液循環用水路が形成され、そのタンク中央位置において前記水路が開放されている。このため、圧力緩和用に用意されたタンク内の空気層が、装置姿勢変化に合わせて滞留位置を変えても、その滞留空気が、タンク中央において狭小隙間で分断されることで形成された冷媒液循環用水路の開口部内に入り込まない。さらに、タンク姿勢が変化した場合、タンク中央位置で水路形成部を分断することで形成された狭小隙間によって、水路内に生じた微小気泡を効率よく除去する機構でもある。したがって、どのような姿勢においても安定した冷媒循環を保証することができる。   In such a configuration, the coolant liquid circulation channel is formed so as to pass through the center position in the tank, and the channel is opened at the tank center position. For this reason, even if the air layer in the tank prepared for pressure relaxation changes the staying position in accordance with the change in the apparatus posture, the staying air is divided by a narrow gap in the center of the tank, and the refrigerant is formed. Do not enter the opening of the water circulation channel. Furthermore, when the tank posture changes, it is also a mechanism that efficiently removes microbubbles generated in the water channel by a narrow gap formed by dividing the water channel forming part at the tank center position. Therefore, stable refrigerant circulation can be ensured in any posture.

特に、狭小隙間で分断されることで形成された冷媒液循環用水路の開口部がタンク中央位置で互いに向き合い、外側から隠れた状態にあるので、タンク姿勢の変化の際、タンク内の滞留空気が管水路に再流入する確率が低い。この点で特許文献8に記載の発明に対して優れている。   In particular, since the openings of the refrigerant liquid circulation channel formed by being divided by a narrow gap face each other at the center position of the tank and are hidden from the outside, the stagnant air in the tank is changed when the tank posture changes. The probability of re-inflow into the pipe channel is low. This is superior to the invention described in Patent Document 8.

本発明の冷却装置を用いることにより、液冷システムの実装方向に制約がなくなるため、プロジェクタ装置のように多様な設置姿勢を想定した電子機器に対しても液冷技術を適用することが可能になる。   By using the cooling device of the present invention, there is no restriction on the mounting direction of the liquid cooling system, so it is possible to apply the liquid cooling technology to electronic devices that assume various installation postures such as projector devices. Become.

以下に、本発明による冷却装置のリザーブタンク構造について図面を参照しながら詳細に説明する。   Below, the reserve tank structure of the cooling device by this invention is demonstrated in detail, referring drawings.

(第1の実施形態)
図1から図5は、本発明の第1の実施形態による冷却装置のリザーブタンク構造を示し、図1はその全体図、図2はその内部構成図、図3はその正面図、図4はその斜視断面図、図5は冷媒液充填時の構成図である。
(First embodiment)
1 to 5 show a reserve tank structure of a cooling device according to a first embodiment of the present invention. FIG. 1 is an overall view thereof, FIG. 2 is an internal configuration diagram thereof, FIG. 3 is a front view thereof, and FIG. FIG. 5 is a perspective sectional view, and FIG.

図6から図8は、本発明の第1の実施形態による冷却装置のリザーブタンク構造の、各設置姿勢における滞留空気層の挙動と、水路内混入気泡のトラップ作用を示した動作図である。   FIGS. 6 to 8 are operation diagrams showing the behavior of the staying air layer and the trapping action of air bubbles mixed in the water channel in each installation posture of the reserve tank structure of the cooling device according to the first embodiment of the present invention.

図1から図5において、本実施形態の冷却装置15aは、受熱ジャケット2eと、ラジエータ3dと、放熱ファン16cと、循環ポンプ4eと、リザーブタンク5eから構成されている。このうちリザーブタンク5eは、図1に示すように、冷却装置15aの構成部品を接続する樹脂チューブ7dの経路途中に連結され、冷媒液の貯留と、冷媒液の熱膨張を緩衝する空気層の滞留と、循環系に発生する気泡の捕捉(空気トラップ)を行っている。   1 to 5, the cooling device 15a of this embodiment includes a heat receiving jacket 2e, a radiator 3d, a heat radiating fan 16c, a circulation pump 4e, and a reserve tank 5e. Among these, as shown in FIG. 1, the reserve tank 5e is connected in the middle of the path of the resin tube 7d that connects the components of the cooling device 15a, and is an air layer that buffers the storage of the refrigerant liquid and the thermal expansion of the refrigerant liquid. Retention and trapping of air bubbles generated in the circulation system (air trap) are performed.

図2にリザーブタンク5eの内部構成を示す。リザーブタンク5eは本体タンク部18aとタンクカバー17aの2つの部材を接合して構成されており、場合によっては、本体タンク部18aには別部材で用意したチューブ用継手19aが気密に接続される。   FIG. 2 shows the internal configuration of the reserve tank 5e. The reserve tank 5e is configured by joining two members, a main body tank portion 18a and a tank cover 17a. In some cases, a tube joint 19a prepared as a separate member is airtightly connected to the main body tank portion 18a. .

本体タンク部18aには、図2および図3に示すように、冷媒液の流入口部と流出口部を結ぶリザーブタンク中心軸上に架橋部20aが、本体タンク部18aと一体成形されている。架橋部20aの内部には、図4に示すように、冷媒液循環用水路21aとして貫通穴が設けられている。また、水路形成部である架橋部20aの本体タンク中央位置には、狭小隙間22a(図3参照)が設定され、冷媒液循環用水路21aを分断して架橋部20aに空気トラップ用の断層部23aを形成している。   As shown in FIGS. 2 and 3, a bridging portion 20 a is integrally formed with the main body tank portion 18 a on the main axis of the reserve tank that connects the inlet portion and the outlet portion of the refrigerant liquid. . As shown in FIG. 4, a through hole is provided in the bridging portion 20 a as the coolant liquid circulation water channel 21 a. Further, a narrow gap 22a (see FIG. 3) is set at the central position of the main body tank of the bridging portion 20a, which is a water channel forming portion, and the refrigerant liquid circulation channel 21a is divided to form a fault section 23a for air trapping in the bridging portion 20a. Is forming.

このような構成のリザーブタンク内部に、図5に示すように、冷媒液24を適量を充填し、チューブ用継手19aに樹脂チューブ7dの流入端と流出端を接続して循環系の液冷システムを構築している。このとき、リザーブタンク内に充填する冷媒液量は、タンク上層部に一定容量の滞留空気層25a(図5参照)が確保されるように調整されている。この滞留空気層25aを確保することで、冷媒液の熱膨張による体積変動を滞留空気層25aで受けて循環系の内圧増加を緩和し、冷媒液のリークを回避して、装置信頼性を保証するようになっている。   As shown in FIG. 5, an appropriate amount of the refrigerant liquid 24 is filled in the reserve tank having such a configuration, and the inflow end and the outflow end of the resin tube 7d are connected to the tube joint 19a to circulate a liquid cooling system. Is building. At this time, the amount of the refrigerant liquid filled in the reserve tank is adjusted so that a fixed volume of the staying air layer 25a (see FIG. 5) is secured in the upper layer portion of the tank. By securing this stagnant air layer 25a, volume fluctuations due to thermal expansion of the refrigerant liquid are received by the stagnant air layer 25a to alleviate the increase in the internal pressure of the circulation system, avoiding the leak of the refrigerant liquid, and guaranteeing the device reliability. It is supposed to be.

ここで、滞留空気層25aの容量設計は、冷却装置15aを構成する樹脂チューブ7dの濡れ縁面積と冷媒液総量およびシステムの耐圧設計に依存し、各々が相関関係にある。すなわち、冷媒液総量はシステムの循環経路長に依存し、循環経路長は樹脂チューブの濡れ縁面積を左右し、樹脂チューブ濡れ縁面積は冷媒揮発消失量に影響するため、充填する冷媒液量は上記の設計パラメータと実装する電子機器の保証期間との兼ね合いより決定される。このとき、用意される冷媒液量に応じて吸熱時熱膨張における容積変化量が決まるため、必要な滞留空気容積は液冷システムの循環系耐圧設計範囲内に収まるように決定される。但し、滞留空気容積がタンク内容積の1/2以上である場合、冷媒液循環用水路管の開口部をタンク内中央に配置した構造であっても、タンク姿勢変化時に移動する滞留空気が水路開口部に干渉してしまう。よって、滞留空気容積はタンク内容積の1/3以下が好ましい。   Here, the capacity design of the stagnant air layer 25a depends on the wetting edge area of the resin tube 7d constituting the cooling device 15a, the total amount of the refrigerant liquid, and the pressure resistance design of the system, and each has a correlation. That is, the total amount of refrigerant liquid depends on the circulation path length of the system, and the circulation path length affects the wetting edge area of the resin tube, and the resin tube wetting edge area affects the refrigerant volatilization disappearance amount. It is determined based on the balance between the design parameters and the warranty period of the electronic device to be mounted. At this time, since the volume change amount in the thermal expansion at the endothermic time is determined according to the amount of refrigerant liquid prepared, the necessary staying air volume is determined so as to be within the circulation system pressure resistance design range of the liquid cooling system. However, if the staying air volume is ½ or more of the tank internal volume, the staying air that moves when the tank posture changes is still in the waterway opening, even if the opening of the refrigerant liquid circulation channel pipe is arranged in the center of the tank. It will interfere with the part. Therefore, the staying air volume is preferably 1/3 or less of the tank internal volume.

なお、リザーブタンク5eの架橋部20aにおける空気トラップ用断層部23aの前後に、図2から図4に示すように、切削溝26aを設けて滞留空気移動用の空間を確保している。具体的には、実装する電子機器の設置姿勢変動にともないリザーブタンク5eの天地が変わる場合、空気層25aの滞留位置移動に際して、切削溝26aの空間を通過するように設定して、空気トラップ用断層部23aから冷媒循環用水路21aへの移動空気の逆流を回避するようにしている。   As shown in FIGS. 2 to 4, a cutting groove 26a is provided before and after the air trapping fault portion 23a in the bridging portion 20a of the reserve tank 5e to secure a space for staying air movement. Specifically, when the top and bottom of the reserve tank 5e changes with the change in the installation posture of the electronic device to be mounted, the air tank 25a is set to pass through the space of the cutting groove 26a when moving the staying position of the air layer 25a. The backflow of the moving air from the fault section 23a to the coolant circulation water channel 21a is avoided.

図6から図8に、上述した本実施形態のリザーブタンク5eの各設置姿勢に応じた気泡トラップ動作を示す。   FIG. 6 to FIG. 8 show bubble trapping operations according to the respective installation postures of the reserve tank 5e of the present embodiment described above.

図6は冷媒液循環水路周りの回転(同図(a)中、X軸)に、図7は冷媒液循環水路に直交するY軸周りに、また図8は垂直軸周り(同図(a)中、Z軸)の回転に対応したリザーブタンク内の滞留空気層25aの様相を示している。図6から図8の各図において、図(c)は図(b)の状態を矢印方向に90°回転させた状態、図(d)は図(c)の状態をさらに90°回転させた状態である。また、循環水路中の微小な気泡43が空気トラップ用断層23aで捕捉されて滞留空気層25aへ合流する様子を示している。   6 shows rotation around the refrigerant liquid circulation channel (X axis in FIG. 6A), FIG. 7 shows around the Y axis orthogonal to the refrigerant liquid circulation channel, and FIG. 8 shows around the vertical axis (FIG. ), The appearance of the staying air layer 25a in the reserve tank corresponding to the rotation of the Z axis) is shown. 6 to 8, (c) is a state in which the state of FIG. (B) is rotated by 90 ° in the direction of the arrow, and (d) is a state in which the state of FIG. (C) is further rotated by 90 °. State. In addition, a state is shown in which minute bubbles 43 in the circulation channel are captured by the air trapping fault 23a and merge into the staying air layer 25a.

このように、リザーブタンク中央に冷媒液循環用水路21の断層部23aを設定することより、全方位の姿勢変化において、滞留空気層25aが水路開口位置(空気トラップ用断層部)に干渉することがないため、循環水路に空気を噛むことがなく安定した冷媒液の圧送が可能になる。また、このとき設けた空気トラップ用の断層部23aにより、動作中に発生した気泡43を効果的に流路から除去することが可能になる。さらには、タンク本体内の架橋部20aに設けた切削溝26aの空間を介して、姿勢変化時における空気層の移動が容易になるように設定することにより、水路開口部への気泡の逆流を回避しやすい構成となっている。   Thus, by setting the fault part 23a of the coolant liquid circulation water channel 21 at the center of the reserve tank, the stagnant air layer 25a may interfere with the water channel opening position (air trap fault part) in the omnidirectional posture change. Therefore, the refrigerant liquid can be stably pumped without biting the air into the circulation channel. Also, the air trapping section 23a provided at this time enables the bubbles 43 generated during operation to be effectively removed from the flow path. Furthermore, by setting the air layer to be easily moved during the posture change through the space of the cutting groove 26a provided in the bridging portion 20a in the tank body, the backflow of bubbles to the water channel opening is reduced. The structure is easy to avoid.

このような構造のリザーブタンクを設けることにより、実装姿勢を選ばない液冷システムを構築することが可能になる。   By providing the reserve tank having such a structure, it is possible to construct a liquid cooling system that does not require any mounting posture.

(第2の実施形態)
図9から図13は、本発明の第2の実施形態による冷却装置のリザーブタンク構造を示し、図9はその全体図、図10はその内部構成図、図11はその斜視構成断面図、図12はその斜視断面図、図13は動作説明図である。
(Second Embodiment)
9 to 13 show a reserve tank structure of a cooling device according to a second embodiment of the present invention, FIG. 9 is an overall view thereof, FIG. 10 is an internal configuration view thereof, FIG. 11 is a perspective configuration sectional view thereof, FIG. 12 is a perspective sectional view, and FIG.

本実施形態におけるリザーブタンク5fは、第1の実施形態で示したリザーブタンクのタンク内架橋部に設けられた切削溝の空隙を介した滞留空気の移動をより行い易くしたものであり、一対の軸対称部材を接合して構成されることを特徴としている。   The reserve tank 5f in the present embodiment facilitates the movement of the staying air through the gap in the cutting groove provided in the bridge in the tank of the reserve tank shown in the first embodiment. It is characterized by joining axially symmetric members.

すなわち、図10から図12に示すように、リザーブタンク5fの中心軸上に冷媒液循環用水路21b、21cを内包した架橋部20bを有し、空気トラップ用断層部23bの位置で軸対称となるような一対の本体タンク部18b、18cを上下から嵌合する構造である。また、嵌合した時に、架橋部20bに用意された切削溝26b、26cも、軸対称に配置されるようになっている。このため、図13に示すように、設置姿勢変化にともなう滞留空気の移動用空隙27aおよび27bも上下対称に用意されるため、どのような姿勢からでもタンク内の滞留空気層25bの安定した移動が可能となる。   That is, as shown in FIG. 10 to FIG. 12, the bridge portion 20b including the coolant liquid circulation channels 21b and 21c is provided on the central axis of the reserve tank 5f, and is axisymmetric at the position of the air trap fault portion 23b. Such a pair of main body tank portions 18b and 18c are fitted from above and below. Further, when fitted, the cutting grooves 26b and 26c prepared in the bridging portion 20b are also arranged symmetrically. For this reason, as shown in FIG. 13, since the moving air gaps 27a and 27b for the stagnant air accompanying the change in the installation posture are also prepared symmetrically, the stagnant air layer 25b in the tank can be stably moved from any posture. Is possible.

(第3の実施形態)
図14から図18は、本発明の第3の実施形態による冷却装置のリザーブタンク構造を示し、図14はその全体図、図15はその内部構成図、図16はその上面図、図17はその斜視構成図、図18はその斜視断面図である。
(Third embodiment)
14 to 18 show a reserve tank structure of a cooling device according to a third embodiment of the present invention, FIG. 14 is an overall view thereof, FIG. 15 is an internal configuration diagram thereof, FIG. 16 is a top view thereof, and FIG. FIG. 18 is a perspective sectional view thereof.

図19から図21は、本発明の第3の実施形態による冷却装置のリザーブタンク構造の、各設置姿勢における滞留空気層の挙動と、水路内混入気泡のトラップ作用を示した動作図である。   FIGS. 19 to 21 are operation diagrams showing the behavior of the staying air layer and the trapping action of air bubbles mixed in the water channel in each installation posture of the reserve tank structure of the cooling device according to the third embodiment of the present invention.

本実施形態の冷却装置15cは、第1の実施形態におけるリザーブタンクの冷媒液流入口および冷媒液流出口を同じ側に設けて循環システムをコンパクトに構成し、電子機器への実装性の向上を図ることを目的としている。   The cooling device 15c of the present embodiment is provided with the refrigerant liquid inlet and the refrigerant liquid outlet of the reserve tank in the first embodiment on the same side, and the circulation system is compactly configured, thereby improving the mountability to electronic equipment. The purpose is to plan.

すなわち、図14から図18において、本実施形態の冷却装置15cは、受熱ジャケット2eと、ラジエータ3dと、放熱ファン16cと、循環ポンプ4eおよびリザーブタンク5gから構成されている。リザーブタンク5gは、図14に示すように、樹脂チューブ7dを接続する流入口部と流出口部とを同一方向に有し、冷媒液の貯留と、冷媒液の受熱にともなう熱膨張を緩衝する空気層の滞留と、循環系に発生する気泡の捕捉(空気トラップ)を行っている。   That is, in FIG. 14 to FIG. 18, the cooling device 15c of the present embodiment is constituted by a heat receiving jacket 2e, a radiator 3d, a heat radiating fan 16c, a circulation pump 4e, and a reserve tank 5g. As shown in FIG. 14, the reserve tank 5 g has an inlet portion and an outlet portion that connect the resin tube 7 d in the same direction, and buffers the storage of the refrigerant liquid and the thermal expansion caused by the reception of the refrigerant liquid. The air layer stays and traps air bubbles generated in the circulation system (air trap).

図15に本実施形態のリザーブタンク5gの構成を示す。リザーブタンク5gは鏡面対称となる2つの本体タンク部18dおよび18eと、チューブ用継手19cおよび19dとを接合して構成されている。本体タンク部18dおよび18eには、図16に示すように、タンク内部にU字形の架橋20cが一体成形されており、その接合面上に水路溝28を用意することにより上下一対の本体タンク部18dと18eを接合したとき、U字形の冷媒液循環水路を構成する。   FIG. 15 shows the configuration of the reserve tank 5g of the present embodiment. The reserve tank 5g is constituted by joining two main body tank portions 18d and 18e having mirror symmetry and tube joints 19c and 19d. As shown in FIG. 16, the main body tank portions 18d and 18e are integrally formed with a U-shaped bridge 20c inside the tank, and a pair of upper and lower main body tank portions is prepared by preparing a water channel groove 28 on the joint surface. When 18d and 18e are joined, a U-shaped refrigerant liquid circulation channel is formed.

また、U字形の架橋部20cの極位置においては、図16に示すように、狭小隙間22bにより水路溝28を分断して空気トラップ用断層部23cを形成している。さらに、水路溝28の空気トラップ用断層部23cにおける開口位置に、図16および図18に示すように、水路幅の絞り部29を設けている。   Further, at the pole position of the U-shaped bridge portion 20c, as shown in FIG. 16, the water channel groove 28 is divided by the narrow gap 22b to form the air trap fault portion 23c. Further, as shown in FIG. 16 and FIG. 18, a throttle portion 29 having a channel width is provided at the opening position of the air trapping fault portion 23 c of the channel groove 28.

図19から図21に、本実施形態のリザーブタンク5gの各設置姿勢に応じた気泡トラップ動作を示す。   FIG. 19 to FIG. 21 show bubble trapping operations according to the installation postures of the reserve tank 5g of the present embodiment.

図19は冷媒液循環水路周りの回転(同図(a)中、X軸)に、図20は冷媒液循環水路に直交するY軸周りに、また図21は垂直軸周り(同図(a)中、Z軸)の回転に対応したリザーブタンク内の滞留空気層25cの様相を示している。図19から図21の各図において、図(c)は図(b)の状態を矢印方向に90°回転させた状態である。図19及び図20において図(d)は図(c)の状態を矢印方向にさらに90°回転させた状態である。さらに図21において図(d)は図(c)の状態をさらに180°回転させた状態である。また、循環水路中の微小な気泡43が空気トラップ用断層部23cで捕捉されて滞留空気層25cへ合流する様子を示している。   19 shows rotation around the refrigerant liquid circulation channel (X axis in FIG. 19A), FIG. 20 shows around the Y axis perpendicular to the refrigerant liquid circulation channel, and FIG. 21 shows the vertical axis (FIG. ), The appearance of the staying air layer 25c in the reserve tank corresponding to the rotation of the Z axis) is shown. In each of FIGS. 19 to 21, FIG. (C) is a state where the state of FIG. (B) is rotated by 90 ° in the direction of the arrow. In FIG. 19 and FIG. 20, FIG. (D) shows a state in which the state of FIG. Further, in FIG. 21, FIG. (D) shows a state where the state of FIG. (C) is further rotated by 180 °. Further, a state is shown in which minute bubbles 43 in the circulating water channel are captured by the air trapping fault portion 23c and merge into the staying air layer 25c.

このようにU字形の冷媒液循環水路をリザーブタンク内に設定することで、冷媒液の流入口部と流出口部とを同一方向に揃うため、液冷システムの接続がコンパクトになり、電子機器への実装性が改善される。   By setting the U-shaped refrigerant liquid circulation channel in the reserve tank in this way, the inlet and outlet parts of the refrigerant liquid are aligned in the same direction, so the connection of the liquid cooling system becomes compact and electronic equipment Implementation is improved.

さらに、U字形冷媒液循環水路の流れ方向転換位置となる極において、空気トラップ用断層部23cを設定することにより、タンク中央位置に水路開口部が配置される。このため、第1の実施形態と同様に、全方位の姿勢変化に対して滞留空気層25cが水路開口と干渉しなくなるので、安定した冷媒液圧送が可能となる。また、U字形水路溝の開口位置(極位置)に絞りを設けることにより、姿勢変化時におけるタンク内残留空気の移動に際して、循環水路へ気泡が逆流し難くなる。   Furthermore, by setting the air trapping fault 23c at the pole that is the flow direction changing position of the U-shaped refrigerant liquid circulation channel, the channel opening is arranged at the center of the tank. For this reason, as in the first embodiment, the stagnant air layer 25c does not interfere with the water channel opening with respect to the omnidirectional posture change, so that stable refrigerant liquid pressure feeding is possible. In addition, by providing a restriction at the opening position (pole position) of the U-shaped water channel groove, it is difficult for the bubbles to flow back into the circulation water channel when the residual air in the tank moves when the posture changes.

(第4の実施形態)
図22から図25は、本発明の第4の実施形態による冷却装置のリザーブタンク構造を示し、図22はその内部構成図、図23はその斜視断面図、図24はタンク内の水路管の詳細図、図25はタンクの動作説明図である。
(Fourth embodiment)
22 to 25 show a reserve tank structure of a cooling device according to a fourth embodiment of the present invention, FIG. 22 is an internal configuration diagram thereof, FIG. 23 is a perspective sectional view thereof, and FIG. FIG. 25 is a detailed diagram and FIG.

本実施形態におけるリザーブタンクは、第1の実施形態で示したリザーブタンクにおいて生産性の改善を図るために用いられる。すなわち、第1の実施形態において本体タンク部と一体成形される架橋部と冷媒液循環用水路とを、1本の円管からなる別部材を接合して形成した構成である。本実施例におけるリザーブタンク5hは、図22に示すように、本体タンク部18fの中心軸上に1本の冷媒液循環用水路管30を貫通させ、タンクカバー17bを接合して構成される。冷媒液循環用水路管30のタンク中央位置には、図24に示すように、流路に直交する形で十字状に空気トラップ用の貫通孔34aを設けている。ここで、空気トラップ用貫通孔34aを水平方向と垂直方向に設定したのは、全方位の設置姿勢に概ね対応できるようにするためである。これにより、図25に示すように、気泡トラップ用の水路開口部をタンク中央に設定でき、あらゆる姿勢における滞留空気層25dの水路干渉を回避できるとともに、空気層の移動用間隙を冷媒液循環用水路管30の外側空間に用意することができる。   The reserve tank in the present embodiment is used for improving productivity in the reserve tank shown in the first embodiment. In other words, in the first embodiment, the bridge portion integrally formed with the main body tank portion and the coolant liquid circulation channel are formed by joining different members made of one circular pipe. As shown in FIG. 22, the reserve tank 5h in the present embodiment is configured by penetrating one refrigerant liquid circulation conduit 30 on the central axis of the main body tank portion 18f and joining a tank cover 17b. As shown in FIG. 24, a through hole 34a for an air trap is provided in a cross shape in a cross shape perpendicular to the flow path at the center position of the tank of the refrigerant liquid circulation conduit 30. Here, the reason why the air trap through-holes 34a are set in the horizontal direction and the vertical direction is to make it possible to substantially correspond to installation orientations in all directions. As a result, as shown in FIG. 25, the water channel opening for the bubble trap can be set in the center of the tank, the water channel interference of the staying air layer 25d in any posture can be avoided, and the air layer moving gap can be used as the coolant liquid circulation channel. It can be prepared in the outer space of the tube 30.

(第5の実施形態)
図26から図29は、本発明の第5の実施形態による冷却装置のリザーブタンク構造を示し、図26はその内部構成図、図27はその水平断面図、図28その垂直断面図、図29はタンクの動作説明図である。
(Fifth embodiment)
26 to 29 show the reserve tank structure of the cooling device according to the fifth embodiment of the present invention, FIG. 26 is its internal configuration diagram, FIG. 27 is its horizontal sectional view, FIG. 28 its vertical sectional view, FIG. FIG. 4 is an explanatory diagram of the operation of the tank.

本実施形態におけるリザーブタンク5iは、第3の実施形態で示したリザーブタンクにおいて、加工性の改善を図るために用いられる。すなわち、第3の実施例において本体タンク部と一体成形されたU字形の架橋部とU字形の冷媒液循環用水路とを、1本の円管を屈曲させてなる別部材を接続して形成した構造である。特に本実施形態では円管部に樹脂チューブに代表されるようなフレキシブルチューブを採用している。   The reserve tank 5i in the present embodiment is used for improving workability in the reserve tank shown in the third embodiment. That is, in the third embodiment, the U-shaped bridge portion integrally formed with the main body tank portion and the U-shaped coolant liquid circulation channel are formed by connecting separate members formed by bending one circular pipe. Structure. In particular, in this embodiment, a flexible tube typified by a resin tube is employed for the circular pipe portion.

すなわち、図26に示すように、本体タンク部18hの同一方向に冷媒液流入用と流出用の2本の継手管32a、32bを接合し、2本の継手管32a、32bの本体タンク側端面を、U字状に湾曲させた樹脂製の水路管チューブ33と接続して循環水路を構成している。水路管チューブ33の、タンク中央に相当する極位置(流れ方向転換位置)には、第4の実施形態の図24で示したような空気トラップ用貫通孔34bを水平方向と鉛直方向に設けている(図27、図28参照)。   That is, as shown in FIG. 26, two joint pipes 32a and 32b for refrigerant liquid inflow and outflow are joined in the same direction of the main body tank portion 18h, and the end faces on the main body tank side of the two joint pipes 32a and 32b. Is connected to a resinous water pipe tube 33 curved in a U shape to constitute a circulating water channel. At the pole position (flow direction changing position) corresponding to the center of the tank of the water pipe tube 33, through holes 34b for air traps as shown in FIG. 24 of the fourth embodiment are provided in the horizontal direction and the vertical direction. (See FIGS. 27 and 28).

このような構造のリザーブタンクを用いることにより、循環系の流入口部と流出口部をリザーブタンクにおいて同一方向に揃えてシステムをコンパクトにし実装性を改善することができる。さらに、図29に示すように、U字形の水路管33の流れ方向転換位置となる極において空気トラップ用貫通孔34bを設けてタンク中央に水路開口部を設定し、また同時に水路管33の外側空間を滞留空気層25eの移動のための空隙に充当することにより全方位の姿勢変化に対応したリザーブタンクを提供することができる。さらにU字形の水路管にフレキシブルチューブを用いることにより、加工性と組立性に優れたリザーブタンクを提供することが可能となる。   By using the reserve tank having such a structure, the inlet and outlet portions of the circulation system are aligned in the same direction in the reserve tank, the system can be made compact, and the mountability can be improved. Furthermore, as shown in FIG. 29, an air trap through-hole 34b is provided at the pole that is the flow direction changing position of the U-shaped channel pipe 33 to set a channel opening in the center of the tank, and at the same time, the outside of the channel pipe 33 The reserve tank corresponding to the omnidirectional posture change can be provided by allocating the space to the gap for moving the staying air layer 25e. Furthermore, by using a flexible tube for the U-shaped water channel pipe, it is possible to provide a reserve tank excellent in workability and assemblability.

(第6の実施形態)
図30は、本発明の第6の実施形態による冷却装置のリザーブタンク構造を示し、同図(a)は全体図、同図(b)は図(a)の一部拡大図である。図31は本実施形態の冷却装置を示す平面図、図32はリザーブタンクの動作説明図である。図33の(a)〜(c)はリザーブタンクの各種構成例を示す側面図である。
(Sixth embodiment)
30A and 30B show a reserve tank structure of a cooling device according to a sixth embodiment of the present invention. FIG. 30A is an overall view, and FIG. 30B is a partially enlarged view of FIG. FIG. 31 is a plan view showing the cooling device of the present embodiment, and FIG. 32 is an operation explanatory view of the reserve tank. FIGS. 33A to 33C are side views showing various configuration examples of the reserve tank.

図30の(a)および(b)において、本実施形態の冷却装置15dは、受熱ジャケット2fと、ラジエータ35aと、放熱ファン16dと、樹脂チューブ7eと、循環ポンプ4fと、リザーブタンクとから構成されている。ラジエータ35aは冷媒循環用の水路溝が形成された2枚の薄板を接合して形成されるような薄型構造を採用している。一方、前記リザーブタンクは、循環ポンプ4fや放熱ファン16dとともに、ラジエータ35a上に実装されて液冷モジュールを構成している。   30 (a) and 30 (b), the cooling device 15d of this embodiment includes a heat receiving jacket 2f, a radiator 35a, a heat radiating fan 16d, a resin tube 7e, a circulation pump 4f, and a reserve tank. Has been. The radiator 35a employs a thin structure formed by joining two thin plates formed with water circulation grooves for circulating the refrigerant. On the other hand, the reserve tank is mounted on the radiator 35a together with the circulation pump 4f and the heat radiating fan 16d to constitute a liquid cooling module.

本実施形態における冷却装置は、薄型のラジエータ上に全方位設置姿勢に対応したリザーブタンクを備えることを特徴としている。すなわち、前記リザーブタンクは、タンクカバー17cとラジエータ35aとを接合して構成されている。ラジエータ35aのタンクカバー接合部に延在するラジエータ水路36aが、図30(b)に示すように、リザーブタンク中央位置において幅が絞られ、かつ狭小隙間22cで分断されている。分断によって形成された開口部38を挟む左右のラジエータ面には、タンクカバー17cに内包される範囲内(図31参照)で凹部空隙37aが設けられている。また、ラジエータ水路36aの開口部38においては、図30(b)に示すように、ピボット状の突起部39aが設けられている。   The cooling device in the present embodiment is characterized in that a reserve tank corresponding to an omnidirectional installation posture is provided on a thin radiator. That is, the reserve tank is configured by joining the tank cover 17c and the radiator 35a. As shown in FIG. 30B, the radiator water channel 36a extending to the tank cover joint portion of the radiator 35a is narrowed at the center position of the reserve tank and is divided by the narrow gap 22c. On the left and right radiator surfaces sandwiching the opening 38 formed by the division, a recessed space 37a is provided within a range included in the tank cover 17c (see FIG. 31). Further, in the opening 38 of the radiator water channel 36a, as shown in FIG. 30 (b), a pivot-like protrusion 39a is provided.

次に、図31から図33を参照して本実施形態のリザーブタンクの動作を説明する。   Next, the operation of the reserve tank of this embodiment will be described with reference to FIGS.

図31は、本実施形態における冷却装置を示す平面図であり、図32は図31のB-B断面における空気トラップ動作を示している。図32の(a)が床置き状態を、同図(b)が180°反転させた状態を想定しており、また図33の(a)には図31のC-C断面から見たリザーブタンク断面構造を示している。   FIG. 31 is a plan view showing the cooling device in the present embodiment, and FIG. 32 shows the air trapping operation in the BB cross section of FIG. 32 (a) assumes a floor-mounted state, and FIG. 32 (b) assumes a 180 ° inverted state, and FIG. 33 (a) shows a reserve as seen from the CC cross section of FIG. The tank cross-sectional structure is shown.

本実施形態では、凹部空隙37aが、ラジエータ35aの厚さ方向にザグリ加工することで形成されている。これにより、ラジエータ35aにタンクカバー17cを接合したとき、タンクカバー17cの内部において冷媒液貯留容積と空気滞留空間を天地両面に用意することができる。そして、タンク中央の狭小隙間22cで形成されたラジエータ水路開口部において空気トラップ用の断層が構築されて気泡の捕捉がなされる。このとき、設置姿勢が逆転(図32(b)参照)しても、ラジエータ面側に形成された凹部空隙37aが滞留空気層25fを天井側に保持するため、反転設置にも対応が可能になる。さらに、図32(b)に示すように、ラジエータ水路開口部38に設けられたピボット状の突起部39aが循環流を乱し混入気泡を揺動するため、水路開口部38の左右に設けられた凹部空隙37aへと誘導し易くしている。   In this embodiment, the recessed space 37a is formed by counterboring the thickness direction of the radiator 35a. Thus, when the tank cover 17c is joined to the radiator 35a, the refrigerant liquid storage volume and the air retention space can be prepared on both sides of the tank cover 17c. Then, an air trap fault is constructed at the radiator water channel opening formed by the narrow gap 22c in the center of the tank, and bubbles are trapped. At this time, even if the installation posture is reversed (see FIG. 32B), the recessed air gap 37a formed on the radiator surface side holds the staying air layer 25f on the ceiling side, so that it is possible to cope with the reversed installation. Become. Further, as shown in FIG. 32 (b), the pivot-shaped protrusion 39a provided in the radiator water channel opening 38 disturbs the circulation flow and swings the mixed bubbles, so that it is provided on the left and right of the water channel opening 38. It is easy to guide to the recessed space 37a.

ここで、図33の(b)及び(c)に、本実施形態のリザーブタンクの別の構成例を示す。   Here, FIGS. 33B and 33C show another configuration example of the reserve tank of the present embodiment.

図33(b)に示すリザーブタンクでは、図33(a)のようなザグリ加工で形成した凹部空隙に代えて、ラジエータ35aを絞り加工することによって凹部空隙37aおよび突起部39aを形成している。この構成例は、ラジエータの板厚が薄い場合において好適である。   In the reserve tank shown in FIG. 33 (b), the recess gap 37a and the protrusion 39a are formed by drawing the radiator 35a instead of the recess gap formed by counterboring as shown in FIG. 33 (a). . This configuration example is suitable when the plate thickness of the radiator is thin.

また、図33(c)に示すリザーブタンクでは、ラジエータ35aに貫通穴40を設け、タンクカバー17eとは反対側面から別部材のラジエータカバー44を接合することで凹部空隙37aを形成している。この構成例は、図33(b)の構成例において十分な容積の空隙がプレスで得られない場合において適用される。   Further, in the reserve tank shown in FIG. 33 (c), a through hole 40 is provided in the radiator 35a, and a radiator cover 44, which is a separate member, is joined from the side surface opposite to the tank cover 17e, thereby forming a recess gap 37a. This configuration example is applied when a sufficient volume of voids cannot be obtained by pressing in the configuration example of FIG.

本発明の第1の実施形態による冷却装置のリザーブタンク構造を示す全体図である。1 is an overall view showing a reserve tank structure of a cooling device according to a first embodiment of the present invention. 図1のリザーブタンクの内部構成図である。It is an internal block diagram of the reserve tank of FIG. 図1のリザーブタンクの正面図である。It is a front view of the reserve tank of FIG. 図1のリザーブタンクの斜視断面図である。It is a perspective sectional view of the reserve tank of FIG. 図1のリザーブタンクの冷媒液充填時の構成図である。It is a block diagram at the time of the refrigerant | coolant liquid filling of the reserve tank of FIG. 図1のリザーブタンクをX軸周りに姿勢変化させたときの滞留空気層の様相を示す図である。It is a figure which shows the aspect of a staying air layer when changing the attitude | position of the reserve tank of FIG. 1 to the X-axis periphery. 図1のリザーブタンクをY軸周りに姿勢変化させたときの滞留空気層の様相を示す図である。It is a figure which shows the aspect of a stagnant air layer when changing the attitude | position of the reserve tank of FIG. 1 around the Y-axis. 図1のリザーブタンクをZ軸周りに姿勢変化させたときの滞留空気層の様相を示す図である。It is a figure which shows the aspect of a retention air layer when changing the attitude | position of the reserve tank of FIG. 本発明の第2の実施形態による冷却装置のリザーブタンク構造を示す全体図である。It is a general view which shows the reserve tank structure of the cooling device by the 2nd Embodiment of this invention. 図9のリザーブタンクの内部構成図である。FIG. 10 is an internal configuration diagram of the reserve tank of FIG. 9. 図9のリザーブタンクの斜視構成断面図である。FIG. 10 is a perspective sectional view of the reserve tank of FIG. 9. 図9のリザーブタンクの斜視断面図である。FIG. 10 is a perspective sectional view of the reserve tank of FIG. 9. 図9のリザーブタンクの動作説明図である。FIG. 10 is an operation explanatory diagram of the reserve tank of FIG. 9. 本発明の第3の実施形態による冷却装置のリザーブタンク構造を示す全体図である。It is a general view which shows the reserve tank structure of the cooling device by the 3rd Embodiment of this invention. 図14のリザーブタンクの内部構成図である。It is an internal block diagram of the reserve tank of FIG. 図14のリザーブタンクの上面図である。It is a top view of the reserve tank of FIG. 図14のリザーブタンクの斜視構成図である。It is a perspective view of the reserve tank of FIG. 図14のリザーブタンクの斜視断面図である。It is a perspective sectional view of the reserve tank of FIG. 図14のリザーブタンクをX軸周りに姿勢変化させたときの滞留空気層の様相を示す図である。It is a figure which shows the aspect of a staying air layer when changing the attitude | position of the reserve tank of FIG. 14 to the X-axis periphery. 図14のリザーブタンクをY軸周りに姿勢変化させたときの滞留空気層の様相を示す図である。It is a figure which shows the aspect of a staying air layer when changing the attitude | position of the reserve tank of FIG. 14 around the Y-axis. 図14のリザーブタンクをZ軸周りに姿勢変化させたときの滞留空気層の様相を示す図である。It is a figure which shows the aspect of a staying air layer when changing the attitude | position of the reserve tank of FIG. 14 around the Z-axis. 本発明の第4の実施形態による冷却装置のリザーブタンクを示す内部構成図である。It is an internal block diagram which shows the reserve tank of the cooling device by the 4th Embodiment of this invention. 図22のリザーブタンクの斜視断面図である。It is a perspective sectional view of the reserve tank of FIG. 図22のリザーブタンク内の水路管の詳細図である。FIG. 23 is a detailed view of a water pipe in the reserve tank of FIG. 22. 図22のリザーブタンクの動作説明図である。It is operation | movement explanatory drawing of the reserve tank of FIG. 本発明の第5の実施形態による冷却装置のリザーブタンクを示す内部構成図である。It is an internal block diagram which shows the reserve tank of the cooling device by the 5th Embodiment of this invention. 図26のリザーブタンクの水平断面図である。FIG. 27 is a horizontal sectional view of the reserve tank of FIG. 26. 図26のリザーブタンクの垂直断面図である。FIG. 27 is a vertical sectional view of the reserve tank of FIG. 26. 図26のリザーブタンクの動作説明図である。It is operation | movement explanatory drawing of the reserve tank of FIG. 本発明の第6の実施形態による冷却装置のリザーブタンク構造を示し、図(a)は全体図、図(b)は図(a)の一部拡大図である。The reserve tank structure of the cooling device by the 6th Embodiment of this invention is shown, A figure (a) is a general view, A figure (b) is the elements on larger scale of figure (a). 図30の冷却装置を示す平面図である。It is a top view which shows the cooling device of FIG. 図30のリザーブタンクの動作説明図である。It is operation | movement explanatory drawing of the reserve tank of FIG. (a)〜(c)はリザーブタンクの各種構成例を示す側断面図である。(A)-(c) is a sectional side view which shows the various structural examples of a reserve tank. 従来の液冷システムを模式的に示す構成図である。It is a block diagram which shows the conventional liquid cooling system typically. 従来の、汎用型の液冷システムの構成を示す斜視図である。It is a perspective view which shows the structure of the conventional general-purpose liquid cooling system. 従来の、薄型の液冷システムの構成を示す斜視図である。It is a perspective view which shows the structure of the conventional thin liquid cooling system. 特許文献4の液冷システムを搭載した電子機器の構成図である。It is a block diagram of the electronic device carrying the liquid cooling system of patent document 4. FIG. プロジェクタ装置の設置姿勢を示す側面図である。It is a side view which shows the installation attitude | position of a projector apparatus.

符号の説明Explanation of symbols

2e 受熱ジャケット
3d ラジエータ
4e 循環ポンプ
5e、5f、5g、5h、5i リザーブタンク
7d 樹脂チューブ
15a、15b、15c 冷却装置
16c 放熱ファン
17a、17b タンクカバー
18a、18b、18c、18d、18e、18f、18h 本体タンク部
19a、19b、19c、19d チューブ用継手
20a、20b、20c 架橋部
21a、21b、21c、30 冷媒液循環用水路
22a、22b 狭小隙間
23a、23c 断層部
24 冷媒液
25a、25b、25c、25d、25e 滞留空気層
26a、26b、26c 切削部
27a、27b 残留空気の移動用空隙
28 水路溝
29 絞り部
32a、32b 継手管
33 水路管チューブ
34a、34b 貫通孔
43 気泡
2e Heat receiving jacket 3d Radiator 4e Circulation pump 5e, 5f, 5g, 5h, 5i Reserve tank 7d Resin tube 15a, 15b, 15c Cooling device 16c Radiation fan 17a, 17b Tank cover 18a, 18b, 18c, 18d, 18e, 18f, 18h Body tank part 19a, 19b, 19c, 19d Tube joint 20a, 20b, 20c Bridge part 21a, 21b, 21c, 30 Refrigerant liquid circulation channel 22a, 22b Narrow gap 23a, 23c Fault part 24 Refrigerant liquid 25a, 25b, 25c, 25d, 25e Residual air layer 26a, 26b, 26c Cutting part 27a, 27b Moving air gap 28 Water channel groove 29 Throttle part 32a, 32b Joint pipe 33 Water pipe tube 34a, 34b Through hole 43 Bubble

Claims (4)

内部に冷媒液を貯留するとともに空気層を有するタンクと、発熱部品に接触させて受熱を行う受熱手段と、前記冷媒液が吸収した熱を放熱する放熱手段と、前記冷媒液を前記受熱部材から前記タンク及び前記放熱手段を介して再び前記受熱部材に循環させる循環機構とを有する冷却装置において、
前記タンクは、側面を有する本体タンク部と、タンクカバーからなり、
前記タンクの内部には、前記本体タンク部の一側面からタンク内の中央位置を通って該一側面と相対する側面へ冷媒液循環用水路を形成する水路形成部と、
前記タンク内の中央位置およびその近傍において前記水路形成部を分断する狭小隙間と、
前記狭小隙間を隔てた前記水路形成部の分断面にそれぞれ互いに向き合っている前記冷媒液循環用水路の開口部と、を有し、
前記水路形成部の前記タンクカバーと対向する側には、前記狭小隙間と該一側面との間、および、前記狭小隙間と該一側面と相対する側面との間に、滞留空気を移動させるための溝を有し、
さらに、前記水路形成部の前記溝と反対側の部分は、前記本体タンク部と全長にわたって当接していることを特徴とする冷却装置。
A tank that stores the refrigerant liquid and has an air layer, a heat receiving means that receives heat by making contact with a heat generating component, a heat radiating means that dissipates heat absorbed by the refrigerant liquid, and the refrigerant liquid from the heat receiving member In the cooling device having a circulation mechanism that circulates again to the heat receiving member through the tank and the heat radiating means,
The tank comprises a main body tank portion having a side surface and a tank cover,
In the inside of the tank, a water channel forming part that forms a coolant liquid circulation water channel from one side surface of the main body tank unit through a central position in the tank to a side surface facing the one side surface,
A narrow gap that divides the water channel forming portion at a central position in the tank and in the vicinity thereof,
An opening portion of the water channel for circulating the refrigerant liquid that faces each other in a section of the water channel forming portion across the narrow gap,
To move the stagnant air between the narrow gap and the one side surface, and between the narrow gap and the side surface facing the one side surface, on the side of the water channel forming portion facing the tank cover Having a groove,
Furthermore, the part on the opposite side to the said groove | channel of the said water channel formation part is contact | abutting over the said main body tank part over the full length, The cooling device characterized by the above-mentioned.
内部に冷媒液を貯留するとともに空気層を有するタンクと、発熱部品に接触させて受熱を行う受熱手段と、前記冷媒液が吸収した熱を放熱する放熱手段と、前記冷媒液を前記受熱部材から前記タンク及び前記放熱手段を介して再び前記受熱部材に循環させる循環機構とを有する冷却装置において、
前記タンクは、側面を有する第一の本体タンク部と、側面を有する第二の本体タンク部からなり、
前記タンクの内部には、
前記第一の本体タンク部の一側面からタンク内の中央位置近傍まで延びる冷媒液循環用水路を形成する第一の水路形成部と、
前記第二の本体タンク部の一側面からタンク内の中央位置近傍まで延びる冷媒液循環用水路を形成する第二の水路形成部と、
前記タンク内の中央位置およびその近傍において前記第一の水路形成部と前記第二の水路形成部とを分断する狭小隙間と、
前記狭小隙間を隔てた前記第一の水路形成部の分断面と前記第二の水路形成部の分断面にそれぞれ互いに向き合っている前記冷媒液循環用水路の開口部と、
前記第一の水路形成部と前記第二の水路形成部の分断面並びに前記第二の本体タンク部とで囲まれた第一の空隙と、
前記第二の水路形成部と前記第一の水路形成部の分断面並びに前記第一の本体タンク部とで囲まれた第二の空隙と、を有し、
前記第一の水路形成部は前記第一の本体タンク部と全長にわたって当接し、さらに、前記第二の水路形成部は前記第二の本体タンク部と全長にわたって当接していることを特徴とする冷却装置。
A tank that stores the refrigerant liquid and has an air layer, a heat receiving means that receives heat by making contact with a heat generating component, a heat radiating means that dissipates heat absorbed by the refrigerant liquid, and the refrigerant liquid from the heat receiving member In the cooling device having a circulation mechanism that circulates again to the heat receiving member through the tank and the heat radiating means,
The tank comprises a first main body tank portion having a side surface and a second main body tank portion having a side surface,
Inside the tank,
A first water channel forming unit that forms a refrigerant liquid circulation channel extending from one side surface of the first main body tank unit to the vicinity of a central position in the tank;
A second water channel forming unit that forms a coolant liquid circulation channel extending from one side surface of the second main body tank unit to the vicinity of the center position in the tank;
A narrow gap that divides the first water channel forming part and the second water channel forming part at a central position in the tank and in the vicinity thereof;
An opening of the coolant-circulation water channel facing each of the dividing surface of the first water channel forming unit and the dividing surface of the second water channel forming unit across the narrow gap;
A first gap surrounded by the first water channel forming portion and the second water channel forming portion and the second main body tank portion;
A second gap surrounded by the second water channel forming part and the first water channel forming part and the first main body tank part;
The first water channel forming portion is in contact with the first main body tank portion over the entire length, and the second water channel forming portion is in contact with the second main body tank portion over the entire length. Cooling system.
前記第一の空隙と前記第二の空隙とは、前記狭小隙間に対して対称な位置関係になっていることを特徴とする請求項2に記載の冷却装置。   The cooling device according to claim 2, wherein the first gap and the second gap have a symmetric positional relationship with respect to the narrow gap. 前記開口部が外側から隠れた状態にあることを特徴とする請求項1または2に記載の冷却装置。   The cooling device according to claim 1 or 2, wherein the opening is hidden from the outside.
JP2007259911A 2007-10-03 2007-10-03 Cooling system Expired - Fee Related JP4437148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259911A JP4437148B2 (en) 2007-10-03 2007-10-03 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259911A JP4437148B2 (en) 2007-10-03 2007-10-03 Cooling system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004238176A Division JP4056504B2 (en) 2004-08-18 2004-08-18 COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME

Publications (2)

Publication Number Publication Date
JP2008078671A true JP2008078671A (en) 2008-04-03
JP4437148B2 JP4437148B2 (en) 2010-03-24

Family

ID=39350338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259911A Expired - Fee Related JP4437148B2 (en) 2007-10-03 2007-10-03 Cooling system

Country Status (1)

Country Link
JP (1) JP4437148B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123851A (en) * 2008-11-21 2010-06-03 Denso Corp Apparatus for diffusing heat
CN102300442A (en) * 2010-06-25 2011-12-28 鸿富锦精密工业(深圳)有限公司 Liquid-cooled radiating system and electronic device using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123851A (en) * 2008-11-21 2010-06-03 Denso Corp Apparatus for diffusing heat
CN102300442A (en) * 2010-06-25 2011-12-28 鸿富锦精密工业(深圳)有限公司 Liquid-cooled radiating system and electronic device using same

Also Published As

Publication number Publication date
JP4437148B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4056504B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
US6795312B2 (en) Cooling apparatus for electronic equipment
KR100610293B1 (en) Liquid Cooling Jacket
US7440278B2 (en) Water-cooling heat dissipator
EP1528849B1 (en) Liquid cooling system
JP3607608B2 (en) Liquid cooling system for notebook computers
JP5002522B2 (en) Cooling device for electronic equipment and electronic equipment provided with the same
CN113939142B (en) Immersed cooling device and electronic equipment with same
JP4551261B2 (en) Cooling jacket
TWI402032B (en) Device for cooling an elecronic apparatus
JP2007113864A (en) Heat transport apparatus and electronic instrument
JP2006039663A (en) Liquid-circulating system and liquid-cooling system using the same
KR20080010333A (en) Heat receiver for liquid cooling unit, liquid cooling unit and electronic apparatus
TW200913861A (en) Liquid cooling unit and electronic apparatus
JPWO2005001674A1 (en) Electronic device cooling device
JP4437148B2 (en) Cooling system
KR100890971B1 (en) Heat exchanger for liquid cooling unit, liquid cooling unit and electronic apparatus
JP2006200796A (en) Radiator integrated with tank
JP2004047922A (en) Cooling unit for electronic apparatus
TWI289647B (en) Liquid-cooled system and electronic facilities utilizing the same
JP2004127288A (en) Cooling module for liquid-cooled system in notebook personal computer
JP2016167609A (en) Electronic apparatus
JP2008051401A (en) Radiator
JP2004102295A (en) Cooling module in display device integrated computer
JP2005011337A (en) Electronic device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees