JP2008072862A - Power generation device, and power generation apparatus with the same - Google Patents

Power generation device, and power generation apparatus with the same Download PDF

Info

Publication number
JP2008072862A
JP2008072862A JP2006250639A JP2006250639A JP2008072862A JP 2008072862 A JP2008072862 A JP 2008072862A JP 2006250639 A JP2006250639 A JP 2006250639A JP 2006250639 A JP2006250639 A JP 2006250639A JP 2008072862 A JP2008072862 A JP 2008072862A
Authority
JP
Japan
Prior art keywords
power generation
coil
magnetostrictive material
bias magnet
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006250639A
Other languages
Japanese (ja)
Inventor
Toshinari Maeda
俊成 前田
Yasushi Murata
靖 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2006250639A priority Critical patent/JP2008072862A/en
Publication of JP2008072862A publication Critical patent/JP2008072862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide portable equipment with a power generation apparatus which generates power with higher efficiency. <P>SOLUTION: A power generation device includes a power generating means to induce electricity, a rectifying means to rectify the electricity induced by the power generating means, and an accumulating means of the electricity rectified by the rectifying means. The power generating means includes a bias magnet which is magnetized in two poles, a magnetostriction material, a compressing means, a closed magnetic path forming member, and a coil. The magnetostriction material changes magnetic permeability through a reverse magnetostrictive effect by applying force from an outside, and changes a flow of magnetic flux which is generated at one pole of the bias magnet. The compressing means is arranged between the bias magnet and the magnetostriction material, and applies periodic amplitude force to the magnetostriction material. The closed magnetic path forming member is arranged so that the magnetic flux flowing out of the magnetostriction material may be introduced to the other pole of the bias magnet. The coil is wound around the magnetostriction material or the closed magnetic path forming member. Such constitution is employed to supply the electricity induced by the power generating means to the rectifying means through a coil terminal of the coil. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、加えた力による機械エネルギーを電気エネルギーに変換する逆磁歪効果を利用した発電デバイス、およびそれを備えた発電装置に関する。   The present invention relates to a power generation device using an inverse magnetostriction effect that converts mechanical energy generated by applied force into electric energy, and a power generation apparatus including the power generation device.

従来の逆磁歪効果を利用した発電装置として、回転錘の運動により磁歪材に力を加えることで、磁歪材の端部に配置したバイアス磁石から発生した磁束の内、磁歪材を通る磁束の量を変化させ、その磁束量の変化により磁歪材に巻き廻したコイルに誘起される電流を利用することで、数[V]レベルの低電圧で多くの電流を発電することが出来る発電装置が知られている(例えば、特許文献1参照)。   As a conventional power generation device that uses the inverse magnetostrictive effect, the amount of magnetic flux that passes through the magnetostrictive material out of the magnetic flux generated from the bias magnet placed at the end of the magnetostrictive material by applying force to the magnetostrictive material by the movement of the rotating weight A power generator that can generate a large amount of current at a low voltage of several [V] is known by using the current induced in the coil wound around the magnetostrictive material by changing the amount of magnetic flux. (For example, refer to Patent Document 1).

図15、図16は、この従来の発電装置の構成例、及びこの発電装置に含まれる発電デバイスの一部を構成するコイル手段の構成を説明するための図面である。   FIG. 15 and FIG. 16 are drawings for explaining a configuration example of this conventional power generation apparatus and a configuration of coil means constituting a part of a power generation device included in this power generation apparatus.

図15に示す様に、従来の発電装置301は、低電圧駆動機器6と発電デバイス302を有し、この発電デバイス302で発電された電流を低電圧駆動機器6で駆動するように構成されている。   As shown in FIG. 15, the conventional power generation apparatus 301 includes a low voltage drive device 6 and a power generation device 302, and is configured to drive the current generated by the power generation device 302 with the low voltage drive device 6. Yes.

また、図15、図16に示す様に、この従来の発電デバイス302は、姿勢差により運動する回転錘20の運動により、2つのバイアス磁石8で発生した磁束が通るように配置されたコイル手段310の芯にある磁歪材7に力が加わる様に構成されている。   As shown in FIGS. 15 and 16, the conventional power generation device 302 includes coil means arranged so that magnetic fluxes generated by the two bias magnets 8 pass through the movement of the rotary weight 20 that moves due to the difference in posture. The magnetostrictive material 7 at the core 310 is configured to apply a force.

この様に構成された発電デバイス302は、逆磁歪効果により磁歪材7を通る磁束量が変化し、磁歪材7に巻いたコイル17に電流が誘起される。そして、誘起された電流は、整流手段端子13、14を介して整流手段4により整流され、整流された電荷が蓄電手段5に蓄えられる。そして、この蓄電手段5により蓄えられた電荷は、例えば腕時計などの低電圧駆動機器6の駆動に利用される。   In the power generation device 302 configured in this manner, the amount of magnetic flux passing through the magnetostrictive material 7 changes due to the inverse magnetostrictive effect, and a current is induced in the coil 17 wound around the magnetostrictive material 7. The induced current is rectified by the rectifying means 4 via the rectifying means terminals 13 and 14, and the rectified electric charge is stored in the power storage means 5. The electric charge stored by the power storage means 5 is used for driving a low voltage driving device 6 such as a wristwatch.

特開平9−90065号公報(第2−3頁、第1−2図)Japanese Patent Laid-Open No. 9-90065 (page 2-3, FIG. 1-2)

しかし、従来の発電デバイス302は、2つのバイアス磁石8の一方の極で発生した磁束が他方の極に戻る際、閉磁路が形成されていないために、バイアス磁石8の減磁の度合いが大きくなる。そのため、磁歪材7を通り発電に寄与する磁束の量は、大幅に減ってしまうという問題を有する。したがって、この従来の発電装置301は、上記問題を抱えた発電デバイス302を利用して電流を発電しているので、効率的に発電を行うことが困難であった。   However, in the conventional power generation device 302, when the magnetic flux generated at one pole of the two bias magnets 8 returns to the other pole, a closed magnetic circuit is not formed, and therefore the degree of demagnetization of the bias magnet 8 is large. Become. Therefore, there is a problem that the amount of magnetic flux that contributes to power generation through the magnetostrictive material 7 is greatly reduced. Therefore, since this conventional power generation apparatus 301 generates current using the power generation device 302 having the above-described problems, it is difficult to efficiently generate power.

そこで、本発明の目的は上述のような課題を解決するもので、より高い効率で発電することが出来る発電デバイスおよびそれを備えた発電装置を提供することを目的とする。   Therefore, an object of the present invention is to solve the above-described problems, and an object thereof is to provide a power generation device that can generate power with higher efficiency and a power generation apparatus including the power generation device.

本発明の発電デバイスは、基本的に下記記載の構成を採用するものである。
本発明の発電デバイスは、電流を誘起する発電手段と、当該発電手段で誘起された電流を整流する整流手段と、当該整流手段が整流することにより得られる電荷を蓄える蓄電手段とを備え、この発電手段が、2極に着磁されたバイアス磁石と、外部から力を加えるこ
とで逆磁歪効果により透磁率を変化させて、当該バイアス磁石の一方の極で発生した磁束の流れを変化させる磁歪材と、バイアス磁石と磁歪材との間に配置され、周期的な振幅力を磁歪材に加える圧縮手段と、磁歪材から流れ出る磁束を、バイアス磁石の他方の極に導くように配置された閉磁路形成部材と、磁歪材または閉磁路形成部材に巻き廻されてなるコイルとを有し、発電手段で誘起された電流を、コイルのコイル端子を介して整流手段に供給するように構成されてなることを特徴とするものである。
The power generation device of the present invention basically employs the configuration described below.
The power generation device of the present invention includes a power generation means for inducing current, a rectification means for rectifying the current induced by the power generation means, and a power storage means for storing charges obtained by rectification by the rectification means. Magnetostriction in which the power generation means changes the magnetic flux generated at one pole of the bias magnet by changing the permeability by the reverse magnetostriction effect by applying a force from the outside with a bias magnet magnetized to two poles A compression means for applying a periodic amplitude force to the magnetostrictive material and a magnetic flux flowing out of the magnetostrictive material to guide the other magnetic pole to the other pole of the bias magnet. A path forming member and a coil wound around the magnetostrictive material or the closed magnetic path forming member, and configured to supply current induced by the power generation means to the rectification means via the coil terminal of the coil. Become And it is characterized in and.

また、本発明の発電デバイスは、前述した圧縮手段が、作動レバーと、作動レバーに加えた力により回転する送りネジと、磁歪材と接し、送りネジの回転により拡大した力で送りネジの軸方向に送られる、軟磁性材よりなる圧縮部材と、作動レバーと一体に設けられ、送りネジを逆方向に回転させることで、圧縮部材に加えられた力および変位を取り除き、再び作動レバーに力及び変位を加える復帰バネとを有することを特徴とするものである。   In the power generation device of the present invention, the compression means mentioned above is in contact with the operating lever, the feed screw rotating by the force applied to the operating lever, and the magnetostrictive material, and the shaft of the feed screw by the force expanded by the rotation of the feed screw. Compressive member made of soft magnetic material, which is fed in the direction, and the operating lever, are integrated with the operating lever. By rotating the feed screw in the reverse direction, the force and displacement applied to the compressing member are removed, and the operating lever is again forced And a return spring for applying displacement.

本発明の発電装置は、前述した発電デバイスにおける蓄電手段と、低電圧駆動機器とが接続されてなり、この蓄電手段に蓄えられた電荷を利用して低電圧駆動機器を駆動することを特徴とするものである。   The power generation device of the present invention is characterized in that the power storage means in the power generation device described above and a low voltage drive device are connected, and the low voltage drive device is driven using the charge stored in the power storage means. To do.

本発明は、従来の構成とは異なり、バイアス磁石から発生した磁束の流れが1つの閉磁路を形成する構成を採用しているので、バイアス磁石の減磁の度合いを大きくすることなく、磁歪材を通り発電に寄与する磁束の変化量を増やすことが出来る。したがって、本発明の構成を用いれば、高効率で発電を行うことが出来る。   Unlike the conventional configuration, the present invention employs a configuration in which the flow of magnetic flux generated from the bias magnet forms one closed magnetic circuit, so that the magnetostrictive material does not increase the degree of demagnetization of the bias magnet. The amount of change in magnetic flux that contributes to power generation can be increased. Therefore, if the configuration of the present invention is used, power generation can be performed with high efficiency.

また、本発明の構成は、コイル芯が軟磁性体で構成されているので、バイアス磁石の減磁の度合いを、更に抑えることが出来、高効率で発電を行うことが出来る。   In the configuration of the present invention, since the coil core is formed of a soft magnetic material, the degree of demagnetization of the bias magnet can be further suppressed, and power generation can be performed with high efficiency.

また、本発明の構成は、圧縮手段により磁歪材に力を作用させた際、バイアス磁石と磁歪材との間に微小な隙間を設けた構成としているので、磁歪材を通り発電に寄与する磁束の変化量を大きくすることが出来、更に高効率で発電を行うことが出来る。   In addition, since the structure of the present invention has a structure in which a minute gap is provided between the bias magnet and the magnetostrictive material when a force is applied to the magnetostrictive material by the compression means, the magnetic flux that contributes to power generation through the magnetostrictive material. The amount of change in power can be increased, and power generation can be performed with higher efficiency.

また、本発明の構成は、圧縮手段とバイアス磁石は固定せず、磁歪材のみ固定しているので、磁歪材には圧縮力のみが作用し、バイアス磁石には何の力も作用しなくなり、発電デバイスの耐久性を大幅に増すことが出来る。   In the configuration of the present invention, since the compression means and the bias magnet are not fixed, but only the magnetostrictive material is fixed, only the compressive force acts on the magnetostrictive material, and no force acts on the bias magnet. The durability of the device can be greatly increased.

また、本発明の構成は、圧縮手段として力を拡大することが可能な機構を用いているので、一般的に逆磁歪効果を起こすのに必要なレベルの力の大きさを少ない力で作用させることが可能となる。   In addition, since the structure of the present invention uses a mechanism capable of expanding the force as the compression means, generally, the level of force required to cause the inverse magnetostriction effect is applied with a small force. It becomes possible.

本発明の発電装置は、従来の構成と同様に、発電手段と整流回路と蓄電手段を有する発電デバイスと、蓄電手段に接続された低電圧駆動装置とを有する。   The power generation device of the present invention includes a power generation device having a power generation means, a rectifier circuit, and a power storage means, and a low-voltage driving device connected to the power storage means, as in the conventional configuration.

この発電デバイスに含まれる整流回路と蓄電手段、および低電圧駆動装置の構成は、従来の構成と同じであるが、本発明の発電装置は、発電デバイスに含まれる発電手段の構成が従来の構成とは異なっている。この発電手段は、バイアス磁石の一方の極から発生する磁束に対して閉磁路を形成して他方の極に戻るように構成されている。   The configuration of the rectifier circuit, the power storage means, and the low-voltage drive device included in this power generation device is the same as the conventional configuration, but the power generation device of the present invention has the configuration of the power generation means included in the power generation device. Is different. This power generation means is configured to form a closed magnetic path for the magnetic flux generated from one pole of the bias magnet and return to the other pole.

この様に構成することで、従来の発電装置では得られなかったバイアス磁石の減磁の度合いを大きくすることなく、磁歪材を通り発電に寄与する磁束の変化量を増やすことが出
来るようになる。以下に、本発明の発電デバイスの構成およびそれを備えた発電装置の具体的な構成を図面に基づいて説明する。
With this configuration, it is possible to increase the amount of change in magnetic flux that passes through the magnetostrictive material and contributes to power generation without increasing the degree of demagnetization of the bias magnet that could not be obtained with conventional power generation devices. . Below, the structure of the electric power generation device of this invention and the specific structure of an electric power generating apparatus provided with the same are demonstrated based on drawing.

まず、本実施形態の発電デバイス、およびその発電デバイスを備えた発電装置について説明する。図1は、本発明の発電装置および発電デバイスの構成例を説明するための図面であり、図2は、発電手段の構成を示す斜視図である。   First, the power generation device of this embodiment and a power generation apparatus including the power generation device will be described. FIG. 1 is a diagram for explaining a configuration example of a power generation apparatus and a power generation device of the present invention, and FIG. 2 is a perspective view showing a configuration of a power generation means.

図1に示す様に、本発明の発電装置1は、周期的な振幅力を加えることにより当該周期的な振幅力と同期した周期的な振幅を持つ電流を誘起する発電手段3と、発電手段3で誘起された電流を整流する整流手段4と、整流手段4が整流した電荷を蓄える蓄電手段5とを有する発電デバイス2と、蓄電手段5に蓄えられた電荷を利用して駆動される低電圧駆動機器6とを備える。   As shown in FIG. 1, a power generation device 1 according to the present invention includes a power generation means 3 that induces a current having a periodic amplitude synchronized with the periodic amplitude force by applying a periodic amplitude force, and a power generation means. Power generation device 2 having a rectifying means 4 for rectifying the current induced in 3, a power storage means 5 for storing the charge rectified by the rectifying means 4, and a low power driven by using the charge stored in the power storage means 5. And a voltage driving device 6.

この発電手段3は、図1、図2に示す様に、2極に着磁されたバイアス磁石8と、バイアス磁石8の一方の極から発生する磁束を磁気的な異方性を有する方向に通すように配置し、外部からの力を加えることで逆磁歪効果により透磁率を変化させて、磁束の流れを変化させる磁歪材7aと、バイアス磁石8と磁歪材7aとの間に配置し、磁歪材7aの磁気的な異方性を有する方向に周期的な振幅力を加える圧縮手段9とを有する。また、この発電手段3は、圧縮手段9により磁歪材7aに周期的な振幅力を加えることで、磁歪材7aを通る磁束の流れを周期的に変化された磁束と、コイル芯に巻き廻されたコイルとが鎖交するように配置し、この周期的に変化する磁束により電流を誘起するコイル手段10とを備えている。また、コイル手段10におけるコイルと鎖交した磁束は、再びバイアス磁石8の他方の極に戻るように、磁束の流れが1つの閉磁路を形成する様に上述した各部材が配置されている。   As shown in FIGS. 1 and 2, the power generation means 3 has a bias magnet 8 magnetized in two poles and a magnetic flux generated from one pole of the bias magnet 8 in a direction having magnetic anisotropy. It is arranged so as to pass through, and is arranged between the bias magnet 8 and the magnetostrictive material 7a by changing the magnetic permeability due to the inverse magnetostriction effect by applying an external force and changing the flow of magnetic flux, Compression means 9 for applying a periodic amplitude force in the direction of magnetic anisotropy of the magnetostrictive material 7a. Further, the power generation means 3 applies a periodic amplitude force to the magnetostrictive material 7a by the compression means 9 so that the flow of magnetic flux passing through the magnetostrictive material 7a is wound around the coil core and the coil core. The coil means 10 is arranged so as to be linked with the coil and induces a current by the periodically changing magnetic flux. Further, the above-described members are arranged so that the flow of magnetic flux forms one closed magnetic path so that the magnetic flux interlinked with the coil in the coil means 10 returns to the other pole of the bias magnet 8 again.

なお、上記閉磁路は、磁性材7aとコイル手段10とを磁気的に接続する軟磁性部材12と、コイル手段10とバイアス磁石8とを磁気的に接続する軟磁性部材11を設けることで形成される。また、2つの軟磁性部材11、12は、非磁性部材15、16を挟持することで、固定される。   The closed magnetic path is formed by providing a soft magnetic member 12 that magnetically connects the magnetic material 7a and the coil means 10 and a soft magnetic member 11 that magnetically connects the coil means 10 and the bias magnet 8. Is done. Further, the two soft magnetic members 11 and 12 are fixed by sandwiching the nonmagnetic members 15 and 16.

次に、上述したコイル手段について更に詳細に説明する。図3は、発電手段3におけるコイル手段10の構成例を説明するための図面である。
このコイル手段10は、軟磁性体よりなるコイル芯18と、コイル芯18に巻き廻された電気的な導線よりなるコイル17と、コイル17の両端に設けられ、誘起された電流が整流手段4に伝えられる整流手段端子13、14とから構成されている。なお、本実施例の場合は、このコイル芯18が閉磁路形成部材となる。
Next, the coil means described above will be described in more detail. FIG. 3 is a diagram for explaining a configuration example of the coil means 10 in the power generation means 3.
The coil means 10 is provided with a coil core 18 made of a soft magnetic material, a coil 17 made of an electrical wire wound around the coil core 18, and both ends of the coil 17. And rectifying means terminals 13 and 14 transmitted to. In the case of the present embodiment, the coil core 18 serves as a closed magnetic path forming member.

次に、本発明の発電手段3の作用について説明する。図4〜図6は、本実施例における発電手段3の作用を説明するための図面である。図4は、発電手段3の初期状態を示しており、図5は、圧縮手段9を磁歪材7a側に移動させて、圧縮部材9とバイアス磁石8との間に空間を形成するとともに、磁歪材7aの磁束の流れを少なくしたときの状態を示しており、図6は、図5に示す状態を解除して、再び閉磁路を形成したときの状態を示している。   Next, the operation of the power generation means 3 of the present invention will be described. 4-6 is drawing for demonstrating the effect | action of the electric power generation means 3 in a present Example. FIG. 4 shows an initial state of the power generation means 3, and FIG. 5 shows that the compression means 9 is moved to the magnetostrictive material 7 a side to form a space between the compression member 9 and the bias magnet 8 and magnetostriction. 6 shows a state when the flow of magnetic flux of the material 7a is reduced, and FIG. 6 shows a state when the state shown in FIG. 5 is canceled and a closed magnetic circuit is formed again.

上記発電手段3の初期状態での磁束の流れは、図4に示す様に、バイアス磁石8のN極から発生した磁束は、圧縮手段9と磁歪材7aと軟磁性部材12とコイル手段10と軟磁性部材11とバイアス磁石8のS極に戻って形成される。つまり、この状態では、磁束の流れが1つの閉磁路を形成している。   As shown in FIG. 4, the flow of magnetic flux in the initial state of the power generation means 3 is that the magnetic flux generated from the N pole of the bias magnet 8 is the compression means 9, the magnetostrictive material 7 a, the soft magnetic member 12, and the coil means 10. The soft magnetic member 11 and the bias magnet 8 are formed back to the south pole. That is, in this state, the flow of magnetic flux forms one closed magnetic circuit.

また、図5に示す様に、圧縮手段9により、磁歪材7aの磁気的な異方性を有する方向、図では磁束の流れる方向と平行な方向(矢印に示す方向)に力を加えることで、逆磁歪効果により磁歪材7aを通る磁束量が変化し、同時に閉磁路を形成しているコイル手段10のコイルと鎖交する磁束量を変化させることで、コイルに電流を誘起する。この場合、圧縮手段9により磁歪材7aに圧縮力を加えることで、逆磁歪効果により磁歪材7aの透磁率が下がり、これによりコイル手段10を通る磁束量は減る。それに伴ってコイル手段10におけるコイルと鎖交する磁束量も減るので、その変化の度合いに応じた電流を誘起する。   Further, as shown in FIG. 5, the compressing means 9 applies a force in the direction having the magnetic anisotropy of the magnetostrictive material 7a, that is, in the direction parallel to the direction in which the magnetic flux flows (direction indicated by the arrow). The amount of magnetic flux passing through the magnetostrictive material 7a changes due to the inverse magnetostrictive effect, and at the same time, the amount of magnetic flux interlinked with the coil of the coil means 10 forming the closed magnetic path is changed to induce a current in the coil. In this case, by applying a compressive force to the magnetostrictive material 7 a by the compression means 9, the magnetic permeability of the magnetostrictive material 7 a is lowered due to the inverse magnetostrictive effect, thereby reducing the amount of magnetic flux passing through the coil means 10. Accordingly, the amount of magnetic flux interlinking with the coil in the coil means 10 is also reduced, so that a current corresponding to the degree of change is induced.

また、図6に示す様に、圧縮手段9により、磁歪材7aに加えられていた力を矢印に示す方向に解放することで、磁歪材7aを通る磁束量が再び初期状態(図4の状態)まで戻る。それと同時に、閉磁路を形成しているコイル手段10におけるコイルと鎖交する磁束量も元に戻り、今度はコイルに逆方向の電流を誘起させることができる。   Further, as shown in FIG. 6, the force applied to the magnetostrictive material 7a is released by the compression means 9 in the direction indicated by the arrow, so that the amount of magnetic flux passing through the magnetostrictive material 7a is again in the initial state (the state shown in FIG. 4). ) At the same time, the amount of magnetic flux interlinking with the coil in the coil means 10 forming the closed magnetic path also returns to the original, and this time, a current in the reverse direction can be induced in the coil.

この様に、図5と図6で示した状態では、誘起される電流の方向が異なるが、図1に示すように、この誘起された電流は、整流手段端子13、14を通して整流手段4に伝えられることで電流は整流され、蓄電手段5に蓄電される。そして、この蓄電手段5に蓄電された電荷を使用して、低電圧駆動機器6を駆動することができる。   In this way, the induced current direction is different between the states shown in FIGS. 5 and 6, but as shown in FIG. 1, the induced current is passed to the rectifying means 4 through the rectifying means terminals 13 and 14. By being transmitted, the current is rectified and stored in the storage means 5. And the low voltage drive device 6 can be driven using the electric charge stored in the power storage means 5.

したがって、上述した図4〜図6に示した動作を周期的に繰り返すことで、周期的な力の機械的なエネルギーを、電気的なエネルギーとして蓄電手段5に蓄えることが出来る。   Therefore, by periodically repeating the operations shown in FIGS. 4 to 6 described above, the mechanical energy of the periodic force can be stored in the power storage means 5 as electrical energy.

また、本構成の発電手段3は、バイアス磁石8で発生した磁束の流れが1つの閉磁路を形成しているので、バイアス磁石8の減磁の度合いを大きくすることなく、押圧手段9を介して磁歪材7aを通り、発電に寄与する磁束の変化量を増やすことが出来る。そのため、本構成によれば、高効率で発電を行うことが出来る。   Further, in the power generation means 3 of this configuration, since the flow of magnetic flux generated by the bias magnet 8 forms one closed magnetic circuit, the degree of demagnetization of the bias magnet 8 is not increased and the pressing means 9 is used. Thus, the amount of change in magnetic flux that contributes to power generation can be increased through the magnetostrictive material 7a. Therefore, according to this configuration, power generation can be performed with high efficiency.

また、発電装置3における、閉磁路形成部材に相当するコイル芯18(図3参照)が軟磁性体で構成されているので、バイアス磁石8の減磁の度合いを極力抑えることが出来る。   Further, since the coil core 18 (see FIG. 3) corresponding to the closed magnetic path forming member in the power generation device 3 is made of a soft magnetic material, the degree of demagnetization of the bias magnet 8 can be suppressed as much as possible.

また、発電装置3における圧縮手段9により磁歪材7aに力を作用させた際、バイアス磁石8と磁歪材7aとの間に微小な隙間を設けているので、磁歪材7aを通り発電に寄与する磁束の変化量を更に大きくすることが出来る。   Further, when a force is applied to the magnetostrictive material 7a by the compression means 9 in the power generation device 3, a minute gap is provided between the bias magnet 8 and the magnetostrictive material 7a, so that it contributes to power generation through the magnetostrictive material 7a. The amount of change in magnetic flux can be further increased.

また、圧縮手段9とバイアス磁石8は固定せず、磁歪材7aのみを固定することで、磁歪材7aには圧縮力のみが作用し、バイアス磁石8には何の力も作用しなくなる。一般的に、磁歪材や磁石などの強磁性材は、引っ張り力に対して非常にもろいが、圧縮力に対しては耐力が大きいため、本構成とすることで発電デバイスの耐久性を大幅に増すことが出来る。   Further, by fixing only the magnetostrictive material 7a without fixing the compression means 9 and the bias magnet 8, only the compressive force acts on the magnetostrictive material 7a, and no force acts on the bias magnet 8. In general, ferromagnetic materials such as magnetostrictive materials and magnets are very fragile against tensile forces, but have a high yield strength against compressive forces, so this configuration greatly increases the durability of power generation devices. Can be increased.

次に、本発明に係る発電手段の変形例について説明する。図7は、本実施形態における発電手段の構成例を説明するための図面である。   Next, a modification of the power generation means according to the present invention will be described. FIG. 7 is a diagram for explaining a configuration example of the power generation means in the present embodiment.

本実施形態の発電手段203は、先に示した形態における、逆磁歪効果を有する磁歪材に代えて、磁歪材7bに、引張手段209にて引っ張り力を加えることで透磁率が下がる材料を用いた点のみが異なっており、他の構成は同じである。
この様に構成することであっても、バイアス磁石8の一方の極から発生した磁束は、複数個の部材を介して他方の極に戻る閉磁路を形成することが出来るので、先と同様の効果を得ることが出来る。
The power generation means 203 of the present embodiment uses a material whose permeability is lowered by applying a tensile force to the magnetostrictive material 7b by the tensile means 209 instead of the magnetostrictive material having the inverse magnetostrictive effect in the above-described form. The only difference is that the other configurations are the same.
Even with this configuration, the magnetic flux generated from one pole of the bias magnet 8 can form a closed magnetic path that returns to the other pole via a plurality of members. An effect can be obtained.

次に、本発明の発電手段の他の構成例について説明する。図8は、本実施形態における発電手段の他の構成例を説明するための図面である。   Next, another configuration example of the power generation means of the present invention will be described. FIG. 8 is a drawing for explaining another configuration example of the power generation means in the present embodiment.

本実施形態に示す発電手段103と、実施例1で示した発電手段との相違点は、図8に示す様に、先の実施例1に示したコイル手段の配置を変えて、コイル手段110を磁歪材(図示せず)の周りにコイルを巻き廻して構成し、実施例1の発電手段におけるコイル手段を配した位置に、新たに磁性材108を設けた点にあり、他の構成は同じである。本構成の場合は、この磁性材108が閉磁路形成部材となる。なお、本形態は、発電手段103が、小型化が必要とされない場合に適用できるものである。つまり、誘起される所望の電流量を得るためには、所定数のコイル巻き数を必要とするが、図7に示す構成では、コイル手段110を磁歪材にコイルを巻き廻して構成しているため、巻き線数に制約を受ける場合には適さない構成となるからである。   The difference between the power generation means 103 shown in the present embodiment and the power generation means shown in Example 1 is that, as shown in FIG. 8, the arrangement of the coil means shown in the previous Example 1 is changed and the coil means 110 is changed. Is constructed by winding a coil around a magnetostrictive material (not shown), and a magnetic material 108 is newly provided at a position where the coil means in the power generation means of Example 1 is arranged. The same. In the case of this configuration, the magnetic material 108 serves as a closed magnetic path forming member. This embodiment can be applied when the power generation means 103 is not required to be downsized. That is, in order to obtain a desired amount of induced current, a predetermined number of coil turns is required, but in the configuration shown in FIG. 7, the coil means 110 is configured by winding a coil around a magnetostrictive material. This is because the configuration is not suitable when the number of windings is restricted.

この様に、コイル手段110を磁歪材にコイルを巻き廻して構成するとともに、実施例1の発電手段におけるコイル手段を配した位置に、新たに磁性材108を設けた構成とすることで、先の実施例1と同様に、バイアス磁石8の一方の極で発生する磁束は、閉磁路を形成してバイアス磁石8の他方の極まで流れる構成となる。したがって、実施例1と同様に、従来の発電装置では得られなかったバイアス磁石8の減磁の度合いを大きくすることなく、磁歪材を通り発電に寄与する磁束の変化量を増やすことが出来る。   In this way, the coil means 110 is configured by winding a coil around a magnetostrictive material, and the magnetic material 108 is newly provided at the position where the coil means in the power generation means of the first embodiment is disposed. As in the first embodiment, the magnetic flux generated at one pole of the bias magnet 8 forms a closed magnetic circuit and flows to the other pole of the bias magnet 8. Therefore, similarly to the first embodiment, the amount of change in magnetic flux that contributes to power generation through the magnetostrictive material can be increased without increasing the degree of demagnetization of the bias magnet 8 that could not be obtained with the conventional power generation apparatus.

なお、実施例1ではコイル芯にコイルを巻き廻した形態を、本実施例では磁歪材にコイルを巻き廻した形態を示したが、これら形態を組み合わせて、コイル芯と磁歪材とに直列のコイルを順次巻き廻した形態としても構わない。   In addition, although the form which wound the coil around the coil core was shown in Example 1 and the form which wound the coil around the magnetostrictive material in this embodiment, these forms are combined to connect the coil core and the magnetostrictive material in series. The coil may be wound around sequentially.

次に、本発明の発電手段の更に他の構成例について説明する。図9は、本実施形態の発電手段の更に他の構成例を示す斜視図である。本実施例の特徴とする点は、実施例1、2に示した圧縮手段9を、圧縮部材21と、作動レバー22と、送りネジ23と、復帰バネ24にて構成した点である。発電手段303を構成する他の構成は同じであるので、本実施例での説明はこの圧縮手段9について行い、他の構成についてのここでの詳細な説明は割愛する。   Next, still another configuration example of the power generation means of the present invention will be described. FIG. 9 is a perspective view showing still another configuration example of the power generation unit of the present embodiment. The feature of this embodiment is that the compression means 9 shown in Embodiments 1 and 2 is configured by a compression member 21, an operation lever 22, a feed screw 23, and a return spring 24. Since the other structure which comprises the electric power generation means 303 is the same, description in a present Example is performed about this compression means 9, and the detailed description here about another structure is omitted.

図9に示す様に、発電手段303における圧縮手段9は、作動レバー22と、作動レバー22に加えた力により回転する送りネジ23と、磁歪材7aと当設させて設けられ、送りネジ23の回転により拡大した力で送りネジ23の軸方向に移動するように配置される、軟磁性材よりなる圧縮部材21と、作動レバー22と一体に設けられ、送りネジ23を逆方向に回転させることで、圧縮部材21に加えられた力および変位を取り除き、再び作動レバー22に力及び変位を加えるための復帰バネ24とから構成されている。   As shown in FIG. 9, the compression means 9 in the power generation means 303 is provided to be in contact with the operating lever 22, the feed screw 23 rotated by the force applied to the operating lever 22, and the magnetostrictive material 7 a. The compression member 21 made of a soft magnetic material, which is arranged so as to move in the axial direction of the feed screw 23 with the force expanded by the rotation of the rotation, is provided integrally with the operating lever 22 and rotates the feed screw 23 in the reverse direction. Thus, it is constituted by a return spring 24 for removing the force and displacement applied to the compression member 21 and applying the force and displacement to the operating lever 22 again.

この様に発電手段303を構成することで、周期的な力の機械的なエネルギーを電気的なエネルギーとして容易に蓄えることが出来る。また、本実施形態における圧縮手段9は、外部からの力を拡大することが可能な機構を用いているので、一般的に逆磁歪効果を起こすのに必要なレベルの力の大きさを、少ない外部力で作用させることが可能となる。   By configuring the power generation means 303 in this way, it is possible to easily store mechanical energy of periodic force as electrical energy. Further, since the compression means 9 in the present embodiment uses a mechanism capable of expanding the force from the outside, generally the level of force required to cause the inverse magnetostriction effect is small. It is possible to act by external force.

次に、この発電手段303における圧縮手段9の作用について説明する。図10〜図12は、発電手段303における圧縮手段9の作用を説明するための図面である。本図中(a)は、発電手段303の上面図を、(b)は軟磁性部材11を取り除いた状態での右側面図を示している。   Next, the operation of the compression means 9 in the power generation means 303 will be described. 10 to 12 are diagrams for explaining the operation of the compression means 9 in the power generation means 303. In this figure, (a) shows a top view of the power generation means 303, and (b) shows a right side view with the soft magnetic member 11 removed.

図10に示す様に、初期状態の発電手段303は、バイアス磁石8のN極から発生した磁束が、軟磁性材よりなる圧縮部材21と、磁歪材7aに導かれる。そして、磁歪材7aに導かれた磁束は、軟磁性部材12を介して、コイル手段10と通過して、軟磁性部材11を介して、バイアス磁石8のS極に戻る様に構成されている。つまり、先に示したように、この発電手段303は、磁束の流れが1つの閉磁路を形成している。また、圧縮部材21にはめネジが切られており、送りネジ23により送り可能となっている。さらに、この送りネジ23には、復帰バネ24と一体に構成された作動レバー22が固定されている。   As shown in FIG. 10, in the power generation means 303 in the initial state, the magnetic flux generated from the N pole of the bias magnet 8 is guided to the compression member 21 made of a soft magnetic material and the magnetostrictive material 7a. The magnetic flux guided to the magnetostrictive material 7 a passes through the coil means 10 through the soft magnetic member 12 and returns to the S pole of the bias magnet 8 through the soft magnetic member 11. . In other words, as described above, in the power generation means 303, the flow of magnetic flux forms one closed magnetic circuit. The compression member 21 has a female thread and can be fed by a feed screw 23. Further, an operating lever 22 configured integrally with the return spring 24 is fixed to the feed screw 23.

次に、図11に示す様に、図(b)に示す矢印の方向に作動レバー22に外部からの力を加えることで、作動レバー22に固定されている送りネジ23は、図(b)では右回転をする。そして、この送りネジ23の回転に伴い、めネジが切られた圧縮部材21は、送りネジの軸方向、図(a)で示す左方向に送られて、磁歪材7aに圧縮力を加えられる。この際、作動レバー22に加えた力を拡大した力が圧縮力として加えられることとなる。   Next, as shown in FIG. 11, the feed screw 23 fixed to the operating lever 22 by applying an external force to the operating lever 22 in the direction of the arrow shown in FIG. Now turn right. As the feed screw 23 rotates, the compression member 21 with the female screw cut is fed in the axial direction of the feed screw, leftward as shown in FIG. 5A, and compressive force is applied to the magnetostrictive material 7a. . At this time, a force obtained by expanding the force applied to the operating lever 22 is applied as a compression force.

この様に、圧縮部材21に磁歪材7aの磁気的な異方性を有する方向、図では磁束の流れる方向と平行な方向に力を加えることで、逆磁歪効果により磁歪材7aを通る磁束量が変化し、同時に閉磁路を形成しているコイル手段10におけるコイル17と鎖交する磁束量も変化し、コイル17に電流を誘起する。この場合、作動レバー22を介して外部から圧縮力を加えることで、逆磁歪効果により磁歪材7aの透磁率が下がり、磁歪材7aを通る磁束量を減らすことができる。これに伴って、コイル手段10におけるコイル17と鎖交する磁束量も減らすことができるので、コイル17からその変化の度合いに応じた電流を誘起させることができる。   In this way, by applying a force to the compression member 21 in the direction having the magnetic anisotropy of the magnetostrictive material 7a, in the drawing, in the direction parallel to the flow direction of the magnetic flux, the amount of magnetic flux passing through the magnetostrictive material 7a by the inverse magnetostrictive effect. At the same time, the amount of magnetic flux interlinking with the coil 17 in the coil means 10 forming the closed magnetic path also changes, and current is induced in the coil 17. In this case, by applying a compressive force from the outside via the operation lever 22, the magnetic permeability of the magnetostrictive material 7a is lowered due to the inverse magnetostrictive effect, and the amount of magnetic flux passing through the magnetostrictive material 7a can be reduced. Along with this, the amount of magnetic flux interlinking with the coil 17 in the coil means 10 can also be reduced, so that a current corresponding to the degree of change can be induced from the coil 17.

次に、図12に示す様に、作動レバー22に加えていた力を、復帰バネ24に蓄えられていた弾性エネルギーにより、図(b)に示す矢印の方向に復帰させて開放する。この様に、作動レバー22に加えられていた力を解放することにより、作動レバー22に固定されている送りネジ23は、図(b)では左回転をする。この送りネジ23の回転に伴い、めネジの切られた圧縮部材21は、送りネジの軸方向、つまり図(a)では図11とは逆の右方向に送られ、磁歪材7aに加えられていた圧縮力を開放する。そして、磁歪材7aに加えられていた力を解放することで、磁歪材7aを通る磁束量が再び初期状態(図10の状態)まで戻ると同時に、閉磁路を形成しているコイル手段10におけるコイル17と鎖交する磁束量も元に戻り、今度は逆方向の電流を誘起させることが出来る。   Next, as shown in FIG. 12, the force applied to the operating lever 22 is returned in the direction of the arrow shown in FIG. In this way, by releasing the force applied to the operating lever 22, the feed screw 23 fixed to the operating lever 22 rotates counterclockwise in FIG. With the rotation of the feed screw 23, the compression member 21 with the female screw cut is fed in the axial direction of the feed screw, that is, in the right direction opposite to FIG. 11 in FIG. Release the compressive force. Then, by releasing the force applied to the magnetostrictive material 7a, the amount of magnetic flux passing through the magnetostrictive material 7a returns to the initial state (the state shown in FIG. 10), and at the same time, in the coil means 10 forming the closed magnetic circuit. The amount of magnetic flux interlinking with the coil 17 is also restored, and a current in the opposite direction can be induced this time.

この様にして、図10〜図12の動作を周期的に繰り返すことで、本実施例に示す発電手段303は、周期的な力の機械的なエネルギーを電気的なエネルギーを生成することが出来る。   In this way, by periodically repeating the operations of FIGS. 10 to 12, the power generation means 303 shown in the present embodiment can generate mechanical energy of periodic force as electrical energy. .

次に、本実施形態に係る圧縮手段を備えた発電手段を、腕時計に組み込んだ発電装置の構成例について説明する。図13と図14は、発電装置の構成を示す図面である。   Next, a configuration example of a power generation apparatus in which the power generation means including the compression means according to the present embodiment is incorporated in a wristwatch will be described. 13 and 14 are diagrams showing the configuration of the power generation device.

実施例1で説明したように、発電装置3は、発電手段と整流手段と蓄電手段を備える発電デバイスと、低電圧駆動機器とから構成されるが、図13と図14では、低電圧駆動機器の外装部品である低電圧駆動機器外装19と、発電手段303との配置形態のみを示している。   As described in the first embodiment, the power generation device 3 includes a power generation device including a power generation unit, a rectification unit, and a power storage unit, and a low-voltage drive device. In FIGS. Only the arrangement form of the low-voltage driving device exterior 19 which is the exterior component of the power generation means 303 and the power generation means 303 is shown.

図13、図14で示す発電装置303は、腕時計のような低電圧駆動機器外装19に設けた切り欠き部から、この発電手段303の作動レバー22を露出させて組み込んで構成してなる。なお、図13と図14に示す形態は、低電圧駆動機器外装19に設けた切り欠
き部の位置を変えただけで、他は同じである。この様に構成することで、腕時計をはめていないもう一方の手により、作動レバー22を作動させることが容易となる。
The power generation device 303 shown in FIG. 13 and FIG. 14 is configured by incorporating the operating lever 22 of the power generation means 303 through a notch provided in a low-voltage drive device exterior 19 such as a wristwatch. The configuration shown in FIGS. 13 and 14 is the same except that the position of the notch provided in the low-voltage drive device exterior 19 is changed. With this configuration, it becomes easy to operate the operation lever 22 with the other hand not wearing the wristwatch.

本発明の発電装置、および発電デバイスの構成を示す図面である。(実施例1)It is drawing which shows the structure of the electric power generating apparatus of this invention, and an electric power generation device. Example 1 本発明に係る発電手段の構成例を示す斜視図である。(実施例1)It is a perspective view which shows the structural example of the electric power generation means which concerns on this invention. Example 1 本発明に係る発電手段におけるコイル手段の構成例を示す図面である。(実施例1)It is drawing which shows the structural example of the coil means in the electric power generation means which concerns on this invention. Example 1 図2に示した発電手段の作用を説明するための図面である。(実施例1)It is drawing for demonstrating the effect | action of the electric power generation means shown in FIG. Example 1 図2に示した発電手段の作用を説明するための図面である。(実施例1)It is drawing for demonstrating the effect | action of the electric power generation means shown in FIG. Example 1 図2に示した発電手段の作用を説明するための図面である。(実施例1)It is drawing for demonstrating the effect | action of the electric power generation means shown in FIG. Example 1 本発明に係る発電手段の変形例を示す図面である。(実施例1)It is drawing which shows the modification of the electric power generation means which concerns on this invention. Example 1 本発明に係る発電手段の他の構成例を示す図面である。(実施例2)It is drawing which shows the other structural example of the electric power generation means which concerns on this invention. (Example 2) 本発明に係る発電手段の更に他の構成例を示す斜視図である。(実施例3)It is a perspective view which shows the further another structural example of the electric power generation means which concerns on this invention. (Example 3) 図9に示した発電手段の作用を説明するための図面である。(実施例3)It is drawing for demonstrating the effect | action of the electric power generation means shown in FIG. (Example 3) 図9に示した発電手段の作用を説明するための図面である。(実施例3)It is drawing for demonstrating the effect | action of the electric power generation means shown in FIG. (Example 3) 図9に示した発電手段の作用を説明するための図面である。(実施例3)It is drawing for demonstrating the effect | action of the electric power generation means shown in FIG. (Example 3) 本発明の発電装置の構成例を示す図面である。(実施例3)It is drawing which shows the structural example of the electric power generating apparatus of this invention. (Example 3) 本発明の発電装置の構成例を示す図面である。(実施例3)It is drawing which shows the structural example of the electric power generating apparatus of this invention. (Example 3) 従来の発電装置および発電デバイスの構成を示す図面である。It is drawing which shows the structure of the conventional electric power generating apparatus and an electric power generation device. 従来の発電デバイスにおけるコイル手段の構成を示す図面である。It is drawing which shows the structure of the coil means in the conventional electric power generation device.

符号の説明Explanation of symbols

1 発電装置
2 発電デバイス
3 発電手段
4 整流手段
5 蓄電手段
6 低電圧駆動機器
7a、7b 磁歪材
8 バイアス磁石
9 圧縮手段
10 コイル手段
11 軟磁性部材
12 軟磁性部材
13 整流手段端子
14 整流手段端子
15 非磁性部材
16 非磁性部材
17 コイル
18 コイル芯
19 低電圧駆動機器外装
21 圧縮部材
22 作動レバー
23 送りネジ
24 復帰バネ
103 発電手段
108 磁性材
110 コイル手段
203 発電手段
209 引張手段
301 発電装置
302 発電デバイス
303 発電手段
310 コイル手段
DESCRIPTION OF SYMBOLS 1 Power generation device 2 Power generation device 3 Power generation means 4 Rectification means 5 Power storage means 6 Low voltage drive equipment 7a, 7b Magnetostrictive material 8 Bias magnet 9 Compression means 10 Coil means 11 Soft magnetic member 12 Soft magnetic member 13 Rectification means terminal 14 Rectification means terminal DESCRIPTION OF SYMBOLS 15 Nonmagnetic member 16 Nonmagnetic member 17 Coil 18 Coil core 19 Low voltage drive apparatus exterior 21 Compression member 22 Actuation lever 23 Feed screw 24 Return spring 103 Power generation means 108 Magnetic material 110 Coil means 203 Power generation means 209 Tension means 301 Power generation apparatus 302 Power generation device 303 Power generation means 310 Coil means

Claims (3)

電流を誘起する発電手段と、
当該発電手段で誘起された電流を整流する整流手段と、
当該整流手段が整流した電荷を蓄える蓄電手段と、を備え、
前記発電手段は、
2極に着磁されたバイアス磁石と、
外部から力を加えることで逆磁歪効果により透磁率を変化させて、当該バイアス磁石の一方の極で発生した磁束の流れを変化させる磁歪材と、
前記バイアス磁石と前記磁歪材との間に配置され、周期的な振幅力を前記磁歪材に加える圧縮手段と、
前記磁歪材から流れ出た磁束を、前記バイアス磁石の他方の極に導くように配置された閉磁路形成部材と、
前記磁歪材または前記閉磁路形成部材に巻き廻されてなるコイルと、を有し、
前記発電手段で誘起された電流を、前記コイルのコイル端子を介して前記整流手段に供給するように構成されてなる
ことを特徴とする発電デバイス。
Power generation means for inducing current,
Rectifying means for rectifying the current induced by the power generation means;
Power storage means for storing the charge rectified by the rectifying means,
The power generation means includes
A bias magnet magnetized in two poles;
A magnetostrictive material that changes the magnetic permeability generated by one pole of the bias magnet by changing the magnetic permeability due to the inverse magnetostriction effect by applying force from the outside; and
A compression means disposed between the bias magnet and the magnetostrictive material and applying a periodic amplitude force to the magnetostrictive material;
A closed magnetic path forming member arranged to guide the magnetic flux flowing out of the magnetostrictive material to the other pole of the bias magnet;
A coil wound around the magnetostrictive material or the closed magnetic path forming member,
A power generation device configured to supply a current induced by the power generation means to the rectification means via a coil terminal of the coil.
前記圧縮手段は、
作動レバーと、
当該作動レバーに加えられた力により回転する送りネジと、
前記磁歪材と接し、前記送りネジの回転により拡大した力で前記送りネジの軸方向に送られる、軟磁性材よりなる圧縮部材と、
前記作動レバーと一体に設けられ、前記送りネジを逆方向に回転させることで、前記圧縮部材に加えられた力、および変位を取り除き、再び前記作動レバーに力、及び変位を加える復帰バネと、を有する
ことを特徴とする請求項1に記載の発電デバイス。
The compression means includes
An actuating lever;
A feed screw that rotates due to the force applied to the actuating lever;
A compression member made of a soft magnetic material, in contact with the magnetostrictive material, and sent in the axial direction of the feed screw with a force expanded by the rotation of the feed screw;
A return spring provided integrally with the actuating lever and removing the force and displacement applied to the compression member by rotating the feed screw in the reverse direction, and again applying force and displacement to the actuating lever; The power generation device according to claim 1, comprising:
請求項1または2に記載の発電デバイスにおける前記蓄電手段と、低電圧駆動機器とが接続されてなり、
前記蓄電手段に蓄えられた電荷を利用して前記低電圧駆動機器を駆動する
ことを特徴とする発電装置。
The power storage device according to claim 1 or 2 is connected to a low-voltage drive device,
The low-voltage drive device is driven using the electric charge stored in the power storage means.
JP2006250639A 2006-09-15 2006-09-15 Power generation device, and power generation apparatus with the same Pending JP2008072862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250639A JP2008072862A (en) 2006-09-15 2006-09-15 Power generation device, and power generation apparatus with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250639A JP2008072862A (en) 2006-09-15 2006-09-15 Power generation device, and power generation apparatus with the same

Publications (1)

Publication Number Publication Date
JP2008072862A true JP2008072862A (en) 2008-03-27

Family

ID=39293955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250639A Pending JP2008072862A (en) 2006-09-15 2006-09-15 Power generation device, and power generation apparatus with the same

Country Status (1)

Country Link
JP (1) JP2008072862A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158473A1 (en) 2010-06-18 2011-12-22 国立大学法人金沢大学 Power generation element and power generation apparatus provided with power generation element
CN103026446A (en) * 2010-04-27 2013-04-03 奥斯拉电力有限公司 Apparatus for harvesting electrical power from mechanical energy
WO2014017414A1 (en) * 2012-07-23 2014-01-30 ミツミ電機株式会社 Power generating element
WO2014017413A1 (en) * 2012-07-23 2014-01-30 ミツミ電機株式会社 Power generating element
JP2014128125A (en) * 2012-12-26 2014-07-07 Fuji Electric Co Ltd Power generation device
JP2014166011A (en) * 2013-02-25 2014-09-08 Toyo Tire & Rubber Co Ltd Power generation element
JP2014217172A (en) * 2013-04-25 2014-11-17 富士通株式会社 Power generator
WO2015002069A1 (en) * 2013-07-05 2015-01-08 ミツミ電機株式会社 Electricity-generating device
JP2015070741A (en) * 2013-09-30 2015-04-13 住友理工株式会社 Vibration power generation apparatus using magnetostrictor
US9494544B2 (en) 2012-03-02 2016-11-15 Sumitomo Riko Company Limited Hybrid sensor
US9571011B2 (en) 2011-09-16 2017-02-14 National University Corporation Kanazawa University Power generating element and power generation device
CN106894952A (en) * 2017-03-18 2017-06-27 南昌工程学院 A kind of magnetostriction type piezoelectricity breeze generating set
US10164552B2 (en) 2013-08-16 2018-12-25 Fujitsu Limited Power generating device and sensor system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026446A (en) * 2010-04-27 2013-04-03 奥斯拉电力有限公司 Apparatus for harvesting electrical power from mechanical energy
JP2013526256A (en) * 2010-04-27 2013-06-20 オシラ パワー インコーポレイテッド A device that harvests power from mechanical energy
US8766495B2 (en) 2010-06-18 2014-07-01 National University Corporation Kanazawa University Power generation element and power generation apparatus including the power generation element
WO2011158473A1 (en) 2010-06-18 2011-12-22 国立大学法人金沢大学 Power generation element and power generation apparatus provided with power generation element
US9571011B2 (en) 2011-09-16 2017-02-14 National University Corporation Kanazawa University Power generating element and power generation device
US9494544B2 (en) 2012-03-02 2016-11-15 Sumitomo Riko Company Limited Hybrid sensor
US9525122B2 (en) 2012-07-23 2016-12-20 Mitsumi Electric Co., Ltd. Power generating element
WO2014017414A1 (en) * 2012-07-23 2014-01-30 ミツミ電機株式会社 Power generating element
JP2014023367A (en) * 2012-07-23 2014-02-03 Mitsumi Electric Co Ltd Power generation element
WO2014017413A1 (en) * 2012-07-23 2014-01-30 ミツミ電機株式会社 Power generating element
DE112013003634B4 (en) * 2012-07-23 2016-12-15 Mitsumi Electric Co., Ltd. Energy generating element
JP2014023368A (en) * 2012-07-23 2014-02-03 Mitsumi Electric Co Ltd Power generation element
JP2014128125A (en) * 2012-12-26 2014-07-07 Fuji Electric Co Ltd Power generation device
JP2014166011A (en) * 2013-02-25 2014-09-08 Toyo Tire & Rubber Co Ltd Power generation element
JP2014217172A (en) * 2013-04-25 2014-11-17 富士通株式会社 Power generator
WO2015002069A1 (en) * 2013-07-05 2015-01-08 ミツミ電機株式会社 Electricity-generating device
US10164552B2 (en) 2013-08-16 2018-12-25 Fujitsu Limited Power generating device and sensor system
JP2015070741A (en) * 2013-09-30 2015-04-13 住友理工株式会社 Vibration power generation apparatus using magnetostrictor
CN106894952A (en) * 2017-03-18 2017-06-27 南昌工程学院 A kind of magnetostriction type piezoelectricity breeze generating set
CN106894952B (en) * 2017-03-18 2023-07-25 南昌工程学院 Magnetostrictive piezoelectric breeze power generation device

Similar Documents

Publication Publication Date Title
JP2008072862A (en) Power generation device, and power generation apparatus with the same
US6936937B2 (en) Linear electric generator having an improved magnet and coil structure, and method of manufacture
JP5128487B2 (en) Independent power generator
US6914351B2 (en) Linear electrical machine for electric power generation or motive drive
JP5859763B2 (en) Power generation input device and electronic apparatus using the power generation input device
JPH0691727B2 (en) Electromechanical converter and method for inducing alternating electromotive force
JP2009100523A (en) Permanent magnet element and oscillating generator, and acceleration sensor
Wang et al. A low-power, linear, permanent-magnet generator/energy storage system
JP2002034214A (en) Generator and electronic-controlled mechanical clock
US20150102878A1 (en) High speed solenoid
Bak et al. Characteristics analysis and design of a novel magnetic contactor for a 220 V/85 A
WO2013014975A1 (en) Oscillating power generator
CN111033945A (en) Generator having a rotor providing an alternating magnetic circuit
US10734857B2 (en) Electromechanical limited rotation rotary actuator and method employing segmented coils
US9941769B2 (en) Linear reluctance motor device and engine apparatus
RU2304342C1 (en) Reciprocate motion generator
US20170033645A1 (en) Electromagnetic Generator
KR102393595B1 (en) Linear power generator
JP6058773B2 (en) Electronic equipment using a power generation input device
Kim et al. Design and analysis method for a DC magnetic contactor with a permanent magnet
JP6730534B2 (en) Voltage generator
CN108475977B (en) Linear generator
TWI271915B (en) Linear electric generator having an improved magnet and coil structure, and method of manufacture
JP2010057338A (en) Mover, armature, and actuator
Upadhyay Magnetic Materials and Technologies Enabling an Even Brighter Future for Electrical Machines