JP6058773B2 - Electronic equipment using a power generation input device - Google Patents

Electronic equipment using a power generation input device Download PDF

Info

Publication number
JP6058773B2
JP6058773B2 JP2015210886A JP2015210886A JP6058773B2 JP 6058773 B2 JP6058773 B2 JP 6058773B2 JP 2015210886 A JP2015210886 A JP 2015210886A JP 2015210886 A JP2015210886 A JP 2015210886A JP 6058773 B2 JP6058773 B2 JP 6058773B2
Authority
JP
Japan
Prior art keywords
magnetizing member
posture
magnetizing
rotating body
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015210886A
Other languages
Japanese (ja)
Other versions
JP2016027787A (en
Inventor
裕二 稲田
裕二 稲田
鈴木 克俊
克俊 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2015210886A priority Critical patent/JP6058773B2/en
Publication of JP2016027787A publication Critical patent/JP2016027787A/en
Application granted granted Critical
Publication of JP6058773B2 publication Critical patent/JP6058773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、外部からの操作力によって発電することができる発電入力装置が操作されたときの起電力によって送信動作などが行われる電子機器に関する。 The present invention relates to an electronic device such as a transmission operation is carried out by the electromotive force when the power input equipment that can be generated by the operation force from the outside has been operated.

特許文献1の図7に、自己発電型のキー入力装置の基本的な構造が記載されている。   FIG. 7 of Patent Document 1 describes a basic structure of a self-power generation type key input device.

このキー入力装置は、磁路を形成するコアと、コアに巻かれたコイル部が設けられている。コアの両端部が空間を介して対向しており、この空間内に棒状の磁石が介入できるようになっている。磁石が前記空間内に介入するときのコア内の磁束の変化と、磁石が前記空間内から離脱するときのコア内の磁束の変化とから、前記コイルに起電力を生じさせるというものである。   This key input device is provided with a core forming a magnetic path and a coil portion wound around the core. Both ends of the core are opposed to each other through a space, and a bar-shaped magnet can intervene in this space. An electromotive force is generated in the coil from a change in magnetic flux in the core when the magnet intervenes in the space and a change in magnetic flux in the core when the magnet leaves the space.

特許文献1に記載されたキー入力装置は、磁石をその磁極の向きを変えることなく、空間内に出し入れするだけである。そのため、コア内で磁束の向きが反転することがなく、コア内の磁束の変化量が小さく、発電効率が悪い。   The key input device described in Patent Document 1 simply moves a magnet in and out of the space without changing the direction of its magnetic pole. Therefore, the direction of magnetic flux does not reverse in the core, the amount of change in magnetic flux in the core is small, and power generation efficiency is poor.

この構造では、磁石が空間内に挿入されるときは、磁石がコアの端部に吸引されて比較的速い速度で移動するが、磁石を空間内から離脱させるときは、磁石に対してその離脱を阻止する向きの力が作用するため、離脱速度を速くするのに限界がある。起電力は単位時間あたりのコア内の磁束の変化量に比例するため、磁石を空間内に向けて移動させるときに誘導される起電力に対して、磁石を空間から離脱させるときに誘導される起電力が大幅に低下してしまう。起電力を大きくするためには、磁石を空間内から離脱させるための強い力を発揮する復帰ばねを使用することが必要となるが、この復帰ばねの力が操作力に対して抵抗力として作用することになり操作しにくいものとなる。   In this structure, when the magnet is inserted into the space, the magnet is attracted to the end of the core and moves at a relatively high speed. However, when the magnet is removed from the space, the magnet is detached from the space. There is a limit to increasing the separation speed because of the force acting to prevent the movement. Since the electromotive force is proportional to the amount of change in the magnetic flux in the core per unit time, it is induced when the magnet is removed from the space, compared to the electromotive force induced when the magnet is moved into the space. The electromotive force is greatly reduced. In order to increase the electromotive force, it is necessary to use a return spring that exerts a strong force to disengage the magnet from the space. This return spring force acts as a resistance force against the operating force. Will be difficult to operate.

特許文献2の図3と図4に記載されたトランスデューサは、コイルが巻かれた軟磁性部材の両端部に、互いに対向するストップポイントが設けられている。軟磁性部材の間に、永久磁石が軸を中心として回動自在に支持されており、永久磁石の両面に第1の磁石層と第2の磁石層が重ねられている。第1の磁石層の両端部と第2の磁石層の両端部は平行に対向しており、その間に前記軟磁性部材のストップポイントが入り込んでいる。   The transducer described in FIGS. 3 and 4 of Patent Document 2 is provided with stop points facing each other at both ends of a soft magnetic member wound with a coil. A permanent magnet is supported between the soft magnetic members so as to be rotatable about an axis, and a first magnet layer and a second magnet layer are superimposed on both surfaces of the permanent magnet. Both end portions of the first magnet layer and both end portions of the second magnet layer face each other in parallel, and a stop point of the soft magnetic member enters between them.

永久磁石が時計方向へ回動すると、第1の磁石層の一方の端部と第2の磁石層の一方の端部が軟磁性部材のストップポイントに磁気吸着されて固定され、反時計方向へ回動すると、第1の磁石層の他方の端部と第2の磁石層の他方の端部が軟磁性部材のストップストップに磁気吸着されて固定される。このトランスデューサも、永久磁石が時計方向へ回動するときの軟磁性部材内の磁束の変化と、反時計方向へ回動するときの軟磁性部材内の磁束の変化とで、コイルに起電力を発生させている。   When the permanent magnet rotates clockwise, one end portion of the first magnet layer and one end portion of the second magnet layer are magnetically attracted and fixed to the stop point of the soft magnetic member, and counterclockwise. When rotating, the other end of the first magnet layer and the other end of the second magnet layer are magnetically attracted and fixed to the stop stop of the soft magnetic member. This transducer also generates an electromotive force in the coil due to a change in the magnetic flux in the soft magnetic member when the permanent magnet rotates in the clockwise direction and a change in the magnetic flux in the soft magnetic member when the permanent magnet rotates in the counterclockwise direction. Is generated.

特許文献2に記載されたトランスデューサは、永久磁石が時計方向へ回動したときと反時計方向へ回動したときの双方で、第1の磁石層と第2の磁石層が軟磁性部材に吸着されて固定されてしまうため、この吸着固定状態から永久磁石を逆向きに回転させるために非常に大きな力が必要になる。トランスデューサには、永久磁石を同じ姿勢へ戻すための戻しばねが設けられているが、この点に関して、特許文献2では、ストップポイントでの磁気保持力よりも大きい力を発揮する戻しばねを使用しなくてはならないと説明されている。したがって、永久磁石を回動させるときは、第1の磁石層と第2の磁石層をストップポイントから引き離すのに必要となる力と、戻しばねに対抗する力を合算させた力が必要になり、過大な操作力を与えないと動作させることができなくなる。   In the transducer described in Patent Document 2, the first magnet layer and the second magnet layer are attracted to the soft magnetic member both when the permanent magnet rotates clockwise and when it rotates counterclockwise. Therefore, a very large force is required to rotate the permanent magnet in the reverse direction from this attracted and fixed state. The transducer is provided with a return spring for returning the permanent magnet to the same posture. In this regard, Patent Document 2 uses a return spring that exhibits a force larger than the magnetic holding force at the stop point. It is explained that it is necessary. Therefore, when rotating the permanent magnet, the force required to separate the first magnet layer and the second magnet layer from the stop point and the force against the return spring are required. If an excessive operating force is not applied, it cannot be operated.

特開2009−199961号公報JP 2009-199996 A 米国特許公開2006/0091984A1公報US Patent Publication 2006 / 0091984A1

本発明は上記従来の課題を解決するものであり、過大な操作力が不要で操作が容易であり、しかも比較的大きな起電力を得ることができる発電入力装置を使用して信号の送信などを行なうことができる電子機器を提供することを目的としている。 The present invention solves the above-described conventional problems, and does not require an excessive operating force, is easy to operate, and transmits a signal using a power generation input device that can obtain a relatively large electromotive force. An object is to provide an electronic device that can be used .

本発明は、磁性材料で形成された磁路形成部材と、前記磁路形成部材の一部であって空間を介して対向する第1の対向端部および第2の対向端部と、前記第1の対向端部と前記第2の対向端部との間で前記磁路形成部材に巻かれた発電コイルと、前記空間内に位置して前記第1の対向端部と前記第2の対向端部との対向方向と直交する軸を支点として回動する回動体と、前記回動体に回動力を与える操作部材とを有する発電入力装置と、
前記回動体が回動したときに前記発電コイルから得られる起電力によって駆動される信号処理回路と、
を有する電子機器であって、
前記回動体は、磁性材料製の第1の磁化部材および磁性材料製の第2の磁化部材と、前記第1の磁化部材と第2の磁化部材との間に配置される磁石とを有し、前記磁石は、前記第1の磁化部材が接合される面と前記第2の磁化部材が接合される面とが互いに逆磁極であり、
前記磁石と前記第1の磁化部材および前記第2の磁化部材が、前記軸の延びる方向と直交する方向に重ねられており、前記軸の延びる方向および前記磁石と前記第1の磁化部材および前記第2の磁化部材が重ねられた方向の双方と直交する方向において、前記第1の磁化部材が、互いに対向する第1の端面と第2の端面を有し、前記第2の磁化部材が、互いに対向する第1の端面と第2の端面を有し、
前記操作部材によって、前記回動体が、前記第1の磁化部材の前記第1の端面が前記第1の対向端部に隙間を介して対向し且つ前記第2の磁化部材の前記第1の端面が前記第2の対向端部に隙間を介して対向する第1の姿勢と、前記第1の磁化部材の前記第2の端面が前記第2の対向端部に隙間を介して対向し且つ前記第2の磁化部材の前記第2の端面が前記第1の対向端部に隙間を介して対向する第2の姿勢との間で往復回動させられ
前記電子機器は、前記起電力で駆動される送信回路を有しており、前記信号処理回路は、前記回動体が第1の姿勢から第2の姿勢に回動して前記発電コイルから第1の起電力が与えられたときと、前記回動体が第2の姿勢から第1の姿勢に回動して前記発電コイルから第2の起電力が与えられたときに、前記送信回路の切換えを行うことを特徴とするものである。
This onset Ming, a magnetic path forming member made of a magnetic material, a first opposite ends and second opposite ends which face each other with a space a part of the magnetic path forming member, wherein wherein the outgoing arc-yl which is wound around the magnetic path forming member between a first opposing end and said second opposite ends, located in the space between the first opposing end the a rotating body which rotates an axis perpendicular to the opposing direction of the two opposite ends as a fulcrum, a power generation input device for chromatic and operating member providing a rotational force to the rotating body,
A signal processing circuit driven by an electromotive force obtained from the power generating coil when the rotating body rotates;
An electronic device having
The rotating body includes a first magnetizing member made of a magnetic material, a second magnetizing member made of a magnetic material, and a magnet disposed between the first magnetizing member and the second magnetizing member. In the magnet, the surface to which the first magnetizing member is joined and the surface to which the second magnetizing member are joined are mutually opposite magnetic poles,
The magnet, the first magnetizing member, and the second magnetizing member are overlapped in a direction orthogonal to the direction in which the shaft extends, and the direction in which the shaft extends, the magnet, the first magnetizing member, and the In a direction orthogonal to both directions in which the second magnetizing members are stacked, the first magnetizing member has a first end surface and a second end surface facing each other, and the second magnetizing member is A first end surface and a second end surface facing each other;
By the operation member, the rotating body causes the first end surface of the first magnetizing member to face the first opposing end portion with a gap and the first end surface of the second magnetizing member. Is opposed to the second opposed end portion via a gap, and the second end surface of the first magnetizing member is opposed to the second opposed end portion via a gap, and The second end face of the second magnetizing member is reciprocally rotated between the second posture facing the first opposing end portion via a gap ,
The electronic device includes a transmission circuit driven by the electromotive force, and the signal processing circuit is configured to rotate the rotating body from a first posture to a second posture and start from the power generating coil. When the electromotive force is applied, and when the rotating body rotates from the second posture to the first posture and the second electromotive force is applied from the power generation coil, the transmission circuit is switched. It is characterized by doing .

本発明の発電入力装置は、回動体が、第1の姿勢へ向けて回動するときと、第2の姿勢に向けて回動するときの双方において、第1の磁化部材と第2の磁化部材が、磁路形成部材の2つの対向端部に磁気吸引されるため、回動体の回動速度が自然と加速されることなる。そのため、磁路形成部材の内部の単位時間当たりに磁束の変化量が大きくなり、発電効率が高くなる。   The power generation input device according to the present invention includes the first magnetizing member and the second magnetizing member both when the rotating body rotates toward the first attitude and when the rotating body rotates toward the second attitude. Since the member is magnetically attracted to the two opposing end portions of the magnetic path forming member, the rotation speed of the rotating body is naturally accelerated. Therefore, the amount of change in magnetic flux per unit time inside the magnetic path forming member increases, and the power generation efficiency increases.

また、回動体が第1の姿勢と第2の姿勢に回動したときに、第1の磁化部材および第2の磁化部材と磁路形成部材の対向端部との間に隙間が形成されているため、回動体を第1の姿勢から回動させ、または第2の姿勢から回動させるときに過大な操作力が必要とならない。したがって、操作がきわめて容易である。   In addition, when the rotating body rotates between the first posture and the second posture, a gap is formed between the first magnetizing member and the second magnetizing member and the opposite end of the magnetic path forming member. Therefore, an excessive operating force is not required when the rotating body is rotated from the first posture or rotated from the second posture. Therefore, the operation is very easy.

本発明は、詳しくは、前記第1の磁化部材の前記第1の端面および前記第2の端面、ならびに前記第2の磁化部材の前記第1の端面および前記第2の端面が、前記軸を中心とする円筒面に一致するように、曲面形状に形成されものとできる。   In more detail, the present invention provides that the first end surface and the second end surface of the first magnetizing member, and the first end surface and the second end surface of the second magnetizing member have the axis. It can be formed in a curved surface shape so as to coincide with the central cylindrical surface.

そして、前記第1の姿勢で、前記第1の磁化部材が前記第1の対向端部に前記隙間を介して磁気吸引され、且つ前記第2の磁化部材が前記第2の対向端部に前記隙間を介して磁気吸引され、
前記第2の姿勢で、前記第1の磁化部材が前記第2の対向端部に前記隙間を介して磁気吸引され且つ前記第2の磁化部材が前記第1の対向端部に前記隙間を介して磁気吸引されるものである。
Then, in the first posture, the first magnetizing member is magnetically attracted to the first opposing end through the gap, and the second magnetizing member is attached to the second opposing end. Magnetically attracted through the gap,
In the second posture, the first magnetizing member is magnetically attracted to the second opposing end through the gap, and the second magnetizing member is inserted into the first opposing end through the gap. Is magnetically attracted.

本発明の発電入力装置は、前記第2の姿勢での磁気吸引力に打ち勝って、前記回動体を第1の姿勢に復帰させる復帰ばねが設けられているものとして構成できる。   The power generation input device according to the present invention can be configured to include a return spring that overcomes the magnetic attractive force in the second posture and returns the rotating body to the first posture.

回動体を第1の姿勢または第2の姿勢から回動させるのに必要な力が過大ではないため、前記復帰ばねの力を適度なものにでき、操作しやすいものとなる。   Since the force required to rotate the rotating body from the first posture or the second posture is not excessive, the force of the return spring can be made moderate and easy to operate.

本発明の電子機器は、前記発電入力装置が複数設けられており、それぞれの発電入力装置から得られる第1の起電力が、個別に前記信号処理回路に与えられ、複数の発電入力装置から得られる第2の起電力が、共通のラインから前記信号処理回路に与えられるものにできる。
The electronic device of the present invention includes a plurality of the power generation input devices, and a first electromotive force obtained from each power generation input device is individually given to the signal processing circuit, and is obtained from the plurality of power generation input devices. The second electromotive force generated can be provided to the signal processing circuit from a common line.

この場合に、共通の前記ラインに、第2の起電力を通過させるダイオードが設けられているものが好ましい。   In this case, it is preferable that the common line is provided with a diode that allows the second electromotive force to pass therethrough.

上記のように、複数の発電入力装置の第2の起電力を同じラインにして信号処理回路に与えることで、回路構成を簡単にできる。   As described above, the circuit configuration can be simplified by applying the second electromotive force of the plurality of power generation input devices to the signal processing circuit on the same line.

本発明の発電入力装置は、回動体が、第1の姿勢へ向けて回動するときと、第2の姿勢に向けて回動するときの双方において、第1の磁化部材と第2の磁化部材が、磁路形成部材の2つの対向端部に磁気吸引される。そのため、回動体の回動速度が自然と加速されることなり、磁路形成部材の内部の単位時間当たりに磁束の変化量が大きくなって、発電効率を向上させることが可能になる。   The power generation input device according to the present invention includes the first magnetizing member and the second magnetizing member both when the rotating body rotates toward the first attitude and when the rotating body rotates toward the second attitude. The member is magnetically attracted to the two opposite ends of the magnetic path forming member. Therefore, the rotational speed of the rotating body is naturally accelerated, the amount of change in magnetic flux per unit time inside the magnetic path forming member is increased, and the power generation efficiency can be improved.

また、回動体が第1の姿勢と第2の姿勢に回動したときに、第1の磁化部材および第2の磁化部材と磁路形成部材の対向端部との間に隙間が形成されている。そのため、回動体を第1の姿勢と第2の姿勢のそれぞれの姿勢から回動させるときに過大な操作力が必要とならず、操作がきわめて容易である。   In addition, when the rotating body rotates between the first posture and the second posture, a gap is formed between the first magnetizing member and the second magnetizing member and the opposite end of the magnetic path forming member. Yes. Therefore, an excessive operating force is not required when the rotating body is rotated from each of the first posture and the second posture, and the operation is extremely easy.

さらに、前記発電入力装置を用いて、送信回路などを有する電子機器を、無電力で動作させることが可能になる。   Furthermore, it becomes possible to operate an electronic device having a transmission circuit or the like with no power using the power generation input device.

本発明の実施の形態の発電入力装置の全体構造を示す斜視図、The perspective view which shows the whole structure of the electric power generation input device of embodiment of this invention, 発電入力装置の、磁路形成部材とコイルと磁束発生部の位置関係を示す部分斜視図、The partial perspective view which shows the positional relationship of a magnetic path formation member, a coil, and a magnetic flux generation part of an electric power generation input device, 回動体が第1の姿勢のときの発電入力装置の側面図、A side view of the power generation input device when the rotating body is in the first posture, 回動体が第2の姿勢のときの発電入力装置の側面図、A side view of the power generation input device when the rotating body is in the second posture, 磁気吸引力と復帰ばねの弾性力と操作反力の関係を示す線図、A diagram showing the relationship between the magnetic attractive force and the elastic force of the return spring and the operation reaction force, 本発明の実施の形態の電子機器の回路図、A circuit diagram of an electronic device according to an embodiment of the present invention, 電子機器の起電力の波形を示す線図、A diagram showing a waveform of electromotive force of an electronic device,

図1に示す発電入力装置1は、筐体2を有している。図1に示す筐体2は下部筐体であり、筐体2の上に図示しない上部筐体が設置されている。   A power generation input device 1 shown in FIG. A housing 2 shown in FIG. 1 is a lower housing, and an upper housing (not shown) is installed on the housing 2.

筐体2に磁路形成部材3が保持されている。図2に示すように、磁路形成部材3は、第1の腕部3aと第2の腕部3bおよび連結部3cとが連続して一体に形成されている。磁路形成部材3は軟磁性の金属板でU字形状に形成されて、連結部3cが上向きにほぼ直角に折り曲げられている。第1の腕部3aが第1の対向端部4aを有し、第2の腕部3bが第2の対向端部4bを有している。   A magnetic path forming member 3 is held in the housing 2. As shown in FIG. 2, the magnetic path forming member 3 includes a first arm portion 3a, a second arm portion 3b, and a connecting portion 3c that are continuously and integrally formed. The magnetic path forming member 3 is formed of a soft magnetic metal plate in a U shape, and the connecting portion 3c is bent upward at a substantially right angle. The first arm portion 3a has a first opposing end portion 4a, and the second arm portion 3b has a second opposing end portion 4b.

図1ないし図4では、第1の腕部3aと第2の腕部3bの板面に沿う対向方向がX方向で示され、第1の腕部3aと第2の腕部3bの板厚方向がX方向と直交するY方向として示されている。第1の腕部3aと第2の腕部3b内での磁束の誘導方法がさらにZ方向として示されている。   In FIG. 1 to FIG. 4, the facing direction along the plate surface of the first arm portion 3 a and the second arm portion 3 b is shown in the X direction, and the plate thickness of the first arm portion 3 a and the second arm portion 3 b. The direction is shown as the Y direction orthogonal to the X direction. The method of guiding the magnetic flux in the first arm portion 3a and the second arm portion 3b is further shown as the Z direction.

第1の腕部3aの第1の対向端部4aと、第2の腕部の第2の対向端部4bは、誘導方向(Z方向)に向けて互いに平行に延びている。第1の対向端部4aと第2の対向端部4bは、Y−Z平面に平行で平坦な端面を有している。   The first opposing end 4a of the first arm 3a and the second opposing end 4b of the second arm extend in parallel to each other in the guiding direction (Z direction). The first opposing end 4a and the second opposing end 4b have flat end surfaces that are parallel to the YZ plane.

磁路形成部材3の第1の腕部3aの外周に第1のボビン5aが設けられ、第1のボビン5aに第1の発電コイル6aが巻かれている。第2の腕部3bの外周に第2のボビン5bが設けられ、第2のボビン5bに第2の発電コイル6bが巻かれている。   A first bobbin 5a is provided on the outer periphery of the first arm 3a of the magnetic path forming member 3, and a first power generation coil 6a is wound around the first bobbin 5a. The 2nd bobbin 5b is provided in the outer periphery of the 2nd arm part 3b, and the 2nd electric power generation coil 6b is wound around the 2nd bobbin 5b.

図1に示すように、筐体2に保持凹部2aが形成されており、磁路形成部材3ならびに第1のボビン5aと第2のボビン5bが、保持凹部2aの内部に嵌合し、位置決めされて固定されている。   As shown in FIG. 1, a holding recess 2a is formed in the housing 2, and the magnetic path forming member 3, the first bobbin 5a and the second bobbin 5b are fitted into the holding recess 2a and positioned. Has been fixed.

第1の発電コイル6aの巻き導線と第2の発電コイル6bの巻き導線は直列に接続されており、導線の両端部が、筐体2に固定された一対の発電端子7に個別に接続されている。   The winding wire of the first power generation coil 6 a and the winding wire of the second power generation coil 6 b are connected in series, and both ends of the conductive wire are individually connected to a pair of power generation terminals 7 fixed to the housing 2. ing.

図1に示すように、筐体2の内部に回動体10が設けられている。回動体10は、磁気的な絶縁材料である合成樹脂材料で形成された回動ホルダ11を有している。回動ホルダ11には、Z1方向とZ2方向に突出する回動軸12が一体に形成されている。筐体2に軸受部2bが形成されており、回動軸12が軸受部2bに回動自在に保持されて、回動体10が、Z方向に延びる軸芯Oを中心として回動自在に支持されている。   As shown in FIG. 1, a rotating body 10 is provided inside the housing 2. The rotating body 10 has a rotating holder 11 made of a synthetic resin material that is a magnetic insulating material. The rotation holder 11 is integrally formed with a rotation shaft 12 protruding in the Z1 direction and the Z2 direction. The housing 2 is formed with a bearing 2b, the rotating shaft 12 is rotatably held by the bearing 2b, and the rotating body 10 is supported rotatably about an axis O extending in the Z direction. Has been.

図1に示すように、回動ホルダ11のZ2側の端部に回動アーム13が一体に形成され、その先部に軸方向がZ方向に延びる連結ピン14が一体に形成されている。筐体2には、垂直方向であるY方向に貫通する摺動軸受部2cが形成されており、この摺動軸受部2c内に、操作部材15が摺動自在に保持されている。操作部材15にX方向に延びる連結長穴16が形成されており、前記連結ピン14が連結長穴16の内部に摺動自在に挿入されている。   As shown in FIG. 1, a rotating arm 13 is integrally formed at the end of the rotating holder 11 on the Z2 side, and a connecting pin 14 having an axial direction extending in the Z direction is integrally formed at the tip thereof. The housing 2 is formed with a sliding bearing portion 2c penetrating in the Y direction, which is the vertical direction, and the operation member 15 is slidably held in the sliding bearing portion 2c. A connecting slot 16 extending in the X direction is formed in the operation member 15, and the connecting pin 14 is slidably inserted into the connecting slot 16.

前記連結ピン14と前記連結長穴16とで、操作部材15の垂直方向(Y方向)の移動力を、回動体10の軸芯Oを中心とした回動力に変換する連結機構が構成されている。   The connecting pin 14 and the connecting elongated hole 16 constitute a connecting mechanism that converts the moving force of the operating member 15 in the vertical direction (Y direction) into turning power about the axis O of the rotating body 10. Yes.

図3と図4に示すように、筐体2の内部に復帰ばね17が設けられており、この復帰ばね17によって、操作部材15がY1方向(復帰方向)へ常に付勢されている。   As shown in FIGS. 3 and 4, a return spring 17 is provided inside the housing 2, and the operation member 15 is always urged in the Y1 direction (return direction) by the return spring 17.

回動体10では、回動ホルダ11に磁束発生部20が固定されている。磁束発生部20は、磁路形成部材3の第1の対向端部4aと第2の対向端部4bとが対向する空間8の内部に位置している。図3と図4に示すように、磁束発生部20は永久磁石21を有している。永久磁石21は、板状の磁石であり、上下に対向する一方の平面が第1の着磁面21aで他方の平面が第2の着磁面21bである。第1の着磁面21aと第2の着磁面21bは互いに逆の極性に着磁されている。図3と図4に示す例では、第1の着磁面21aがS極で、第2の着磁面21bがN極に着磁されている。   In the rotating body 10, the magnetic flux generator 20 is fixed to the rotating holder 11. The magnetic flux generator 20 is located in the space 8 where the first opposing end 4a and the second opposing end 4b of the magnetic path forming member 3 are opposed to each other. As shown in FIGS. 3 and 4, the magnetic flux generator 20 has a permanent magnet 21. The permanent magnet 21 is a plate-shaped magnet, and one flat surface facing the top and bottom is the first magnetized surface 21a and the other flat surface is the second magnetized surface 21b. The first magnetized surface 21a and the second magnetized surface 21b are magnetized with opposite polarities. In the example shown in FIGS. 3 and 4, the first magnetized surface 21a is magnetized to the S pole and the second magnetized surface 21b is magnetized to the N pole.

第1の着磁面21aに第1の磁化部材22が固定され、第2の着磁面21bに第2の磁化部材23が固定されている。第1の磁化部材22と第2の磁化部材23は、軟磁性の金属板である。第1の磁化部材22はX2側に向く第1の端面22aとX1側に向く第2の端面22bを有している。第2の磁化部材23は、X1側に向く第1の端面23aとX2側に向く第2の端面23bを有している。   The first magnetizing member 22 is fixed to the first magnetized surface 21a, and the second magnetizing member 23 is fixed to the second magnetized surface 21b. The first magnetizing member 22 and the second magnetizing member 23 are soft magnetic metal plates. The first magnetizing member 22 has a first end face 22a facing the X2 side and a second end face 22b facing the X1 side. The second magnetizing member 23 has a first end face 23a facing the X1 side and a second end face 23b facing the X2 side.

図3と図4に示すように、各端面22a,22b,23a,23bは、回転軸12の中心である軸芯Oを中心とする円筒面に一致するように、曲面形状に形成されている。図3と図4に示すように、第1の磁化部材22の端面22aまたは第2の磁化部材23の端面23bが第1の対向端部4aに対向したときに、端面22aまたは端面23bと第1の対向端部4aとが接触することがなく対向部に微細な隙間が形成される。同様に、第1の磁化部材22の端面22bまたは第2の磁化部材23の端面23aが第2の対向端部4bに対向したときに、端面22bまたは端面23aと第2の対向端部4bとが接触することがなく対向部に微細な隙間が形成される。   As shown in FIGS. 3 and 4, each end face 22 a, 22 b, 23 a, 23 b is formed in a curved surface shape so as to coincide with a cylindrical surface centering on the axis O that is the center of the rotating shaft 12. . As shown in FIGS. 3 and 4, when the end face 22a of the first magnetizing member 22 or the end face 23b of the second magnetizing member 23 faces the first opposing end 4a, the end face 22a or the end face 23b and the second face The first facing end 4a does not come into contact with each other, and a fine gap is formed in the facing portion. Similarly, when the end surface 22b of the first magnetizing member 22 or the end surface 23a of the second magnetizing member 23 faces the second opposing end 4b, the end surface 22b or the end surface 23a and the second opposing end 4b Without contact, a fine gap is formed in the facing portion.

図3に示すように、第1の磁化部材22の厚さ寸法T2は、磁路形成部材3の厚さ寸法T1と同じがそれよりも大きく、第1の磁化部材22の第1の端面22aが第1の対向端部4aに対向したときに、その対向面積が、第1の対向端部4aの面積よりも狭くならない。これは、第1の磁化部材22の第2の端面22bと第2の対向端部4bとが対向するときも同じである。また、第2の磁化部材23の厚さ寸法もT2であり、端面23aまたは端面23bが対向端部4a,4bと対向するときに、その対向面積が、対向端部4a,4bの面積よりも狭くなることがない。   As shown in FIG. 3, the thickness dimension T2 of the first magnetizing member 22 is the same as the thickness dimension T1 of the magnetic path forming member 3, but larger than that, and the first end face 22a of the first magnetizing member 22 is larger. Is opposed to the first facing end 4a, the facing area is not narrower than the area of the first facing end 4a. This is the same when the second end face 22b of the first magnetizing member 22 and the second facing end 4b face each other. Further, the thickness dimension of the second magnetizing member 23 is also T2, and when the end face 23a or the end face 23b faces the opposite end portions 4a and 4b, the opposite area is larger than the area of the opposite end portions 4a and 4b. There is no narrowing.

厚さ寸法T1,T2が上記の関係となることで、第1の磁化部材22および第2の磁化部材23から磁路形成部材3への磁束の伝達効率が高くなる。   When the thickness dimensions T1 and T2 satisfy the above relationship, the transmission efficiency of the magnetic flux from the first magnetizing member 22 and the second magnetizing member 23 to the magnetic path forming member 3 is increased.

次に、前記発電入力装置1の動作について説明する。   Next, the operation of the power generation input device 1 will be described.

図3に示すように、操作部材15に外力が作用していないときは、復帰ばね17の付勢力で操作部材15がY1方向へ戻されており、操作部材15の連結長穴16によって連結ピン14が持ち上げられ、回動体10が図3において時計方向へ回動させられた第1の姿勢となっている。回動体10が第1の姿勢のとき、第1の磁化部材22の第1の端面22aが磁路形成部材3の第1の対向端部4aに微小な隙間を介して対向し、第2の磁化部材23の第1の端面23aが第2の対向端部4bに微小な隙間を介して対向している。また、第1の磁化部材22の第2の端面22bが第2の対向端部4bから離れ、第2の磁化部材23の第2の端面23bが第1の対向端部4aから離れている。   As shown in FIG. 3, when no external force is applied to the operating member 15, the operating member 15 is returned in the Y1 direction by the biasing force of the return spring 17, and the connecting pin 16 is connected to the connecting pin by the connecting long hole 16 of the operating member 15. 14 is lifted, and the rotating body 10 is in the first posture rotated clockwise in FIG. When the rotating body 10 is in the first posture, the first end surface 22a of the first magnetizing member 22 faces the first facing end 4a of the magnetic path forming member 3 with a small gap therebetween, and the second The first end face 23a of the magnetizing member 23 is opposed to the second opposing end 4b via a minute gap. Further, the second end face 22b of the first magnetizing member 22 is separated from the second opposing end 4b, and the second end face 23b of the second magnetizing member 23 is separated from the first opposing end 4a.

図3に示す状態では、永久磁石21の磁力により、第1の端面22aと第1の対向端部4aとが磁気吸引され、第1の端面23aと第2の対向端部4bとが磁気吸引されて、回動体10が第1の姿勢で安定しようとする。   In the state shown in FIG. 3, the first end face 22a and the first opposing end 4a are magnetically attracted by the magnetic force of the permanent magnet 21, and the first end face 23a and the second opposing end 4b are magnetically attracted. Thus, the rotating body 10 tries to be stabilized in the first posture.

操作部材15の上部に押釦(図示せず)が固定されている。押釦の押圧操作によって、操作部材15が図3の状態からY2方向へ向けて押されると、操作部材15の連結長穴16によって連結ピン14が下向きに押され、回動体10が反時計方向へ回動させられる。操作部材15が下向きの最終端まで押されると、回動体10は図4に示す第2の姿勢となる。第2の姿勢では、第1の磁化部材22の第2の端面22bが、磁路形成部材3の第2の対向端部4bに微小な隙間を介して対向し、第1の端面22aが第1の対向端面23bから離れる。また、第2の磁化部材23の第2の端面23bが第1の対向端部4aに微小な隙間を介して対向し、第1の端面23aは第2の対向端部4bから離れる。   A push button (not shown) is fixed to the upper portion of the operation member 15. When the operation member 15 is pushed in the Y2 direction from the state of FIG. 3 by the push operation of the push button, the connection pin 14 is pushed downward by the connection long hole 16 of the operation member 15, and the rotating body 10 is rotated counterclockwise. It can be rotated. When the operating member 15 is pushed down to the final end, the rotating body 10 assumes the second posture shown in FIG. In the second posture, the second end face 22b of the first magnetizing member 22 faces the second facing end 4b of the magnetic path forming member 3 via a minute gap, and the first end face 22a is the first end face 22a. 1 away from the opposing end surface 23b. Further, the second end face 23b of the second magnetizing member 23 faces the first opposing end 4a via a minute gap, and the first end face 23a is separated from the second opposing end 4b.

図4に示す状態では、永久磁石21の磁力により、第2の端面22bと第2の対向端部4bとが磁気吸引され、第2の端面23bと第1の対向端部4aとが磁気吸引されて、回動体10が第2の姿勢で安定しようとする。   In the state shown in FIG. 4, the second end face 22b and the second opposing end 4b are magnetically attracted by the magnetic force of the permanent magnet 21, and the second end face 23b and the first opposing end 4a are magnetically attracted. Thus, the rotating body 10 tries to be stabilized in the second posture.

通常の押釦の押圧操作では、操作部材15がY2方向の最終端まで押された直後に、下向きの押圧力が解除される。押圧力が解除されると、操作部材15が復帰ばね17の付勢力によってY1方向へ押し戻され、回動体10に時計方向への復帰回動力が与えられる。このとき、回動体10は、図4に示す第2の姿勢での安定状態から時計方向へ回動し、図3に示す第1の姿勢に復帰する。   In a normal push button pressing operation, the downward pressing force is released immediately after the operating member 15 is pressed to the final end in the Y2 direction. When the pressing force is released, the operating member 15 is pushed back in the Y1 direction by the urging force of the return spring 17, and the turning force is applied to the rotating body 10 in the clockwise direction. At this time, the rotating body 10 rotates clockwise from the stable state in the second posture shown in FIG. 4 and returns to the first posture shown in FIG.

図5の線図に示す曲線αは、復帰ばね17の弾性力を無視したときの、操作部材15のストローク(mm)と、操作部材15に作用する反力(N)との関係を示している。縦軸の反力のプラス側は、操作部材15に対して上向きに作用する力の大きさであり、縦軸の反力のマイナス側は、操作部材15に対して下向きに作用する力の大きさである。   The curve α shown in the diagram of FIG. 5 shows the relationship between the stroke (mm) of the operating member 15 and the reaction force (N) acting on the operating member 15 when the elastic force of the return spring 17 is ignored. Yes. The positive side of the reaction force on the vertical axis is the magnitude of the force acting upward on the operation member 15, and the minus side of the reaction force on the vertical axis is the magnitude of the force acting downward on the operation member 15. That's it.

曲線αでは、(i)が回動体10を図3に示す第1の姿勢で安定させている力であり、(ii)が、回動体10を第1の姿勢の安定状態から脱却させて反時計方向へ回動させるときに必要な力の極大値である。(iii)は、回動体10を図4に示す第2の姿勢で安定させている力であり、(iv)は、回動体1を第2の姿勢から脱却させて時計方向へ回動させるときに必要となる力の極大値である。   In the curve α, (i) is a force that stabilizes the rotating body 10 in the first posture shown in FIG. 3, and (ii) is a reaction that causes the rotating body 10 to escape from the stable state of the first posture. It is the maximum value of the force required when rotating clockwise. (Iii) is the force that stabilizes the rotating body 10 in the second position shown in FIG. 4, and (iv) is the time when the rotating body 1 is moved away from the second position and rotated in the clockwise direction. This is the maximum value of the force required for.

図5の直線βは、磁束発生部20の磁気吸着力を無視したときに、復帰ばね17から操作部材15に与えられる復帰力の変化のみを示している。曲線γは、曲線αと直線βとを加算したものであり、実施の形態の発電入力装置1において操作部材15を操作するときに作用する反力の変化を示している。復帰ばね17の弾性力を直線βのように設定することで、操作反力を常に上向きに作用させることができる。よって、操作部材15を下方向へ押して図4の第2の姿勢となった後に、操作部材15に作用する押圧力を解除すれば、回動体10と操作部材15を、復帰ばね17の弾性力によって図3に示す第1の姿勢に復帰させることができる。   A straight line β in FIG. 5 shows only a change in the return force applied from the return spring 17 to the operation member 15 when the magnetic attractive force of the magnetic flux generator 20 is ignored. A curve γ is obtained by adding the curve α and the straight line β, and shows a change in the reaction force acting when the operation member 15 is operated in the power generation input device 1 of the embodiment. By setting the elastic force of the return spring 17 as the straight line β, the operation reaction force can always be applied upward. Therefore, if the pressing force acting on the operating member 15 is released after the operating member 15 is pushed downward to reach the second posture in FIG. 4, the rotating body 10 and the operating member 15 are moved to the elastic force of the return spring 17. Thus, the first posture shown in FIG. 3 can be restored.

図4に示す第2の姿勢では、第1の磁化部材22と第2の磁化部材23が、第1の対向端部4aおよび第2の対向端部4bに接触せず、微小な隙間を介して対向している。そのため、回動体10を第2の姿勢から時計方向へ復帰させるのに要する力があまり過大にならず、図5に示す直線βの特性を有する通常のばねの弾性力で回動体10を第1の姿勢に向けて復帰させることができる。   In the second posture shown in FIG. 4, the first magnetizing member 22 and the second magnetizing member 23 do not contact the first opposing end 4 a and the second opposing end 4 b, and pass through a minute gap. Facing each other. Therefore, the force required to return the rotating body 10 from the second posture in the clockwise direction is not excessively large, and the rotating body 10 is moved to the first by the elastic force of a normal spring having the characteristic of the straight line β shown in FIG. It can be returned to the posture.

図3に示す第1の姿勢において、第1の磁化部材22と第2の磁化部材23が、第1の対向端部4aおよび第2の対向端部4bに接触しておらず、微小な隙間を介して対向している。そのため、図3の第1の姿勢から回動体10を反時計方向へ回動させるのに要する力が過大にならない。さらに復帰ばね17の弾性力をさほど強くする必要がないので、操作部材15を下降させるのに要する最大の力は、図5において(v)で示すように、大きすぎることがなく、よって、操作部材15を操作しやすい。   In the first posture shown in FIG. 3, the first magnetizing member 22 and the second magnetizing member 23 are not in contact with the first opposed end 4a and the second opposed end 4b, and a minute gap Is facing through. Therefore, the force required to rotate the rotating body 10 counterclockwise from the first posture in FIG. 3 does not become excessive. Further, since it is not necessary to increase the elastic force of the return spring 17 so much, the maximum force required to lower the operating member 15 is not too large as shown in FIG. The member 15 is easy to operate.

図3に示す第1の姿勢のとき、永久磁石21から発せられる磁束φ1が、第2の磁化部材23の端面23aから第2の対向端部4bを介して磁路形成部材3の第2の腕部3bに与えられる。磁束φ1は、磁路形成部材3の連結部3cを介して第1の腕部3aに至る経路を辿り、第1の対向端部4aから端面22aを介して第1の磁化部材22に戻る。図4に示す第2の姿勢になると、永久磁石21から発せられる磁束φ2が、第1の腕部3aから連結部3cを介して第2の腕部3bに至る経路を辿る。   In the first posture shown in FIG. 3, the magnetic flux φ1 generated from the permanent magnet 21 is supplied from the end face 23a of the second magnetizing member 23 to the second of the magnetic path forming member 3 via the second opposing end 4b. It is given to the arm 3b. The magnetic flux φ1 follows a path that reaches the first arm portion 3a via the connecting portion 3c of the magnetic path forming member 3, and returns to the first magnetizing member 22 from the first opposed end portion 4a via the end face 22a. In the second posture shown in FIG. 4, the magnetic flux φ2 emitted from the permanent magnet 21 follows a path from the first arm portion 3a to the second arm portion 3b via the connecting portion 3c.

図5の曲線γの(vi)で示すように、図1に示す発電入力装置1では、操作部材15がY2方向へ押し込まれるときに、回動体10が図4に示す第2の姿勢に向けて磁気吸引力によって急速に回転する。また、操作部材15が下向きに押し込まれた後に押し込み力が除去されると、回転体20が図3に示す第1の姿勢に向けて磁気吸引力および復帰ばね17の弾性力によって急速に回転する。   As indicated by (vi) of the curve γ in FIG. 5, in the power generation input device 1 shown in FIG. 1, when the operating member 15 is pushed in the Y2 direction, the rotating body 10 faces the second posture shown in FIG. 4. And rotate rapidly by magnetic attraction. When the pushing force is removed after the operating member 15 is pushed downward, the rotating body 20 is rapidly rotated by the magnetic attractive force and the elastic force of the return spring 17 toward the first posture shown in FIG. .

そのため、操作部材15がY2方向へ向けて押されるときに、磁路形成部材3内で磁束φ1からφ2に変化するときの、単位時間当たりの磁束の変化量が大きく、発電コイル6a,6bから大きな誘導起電力を得ることができる。同様に、操作部材15がY1方向へ戻るときに、磁路形成部材3内で磁束φ2からφ1に変化するときの、単位時間当たりの磁束の変化量が大きく、発電コイル6a,6bから大きな誘導起電力を得ることができる。   Therefore, when the operating member 15 is pushed in the Y2 direction, the amount of change in magnetic flux per unit time when changing from the magnetic flux φ1 to φ2 in the magnetic path forming member 3 is large, and the power generating coils 6a and 6b A large induced electromotive force can be obtained. Similarly, when the operating member 15 returns in the Y1 direction, the amount of change in magnetic flux per unit time when the magnetic flux φ2 changes from φ2 to φ1 in the magnetic path forming member 3 is large, and large induction is generated from the power generation coils 6a and 6b. An electromotive force can be obtained.

さらに、磁束はφ1とφ2との間で、逆向きに変化するため、磁束の変化量そのものが大きくなり、誘導起電力を大きくすることが可能である。   Further, since the magnetic flux changes in the opposite direction between φ1 and φ2, the amount of change of the magnetic flux itself is increased, and the induced electromotive force can be increased.

このように、図1に示す発電入力装置1は、図5に示すように、操作部材15をY2方向へ押圧操作するときの反力が過大にならず、しかも、操作部材15がY2方向へ押されるときとY1方向へ復帰するときの双方において、磁路形成部材3の内部での単位時間あたりの磁束の変化量を大きくでき、発電コイル6a,6bから大きな誘導起電力を得ることができる。   Thus, as shown in FIG. 5, the power generation input device 1 shown in FIG. 1 does not have an excessive reaction force when the operation member 15 is pressed in the Y2 direction, and the operation member 15 moves in the Y2 direction. The amount of change in magnetic flux per unit time inside the magnetic path forming member 3 can be increased both when pressed and when returning to the Y1 direction, and a large induced electromotive force can be obtained from the power generating coils 6a and 6b. .

図6は、前記発電入力装置1を複数個備えた電子機器30の回路図である。この電子機器30は、個々の発電入力装置1が操作されたときに、操作信号を送信する送信機またはリモートコントローラである。   FIG. 6 is a circuit diagram of an electronic device 30 including a plurality of the power generation input devices 1. The electronic device 30 is a transmitter or a remote controller that transmits an operation signal when each power generation input device 1 is operated.

発電入力装置1の操作部材15がY2方向へ押されると、回動体10が図3に示す第1の姿勢から図4に示す第2の姿勢に向けて回動し、このとき直列に接続されている発電コイル6a,6bの端部31と端部32との間に、図7(A)に示す第1の起電力V1(第1の誘導電流)が発生する。操作部材15への押圧力が解除されて復帰ばね17で戻されると、回動体10が第2の姿勢から第1の姿勢に向けて回動し、このとき発電コイル6a,6bの端部31と端部32との間に、第2の起電力V2(第2の誘導電流)が発生する。   When the operating member 15 of the power generation input device 1 is pushed in the Y2 direction, the rotating body 10 rotates from the first posture shown in FIG. 3 to the second posture shown in FIG. 4, and is connected in series at this time. A first electromotive force V1 (first induced current) shown in FIG. 7A is generated between the end 31 and the end 32 of the power generating coils 6a and 6b. When the pressing force on the operating member 15 is released and returned by the return spring 17, the rotating body 10 rotates from the second posture toward the first posture, and at this time, the end portions 31 of the power generating coils 6a and 6b are rotated. And the end 32, a second electromotive force V2 (second induced current) is generated.

互いに極性が相違する第1の起電力V1と第2の起電力V2は、ダイオード群33を経てコンデンサ34に充電されてから放電されることで、起電力ライン35で第1の起電力V1と第2の起電力V2の波長が少し増長される。   The first electromotive force V1 and the second electromotive force V2 having different polarities are discharged from the first electromotive force V1 through the electromotive force line 35 by being charged in the capacitor 34 through the diode group 33 and then discharged. The wavelength of the second electromotive force V2 is slightly increased.

図6に示すように、複数の発電入力装置1のそれぞれの起電力ライン35がひとつの電力ライン36にまとめられる。電力ライン36に整流回路37が設けられており、発電入力装置1で発電された起電力が直流成分に変換されて、信号処理回路38と送信回路39の電源入力部に与えられる。   As shown in FIG. 6, the electromotive force lines 35 of the plurality of power generation input devices 1 are combined into one power line 36. A rectifier circuit 37 is provided in the power line 36, and the electromotive force generated by the power generation input device 1 is converted into a direct current component and supplied to the power input unit of the signal processing circuit 38 and the transmission circuit 39.

それぞれの発電入力装置1における発電コイル6a,6bの一方の端部31から、ON信号ライン41が引き出されている。それぞれのON信号ライン41にダイオード42が設けられており、図7(B)に示すように、第1の起電力V1を通過させることが可能となっている。それぞれのON信号ライン41は、信号処理回路38に設けられた複数のON信号入力部43に個別に接続されている。いずれかの発電入力装置1が操作されて第1の起電力V1が得られると、抵抗R1で設定される電圧値のON信号が、ON信号ライン41から信号処理装置38に個別に与えられる。それぞれの発電入力装置1からのON信号が個別に入力されることにより、信号処理回路38は、どの発電入力装置1が操作されたかを識別できる。   An ON signal line 41 is drawn out from one end 31 of the power generation coils 6 a and 6 b in each power generation input device 1. Each ON signal line 41 is provided with a diode 42, and can pass the first electromotive force V1 as shown in FIG. 7B. Each ON signal line 41 is individually connected to a plurality of ON signal input units 43 provided in the signal processing circuit 38. When any one of the power generation input devices 1 is operated to obtain the first electromotive force V1, an ON signal having a voltage value set by the resistor R1 is individually supplied from the ON signal line 41 to the signal processing device 38. When the ON signal from each power generation input device 1 is individually input, the signal processing circuit 38 can identify which power generation input device 1 is operated.

それぞれの発電入力装置1における発電コイル6a,6bの他方の端部32から、OFF信号ライン44が引き出されている。全ての発電入力装置1のOFF信号ライン44は、共通ライン45に集合させられている。この共通ライン45に共通ダイオード46が接続されている。どの発電入力装置1が操作されたときであっても、図7(C)に示す第2の起電力V2が共通ライン45に与えられ、共通ダイオード46を通過して、抵抗R2で決められる電圧値のOFF信号となって、信号処理回路38のOFF信号入力部47に与えられる。   An OFF signal line 44 is drawn from the other end 32 of the power generation coils 6a and 6b in each power generation input device 1. The OFF signal lines 44 of all the power generation input devices 1 are assembled in a common line 45. A common diode 46 is connected to the common line 45. Regardless of which power generation input device 1 is operated, the second electromotive force V2 shown in FIG. 7C is applied to the common line 45, passes through the common diode 46, and is determined by the resistor R2. A value OFF signal is provided to the OFF signal input unit 47 of the signal processing circuit 38.

図6に示す電子機器30では、いずれかの発電入力装置1の操作部材15が押されると、その起電力が整流回路37で整流されて信号処理回路38と送信回路39に与えられ、信号処理回路38と送信回路39が動作可能な状態になる。   In the electronic device 30 shown in FIG. 6, when the operation member 15 of any one of the power generation input devices 1 is pushed, the electromotive force is rectified by the rectifier circuit 37 and given to the signal processing circuit 38 and the transmission circuit 39, and signal processing is performed. The circuit 38 and the transmission circuit 39 become operable.

また発電入力装置1から発せられる第1の起電力V1によって信号処理回路38にON信号が与えられる。信号処理回路38では、どの発電入力装置1が操作されたのかを識別し、操作された入力発電機1に対応する送信信号が送信回路39に与えられて送信される。発電入力装置1からの第2の起電力V2は、どの発電入力装置1が操作された場合であっても、共通ライン45からOFF信号として信号処理回路38に与えられる。信号処理回路38はOFF信号を受けた時点で、送信回路39への送信信号の伝送が停止され、送信動作が終了する。   Further, an ON signal is given to the signal processing circuit 38 by the first electromotive force V <b> 1 emitted from the power generation input device 1. The signal processing circuit 38 identifies which power generation input device 1 has been operated, and a transmission signal corresponding to the operated input generator 1 is given to the transmission circuit 39 and transmitted. The second electromotive force V2 from the power generation input device 1 is given to the signal processing circuit 38 as an OFF signal from the common line 45 regardless of which power generation input device 1 is operated. When the signal processing circuit 38 receives the OFF signal, the transmission of the transmission signal to the transmission circuit 39 is stopped, and the transmission operation ends.

図6に示す回路では、OFF信号がひとつの共通ライン45に集約されるため、回路の配線数を削減でき、回路構成を簡単にできる。   In the circuit shown in FIG. 6, since the OFF signals are concentrated on one common line 45, the number of circuit wires can be reduced and the circuit configuration can be simplified.

1 発電入力装置
2 筐体
3 磁路形成部材
4a 第1の対向端部
4b 第2の対向端部
6a 第1の発電コイル
6b 第2の発電コイル
8 空間
10 回動体
11 回動ホルダ
13 回動アーム
14 連結ピン
15 操作部材
16 連結長穴
17 復帰ばね
20 磁束発生部
21 永久磁石
21a 第1の着磁面
21b 第2の着磁面
22 第1の磁化部材
23 第2の磁化部材
30 電子機器
35 起電力ライン
36 電力ライン
37 整流回路
38 信号処理回路
39 送信回路
41 ON信号ライン
44 OF信号ライン
45 共通ライン
46 共通ダイオード
DESCRIPTION OF SYMBOLS 1 Power generation input device 2 Housing | casing 3 Magnetic path formation member 4a 1st opposing edge part 4b 2nd opposing edge part 6a 1st power generation coil 6b 2nd power generation coil 8 Space 10 Rotating body 11 Rotating holder 13 Rotating Arm 14 Connection pin 15 Operation member 16 Connection long hole 17 Return spring 20 Magnetic flux generator 21 Permanent magnet 21a First magnetized surface 21b Second magnetized surface 22 First magnetized member 23 Second magnetized member 30 Electronic device 35 electromotive force line 36 power line 37 rectifier circuit 38 signal processing circuit 39 transmitting circuit 41 ON signal line 44 OF signal line 45 common line 46 common diode

Claims (6)

磁性材料で形成された磁路形成部材と、前記磁路形成部材の一部であって空間を介して対向する第1の対向端部および第2の対向端部と、前記第1の対向端部と前記第2の対向端部との間で前記磁路形成部材に巻かれた発電コイルと、前記空間内に位置して前記第1の対向端部と前記第2の対向端部との対向方向と直交する軸を支点として回動する回動体と、前記回動体に回動力を与える操作部材とを有する発電入力装置と、
前記回動体が回動したときに前記発電コイルから得られる起電力によって駆動される信号処理回路と、
を有する電子機器であって、
前記回動体は、磁性材料製の第1の磁化部材および磁性材料製の第2の磁化部材と、前記第1の磁化部材と第2の磁化部材との間に配置される磁石とを有し、前記磁石は、前記第1の磁化部材が接合される面と前記第2の磁化部材が接合される面とが互いに逆磁極であり、
前記磁石と前記第1の磁化部材および前記第2の磁化部材が、前記軸の延びる方向と直交する方向に重ねられており、前記軸の延びる方向および前記磁石と前記第1の磁化部材および前記第2の磁化部材が重ねられた方向の双方と直交する方向において、前記第1の磁化部材が、互いに対向する第1の端面と第2の端面を有し、前記第2の磁化部材が、互いに対向する第1の端面と第2の端面を有し、
前記操作部材によって、前記回動体が、前記第1の磁化部材の前記第1の端面が前記第1の対向端部に隙間を介して対向し且つ前記第2の磁化部材の前記第1の端面が前記第2の対向端部に隙間を介して対向する第1の姿勢と、前記第1の磁化部材の前記第2の端面が前記第2の対向端部に隙間を介して対向し且つ前記第2の磁化部材の前記第2の端面が前記第1の対向端部に隙間を介して対向する第2の姿勢との間で往復回動させられ
前記電子機器は、前記起電力で駆動される送信回路を有しており、前記信号処理回路は、前記回動体が第1の姿勢から第2の姿勢に回動して前記発電コイルから第1の起電力が与えられたときと、前記回動体が第2の姿勢から第1の姿勢に回動して前記発電コイルから第2の起電力が与えられたときに、前記送信回路の切換えを行うことを特徴とする電子機器。
A magnetic path forming member made of a magnetic material; a first opposing end and a second opposing end that are part of the magnetic path forming member and are opposed to each other through a space; and the first opposing end and outgoing arc-yl which is wound around the magnetic path forming member between said second opposite ends and parts, the first opposite end located within said space and said second opposing end portions a generator input device for chromatic and rotating body that rotates as a fulcrum shaft, and an operation member for giving the rotational force to the rotating body that is orthogonal to the opposing direction of the,
A signal processing circuit driven by an electromotive force obtained from the power generating coil when the rotating body rotates;
An electronic device having
The rotating body includes a first magnetizing member made of a magnetic material, a second magnetizing member made of a magnetic material, and a magnet disposed between the first magnetizing member and the second magnetizing member. In the magnet, the surface to which the first magnetizing member is joined and the surface to which the second magnetizing member are joined are mutually opposite magnetic poles,
The magnet, the first magnetizing member, and the second magnetizing member are overlapped in a direction orthogonal to the direction in which the shaft extends, and the direction in which the shaft extends, the magnet, the first magnetizing member, and the In a direction orthogonal to both directions in which the second magnetizing members are stacked, the first magnetizing member has a first end surface and a second end surface facing each other, and the second magnetizing member is A first end surface and a second end surface facing each other;
By the operation member, the rotating body causes the first end surface of the first magnetizing member to face the first opposing end portion with a gap and the first end surface of the second magnetizing member. Is opposed to the second opposed end portion via a gap, and the second end surface of the first magnetizing member is opposed to the second opposed end portion via a gap, and The second end face of the second magnetizing member is reciprocally rotated between the second posture facing the first opposing end portion via a gap ,
The electronic device includes a transmission circuit driven by the electromotive force, and the signal processing circuit is configured to rotate the rotating body from a first posture to a second posture and start from the power generating coil. When the electromotive force is applied, and when the rotating body rotates from the second posture to the first posture and the second electromotive force is applied from the power generation coil, the transmission circuit is switched. Electronic equipment characterized by performing.
前記第1の磁化部材の前記第1の端面および前記第2の端面、ならびに前記第2の磁化部材の前記第1の端面および前記第2の端面は、前記軸を中心とする円筒面に一致するように、曲面形状に形成されている請求項1記載の電子機器The first end surface and the second end surface of the first magnetizing member, and the first end surface and the second end surface of the second magnetizing member coincide with a cylindrical surface centered on the axis. The electronic device according to claim 1, wherein the electronic device is formed in a curved shape. 前記第1の姿勢で、前記第1の磁化部材が前記第1の対向端部に前記隙間を介して磁気吸引され、且つ前記第2の磁化部材が前記第2の対向端部に前記隙間を介して磁気吸引され、
前記第2の姿勢で、前記第1の磁化部材が前記第2の対向端部に前記隙間を介して磁気吸引され且つ前記第2の磁化部材が前記第1の対向端部に前記隙間を介して磁気吸引される請求項1または2記載の電子機器
In the first posture, the first magnetizing member is magnetically attracted to the first opposing end through the gap, and the second magnetizing member has the gap at the second opposing end. Magnetically attracted through
In the second posture, the first magnetizing member is magnetically attracted to the second opposing end through the gap, and the second magnetizing member is inserted into the first opposing end through the gap. 3. The electronic device according to claim 1, wherein the electronic device is magnetically attracted.
前記第2の姿勢での磁気吸引力に打ち勝って、前記回動体を第1の姿勢に復帰させる復帰ばねが設けられている請求項3記載の電子機器The electronic device according to claim 3, further comprising a return spring that overcomes the magnetic attractive force in the second posture and returns the rotating body to the first posture. 前記発電入力装置が複数設けられており、それぞれの発電入力装置から得られる第1の起電力が、個別に前記信号処理回路に与えられ、複数の発電入力装置から得られる第2の起電力が、共通のラインから前記信号処理回路に与えられる請求項1ないし4のいずれかに記載の電子機器。 A plurality of power generation input devices are provided, and a first electromotive force obtained from each power generation input device is individually applied to the signal processing circuit, and a second electromotive force obtained from the plurality of power generation input devices is provided. The electronic apparatus according to claim 1, wherein the electronic apparatus is supplied to the signal processing circuit from a common line. 共通の前記ラインに、第2の起電力を通過させるダイオードが設けられている請求項5記載の電子機器。 The electronic device according to claim 5 , wherein a diode that allows the second electromotive force to pass is provided in the common line.
JP2015210886A 2015-10-27 2015-10-27 Electronic equipment using a power generation input device Active JP6058773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015210886A JP6058773B2 (en) 2015-10-27 2015-10-27 Electronic equipment using a power generation input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015210886A JP6058773B2 (en) 2015-10-27 2015-10-27 Electronic equipment using a power generation input device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011150605A Division JP5859763B2 (en) 2011-07-07 2011-07-07 Power generation input device and electronic apparatus using the power generation input device

Publications (2)

Publication Number Publication Date
JP2016027787A JP2016027787A (en) 2016-02-18
JP6058773B2 true JP6058773B2 (en) 2017-01-11

Family

ID=55352934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015210886A Active JP6058773B2 (en) 2015-10-27 2015-10-27 Electronic equipment using a power generation input device

Country Status (1)

Country Link
JP (1) JP6058773B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643946B (en) * 2016-09-02 2020-10-27 阿尔卑斯阿尔派株式会社 Power generation device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1312927A (en) * 1970-05-22 1973-04-11 Zentronik Veb K Non-contacting switching device for producing electrical pulses
JPH0622963Y2 (en) * 1988-08-26 1994-06-15 松下電工株式会社 Rotary solenoid
FR2893780A1 (en) * 2005-11-22 2007-05-25 Schneider Electric Ind Sas Electric energy generation device for e.g. supplying transmitter, has magnetic circuit formed of movable part and fixed part that traverses central opening of coil two times by forming loop, where circuit is made of ferromagnetic material

Also Published As

Publication number Publication date
JP2016027787A (en) 2016-02-18

Similar Documents

Publication Publication Date Title
JP5859763B2 (en) Power generation input device and electronic apparatus using the power generation input device
US7710227B2 (en) Electromagnetic energy transducer
JP5824647B2 (en) Power generator
CN108240309B (en) Power generation device and electronic apparatus
JP2008072862A (en) Power generation device, and power generation apparatus with the same
WO2014021196A1 (en) Power generation device
JP2013222699A (en) Electromagnetic relay
JP2014207767A (en) Energy conversion device
JP6058773B2 (en) Electronic equipment using a power generation input device
JP2010283948A (en) Generation device
JP5427492B2 (en) Electromagnetic relay
WO2013014975A1 (en) Oscillating power generator
JPWO2014207974A1 (en) Energy conversion device
US9419496B2 (en) Return mechanism, acceleration mechanism, power generator, transmitter, and switching arrangement
WO2021035826A1 (en) Linear motor in which flange magnetic yoke is embedded in coil
EP3509200B1 (en) Power generation device
US11437901B2 (en) Electromagnetic energy converter
JP2014204482A (en) Energy conversion device
JP2017192271A (en) Power generator and switch
WO2022153905A1 (en) Power generation device
JP2017216770A (en) Power generator and electronic device
JP2014166105A (en) Energy conversion device
JP2014187798A (en) Energy conversion device
JP2019050729A (en) Power generation input device and electronic apparatus using power generation input device
JP2018107044A (en) Contact device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R150 Certificate of patent or registration of utility model

Ref document number: 6058773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350