JP2008077926A - プラズマ発生装置およびそれを用いるワーク処理装置 - Google Patents

プラズマ発生装置およびそれを用いるワーク処理装置 Download PDF

Info

Publication number
JP2008077926A
JP2008077926A JP2006254498A JP2006254498A JP2008077926A JP 2008077926 A JP2008077926 A JP 2008077926A JP 2006254498 A JP2006254498 A JP 2006254498A JP 2006254498 A JP2006254498 A JP 2006254498A JP 2008077926 A JP2008077926 A JP 2008077926A
Authority
JP
Japan
Prior art keywords
plasma
microwave
generating
workpiece
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006254498A
Other languages
English (en)
Inventor
Masaaki Mike
正明 三毛
Ryuichi Iwasaki
龍一 岩崎
Hiroshi Mankawa
宏史 萬川
Shigeru Masuda
滋 増田
Hiroshi Hayashi
博史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritsu Koki Co Ltd
Original Assignee
Noritsu Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritsu Koki Co Ltd filed Critical Noritsu Koki Co Ltd
Priority to JP2006254498A priority Critical patent/JP2008077926A/ja
Publication of JP2008077926A publication Critical patent/JP2008077926A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Cleaning In General (AREA)

Abstract

【課題】基板の改質等に使用されるプラズマ発生装置において、マグネトロンやその電源部などの発熱部位に対するファンの冷却風によるワークへの埃の落下を防止する。
【解決手段】マイクロ波発生装置20からのマイクロ波が導波管10を介して各プラズマ発生ノズル31に与えられるプラズマ発生ユニットPU1,PU2において、前記マイクロ波発生装置20のマグネトロン21およびそれを駆動するインバータ基板を収容した電源部23に対して、ファン81,82をそれぞれ設け、それらに冷却風を吹き当てて冷却を行うとともに、このように構成されるプラズマ発生ユニットPU1,PU2をカバー部材85によって覆う。したがって、マグネトロン21や電源部23に放熱のためのフィン211,231が形成され、その凹所にファン81,82からの冷却風によって埃が吹き寄せられて蓄積し、塊となって落下しても、ワーク上には落下しないようにできる。
【選択図】図1

Description

本発明は、基板等の被処理ワークなどに対してプラズマを照射することで、前記ワークの表面の清浄化や改質などを図ることが可能なプラズマ発生装置およびそれを用いるワーク処理装置に関する。
たとえば半導体基板等の被処理ワークに対してプラズマを照射し、その表面の有機汚染物の除去、表面改質、エッチング、薄膜形成または薄膜除去等を行うワーク処理装置が知られている。たとえば特許文献1には、同心状の内側導電体と外側導電体とを有するプラズマ発生ノズルを用い、両導電体間に高周波のパルス電界を印加することで、アーク放電ではなく、グロー放電を生じさせてプラズマを発生させ、ガス供給源からの処理ガスを両導電体間で旋回させながら基端側から遊端側へ向かわせることで高密度なプラズマを生成し、前記遊端に取付けられたノズルから被処理ワークに放射することで、常温・常圧下で高密度なプラズマを得ることができるプラズマ処理装置が開示されている。
特開2003−197397号公報
上述の従来技術によれば、常温・常圧下でのプラズマ発生が可能になるので、ワークの処理には好都合である。しかしながら、高真空や高圧の環境とは異なり、比較的緩やかな環境で使用できるので、たとえば基板を処理する場合、クリーンルーム内にプラズマ処理装置をそのまま持ち込んで使用されることになる。一方、プラズマ発生装置では、マグネトロンやそれを駆動するインバータ基板などの発熱部位に、ファンなどの冷却手段によって冷却風を吹き当てるようになっており、これに対して、前記発熱部位は、放熱フィンが設けられるなどして凹凸を有する複雑な形状を有しており、凹所には前記冷却風によって吹き寄せられた埃が溜り易く、蓄積した埃が塊となってワーク上にこぼれ落ちる可能性がある。
本発明の目的は、冷却風が引き起こすワークへの埃の付着を防止することができるプラズマ発生装置およびそれを用いるワーク処理装置を提供することである。
本発明のプラズマ発生装置は、マイクロ波を発生するマイクロ波発生手段と、前記マイクロ波発生手段から入力されるマイクロ波のエネルギーに基づきプラズマ化したガスを生成して放出するプラズマ発生ノズルとを備えて構成されるプラズマ発生装置において、少なくとも前記マイクロ波発生手段を含む発熱部位を冷却するための冷却風を発生する冷却手段と、前記プラズマ発生ノズルによって処理されるワークに対して、前記冷却手段からの冷却風がワーク側へ漏洩しないようにするカバー部材とを含むことを特徴とする。
上記の構成によれば、基板の改質等、ワークの処理などに使用することができるプラズマ発生装置において、マイクロ波を発生するマイクロ波発生手段と、前記マイクロ波発生手段から入力されるマイクロ波のエネルギーに基づきプラズマ化したガスを生成して放出するプラズマ発生ノズルとを備えて構成されるプラズマ発生装置では、マグネトロンやそれを駆動するインバータ基板などの少なくとも前記マイクロ波発生手段を含む発熱部位に、ファンなどの冷却手段によって冷却風を吹き当てるようになっており、一方、前記発熱部位は、放熱フィンが設けられるなどして凹凸を有する複雑な形状を有しており、凹所には前記冷却風によって吹き寄せられた埃が溜り易く、蓄積した埃が塊となってワーク上にこぼれ落ちる可能性がある。
そこで、カバー部材を設け、前記プラズマ発生ノズルによって処理されるワークに対して、前記冷却手段からの冷却風がワーク側へ漏洩しないようにする。前記カバー部材は、前記冷却風がワークと触れない経路で循環するように該プラズマ発生装置側をワーク側から区画して覆い込んで、カバー部材からはプラズマ発生ノズルの前記先端部分だけ露出するようにしてもよく、或いはカバー部材をトンネル状に形成し、そこからプラズマ発生ノズルの前記先端部分だけが内部に露出する(ワーク側を覆う)ようにして、そのトンネル内部をワークが流れるようにしてもよい。
したがって、冷却風が引き起こすワークへの埃の付着を防止することができる。
また、本発明のプラズマ発生装置は、前記マイクロ波発生手段におけるマグネトロンのインバータ電源をさらに防塵カバーで密閉し、その防塵カバー内ではファンによって前記冷却風を循環させ、排熱を冷却コイルで外部に取出すことを特徴とする。
上記の構成によれば、プラズマ発生装置において、ファンによる冷却対象であるマグネトロンおよびインバータ電源の内、インバータ電源をさらに防塵カバーで密閉してその内部で冷却風を循環させるので、前記埃の飛散をさらに抑えることができる。
さらにまた、本発明のワーク処理装置は、前記のプラズマ発生装置に、そのプラズマ照射方向とは交差する面上で前記ワークとプラズマ発生ノズルとを相対的に移動させる移動手段を備え、相対的な移動を行いつつ、前記ワークにプラズマを照射して所定の処理を施与することを特徴とする。
上記の構成によれば、冷却風が引き起こすワークへの埃の付着を防止することができるワーク処理装置を実現することができる。
本発明のプラズマ発生装置は、以上のように、基板の改質等、ワークの処理などに使用することができるプラズマ発生装置において、少なくとも前記マイクロ波発生手段を含む発熱部位を冷却する冷却手段が設けられる場合に、前記プラズマ発生ノズルによって処理されるワークに対して、前記冷却手段からの冷却風がワーク側へ漏洩しないようにするカバー部材を設ける。
それゆえ、冷却風が引き起こすワークへの埃の付着を防止することができる。
さらにまた、本発明のワーク処理装置は、以上のように、前記のプラズマ発生装置に、そのプラズマ照射方向とは交差する面上で前記ワークとプラズマ発生ノズルとを相対的に移動させる移動手段を備え、相対的な移動を行いつつ、前記ワークにプラズマを照射して所定の処理を施与する。
それゆえ、冷却風が引き起こすワークへの埃の付着を防止することができるワーク処理装置を実現することができる。
[実施の形態1]
以下、本発明の実施の一形態について図面を参照しながら詳細に説明する。図1は、本発明の一実施形態に係るワーク処理装置Sを下方から見上げた斜視図である。なお、図1において、X−X方向を前後方向、Y−Y方向を左右方向、Z−Z方向を上下方向というものとし、−X方向を前方向、+X方向を後方向、−Yを左方向、+Y方向を右方向、−Z方向を下方向、+Z方向を上方向として説明する。
このワーク処理装置Sは、フラットパネルディスプレイ用のガラス基板を処理するもので、移動手段であるローラCによって前後方向に搬送され、ワークである前記ガラス基板に対して、上方からプラズマ照射を行うものである。そのプラズマ照射を行い、プラズマ発生装置であるプラズマ発生ユニットは、本実施の形態では、参照符号PU1,PU2で示すように、前記ワークの搬送方向である前後方向に対して、前後に2列設けられている。2つのプラズマ発生ユニットPU1,PU2は、相互に同一の構成から成り、装置の小型化のために、このワーク処理装置Sの中心を通る鉛直軸線に対して、点対称に設けられている。このため、先ず以下の説明では、前段側のプラズマ発生ユニットPU1について、その構成を説明し、後段側のプラズマ発生ユニットPU2については、対応する部分に同一の参照符号を付して示し、その説明を省略する。
プラズマ発生ユニットPU1は、マイクロ波を利用し、前記常温・常圧でのプラズマ発生が可能なユニットであって、大略的に、マイクロ波を伝搬させる導波管10、この導波管10の一端側(右側)に配置され所定波長のマイクロ波を発生するマイクロ波発生装置20、導波管10に設けられたプラズマ発生部30、導波管10の他端側(左側)に配置されマイクロ波を吸収するダミーロード40、導波管10に放出されたマイクロ波のうち反射マイクロ波がマイクロ波発生装置20に戻らないよう分離するサーキュレータ50、サーキュレータ50で分離された反射マイクロ波を吸収するダミーロード60および導波管10とプラズマ発生ノズル31とのインピーダンス整合を図るスタブチューナ70を備えて構成されている。
導波管10は、アルミニウム等の非磁性金属から成り、断面矩形の長尺管状を呈し、マイクロ波発生装置20により発生されたマイクロ波をプラズマ発生部30へ向けて、その長手方向に伝搬させるものである。本実施の形態では、導波管10は、コンパクト化のために湾曲されており、一端側から順に、マイクロ波発生装置20が搭載される第1導波管ピース11と、スタブチューナ70およびプラズマ発生部30が組付けられる第2導波管ピース12とが連結されて成る。なお、第1導波管ピース11と第2導波管ピース12との間にはサーキュレータ50が介在され、第2導波管ピース12の他端側にはダミーロード40が設けられている。
図2は、プラズマ発生ユニットPU1を一直線状に展開して示す断面図である。この図2も参照して、マイクロ波発生装置20は、たとえば2.45GHzのマイクロ波を発生するマグネトロンを具備する装置本体部21と、装置本体部21で発生されたマイクロ波を導波管10の内部へ放出するマイクロ波送信アンテナ22と、前記マグネトロン21の電源となるインバータ基板を収容する電源部23とを備えて構成されている。本実施形態に係るプラズマ発生ユニットPU1では、前記電源部23が、インバータ回路によって、商用交流を一旦20〜30kHzの高周波に変換した後、トランスを介して4kVの高圧に昇圧し、整流した直流電圧をマグネトロン21のフィラメントに与えることで、たとえば1W〜3kWのマイクロ波エネルギーを出力できる連続可変型のマイクロ波発生装置20が用いられる。
図2に示すように、マイクロ波発生装置20は、装置本体部21からマイクロ波送信アンテナ22が突設された形態のものであり、第1導波管ピース11に載置される態様で固定されている。詳しくは、装置本体部21が第1導波管ピース11の上面板11Uに載置され、マイクロ波送信アンテナ22が上面板11Uに穿設された貫通孔111を通して第1導波管ピース11内部の導波空間110に突出する態様で固定されている。このように構成されることで、マイクロ波送信アンテナ22から放出された、たとえば2.45GHzのマイクロ波は、導波管10により、その一端側(右側)から他端側(左側)に向けて伝搬される。
プラズマ発生部30は、第2導波管ピース12の下面板12B(処理対象ワークWとの対向面)に、左右方向へ一列に整列して突設された4個のプラズマ発生ノズル31を具備して構成されている。なお、4個のプラズマ発生ノズル31の配列間隔は、導波管10内を伝搬させるマイクロ波の波長λに応じて定めることが望ましい。たとえば、波長λの1/2ピッチ、1/4ピッチでプラズマ発生ノズル31を配列することが望ましく、2.45GHzのマイクロ波を用いる場合は、λ=230mmであるので、115mm(λ/2)ピッチ、或いは57.5mm(λ/4)ピッチでプラズマ発生ノズル31を配列すればよい。
図3は、2つのプラズマ発生ノズル31を拡大して示す側面図(一方のプラズマ発生ノズル31は分解図として描いている)、図4は、図3のA−A線側断面図である。プラズマ発生ノズル31は、中心導電体32(内側導電体)、ノズル本体33(外側導電体)、ノズルホルダ34、シール部材35および保護管36を含んで構成されている。
中心導電体32は、銅、アルミ、真鍮などの良導電性の金属から構成され、φ1〜5mm程度の棒状部材から成り、その上端部321の側が第3導波管ピース13の下面板13Bを貫通して導波空間120に所定長さだけ突出(この突出部分を受信アンテナ部320という)する一方で、下端部322がノズル本体33の下端縁331と略面一になるように、上下方向に配置されている。この中心導電体32には、受信アンテナ部320が導波管10内を伝搬するマイクロ波を受信することで、マイクロ波エネルギー(マイクロ波電力)が与えられるようになっている。当該中心導電体32は、長さ方向略中間部において、シール部材35により保持されている。
ノズル本体33は、良導電性の金属から構成され、中心導電体32を収納する筒状空間332を有する筒状体である。また、ノズルホルダ34も良導電性の金属から構成され、ノズル本体33を保持する比較的大径の下部保持空間341と、シール部材35を保持する比較的小径の上部保持空間342とを有する筒状体である。一方、シール部材35は、テフロン(登録商標)等の耐熱性樹脂材料やセラミック等の絶縁性部材から成り、前記中心導電体32を固定的に保持する保持孔351をその中心軸上に備える筒状体から成る。
ノズル本体33は、上方から順に、ノズルホルダ34の下部保持空間341に嵌合される上側胴部33Uと、後述するガスシールリング37を保持するための環状凹部33Sと、環状に突設されたフランジ部33Fと、ノズルホルダ34から突出する下側胴部33Bとを具備している。また、上側胴部33Uには、所定の処理ガスを前記筒状空間332へ供給させるための連通孔333が穿孔されている。
このノズル本体33は、中心導電体32の周囲に配置された外部導電体として機能するもので、中心導電体32は所定の環状空間H(絶縁間隔)が周囲に確保された状態で筒状空間332の中心軸上に挿通されている。ノズル本体33は、上側胴部33Uの外周部がノズルホルダ34の下部保持空間341の内周壁と接触し、またフランジ部33Fの上端面がノズルホルダ34の下端縁343と接触するようにノズルホルダ34に嵌合されている。なお、ノズル本体33は、たとえばプランジャやセットビス等を用いて、ノズルホルダ34に対して着脱自在な固定構造で装着されることが望ましい。
ノズルホルダ34は、第2導波管ピース12の下面板12Bに穿孔された貫通孔131に密嵌合される上側胴部34U(上部保持空間342の位置に略対応する)と、下面板13Bから下方向に延出する下側胴部34B(下部保持空間341の位置に略対応する)とを備えている。下側胴部34Bの外周には、処理ガスを前記環状空間Hに供給するためのガス供給孔344が穿孔されている。図示は省略しているが、このガス供給孔344には、所定の処理ガスを供給するガス供給管の終端部が接続するための管継手等が取り付けられる。かかるガス供給孔344と、ノズル本体33の連通孔333とは、ノズル本体33がノズルホルダ34への定位置嵌合された場合に互いに連通状態となるように、各々位置設定されている。なお、ガス供給孔344と連通孔333との突き合わせ部からのガス漏洩を抑止するために、ノズル本体33とノズルホルダ34との間にはガスシールリング37が介在されている。
これらガス供給孔344および連通孔333は、周方向に等間隔に複数穿孔されていてもよく、また中心へ向けて半径方向に穿孔されるのではなく、前述の特許文献1のように、処理ガスを旋回させるように、前記筒状空間332の外周面の接線方向に穿孔されてもよい。また、ガス供給孔344および連通孔333は、中心導電体32に対して垂直ではなく、処理ガスの流れを良くするために、上端部321側から下端部322側へ斜めに穿設されてもよい。
シール部材35は、その下端縁352がノズル本体33の上端縁334と当接し、その上端縁353がノズルホルダ34の上端係止部345と当接する態様で、ノズルホルダ34の上部保持空間342に保持されている。すなわち、上部保持空間342に中心導電体32を支持した状態のシール部材35が嵌合され、ノズル本体33の上端縁334でその下端縁352が押圧されるようにして組付けられているものである。
保護管36(図4では図示省略している)は、所定長さの石英ガラスパイプ等から成り、ノズル本体33の筒状空間332の内径に略等しい外径を有する。この保護管36は、ノズル本体33の下端縁331での異常放電(アーキング)を防止して、後述するプルームPを正常に放射させる機能を有しており、その一部がノズル本体33の下端縁331から突出するように、前記筒状空間332に内挿されている。なお、保護管36は、その先端部が下端縁331と一致するように、或いは下端縁331よりも内側へ入り込むように、その全体が筒状空間332に収納されていてもよい。
プラズマ発生ノズル31は上記のように構成されている結果、ノズル本体33、ノズルホルダ34および第2導波管ピース13(導波管10)は導通状態(同電位)とされている一方で、中心導電体32は絶縁性のシール部材35で支持されていることから、これらの部材とは電気的に絶縁されている。したがって、図5に示すように、導波管10がアース電位とされた状態で、中心導電体32の受信アンテナ部320でマイクロ波が受信され中心導電体32にマイクロ波電力が給電されると、その下端部322およびノズル本体33の下端縁331の近傍に電界集中部が形成されるようになる。
かかる状態で、ガス供給孔344から、たとえば酸素ガスや空気のような酸素系の処理ガスが環状空間Hへ供給されると、前記マイクロ波電力により処理ガスが励起されて中心導電体32の下端部322付近においてプラズマ(電離気体)が発生する。このプラズマは、電子温度が数万度であるものの、ガス温度は外界温度に近い反応性プラズマ(中性分子が示すガス温度に比較して、電子が示す電子温度が極めて高い状態のプラズマ)であって、常圧下で発生するプラズマである。
このようにしてプラズマ化された処理ガスは、ガス供給孔344から与えられるガス流によりプルームPとしてノズル本体33の下端縁331から放射される。このプルームPにはラジカルが含まれ、たとえば処理ガスとして酸素系ガスを使用すると酸素ラジカルが生成されることとなり、有機物の分解・除去作用、レジスト除去作用等を有するプルームPとすることができる。本実施形態に係るプラズマ発生ユニットPU1では、プラズマ発生ノズル31が複数個配列されていることから、左右方向に延びるライン状のプルームPを発生させることが可能となる。
因みに、処理ガスとしてアルゴンガスのような不活性ガスや窒素ガスを用いれば、各種基板の表面クリーニングや表面改質を行うことができる。また、フッ素を含有する化合物ガスを用いれば基板表面を撥水性表面に改質することができ、親水基を含む化合物ガスを用いることで基板表面を親水性表面に改質することができる。さらに、金属元素を含む化合物ガスを用いれば、基板上に金属薄膜層を形成することができる。
ダミーロード40,60は、各プラズマ発生ノズル31で受信されなかったマイクロ波を吸収して熱に変換する水冷型(空冷型でも良い)の電波吸収体である。これらのダミーロード40,60には、冷却水を内部に流通させるための冷却水流通管41,61が設けられており、マイクロ波を熱変換することにより発生した熱が前記冷却水に熱交換されるようになっている。前記冷却水流通管41,61に接続される管路は、プラズマ発生ユニットPU1,PU2内を適宜引回され、外部に設けられた冷却装置や、水道の蛇口などに接続される。
サーキュレータ50は、たとえばフェライト柱を内蔵する導波管型の3ポートサーキュレータからなり、一旦はプラズマ発生部30へ向けて伝搬されたマイクロ波のうち、プラズマ発生部30で電力消費されずに戻って来た反射マイクロ波を、マイクロ波発生装置20に戻さずダミーロード60へ向かわせるものである。このようなサーキュレータ50を配置することで、マイクロ波発生装置20が反射マイクロ波によって過熱状態となることが防止される。
このサーキュレータ50は、たとえばアルミ塊の切削加工で、任意の形状に作成することができる。たとえば図1の構成の場合、前記切削加工された左右の2ピースを組合わせて構成することができる。このように切削加工によることで、板状体の組合わせや押出し成型では矩形にしかできなかった形状を、星型(図1の例では、マイクロ波発生装置20からプラズマ発生部30への一直線の送信マイクロ波の経路に、このサーキュレータ50でダミーロード60への反射マイクロ波の経路が90°分岐しているT型であるのに対して、このサーキュレータ50を中心として、マイクロ波発生装置20、プラズマ発生部30およびダミーロード60を120°間隔で配置する等)などの任意の形状に作成することができる。これによって、プラズマ発生ユニットPU1,PU2における前記の各部を所望とする位置へ配置することができる。
また、そのように構成した場合、マイクロ波の分岐用の前記フェライト柱を収納する以外に、サーキュレータ50を各分岐方向に延長形成し、前記マイクロ波発生装置20やダミーロード60の取付け台(前記第1導波管ピース11等)としての機能を有するように構成することで、導波管10のフランジ接合部分が減少し、小型化を図ることができるとともに、そのフランジ接合が無くなることで、各部の配置位置の調整を無くすこともできる。さらにまた、マイクロ波パワーを測定するセンサを埋込むことで、従来では前記センサを設けるために必要であったカプラー(フランジ付きの導波管ピース)も不要にすることができる。
スタブチューナ70は、導波管10とプラズマ発生ノズル31とのインピーダンス整合を図るためのもので、第2導波管ピース12の上面板12Uに所定間隔を置いて直列配置されている。3つのスタブチューナ70は相互に同一構造を備えており、図2で示すように第2導波管ピース12の導波空間120に突出するスタブ71を、上下方向に出没動作させることで中心導電体32による消費電力が最大、すなわち反射マイクロ波を最小として、プラズマ点火を生じ易くするものである。
搬送ローラCは、所定の搬送路に沿って複数配置され、図略の駆動手段により駆動されることで、処理対象となるワークWを、前記プラズマ発生部30を経由して搬送させるものである。ここで、処理対象となるワークWとしては、前記フラットディスプレイパネルや半導体基板のような平型基板以外にも、電子部品が実装された回路基板等を例示することができる。また、平型形状でないパーツや組部品等も処理対象とすることができ、この場合は搬送ローラCに代えてベルトコンベア等を採用すればよい。
上述のように構成されるワーク処理装置Sにおいて、マグネトロン21およびそれを駆動するインバータ基板を収容した電源部23の発熱部位に対しては、冷却手段であるファン81,82がそれぞれ設けられており、それらに冷却風を吹き当てるようになっている。注目すべきは、本実施の形態では、これに対応して、上述のプラズマ発生ユニットPU1,PU2は、前記ファン81,82による冷却風がワークW側に漏洩しないように、カバー部材85によって覆われていることである。そして、カバー部材85には、前記各プラズマ発生ノズル31がワークWに向けて突出するための孔86が穿設されており、この孔86の位置で、プラズマ発生ノズル31の先端部分において、ワークW側と該プラズマ発生ユニットPU1,PU2側とが気密に分画されている。カバー部材85が樹脂などのプラズマ発生ノズル31からの発熱に弱い部材から成る場合には、前記孔86の内周面には、断熱材が介在されるようにしてもよい。
このように構成することで、マグネトロン21や電源部23に放熱のためのフィン211,231が形成されるなどして該マグネトロン21や電源部23が凹凸を有する複雑な形状を有しており、凹所にファン81,82からの冷却風によって埃が吹き寄せられて蓄積し、塊となって落下しても、その塊はカバー部材85の底板851上に留まり、またその落下の衝撃で塊が弾け、舞い上がったとしても、側壁852内を浮遊するだけで、ワークW上には落下せず、ワークW上を清浄に保つことができる。このようにして、冷却風によるワークWへの埃の付着を防止することができる。
上述の実施の形態では、プラズマ発生ノズル31の先端部分だけが孔86からワークW側に露出しており、その孔86の位置でワークW側とプラズマ発生ユニットPU1,PU2側とが気密に分画され、プラズマ発生ユニットPU1,PU2における冷却風がワークW側へ漏洩しないように該プラズマ発生ユニットPU1,PU2側がカバー部材85によって覆われているけれども、本発明の他の実施の形態として、ワークW側を覆うようにしてもよい。具体的には、カバー部材をトンネル状に形成し、そこからプラズマ発生ノズル31の前記先端部分だけが内部に露出するようにして、そのトンネル内部をワークWが流れるようにしてもよい。このようにワークW側を覆った場合、プラズマ発生ユニットPU1,PU2のメンテナンスが楽であるとともに、排熱の対策も楽である。どちら側を覆うかは、前後の工程なども併せて考慮されればよい。
[実施の形態2]
図6は、本発明の他の実施形態に係るワーク処理装置におけるマグネトロンの電源部23’の構成を示す断面図である。注目すべきは、この電源部23’では、インバータ基板235が防塵カバー236によって密閉されており、その防塵カバー236内にファン82’が設けられていることである。これによって、防塵カバー236内で冷却風を循環させて前記インバータ基板235の冷却を行い、該防塵カバー236内からの排熱は冷却コイル237によって外部に取出される。前記冷却コイル237内には、図示しない冷却装置から、冷媒が循環されている。
このように構成することで、前記ファン81,82による冷却対象であるマグネトロン21およびインバータ基板235の内、インバータ基板235を、さらに防塵カバー236で密閉してその内部で冷却風を循環させるので、前記埃の飛散をさらに抑えることができる。このように構成した場合には、防塵カバー236には前記フィン231が設けられておらず、また電源部23’の外部から冷却風を吹付ける前記ファン82は設けられない。
本発明に係るワーク処理装置およびプラズマ発生装置は、半導体ウェハ等の半導体基板に対するエッチング処理装置や成膜装置、プラズマディスプレイパネル等のガラス基板やプリント基板の清浄化処理装置、医療機器等に対する滅菌処理装置、タンパク質の分解装置等に好適に適用することができる。
本発明の一実施形態に係るワーク処理装置を下方から見上げた斜視図である。 プラズマ発生ユニットを一直線状に展開して示す断面図である。 2つのプラズマ発生ノズルを拡大して示す側面図(一方のプラズマ発生ノズルは分解図として描いている)である。 図3のA−A線側断面図である。 プラズマ発生ノズルにおけるプラズマの発生状態を説明するための透視側面図である。 本発明の他の実施形態に係るワーク処理装置におけるマグネトロンの電源部の構成を示す断面図である。
符号の説明
10 導波管
20 マイクロ波発生装置
21 マグネトロン
211,231 フィン
23,23’ 電源部
235 インバータ基板
236 防塵カバー
237 冷却コイル
30 プラズマ発生部
31 プラズマ発生ノズル
32 中心導電体
33 ノズル本体
34 ノズルホルダ
344 ガス供給孔
40,60 ダミーロード
41,61 冷却水流通管
50 サーキュレータ
70 スタブチューナ
81,82;82’ ファン
85 カバー部材
86 孔
811 底板
812 側壁
S ワーク処理装置
PU1,PU2 プラズマ発生ユニット
C 搬送ローラ
W ワーク

Claims (4)

  1. マイクロ波を発生するマイクロ波発生手段と、前記マイクロ波発生手段から入力されるマイクロ波のエネルギーに基づきプラズマ化したガスを生成して放出するプラズマ発生ノズルとを備えて構成されるプラズマ発生装置において、
    少なくとも前記マイクロ波発生手段を含む発熱部位を冷却するための冷却風を発生する冷却手段と、
    前記プラズマ発生ノズルによって処理されるワークに対して、前記冷却手段からの冷却風がワーク側へ漏洩しないようにするカバー部材とを含むことを特徴とするプラズマ発生装置。
  2. 前記カバー部材は、前記冷却風がワークと触れない経路で循環するように該プラズマ発生装置側をワーク側から区画して覆うことを特徴とする請求項1記載のプラズマ発生装置。
  3. 前記マイクロ波発生手段におけるマグネトロンのインバータ電源をさらに防塵カバーで密閉し、その防塵カバー内ではファンによって前記冷却風を循環させ、排熱を冷却コイルで外部に取出すことを特徴とする請求項1または2記載のプラズマ発生装置。
  4. 前記請求項1〜3のいずれか1項に記載のプラズマ発生装置に、そのプラズマ照射方向とは交差する面上で前記ワークとプラズマ発生ノズルとを相対的に移動させる移動手段を備え、相対的な移動を行いつつ、前記ワークにプラズマを照射して所定の処理を施与することを特徴とするワーク処理装置。
JP2006254498A 2006-09-20 2006-09-20 プラズマ発生装置およびそれを用いるワーク処理装置 Withdrawn JP2008077926A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006254498A JP2008077926A (ja) 2006-09-20 2006-09-20 プラズマ発生装置およびそれを用いるワーク処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006254498A JP2008077926A (ja) 2006-09-20 2006-09-20 プラズマ発生装置およびそれを用いるワーク処理装置

Publications (1)

Publication Number Publication Date
JP2008077926A true JP2008077926A (ja) 2008-04-03

Family

ID=39349777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006254498A Withdrawn JP2008077926A (ja) 2006-09-20 2006-09-20 プラズマ発生装置およびそれを用いるワーク処理装置

Country Status (1)

Country Link
JP (1) JP2008077926A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101950027B1 (ko) * 2017-11-06 2019-02-20 주식회사 뉴파워 프라즈마 원격 플라즈마 생성기
KR102161718B1 (ko) * 2019-04-02 2020-10-06 주식회사 뉴파워 프라즈마 플라즈마 반응 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101950027B1 (ko) * 2017-11-06 2019-02-20 주식회사 뉴파워 프라즈마 원격 플라즈마 생성기
KR102161718B1 (ko) * 2019-04-02 2020-10-06 주식회사 뉴파워 프라즈마 플라즈마 반응 장치

Similar Documents

Publication Publication Date Title
JP2008066159A (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP4620015B2 (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP4719184B2 (ja) 大気圧プラズマ発生装置およびそれを用いるワーク処理装置
JP4699235B2 (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP4865034B2 (ja) プラズマ発生装置およびこれを用いたワーク処理装置
JP4724625B2 (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP4647566B2 (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP4837394B2 (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP2008071500A (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP2008077926A (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP2007265838A (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP4724572B2 (ja) ワーク処理装置
JP4619973B2 (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP2009016433A (ja) レジスト除去装置
JP2008066058A (ja) プラズマ発生ノズルおよびプラズマ発生装置ならびにそれを用いるワーク処理装置
JP2007227069A (ja) プラズマ発生方法および装置ならびにそれを用いるワーク処理装置
JP2007234298A (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP2009016434A (ja) レジスト除去装置
JP2008300283A (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP2007220499A (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP2007227285A (ja) プラズマ処理装置および方法
JP2007234274A (ja) ワーク処理装置及びプラズマ発生装置
JP2008066059A (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP2007220503A (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP4619967B2 (ja) ワーク処理装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201