JP2008076827A - Method for setting illumination angle in defect inspection instrument - Google Patents

Method for setting illumination angle in defect inspection instrument Download PDF

Info

Publication number
JP2008076827A
JP2008076827A JP2006257028A JP2006257028A JP2008076827A JP 2008076827 A JP2008076827 A JP 2008076827A JP 2006257028 A JP2006257028 A JP 2006257028A JP 2006257028 A JP2006257028 A JP 2006257028A JP 2008076827 A JP2008076827 A JP 2008076827A
Authority
JP
Japan
Prior art keywords
illumination angle
diffracted light
light intensity
defect
evaluation value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006257028A
Other languages
Japanese (ja)
Other versions
JP4946306B2 (en
Inventor
Koji Yamano
晃司 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006257028A priority Critical patent/JP4946306B2/en
Publication of JP2008076827A publication Critical patent/JP2008076827A/en
Application granted granted Critical
Publication of JP4946306B2 publication Critical patent/JP4946306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily find an illumination angle with high accuracy for detecting an image having a high contrast by diffracted light so as to detect the image of a defect in a periodical pattern of an inspection object, and to suppress variation in detection accuracy among workers. <P>SOLUTION: The method for setting an illumination angle in a defect inspection instrument includes: a step for measuring diffracted light produced by irradiating an inspection object with approximately parallel light from a light source at a plurality of angles and acquiring intensity of diffracted light at each illumination angle; a step of accumulating the data of diffracted light intensity at each illumination angle; a for calculating the evaluated value of a defect evaluating easiness of observing a defect at each illumination angle by using the data of diffracted light intensity at each illumination angle; and a step for setting an illumination angle having the maximum evaluated value of the defect. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、周期性パターンの欠陥を検査する技術に関する。   The present invention relates to a technique for inspecting a defect of a periodic pattern.

フォトマスクの周期性パターンのムラ検査では、同軸の透過照明や平面照明を用いて透過率画像を撮像し、各々の画像での光の強度(明るさ)を比べてムラ部と正常部とを視認している(例えば、特許文献1又は2参照)。そのため、フォトマスクの周期性パターンにおいては元々ムラ部と正常部との光の強度差が少ない、すなわち、コントラストが低い画像をその強度差の処理方法を工夫することで、差を拡大してムラ部の抽出し、検査を行っている。   In inspection of unevenness of the periodic pattern of a photomask, a transmittance image is captured using coaxial transmission illumination or planar illumination, and the intensity (brightness) of the light in each image is compared to find an unevenness portion and a normal portion. It is visually recognized (see, for example, Patent Document 1 or 2). Therefore, in the periodic pattern of the photomask, the difference in light intensity between the uneven portion and the normal portion is originally small, i.e., by devising an intensity difference processing method for an image with low contrast, the difference is enlarged and uneven. Part is extracted and inspected.

しかし、上記従来技術においては、格子状の周期性パターンのブラックマトリクスのムラ、特に開口部の大きいブラックマトリクスのムラの撮像において、ムラ部と正常部でのコントラストの向上が望めず、強度差の処理を工夫したとしても、元画像のコントラストが低い画像の場合の検査では、目視での官能検査方法より低い検査能力しか達成できない問題がある。   However, in the above-described prior art, in the imaging of the black matrix unevenness of the grid-like periodic pattern, particularly the black matrix unevenness having a large opening, the contrast between the uneven portion and the normal portion cannot be improved, and the intensity difference Even if the processing is devised, there is a problem that the inspection in the case of an image with a low contrast of the original image can only achieve a lower inspection ability than the visual sensory inspection method.

なお、周期性パターンとは、一定の周期(以下ピッチとも云う)で配列しているスリットのパターンの集合体を称し、例えば、細長いスリットのパターンが所定の間隔で1次元的に配列しているストライプ状の周期性パターン、又は、ブラックマトリクスの開口部のように、スリットのパターンが所定の間隔で2次元的に配列しているマトリクス状(格子状)の周期性パターン等がある。   The periodic pattern refers to a collection of slit patterns arranged at a constant period (hereinafter also referred to as pitch). For example, elongated slit patterns are arranged one-dimensionally at predetermined intervals. There are a stripe-shaped periodic pattern, a matrix-like (lattice-like) periodic pattern in which slit patterns are two-dimensionally arranged at predetermined intervals, such as a black matrix opening.

ところで、微細な表示と明るい画面の電子部品の増加により、前記周期性パターンでは、微細化、又は開口部比率アップへの傾向が進んでいる。将来、更に開口部の大きいより微細形状のブラックマトリクスにおける周期性パターンのムラを検査する技術が必要となる。すなわち、従来の光の振幅による光の強度(明るさ)の強弱のみの出力では限界である。   By the way, with the increase in electronic components with fine display and bright screen, the periodic pattern tends to be miniaturized or increase the aperture ratio. In the future, a technique for inspecting the periodic pattern unevenness in a black matrix having a finer shape and having a larger opening will be required. That is, there is a limit in the conventional output with only the intensity (brightness) of the light depending on the amplitude of the light.

そこで、周期性のあるパターン、例えばブラックマトリクスのムラを安定的、高精度に撮像、検出可能な、周期性パターンムラ検査装置を提供することを目的として、照明光が被検査物に照射され、周期性パターンによって生じる透過回折光を画像検査する検査装置が提案された(例えば、特許文献3参照)。しかし、この装置において、所望の欠陥検査感度を満たす画像を得るためには被検査物の種類毎に最適な検査レシピの設定が必要であり、その最適な検査レシピ設定には作業者の熟練や多大な時間が必要となる。また、作業者間によって検査精度にばらつきが出る可能性が生じる。   Therefore, for the purpose of providing a periodic pattern unevenness inspection apparatus capable of imaging and detecting a periodic pattern, for example, a black matrix unevenness stably and with high accuracy, illumination light is irradiated to an inspection object, An inspection apparatus that inspects transmitted diffracted light caused by a periodic pattern has been proposed (see, for example, Patent Document 3). However, in this apparatus, in order to obtain an image satisfying a desired defect inspection sensitivity, it is necessary to set an optimal inspection recipe for each type of inspection object. A lot of time is required. In addition, there is a possibility that the inspection accuracy varies among workers.

一方、適切な検査条件の選定を容易に行える欠陥検査装置を提供することを目的として、複数の中心波長並びに入射角度で測定された被検体の欠陥を有してない部位の反射率データを取得し、この反射率データに基づいて、欠陥の検出に用いる画像の撮影時の中心波長と入射角度とを設定する欠陥検査装置が提案されている(例えば、特許文献4参照)。しかし、この装置においても反射率データより中心波長と入射角度とを決定する工程は作業者の感覚に依存する所が大きく、精度面の問題や、作業者間によって検査精度にバラツキが出る可能性はなお存在する。
特開2002−148210号公報 特開2002−350361号公報 特開2005−147918号公報 特開2005−274156号公報
On the other hand, for the purpose of providing a defect inspection device that allows easy selection of appropriate inspection conditions, the reflectance data of a part having no subject defect measured at a plurality of center wavelengths and incident angles is acquired. A defect inspection apparatus that sets a center wavelength and an incident angle at the time of capturing an image used for defect detection based on the reflectance data has been proposed (see, for example, Patent Document 4). However, even in this device, the process of determining the center wavelength and the incident angle from the reflectance data largely depends on the operator's sense, and there is a possibility of accuracy problems and the inspection accuracy may vary among operators. Still exists.
JP 2002-148210 A JP 2002-350361 A JP-A-2005-147918 JP 2005-274156 A

本発明は上記の問題点を解決するものであって、被検査物の周期性パターンの欠陥を画像検出するために、回折光によるコントラストの高い画像を検出する照明角度を容易に精度良く見出し、作業者間の検査精度のばらつきを抑えることを課題とする。   The present invention solves the above-mentioned problems, and in order to detect an image of a periodic pattern defect of an inspection object, an illumination angle for detecting an image with high contrast by diffracted light is easily found with high accuracy, It is an object to suppress variation in inspection accuracy among workers.

本発明において上記の課題を達成するために、まず請求項1の発明では、被検査物が持つ周期性パターンの欠陥検査装置にて行われる方法であって、
被検査物に光源からの光を略平行光として照射することで生じる回折光の測定を複数の照明角度で行い、各照明角度での回折光強度を取得する回折光強度データ取得ステップと、
照明角度ごとの回折光強度データを蓄積するデータ蓄積ステップと、
照明角度ごとの回折光強度データを用いて、照明角度ごとの欠陥の見易さを評価する欠陥評価値を計算する欠陥評価値計算ステップと、
欠陥評価値が最大値となる照明角度を設定する照明角度決定ステップと、
を含む欠陥検査装置における照明角度設定方法としたものである。
In order to achieve the above-described problems in the present invention, first, in the invention of claim 1, a method performed by a defect inspection apparatus for a periodic pattern of an inspection object,
A diffracted light intensity data acquisition step that performs measurement of diffracted light generated by irradiating light from a light source as a substantially parallel light onto an inspection object at a plurality of illumination angles, and acquires diffracted light intensity at each illumination angle;
A data accumulation step for accumulating diffracted light intensity data for each illumination angle;
Using the diffracted light intensity data for each illumination angle, a defect evaluation value calculation step for calculating a defect evaluation value for evaluating the visibility of the defect for each illumination angle,
An illumination angle determination step for setting an illumination angle at which the defect evaluation value is a maximum value;
This is an illumination angle setting method in a defect inspection apparatus including

また請求項2の発明では、前記回折光強度データ取得ステップは、被検査物からの回折光の測定を分光測定で行って、各照明角度での波長毎の回折光強度データを取得し、
前記データ蓄積ステップは、各照明角度での波長毎の回折光強度データを蓄積し、
前記欠陥評価値計算ステップは、照明角度ごとの回折光強度データとして、各照明角度での波長毎の回折光強度に各波長に対応する重み付け係数を掛け合わせて積算したデータを用いて、照明角度ごとの欠陥の見易さを評価する欠陥評価値を計算する、
ことを特徴とする請求項1記載の欠陥検査装置における照明角度設定方法としたものである。
In the invention of claim 2, the diffracted light intensity data acquisition step performs spectroscopic measurement of the diffracted light from the inspection object, acquires diffracted light intensity data for each wavelength at each illumination angle,
The data accumulation step accumulates diffracted light intensity data for each wavelength at each illumination angle,
In the defect evaluation value calculation step, as the diffracted light intensity data for each illumination angle, the data obtained by multiplying the diffracted light intensity for each wavelength at each illumination angle by multiplying by a weighting coefficient corresponding to each wavelength is used to calculate the illumination angle. Calculate the defect evaluation value to evaluate the legibility of each defect,
The illumination angle setting method in the defect inspection apparatus according to claim 1 is characterized.

また請求項3の発明では、前記欠陥評価値計算ステップは、照明角度ごとの回折光強度データに補間処理を行い、補間処理後の照明角度ごとの回折光強度データを用いて、照明角度ごとの欠陥の見易さを評価する欠陥評価値を計算することを特徴とする請求項1または請求項2記載の欠陥検査装置における照明角度設定方法としたものである。   In the invention of claim 3, the defect evaluation value calculation step performs an interpolation process on the diffracted light intensity data for each illumination angle, and uses the diffracted light intensity data for each illumination angle after the interpolation process, for each illumination angle. 3. The illumination angle setting method in the defect inspection apparatus according to claim 1, wherein a defect evaluation value for evaluating the visibility of the defect is calculated.

また請求項4の発明では、前記照明角度決定ステップは、欠陥評価値が正の極値を取る一つないしは複数の照明角度候補を検出し、それらの該照明角度候補で撮像を行って得られた撮像画像の比較に基づいて照明角度を設定することを特徴とする請求項1から3いずれかに記載の欠陥検査装置における照明角度設定方法としたものである。   In the invention according to claim 4, the illumination angle determination step is obtained by detecting one or a plurality of illumination angle candidates whose defect evaluation value has a positive extreme value, and performing imaging with the illumination angle candidates. 4. The illumination angle setting method in the defect inspection apparatus according to claim 1, wherein the illumination angle is set based on a comparison of the captured images.

請求項1の発明では、周期性パターンを持つ被検査物に、光源からの光を略平行光として照射することで生じる回折光の測定を複数の照明角度で行うと、自動的に、欠陥検査に最適な照明角度を設定できる。   According to the first aspect of the present invention, when the diffracted light generated by irradiating the inspection object having the periodic pattern with light from the light source as substantially parallel light is measured at a plurality of illumination angles, the defect inspection is automatically performed. The optimal illumination angle can be set.

請求項2の発明では、周期性パターンを持つ被検査物に、光源からの光を略平行光として照射することで生じる回折光の分光測定を複数の照明角度で行うと、自動的に、欠陥検
査に最適な照明角度を設定できる。また請求項2の発明では、各照明角度での波長毎の回折光強度データを蓄積するので、複数の波長に関する光学条件に対して検査を行う場合でも、光学条件に基づいた波長ごとの重み付け係数を選択するだけで、この蓄積データを基に速やかに最適な検査角度を再設定することができる。
In the invention of claim 2, when the spectroscopic measurement of the diffracted light generated by irradiating the inspection object having the periodic pattern with the light from the light source as substantially parallel light is performed at a plurality of illumination angles, the defect is automatically detected. The optimal illumination angle for inspection can be set. Further, in the invention of claim 2, since the diffracted light intensity data for each wavelength at each illumination angle is accumulated, the weighting coefficient for each wavelength based on the optical condition is used even when the optical condition relating to a plurality of wavelengths is inspected. By simply selecting, the optimum inspection angle can be quickly reset based on this accumulated data.

請求項3の発明では、補間処理を行うことにより、より詳細な照明角度ごとの欠陥評価値を得ることができ、精度高く欠陥検査に最適な証明角度を設定できる。   In the invention of claim 3, by performing the interpolation process, it is possible to obtain a more detailed defect evaluation value for each illumination angle, and it is possible to set a proof angle optimal for defect inspection with high accuracy.

請求項4の発明では、照明角度ごとの欠陥評価値において、同程度の極大値が複数存在する場合に、特に精度良く欠陥検査に最適な照明角度を設定できる。   In the invention of claim 4, when there are a plurality of similar maximum values in the defect evaluation value for each illumination angle, the illumination angle optimal for defect inspection can be set particularly accurately.

従って、本発明によれば、検査レシピの設定に際して、所望する検査感度が得られるまで検査条件を変え、検査の実行とその結果の観察の繰返し作業を行わなければならないという従来の工程を排し、検査レシピの設定にかかる労力を削減することが可能となる。また、定量的な手法を用いることで、ピッチやパターンが作業者に知られていないワークであっても精度良くムラを検出できる照明角度を設定でき、かつ作業者間の検査精度のばらつきを抑える事が可能となる。   Therefore, according to the present invention, when setting the inspection recipe, the inspection conditions are changed until the desired inspection sensitivity is obtained, and the conventional process of performing the inspection and observing the result is eliminated. It is possible to reduce the labor required for setting the inspection recipe. In addition, by using a quantitative method, it is possible to set an illumination angle that can detect unevenness accurately even for workpieces whose pitch and pattern are unknown to the operator, and to suppress variations in inspection accuracy among workers. Things will be possible.

以上、被検査物の周期性パターンの欠陥を画像検出するために、回折光によるコントラストの高い画像を検出する照明角度を容易に精度良く見出し、作業者間の検査精度のばらつきを抑えることができるという効果がある。   As described above, in order to detect an image of the periodic pattern defect of the inspection object, it is possible to easily find an illumination angle for detecting a high-contrast image by diffracted light with high accuracy, and to suppress variations in inspection accuracy among workers. There is an effect.

以下に本発明の第1の実施形態を説明する。   The first embodiment of the present invention will be described below.

図1には、本発明に係る第1の実施形態の照明角度を設定する方法を適用する欠陥検査装置のシステム構成例を示す。光照射手段としては光源1と出射した光を略平行光にする集光レンズ2を有する。回折光受光部としては、被検査物3から生ずる回折光を受光する光量センサー6、得られた回折光強度のデータを蓄積する回折光強度データ蓄積部9、得られたデータより欠陥の見易さを評価する欠陥評価値を計算し、検査に最適な照明角度を決定する回折光強度データ処理部10、得られた回折光強度データや決定された最適検査角度を表示するデータ表示部12を有する。また、本発明を適用するにあたっては検査に用いる画像検出器7が前記の光量センサー6と共にリニアスライダ8に設置され、平行移動によって受光側の光軸上に画像検出器7と光量センサー6とが切り替えられる様に配置されている形態が望ましい。この機構により、検査条件と同一条件での最適照明角度の探査が可能となる。画像検出器7は検出した画像を処理する画像処理部11と接続されており、照明角度設定後の欠陥検査においては、これらを用いて検査結果をデータ表示部12に提示する。   FIG. 1 shows a system configuration example of a defect inspection apparatus to which the method for setting the illumination angle according to the first embodiment of the present invention is applied. The light irradiating means includes a light source 1 and a condenser lens 2 that makes the emitted light substantially parallel. As the diffracted light receiving unit, a light quantity sensor 6 that receives diffracted light generated from the object 3 to be inspected, a diffracted light intensity data accumulating unit 9 for accumulating data of the obtained diffracted light intensity, and an easier to see defect from the obtained data A diffracted light intensity data processing unit 10 that calculates a defect evaluation value for evaluating the thickness and determines an optimal illumination angle for inspection, and a data display unit 12 that displays the obtained diffracted light intensity data and the determined optimal inspection angle. Have. In applying the present invention, the image detector 7 used for the inspection is installed on the linear slider 8 together with the light quantity sensor 6, and the image detector 7 and the light quantity sensor 6 are arranged on the optical axis on the light receiving side by parallel movement. It is desirable to have a configuration in which they can be switched. With this mechanism, it is possible to search for the optimum illumination angle under the same conditions as the inspection conditions. The image detector 7 is connected to an image processing unit 11 that processes the detected image. In the defect inspection after setting the illumination angle, the inspection result is presented to the data display unit 12 using these.

図1に示すように、被検査物3は、スリット13aのパターンが、一定である遮光部13bの幅で配列している周期性パターン13を有している。1つのスリット13aの幅を、周期性パターンの間隔4とも云う。また、スリット13aと遮光部13bとが繰り返される最小の間隔(1つのスリット13aの幅と1つの遮光部13bの幅とを加算した値)を、周期性パターンの一周期の長さ5とも云う。   As shown in FIG. 1, the inspection object 3 has a periodic pattern 13 in which the pattern of the slits 13a is arranged with a constant width of the light shielding portion 13b. The width of one slit 13 a is also referred to as a periodic pattern interval 4. Further, the minimum interval (a value obtained by adding the width of one slit 13a and the width of one light shielding portion 13b) at which the slit 13a and the light shielding portion 13b are repeated is also referred to as a length 5 of one period of the periodic pattern. .

以上、図1に示す欠陥検査装置の構成を用いて照明角度設定方法の実施の形態ついて図2に従って説明する。   The embodiment of the illumination angle setting method using the configuration of the defect inspection apparatus shown in FIG. 1 will be described with reference to FIG.

図1に示す光源1から出射された光は、集光レンズ2で略平行光とし周期性パターンを持つ被検査物3へ照明する。光源はハロゲン光、メタルハライド光、LED光、キセノン
光などを用いる。
The light emitted from the light source 1 shown in FIG. 1 is made into substantially parallel light by the condenser lens 2 and illuminates the inspection object 3 having a periodic pattern. As the light source, halogen light, metal halide light, LED light, xenon light, or the like is used.

被検査物3に照射された光は周期性パターン13の周期性パターンの間隔4と周期性パターンの一周期の長さ5との寸法に依存した回折光を生じる。この回折光は光量センサー6により受光され、回折光強度として検出される。この回折光強度の測定を、光の照明角度14を一定量ずつ変化させ、その都度行い(S201)、各々の照明角度ごとの回折光強度のデータを回折光データ蓄積部9に蓄積する(S202)。   The light irradiated on the inspection object 3 generates diffracted light depending on the dimensions of the periodic pattern interval 4 of the periodic pattern 13 and the length 5 of one period of the periodic pattern. This diffracted light is received by the light quantity sensor 6 and detected as diffracted light intensity. The measurement of the diffracted light intensity is performed each time the light illumination angle 14 is changed by a certain amount (S201), and the diffracted light intensity data for each illumination angle is accumulated in the diffracted light data storage unit 9 (S202). ).

以上のようにして蓄積されたデータを用いて、回折光強度データ処理部10において、照明角度ごとの欠陥評価値を計算し(S203)、後に照明角度ごとの欠陥評価値を基に検査に用いる照明角度を選択し決定する(S204)。   Using the data accumulated as described above, the diffracted light intensity data processing unit 10 calculates a defect evaluation value for each illumination angle (S203), and later uses it for inspection based on the defect evaluation value for each illumination angle. An illumination angle is selected and determined (S204).

ここで、欠陥評価値を計算するステップ(S203)について説明する。図3は所定の波長域における照明角度と回折光強度の関係を模式的に示したものである。横軸に照射角度、縦軸に回折光強度をとる。回折光強度15は正常部における回折光強度を示し、回折光強度16は周期性パターンの間隔4及び周期性パターンの一周期の長さ5に欠陥が生じた欠陥部における回折光強度を示す。所定の照明角度において画像を検出した時、その照明角度における正常部からの回折光強度15および欠陥部からの回折光強度16に示される回折光強度の差が画像の正常部と欠陥部のコントラストとして現れる。例えば図3に示す照明角度17、照明角度18、および照明角度19の様に、回折光強度がピークより小さく0より大きい角度では、正常部と欠陥部との回折光強度の差が大きく、正常部と欠陥部のコントラストが高いことが望める。   Here, the step (S203) of calculating the defect evaluation value will be described. FIG. 3 schematically shows the relationship between the illumination angle and the diffracted light intensity in a predetermined wavelength region. The horizontal axis represents the irradiation angle, and the vertical axis represents the diffracted light intensity. The diffracted light intensity 15 indicates the diffracted light intensity in the normal part, and the diffracted light intensity 16 indicates the diffracted light intensity in the defect part in which the defect occurs in the interval 4 of the periodic pattern and the length 5 of one period of the periodic pattern. When an image is detected at a predetermined illumination angle, the difference between the diffracted light intensity 15 indicated by the diffracted light intensity 15 from the normal portion and the diffracted light intensity 16 from the defective portion at the illumination angle is the contrast between the normal portion and the defective portion of the image. Appears as For example, when the diffracted light intensity is smaller than the peak and larger than 0 as in the illumination angle 17, the illumination angle 18, and the illumination angle 19 shown in FIG. 3, the difference in the diffracted light intensity between the normal part and the defective part is large and normal. It can be expected that the contrast between the portion and the defective portion is high.

欠陥検査においては画像内の検査対象部の明るさが、設定した標準値に収まるように照明光の光量ないしは画像検出器の設定を調整する。例えば、画像検出器7にCCDカメラを用い、そのダイナミックレンジを考慮する場合を図4の(a)から(c)を用いて説明する。図4の(a)、(b)、(c)はそれぞれ図3に示す照明角度17、照明角度18、照明角度19におけるCCDダイナミックレンジ20内での正常部の光強度21と欠陥部の光強度22とを模式的に表した図である。各照明角度において、正常部の光強度21が標準値になるように調整した時、照明角度17より照明角度18ないしは照明角度19の方が、正常部と欠陥部との強度比率により光強度差23が大きく出る。つまり、検査画像において光量の高い照明角度17より照明角度18ないしは照明角度19の方が正常部と欠陥部のコントラストが高い画像が得られる。   In the defect inspection, the amount of illumination light or the setting of the image detector is adjusted so that the brightness of the inspection target portion in the image falls within the set standard value. For example, a case where a CCD camera is used as the image detector 7 and the dynamic range thereof is taken into account will be described with reference to FIGS. 4 (a), 4 (b), and 4 (c) respectively show the light intensity 21 of the normal part and the light of the defective part in the CCD dynamic range 20 at the illumination angle 17, the illumination angle 18, and the illumination angle 19 shown in FIG. It is the figure which represented intensity | strength 22 typically. When the light intensity 21 of the normal part is adjusted to a standard value at each illumination angle, the illumination angle 18 or the illumination angle 19 is different from the illumination angle 17 by the intensity ratio between the normal part and the defective part. 23 comes out greatly. That is, in the inspection image, an image in which the illumination angle 18 or the illumination angle 19 has a higher contrast between the normal part and the defective part than the illumination angle 17 having a high light amount is obtained.

よって、下式数1で表される、正常部の回折光強度Iと欠陥部の回折光強度I’の差の絶対値を、正常部の回折光強度Iで規格化した数値を、検査画像における正常部と欠陥部とのコントラストの評価値として用いることができる。この検査画像における正常部と欠陥部とのコントラストの評価値は、欠陥の見易さを評価するものなので、以後、この評価値を欠陥評価値とする。   Therefore, a numerical value obtained by normalizing the absolute value of the difference between the diffracted light intensity I of the normal part and the diffracted light intensity I ′ of the defective part expressed by the following formula 1 with the diffracted light intensity I of the normal part is obtained as an inspection image. Can be used as an evaluation value of the contrast between the normal part and the defective part. Since the evaluation value of the contrast between the normal part and the defect part in this inspection image is for evaluating the visibility of the defect, this evaluation value is hereinafter referred to as a defect evaluation value.

Figure 2008076827
本実施形態では図1中の光量センサー6により取得した回折光強度を正常部の回折光強度として用い、この取得した回折光強度を基に欠陥部の回折光強度の代用値を以下のように算出することで、数1による欠陥評価値を計算する。
Figure 2008076827
In the present embodiment, the diffracted light intensity acquired by the light quantity sensor 6 in FIG. 1 is used as the diffracted light intensity of the normal part, and the substitute value of the diffracted light intensity of the defect part is based on the acquired diffracted light intensity as follows. By calculating, the defect evaluation value according to Equation 1 is calculated.

欠陥部の回折光強度の代用値の算出方法について図5を用いて説明する。例えば、検査対象欠陥が非常に小さいことを考慮すると、正常部の回折光強度と欠陥部の回折光強度の差は非常に小さいものとなり、欠陥部の回折光強度は正常部の回折光強度を照明角度軸方向に微小量平行シフトした値で近似できる。この模式図を図5に示す。回折光強度24(実線)は正常部における回折光強度、回折光強度25は欠陥部における回折光強度、回折
光強度26は正常部の回折光強度を平行シフトした欠陥部の回折光強度の代用値を示す。欠陥部の回折光強度25(破線)と欠陥部の回折光強度の代用値26(一点鎖線)は非常に近い分布となる。
A method for calculating the substitute value of the diffracted light intensity of the defect portion will be described with reference to FIG. For example, considering that the defect to be inspected is very small, the difference between the diffracted light intensity of the normal part and the diffracted light intensity of the defective part is very small, and the diffracted light intensity of the defective part is the same as the diffracted light intensity of the normal part. It can be approximated by a value shifted in parallel by a minute amount in the direction of the illumination angle axis. This schematic diagram is shown in FIG. The diffracted light intensity 24 (solid line) is the diffracted light intensity in the normal part, the diffracted light intensity 25 is the diffracted light intensity in the defective part, and the diffracted light intensity 26 is a substitute for the diffracted light intensity in the defective part obtained by parallel shifting the diffracted light intensity in the normal part. Indicates the value. The diffracted light intensity 25 (broken line) of the defective portion and the substitute value 26 (one-dot chain line) of the diffracted light intensity of the defective portion are very close to each other.

つまり、m番目に測定された照明角度θmにおける回折光強度データをImとした時、照明角度θm+nにおける回折光強度データIm+nを照明角度θmにおける欠陥部の回折光強度として代用し、前記数1を用いて照明角度ごとの欠陥評価値が計算できる。この時、欠陥部の回折光強度を計算するためのシフト量(すなわち前記照明角度θm+nとθmの差)は、実証試験により求めた値を使用する。 That is, when the diffracted light intensity data at the m-th measured illumination angle θ m is I m , the diffracted light intensity data I m + n at the illumination angle θ m + n is used as the diffracted light of the defect portion at the illumination angle θ m . Instead of the intensity, the defect evaluation value for each illumination angle can be calculated using Equation (1). At this time, as a shift amount for calculating the diffracted light intensity of the defect portion (that is, the difference between the illumination angles θ m + n and θ m ), a value obtained by a verification test is used.

この時の欠陥評価値の算出においては、使用する回折光強度データにスムージング処理を行い、ノイズ除去を行ったものを用いても良い。また、欠陥部の回折光強度の代用値の算出に、別の算出方法を用いても良い。   In calculating the defect evaluation value at this time, the diffracted light intensity data to be used may be smoothed to remove noise. Further, another calculation method may be used for calculating the substitute value of the diffracted light intensity of the defective portion.

次に照明角度を決定するステップ(S204)について図6を用いて説明する。図6中の欠陥評価値27は前記手法により計算された欠陥評価値を示す。計算された照明角度ごとの欠陥評価値が最大値を示す照明角度(図6中の照明角度28)を、最適検査角度として設定する。   Next, the step of determining the illumination angle (S204) will be described with reference to FIG. The defect evaluation value 27 in FIG. 6 indicates the defect evaluation value calculated by the above method. The illumination angle at which the calculated defect evaluation value for each illumination angle shows the maximum value (illumination angle 28 in FIG. 6) is set as the optimum inspection angle.

以上のように本発明の第1の実施形態では照明角度を変化させ、各照明角度における回折光強度データを蓄積し、その回折光強度データを基に欠陥評価値を計算して、欠陥検査に最適な照明角度を選択する。   As described above, in the first embodiment of the present invention, the illumination angle is changed, the diffracted light intensity data at each illumination angle is accumulated, the defect evaluation value is calculated based on the diffracted light intensity data, and the defect inspection is performed. Select the optimal lighting angle.

本発明に係る第1の実施形態では検査レシピの設定に際して、所望する検査感度が得られるまで検査条件を変え、検査の実行とその結果の観察の繰返し作業を行わなければならないという従来必要であった工程を排し、検査レシピの設定にかかる労力を削減することが可能となる。また、定量的な手法を用いることで、ピッチやパターンが作業者に知られていないワークであっても精度良くムラを検出できる照明角度を設定でき、かつ作業者間の検査精度のばらつきを抑えることが可能となる。   In the first embodiment according to the present invention, when setting an inspection recipe, it has been conventionally necessary to change inspection conditions until a desired inspection sensitivity is obtained, and to repeatedly perform inspection and observation of the results. It is possible to reduce the labor required for setting the inspection recipe. In addition, by using a quantitative method, it is possible to set an illumination angle that can detect unevenness accurately even for workpieces whose pitch and pattern are unknown to the operator, and to suppress variations in inspection accuracy among workers. It becomes possible.

次に本発明の第2の実施形態について図1と図2を用いて説明する。本発明の第2の実施形態のシステム構成の概略は図1と同様である。但し、本発明の第2の実施形態においては、光量センサー6に分光器を用いる。   Next, a second embodiment of the present invention will be described with reference to FIGS. The outline of the system configuration of the second embodiment of the present invention is the same as that shown in FIG. However, in the second embodiment of the present invention, a spectroscope is used for the light quantity sensor 6.

本発明の第2の実施形態ついて図2に従って説明する。図1に示す光源1から出射された光は、集光レンズ2で略平行光とし周期性パターンを持つ被検査物3へ照明する。被検査物3に照射された光は周期性パターン13の周期性パターンの間隔4と周期性パターンの一周期の長さ5との寸法に依存した回折光を生じ、この回折光は分光器である光量センサー6により分光され、波長ごとに回折光強度として検出される。この回折光強度の測定を、光の照明角度14を一定量ずつ変化させ、その都度行い(S201)、各々の照明角度ごとの各波長での回折光強度のデータを回折光データ蓄積部9に蓄積する(S202)。   A second embodiment of the present invention will be described with reference to FIG. The light emitted from the light source 1 shown in FIG. 1 is made into substantially parallel light by the condenser lens 2 and illuminates the inspection object 3 having a periodic pattern. The light irradiated onto the inspection object 3 generates diffracted light depending on the dimension of the periodic pattern interval 4 of the periodic pattern 13 and the length 5 of one period of the periodic pattern. The light is split by a certain light quantity sensor 6 and detected as the diffracted light intensity for each wavelength. The measurement of the diffracted light intensity is performed each time the light illumination angle 14 is changed by a certain amount (S201), and the diffracted light intensity data at each wavelength for each illumination angle is stored in the diffracted light data storage unit 9. Accumulate (S202).

以上のようにして蓄積されたデータを用いて、回折光強度データ処理部10において照明角度ごとの欠陥評価値を計算する(S203)。   Using the data accumulated as described above, the diffracted light intensity data processing unit 10 calculates a defect evaluation value for each illumination angle (S203).

本発明の第2の実施形態における欠陥評価値を計算するステップ(S203)について図7を用いて説明する。本発明の第2の実施形態における欠陥評価値を計算するのに用いる各照明角度における回折光強度31として、各照明角度における各波長での回折光強度29に、各波長に対応した一連の重み付け係数30をかけあわせ、その値の合計値を用い
る。すなわち、29および31に示すように、照明角度θmにおける波長λnでの値をPmnとして、波長λnにおける重み付け係数をCnとすると、31に示す照明角度θmにおける透過回折光強度の評価値Imは以下の数2で計算される。
The step (S203) of calculating the defect evaluation value in the second embodiment of the present invention will be described with reference to FIG. As the diffracted light intensity 31 at each illumination angle used to calculate the defect evaluation value in the second embodiment of the present invention, a series of weights corresponding to each wavelength is applied to the diffracted light intensity 29 at each wavelength at each illumination angle. Multiply by a factor of 30 and use the sum of the values. That is, as shown in 29 and 31, when the value at the wavelength λ n at the illumination angle θ m is P mn and the weighting coefficient at the wavelength λ n is C n , the transmitted diffracted light intensity at the illumination angle θ m shown at 31 The evaluation value I m is calculated by the following formula 2.

Figure 2008076827
この時の一連の重み付け係数30には欠陥検査装置の光学機器の波長特性に基づいた値を用いても良い。光学機器の波長特性とは、具体的には欠陥検査時に使用する波長変換フィルターの透過特性や、欠陥検査に用いる画像検出機器の波長感度特性等を指す。また、用意される一連の重み付け係数は複数存在しても良く、照明角度と回折光強度の関係を計算する直前においてそれらの中から任意に選択しても良い。
Figure 2008076827
The series of weighting coefficients 30 at this time may use values based on the wavelength characteristics of the optical equipment of the defect inspection apparatus. The wavelength characteristic of the optical device specifically refers to the transmission characteristic of the wavelength conversion filter used during defect inspection, the wavelength sensitivity characteristic of the image detection device used for defect inspection, and the like. Further, a plurality of prepared weighting coefficients may exist, and may be arbitrarily selected from them immediately before calculating the relationship between the illumination angle and the diffracted light intensity.

以上のようにして得られた照明角度毎の回折光強度を用いて、第1の実施形態と同様の手法で照明角度ごとの欠陥検査評価値を計算する。なお、欠陥検査に最適な照明角度を選択するステップも第1の実施形態と同様の手法で行う。   Using the diffracted light intensity for each illumination angle obtained as described above, the defect inspection evaluation value for each illumination angle is calculated in the same manner as in the first embodiment. Note that the step of selecting the optimum illumination angle for defect inspection is also performed in the same manner as in the first embodiment.

以上のように本発明に係る第2の実施形態では照明角度を変化させ、各照明角度における波長ごとの回折光強度データを蓄積し、その後照明角度と回折光強度の関係を計算し、その照明角度毎の回折光強度のデータを用いて照明角度ごとの欠陥評価値を計算し、欠陥検査に最適な照明角度を選択する。   As described above, in the second embodiment according to the present invention, the illumination angle is changed, the diffracted light intensity data for each wavelength at each illumination angle is accumulated, the relationship between the illumination angle and the diffracted light intensity is calculated, and the illumination A defect evaluation value for each illumination angle is calculated using the diffracted light intensity data for each angle, and an optimum illumination angle for defect inspection is selected.

また本発明に係る第2の実施形態は、被検査物の回折光強度データを蓄積することによって、複数の波長に関する光学条件に対して検査を行う場合でも、蓄積データを基に速やかに最適な検査照明角度を再選択することができる。これを図8に従って説明する。なお、複数の波長に関する光学条件に対して検査を行う場合とは、具体的には、波長変換機能等を用いて光源からの出射光の波長制限を複数通りで検査する場合等のことを指す。   In addition, the second embodiment according to the present invention accumulates diffracted light intensity data of an object to be inspected, so that even when an inspection is performed for optical conditions related to a plurality of wavelengths, the optimum data can be quickly obtained based on the accumulated data. The inspection illumination angle can be reselected. This will be described with reference to FIG. Note that the case where the inspection is performed with respect to the optical conditions related to a plurality of wavelengths specifically refers to a case where the wavelength limitation of the light emitted from the light source is inspected in a plurality of ways by using a wavelength conversion function or the like. .

所定の被検査物に照明角度を変えながら照明を行い、波長ごとの回折光強度を測定し(S801)、各照明角度における波長ごとの回折光強度データを蓄積する(S802)。これらのステップを終了した後に、予定される検査光学条件に基づいた重み付け係数を使用し、照明角度ごとの回折光強度を計算し(S803)、得られた回折光強度データより照明角度ごとの欠陥評価値を計算して検査照明角度を決定する(S804)。これらのステップの後に、他に検査する検査光学条件が無いかを判断し(S805)、有るならば第2の光学条件に基づいた波長ごとの重み付け係数を選択する(S806)。そして新しく選択した重み付け係数を用いて第2の照明角度ごとの回折光強度を計算し(S803)、第2の検査照明角度を決定し(S804)、再び他の光学検査条件が無いかを判断する(S805)。この様に重み付け係数を変えてステップS803、S804を繰り返すことにより、1回の回折光強度データの測定で、複数の検査光学条件に対してそれぞれの条件での最適な照明角度を求めることが出来る。   Illumination is performed on a predetermined inspection object while changing the illumination angle, the diffracted light intensity for each wavelength is measured (S801), and diffracted light intensity data for each wavelength at each illumination angle is accumulated (S802). After completing these steps, the weighting coefficient based on the planned inspection optical conditions is used to calculate the diffracted light intensity for each illumination angle (S803), and the defect for each illumination angle is obtained from the obtained diffracted light intensity data. The evaluation value is calculated to determine the inspection illumination angle (S804). After these steps, it is determined whether there are other inspection optical conditions to be inspected (S805), and if there are, the weighting coefficient for each wavelength based on the second optical condition is selected (S806). Then, the diffracted light intensity for each second illumination angle is calculated using the newly selected weighting coefficient (S803), the second inspection illumination angle is determined (S804), and it is determined again whether there are other optical inspection conditions. (S805). In this way, by changing the weighting coefficient and repeating steps S803 and S804, the optimum illumination angle under each condition can be obtained for a plurality of inspection optical conditions by measuring the diffracted light intensity data once. .

次に本発明に係る第3の実施形態について説明する。   Next, a third embodiment according to the present invention will be described.

本発明の第3の実施形態においては照明角度毎の回折光強度の取得を上記第1の実施形態ないしは第2の実施形態と同様の手法で取得する。これにより得られた回折光強度のデータを基に、補間処理を行うことで照明角度の変化幅が細かい回折光強度データを得る。この補間処理後の回折光強度データを用いて、上記照明角度ごとの欠陥評価値を算出し、上記第1の実施形態ないしは第2の実施形態と同様の手法で欠陥の検査に最適な照明角度を選択する。   In the third embodiment of the present invention, the acquisition of the diffracted light intensity for each illumination angle is acquired by the same method as in the first or second embodiment. Based on the diffracted light intensity data thus obtained, interpolation processing is performed to obtain diffracted light intensity data with a fine variation in illumination angle. Using the diffracted light intensity data after the interpolation processing, a defect evaluation value for each illumination angle is calculated, and an illumination angle optimum for defect inspection is obtained in the same manner as in the first or second embodiment. Select.

以上のように本発明の第3の実施形態では照明角度を変化させ、各照明角度における回折光強度データを蓄積し、その後回折光強度データに補間処理を行い、補間処理後の回折
光強度データを用いて照明角度ごとの欠陥評価値を計算し、欠陥検査に最適な照明角度を選択する。
As described above, in the third embodiment of the present invention, the illumination angle is changed, the diffracted light intensity data at each illumination angle is accumulated, the interpolation process is performed on the diffracted light intensity data, and the diffracted light intensity data after the interpolation process is performed. Is used to calculate the defect evaluation value for each illumination angle, and the optimum illumination angle for defect inspection is selected.

本発明に係る第3の実施形態では補間処理を行うことにより、より詳細な照明角度ごとの欠陥評価値を計算でき、精度高く欠陥検査に最適な証明角度を決定できる。   In the third embodiment according to the present invention, by performing the interpolation process, a more detailed defect evaluation value for each illumination angle can be calculated, and a proof angle optimal for defect inspection can be determined with high accuracy.

次に本発明に係る第4の実施形態について説明する。   Next, a fourth embodiment according to the present invention will be described.

本発明の第4の実施形態においては回折光強度データの取得、照明角度ごとの欠陥評価値の計算を上記第1の実施形態、第2の実施形態ないしは第3の実施形態と同様の手法で行う。   In the fourth embodiment of the present invention, the diffracted light intensity data is acquired and the defect evaluation value for each illumination angle is calculated in the same manner as in the first embodiment, the second embodiment, or the third embodiment. Do.

本発明の第4の実施形態では、検査照明角度の決定ステップ(図2中のS204)において欠陥評価値の正の極値を示す照明角度を複数個検出し、これらの照明角度を照明角度候補とする。次に、各照明角度候補において、検査時と同条件の撮像を行う。以上の様にして得られた撮像画像の比較を行い、最も正常部と欠陥部のコントラストが高い画像を得られた照明角度を、欠陥検査に最適な照明角度として設定する。なお、上記撮像画像の比較は画像を基にした数値比較が望ましい。   In the fourth embodiment of the present invention, in the inspection illumination angle determination step (S204 in FIG. 2), a plurality of illumination angles indicating positive extreme values of defect evaluation values are detected, and these illumination angles are used as illumination angle candidates. And Next, in each illumination angle candidate, imaging is performed under the same conditions as in the inspection. The captured images obtained as described above are compared, and the illumination angle at which an image having the highest contrast between the normal part and the defective part is obtained is set as the optimum illumination angle for defect inspection. Note that the comparison of the captured images is preferably a numerical comparison based on the images.

以上のように本発明の第4の実施形態では照明角度を変化させ、各照明角度における回折光強度データを蓄積し、その後欠陥評価値を計算し、欠陥評価値より得た複数の照明角度候補での撮像画像の比較により欠陥検査に最適な照明角度を選択する。   As described above, in the fourth embodiment of the present invention, the illumination angle is changed, the diffracted light intensity data at each illumination angle is accumulated, the defect evaluation value is calculated thereafter, and a plurality of illumination angle candidates obtained from the defect evaluation value The optimum illumination angle for the defect inspection is selected by comparing the picked-up images.

本発明の第4の実施形態は、計算された照明角度ごとの欠陥評価値において、同程度の極大値が複数存在する場合に、特に精度良く欠陥検査に最適な照明角度を決定することができる。   The fourth embodiment of the present invention can determine the optimal illumination angle for defect inspection particularly accurately when there are a plurality of similar maximum values in the calculated defect evaluation values for each illumination angle. .

本発明によれば、フォトマスクやウェハ等の矩形周期性パターンを有する製品における検査装置おいて検査レシピ設定作業の労力の削減が実行でき、精度良く欠陥検査に最適な照明角度を設定することができる。また、作業者間の検査精度のばらつきをおさえることができる。   According to the present invention, labor of inspection recipe setting work can be reduced in an inspection apparatus for a product having a rectangular periodic pattern such as a photomask or a wafer, and an optimal illumination angle can be set with high accuracy for defect inspection. it can. In addition, variation in inspection accuracy among workers can be suppressed.

本発明に係る欠陥検査装置のシステム構成の例を示す図である。It is a figure which shows the example of the system configuration | structure of the defect inspection apparatus which concerns on this invention. 本発明に係る照明角度決定のフローを示す図である。It is a figure which shows the flow of the illumination angle determination which concerns on this invention. 所定の波長域における照明角度と回折光強度との関係を模式的に示す図である。It is a figure which shows typically the relationship between the illumination angle in a predetermined wavelength range, and diffracted light intensity. (a)、(b)、(c)はそれぞれ図3に示す照明角度17、照明角度18、照明角度19におけるCCDダイナミックレンジ20内での正常部の光強度21と欠陥部の光強度22とを模式的に表した図である。(A), (b), and (c) are the light intensity 21 of the normal part and the light intensity 22 of the defective part in the CCD dynamic range 20 at the illumination angle 17, the illumination angle 18, and the illumination angle 19 shown in FIG. FIG. 欠陥部の回折光強度は正常部の回折光強度を照明角度軸方向に微小量平行シフトした値で近似できることを模式的に示す図である。It is a figure which shows typically that the diffracted light intensity of a defective part can be approximated by the value which shifted the diffracted light intensity of the normal part in the illumination angle axis direction by a minute amount parallel. 欠陥評価値と照明角度との関係を模式的に示す図である。It is a figure which shows typically the relationship between a defect evaluation value and an illumination angle. 光量センサーに分光器を用いた場合の回折光強度の計算方法を模式的に示す図である。It is a figure which shows typically the calculation method of the diffracted light intensity at the time of using a spectrometer for a light quantity sensor. 本発明に係る複数の光学条件においての照明角度決定のフローを示す図である。It is a figure which shows the flow of illumination angle determination in the some optical condition which concerns on this invention.

符号の説明Explanation of symbols

1…光源
2…集光レンズ
3…被検査物
4…周期性パターンの間隔
5…周期性パターンの一周期の長さ
6…光量センサー
7…画像検出器
8…リニアスライダ
9…回折光強度データ蓄積部
10…回折光強度データ処理部
11…画像処理部
12…データ表示部
13…周期性パターン
13a…スリット
13b…遮光部
14…照明角度
15、16…回折光強度
17、18、19…照明角度
20…ダイナミックレンジ
21、22…光強度
23…光強度差
24、25…回折光強度
26…回折光強度代用値
27…欠陥評価値
28…照明角度
29…各照明角度における各波長での回折光強度を表すデータテーブル
30…各波長に対応した一連の重み付け係数を表すデータテーブル
31…各照明角度における回折強度を表すデータテーブル
DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Condensing lens 3 ... Test object 4 ... Periodic pattern interval 5 ... Period length of one period 6 ... Light quantity sensor 7 ... Image detector 8 ... Linear slider 9 ... Diffracted light intensity data Accumulation unit 10 ... Diffraction light intensity data processing unit 11 ... Image processing unit 12 ... Data display unit 13 ... Periodic pattern 13a ... Slit 13b ... Light shielding unit 14 ... Illumination angles 15, 16 ... Diffraction light intensity 17, 18, 19 ... Illumination Angle 20 ... Dynamic range 21, 22 ... Light intensity 23 ... Light intensity difference 24, 25 ... Diffraction light intensity 26 ... Diffraction light intensity substitute value 27 ... Defect evaluation value 28 ... Illumination angle 29 ... Diffraction at each wavelength at each illumination angle Data table 30 representing light intensity ... Data table 31 representing a series of weighting coefficients corresponding to each wavelength ... Data table representing diffraction intensity at each illumination angle

Claims (4)

被検査物が持つ周期性パターンの欠陥検査装置にて行われる方法であって、
被検査物に光源からの光を略平行光として照射することで生じる回折光の測定を複数の照明角度で行い、各照明角度での回折光強度を取得する回折光強度データ取得ステップと、
照明角度ごとの回折光強度データを蓄積するデータ蓄積ステップと、
照明角度ごとの回折光強度データを用いて、照明角度ごとの欠陥の見易さを評価する欠陥評価値を計算する欠陥評価値計算ステップと、
欠陥評価値が最大値となる照明角度を設定する照明角度決定ステップと、
を含む欠陥検査装置における照明角度設定方法。
A method performed by a defect inspection apparatus for periodic patterns of an object to be inspected,
A diffracted light intensity data acquisition step that performs measurement of diffracted light generated by irradiating light from a light source as a substantially parallel light onto an inspection object at a plurality of illumination angles, and acquires diffracted light intensity at each illumination angle;
A data accumulation step for accumulating diffracted light intensity data for each illumination angle;
Using the diffracted light intensity data for each illumination angle, a defect evaluation value calculation step for calculating a defect evaluation value for evaluating the visibility of the defect for each illumination angle,
An illumination angle determination step for setting an illumination angle at which the defect evaluation value is a maximum value;
An illumination angle setting method in a defect inspection apparatus including:
前記回折光強度データ取得ステップは、被検査物からの回折光の測定を分光測定で行って、各照明角度での波長毎の回折光強度データを取得し、
前記データ蓄積ステップは、各照明角度での波長毎の回折光強度データを蓄積し、
前記欠陥評価値計算ステップは、照明角度ごとの回折光強度データとして、各照明角度での波長毎の回折光強度に各波長に対応する重み付け係数を掛け合わせて積算したデータを用いて、照明角度ごとの欠陥の見易さを評価する欠陥評価値を計算する、
ことを特徴とする請求項1記載の欠陥検査装置における照明角度設定方法。
The diffracted light intensity data acquisition step performs measurement of the diffracted light from the inspection object by spectroscopic measurement, acquires diffracted light intensity data for each wavelength at each illumination angle,
The data accumulation step accumulates diffracted light intensity data for each wavelength at each illumination angle,
In the defect evaluation value calculation step, as the diffracted light intensity data for each illumination angle, the data obtained by multiplying the diffracted light intensity for each wavelength at each illumination angle by multiplying by a weighting coefficient corresponding to each wavelength is used to calculate the illumination angle. Calculate the defect evaluation value to evaluate the legibility of each defect,
The illumination angle setting method in the defect inspection apparatus according to claim 1.
前記欠陥評価値計算ステップは、照明角度ごとの回折光強度データに補間処理を行い、補間処理後の照明角度ごとの回折光強度データを用いて、照明角度ごとの欠陥の見易さを評価する欠陥評価値を計算することを特徴とする請求項1または請求項2記載の欠陥検査装置における照明角度設定方法。   The defect evaluation value calculation step performs an interpolation process on the diffracted light intensity data for each illumination angle, and evaluates the visibility of the defect for each illumination angle using the diffracted light intensity data for each illumination angle after the interpolation process. The illumination angle setting method in the defect inspection apparatus according to claim 1, wherein a defect evaluation value is calculated. 前記照明角度決定ステップは、欠陥評価値が正の極値を取る一つないしは複数の照明角度候補を検出し、それらの該照明角度候補で撮像を行って得られた撮像画像の比較に基づいて照明角度を設定することを特徴とする請求項1から3いずれかに記載の欠陥検査装置における照明角度設定方法。   The illumination angle determination step is based on comparison of captured images obtained by detecting one or a plurality of illumination angle candidates whose defect evaluation value has a positive extreme value, and performing imaging with the illumination angle candidates. 4. An illumination angle setting method in a defect inspection apparatus according to claim 1, wherein the illumination angle is set.
JP2006257028A 2006-09-22 2006-09-22 Illumination angle setting method in defect inspection apparatus Expired - Fee Related JP4946306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006257028A JP4946306B2 (en) 2006-09-22 2006-09-22 Illumination angle setting method in defect inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257028A JP4946306B2 (en) 2006-09-22 2006-09-22 Illumination angle setting method in defect inspection apparatus

Publications (2)

Publication Number Publication Date
JP2008076827A true JP2008076827A (en) 2008-04-03
JP4946306B2 JP4946306B2 (en) 2012-06-06

Family

ID=39348938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257028A Expired - Fee Related JP4946306B2 (en) 2006-09-22 2006-09-22 Illumination angle setting method in defect inspection apparatus

Country Status (1)

Country Link
JP (1) JP4946306B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148210A (en) * 2000-11-13 2002-05-22 Dainippon Printing Co Ltd Method and apparatus for inspecting irregularity of periodic pattern
JP2002303586A (en) * 2001-04-03 2002-10-18 Hitachi Ltd Defect inspection method and defect inspection device
JP2002350361A (en) * 2001-05-29 2002-12-04 Dainippon Printing Co Ltd Method and apparatus for testing unevenness of periodic pattern
JP2003014657A (en) * 2001-07-03 2003-01-15 Dainippon Printing Co Ltd Method and apparatus for inspecting cyclic pattern
JP2004144764A (en) * 1998-09-18 2004-05-20 Hitachi Ltd Method and apparatus for inspecting defects
JP2004264276A (en) * 2003-01-06 2004-09-24 Nikon Corp Surface inspection device and surface inspection method
JP2005147918A (en) * 2003-11-18 2005-06-09 Toppan Printing Co Ltd Periodic pattern irregularity inspection device
JP2005274156A (en) * 2004-03-22 2005-10-06 Olympus Corp Flaw inspection device
JP2006170664A (en) * 2004-12-13 2006-06-29 Hoya Corp Irregular flaw inspection method, irregular flaw inspection system and manufacturing method of photomask
JP2006208084A (en) * 2005-01-26 2006-08-10 Toppan Printing Co Ltd Inspection device for irregularities in cyclic pattern
JP2007003376A (en) * 2005-06-24 2007-01-11 Toppan Printing Co Ltd Irregularity inspection device of cyclic pattern and cyclic pattern imaging method
JP2007256145A (en) * 2006-03-24 2007-10-04 Toppan Printing Co Ltd Illumination angle setting method in flaw inspection device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144764A (en) * 1998-09-18 2004-05-20 Hitachi Ltd Method and apparatus for inspecting defects
JP2002148210A (en) * 2000-11-13 2002-05-22 Dainippon Printing Co Ltd Method and apparatus for inspecting irregularity of periodic pattern
JP2002303586A (en) * 2001-04-03 2002-10-18 Hitachi Ltd Defect inspection method and defect inspection device
JP2002350361A (en) * 2001-05-29 2002-12-04 Dainippon Printing Co Ltd Method and apparatus for testing unevenness of periodic pattern
JP2003014657A (en) * 2001-07-03 2003-01-15 Dainippon Printing Co Ltd Method and apparatus for inspecting cyclic pattern
JP2004264276A (en) * 2003-01-06 2004-09-24 Nikon Corp Surface inspection device and surface inspection method
JP2005147918A (en) * 2003-11-18 2005-06-09 Toppan Printing Co Ltd Periodic pattern irregularity inspection device
JP2005274156A (en) * 2004-03-22 2005-10-06 Olympus Corp Flaw inspection device
JP2006170664A (en) * 2004-12-13 2006-06-29 Hoya Corp Irregular flaw inspection method, irregular flaw inspection system and manufacturing method of photomask
JP2006208084A (en) * 2005-01-26 2006-08-10 Toppan Printing Co Ltd Inspection device for irregularities in cyclic pattern
JP2007003376A (en) * 2005-06-24 2007-01-11 Toppan Printing Co Ltd Irregularity inspection device of cyclic pattern and cyclic pattern imaging method
JP2007256145A (en) * 2006-03-24 2007-10-04 Toppan Printing Co Ltd Illumination angle setting method in flaw inspection device

Also Published As

Publication number Publication date
JP4946306B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP5178079B2 (en) Defect inspection method and apparatus
TWI436051B (en) A pattern inspection apparatus, a pattern inspection method, and a recording medium in which a program is recorded
US9222897B2 (en) Method for characterizing a feature on a mask and device for carrying out the method
US20060291706A1 (en) Method of extracting intensity data from digitized image
TWI497032B (en) Defect inspection apparatus
WO2010050488A1 (en) Defect inspection device and defect inspection method
WO2012035852A1 (en) Defect inspection method and device thereof
KR20110086737A (en) Dark-field defect inspection method, dark-field defect inspection device, aberration analysis method and aberration analysis device
US9841385B2 (en) Pattern characteristic-detection apparatus for photomask and pattern characteristic-detection method for photomask
JP2004279244A (en) Pattern inspection device
JP2008190872A (en) Surface defectiveness detector, surface defectiveness detecting method and program
US6735333B1 (en) Pattern inspection apparatus
JP6813316B2 (en) Deterioration information acquisition device, deterioration information acquisition system, deterioration information acquisition method and deterioration information acquisition program
JP2008014696A (en) Image display device and method, and unevenness inspection device and method
JP2007256145A (en) Illumination angle setting method in flaw inspection device
JP4946306B2 (en) Illumination angle setting method in defect inspection apparatus
JP5017556B2 (en) Deformation measuring device, deformation measuring method, and deformation measuring program
JP2009109263A (en) Apparatus and method for inspection
JP6844976B2 (en) Deterioration information acquisition device, deterioration information acquisition system, deterioration information acquisition method and deterioration information acquisition program
JP4710366B2 (en) Infrared microscope
JP2010038759A (en) Surface flaw inspecting method, surface flaw inspecting device, steel plate manufacturing method and steel plate manufacturing apparatus
JP2006300615A (en) Visual examination device and visual examination method
JP5135899B2 (en) Periodic pattern unevenness inspection method and unevenness inspection apparatus
JP2009222611A (en) Inspection apparatus and inspection method
KR101385592B1 (en) Vision recognition method and system thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees