JP2008071902A - Wiring method - Google Patents

Wiring method Download PDF

Info

Publication number
JP2008071902A
JP2008071902A JP2006248568A JP2006248568A JP2008071902A JP 2008071902 A JP2008071902 A JP 2008071902A JP 2006248568 A JP2006248568 A JP 2006248568A JP 2006248568 A JP2006248568 A JP 2006248568A JP 2008071902 A JP2008071902 A JP 2008071902A
Authority
JP
Japan
Prior art keywords
electrode
wiring
substrate
landing
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006248568A
Other languages
Japanese (ja)
Inventor
Yasuhiko Maeda
泰彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006248568A priority Critical patent/JP2008071902A/en
Publication of JP2008071902A publication Critical patent/JP2008071902A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2499Auxiliary members for HDI interconnects, e.g. spacers, alignment aids
    • H01L2224/24996Auxiliary members for HDI interconnects, e.g. spacers, alignment aids being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/24998Reinforcing structures, e.g. ramp-like support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI] involving a permanent auxiliary member being left in the finished device, e.g. aids for holding or protecting a build-up interconnect during or after the bonding process

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To absolutely connect electrodes even at the occurrence of displacement between the two electrodes to be connected, and to absolutely connect electrods even between substrates having steps. <P>SOLUTION: Assuming that the distance between a central axis of a first electrode and a central axis of a second electrode in an array direction is ΔX, a distance perpendicular to the array direction is ΔY, tanθ=(ΔX/ΔY) with ΔY as an opposed side and ΔX as an adjacent side, the standard deviation of a landing-on position of a conductive material is σ, a diameter of the landing-on of the conductive material is D, the width in the array direction of the first electrode and the second electrode is L<SB>0</SB>, an arrangement space in the array direction of the first electrode and the second electrode is S<SB>0</SB>, wiring is formed when a condition cosθ>ä(6σ+D)/(L<SB>0</SB>+S<SB>0</SB>)} is satisfied, and the wiring is not formed when the condition is not satisfied. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は配線方法に係るものであって、特にインクジェット法を用いて導電部材を着弾させて配線を形成することにより第1電極と第2電極とを電気的に接続する配線方法に関する。   The present invention relates to a wiring method, and more particularly to a wiring method for electrically connecting a first electrode and a second electrode by forming a wiring by landing a conductive member using an inkjet method.

電極同士が電気的に接続される配線方法に関する従来技術として、ACFによりFPCと基板との電極を接続するものがある。また、特許文献1には、2つの基板の電極同士が電気的に接続される配線方法に関する従来技術として、インクジェット法やガスデポジション法を用いて有機EL素子などの配線から信号線に接続する配線方法が開示されている。
特開2003−152299号公報
As a conventional technique related to a wiring method in which electrodes are electrically connected, there is an ACF that connects electrodes of an FPC and a substrate. In Patent Document 1, as a conventional technique related to a wiring method in which electrodes of two substrates are electrically connected to each other, a wiring such as an organic EL element is connected to a signal line using an inkjet method or a gas deposition method. A wiring method is disclosed.
JP 2003-152299 A

しかしながら、ACFなどによるFPCと基板との電極の接続は、電極面を対向させて接続する。そのため、接続の際に必要な加熱を行うとFPCと基板の熱膨張差による寸法精度が確保されない場合、特にこれが数10μm程度の配線の場合はその寸法ずれが生じて、接続状態を確保することができないおそれがある。   However, the connection between the FPC and the substrate by the ACF or the like is performed with the electrode surfaces facing each other. For this reason, if the dimensional accuracy due to the difference in thermal expansion between the FPC and the substrate is not ensured when the necessary heating is performed at the time of connection, especially when this is a wiring of about several tens of μm, the dimensional deviation will occur and the connection state should be secured You may not be able to.

また、特許文献1に開示されている配線方法においては、フレキシブルケーブルなどは段差が大きく(50〜100[μm])、また、幅も大きいため、貼り付け時に位置ずれなどが生じ電極のズレを修正しながら接続することは難しい。   Further, in the wiring method disclosed in Patent Document 1, the flexible cable has a large step (50 to 100 [μm]) and a large width. It is difficult to connect while correcting.

本発明は、このような事情に鑑みてなされたもので、接続すべき2つの電極間の位置ずれが生じた場合にも確実に電極間の接続を確保することができ、また、段差のある基板間であっても確実に電極間の接続を確保することができるものであって、高精度な位置決めを必要とせず、高歩留まりな電気接続が可能な配線方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and even when a displacement between two electrodes to be connected occurs, the connection between the electrodes can be reliably ensured, and there is a step. An object of the present invention is to provide a wiring method that can ensure the connection between electrodes even between substrates, and does not require high-precision positioning, and enables high-yield electrical connection. .

前記目的を達成するために、請求項1に記載の発明は、インクジェット法を用いて導電部材を着弾させて配線を形成することにより、第1基板に配列される第1電極と第2基板に配列される第2電極との配列方向が平行になるようにしつつ各々1対に電気的に接続される配線方法において、前記第1電極の中心軸と前記第2電極の中心軸の前記配列方向の距離をΔXとし前記配列方向と垂直な方向の距離をΔYとし、前記ΔYを隣辺とし前記ΔXを対辺としてtanθ=(ΔX/ΔY)とし、前記導電部材の着弾位置の標準偏差をσとし、前記導電部材の着弾径をDとし、前記第1電極と前記第2電極の前記配列方向の幅をLとし、前記第1電極と前記第2電極の前記配列方向の配置間隔をSとするときに、cosθ>{(6σ+D)/(L+S)}の条件のもと、前記条件を満たす場合には配線を形成し前記条件を満たさない場合には配線を形成しないこと、を特徴とする。 In order to achieve the above object, according to the first aspect of the present invention, a conductive member is landed using an ink jet method to form a wiring, thereby forming a first electrode and a second substrate arranged on the first substrate. In the wiring method in which the arrangement directions of the second electrodes arranged are parallel to each other while being parallel to each other, the arrangement direction of the central axis of the first electrode and the central axis of the second electrode The distance in the direction perpendicular to the arrangement direction is ΔY, ΔY is the adjacent side, ΔX is the opposite side, tan θ = (ΔX / ΔY), and the standard deviation of the landing position of the conductive member is σ. The landing diameter of the conductive member is D, the width of the first electrode and the second electrode in the arrangement direction is L 0, and the arrangement interval of the first electrode and the second electrode in the arrangement direction is S 0. when a, cosθ> {(6σ + D ) / (L + S 0) under the conditions}, if and when the condition is satisfied does not satisfy the conditions to form a wiring that does not form the wiring, characterized by.

本発明によれば、第1電極と第2電極の位置ずれが存在する場合であっても、cosθ>{(6σ+D)/(L+S)}の条件のもと、前記条件を満たす場合には配線を形成し前記条件を満たさない場合には配線を形成しないことから、導電部材の着弾位置のばらつきを考慮しつつ、前記条件を満たす限りにおいて隣り合う配線同士が接触することなく確実に第1電極と第2電極を接続することができる。 According to the present invention, even when there is a positional deviation between the first electrode and the second electrode, the above condition is satisfied under the condition of cos θ> {(6σ + D) / (L 0 + S 0 )}. In this case, the wiring is not formed if the above conditions are not satisfied, and therefore, it is ensured that adjacent wirings do not come into contact with each other as long as the above conditions are satisfied while considering the variation in the landing position of the conductive member. The first electrode and the second electrode can be connected.

また、cosθ>{(6σ+D)/(L+S)}の条件のもと、導電部材の液体積を変更して着弾径Dの値を調整することにより、θの範囲を調整することができるので、任意の第1電極と第2電極間の位置ずれ量に対応して確実に配線することができる。また、同様に任意の第1電極と第2電極間の幅Lに対応して確実に配線することもできる。 Further, under the condition of cos θ> {(6σ + D) / (L 0 + S 0 )}, the range of θ can be adjusted by changing the liquid volume of the conductive member and adjusting the value of the landing diameter D. Therefore, it is possible to reliably wire corresponding to the amount of positional deviation between any first electrode and second electrode. Similarly, it is possible to reliably wire corresponding to the width L 0 between any first electrode and the second electrode.

前記目的を達成するために、請求項2に記載の発明は、請求項1に記載の配線方法において、インクジェット法を用いて絶縁部材を着弾させて前記絶縁層を階段形状に重ねて形成し、前記第1電極が配列される面と前記第2電極が配列される面との間の段差を埋め、前記導電部材を前記階段形状のステップ部分に着弾させること、を特徴とする。   In order to achieve the object, the invention according to claim 2 is the wiring method according to claim 1, wherein the insulating member is landed by using an ink jet method, and the insulating layer is formed in a staircase shape. A step between the surface on which the first electrode is arranged and the surface on which the second electrode is arranged is filled, and the conductive member is landed on the stepped step portion.

本発明によれば、第1電極が配列される面と第2電極が配列される面との間に段差が存在する場合であっても、階段形状の絶縁層により当該段差を埋めることにより、確実にインクジェット法を用いて配線を形成して第1電極と第2電極を接続することができる。   According to the present invention, even when there is a step between the surface on which the first electrode is arranged and the surface on which the second electrode is arranged, by filling the step with the step-shaped insulating layer, It is possible to reliably connect the first electrode and the second electrode by forming a wiring by using an ink jet method.

また、導電部材を階段形状のステップ部分に着弾させるため、導電部材の着弾形状を制御することができ、より確実にインクジェット法を用いて配線を形成して第1電極と第2電極を接続することができる。   In addition, since the conductive member is landed on the stepped step portion, the landing shape of the conductive member can be controlled, and the first electrode and the second electrode are connected more reliably by using the ink jet method. be able to.

本発明の配線方法によれば、接続すべき電極間で位置ずれが生じた場合であっても確実に配線接続させることができる。また、接続すべき電極間で段差が生じた場合であっても確実に配線接続することができる。   According to the wiring method of the present invention, even if a positional deviation occurs between the electrodes to be connected, the wiring can be reliably connected. Further, even when a step is generated between the electrodes to be connected, the wiring connection can be surely performed.

以下、添付図面に従って本発明の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

<第1実施形態>
まず、第1実施形態について説明する。第1実施形態は、基板と配線基板の段差がない場合、または基板と配線基板の段差が導電性インクの液滴サイズと同等の場合についての実施形態である。
<First Embodiment>
First, the first embodiment will be described. The first embodiment is an embodiment when there is no step between the substrate and the wiring substrate, or when the step between the substrate and the wiring substrate is equal to the droplet size of the conductive ink.

図1は、基板と配線基板とに位置ずれが存在しない場合に基板の電極と配線基板の電極が接続された状態の電極面を表した図であり、図1(a)が上面図、図1(b)が側面図である。一方、図2は、基板と配線基板とに位置ずれが存在する場合に基板の電極と配線基板の電極が接続された状態の電極面を表した図である。また、図3は、図2に示す配線部分の拡大図である。図3(a)が絶縁性インクを着弾させない場合を示し、図3(b)が絶縁性インクを着弾させた場合を示す。また、図4は図3に対応するものであり配線部分の諸寸法についての説明図である。   FIG. 1 is a diagram showing an electrode surface in a state where a substrate electrode and a wiring substrate electrode are connected when there is no positional deviation between the substrate and the wiring substrate. FIG. 1 (a) is a top view, FIG. 1 (b) is a side view. On the other hand, FIG. 2 is a diagram showing an electrode surface in a state where the electrode of the substrate and the electrode of the wiring substrate are connected when there is a positional deviation between the substrate and the wiring substrate. FIG. 3 is an enlarged view of the wiring portion shown in FIG. FIG. 3A shows a case where the insulating ink is not landed, and FIG. 3B shows a case where the insulating ink is landed. FIG. 4 corresponds to FIG. 3 and is an explanatory diagram for various dimensions of the wiring portion.

基板と配線基板とに位置ずれが存在しない場合においては、図1に示すように、所定の間隔で電極21,22が配置されている基板11と配線基板12とを表向きの状態で、インクジェット法を用いて電極21,22間を接続することにより電気接続が行われる。そして、基板11と配線基板12には各々、その境界部分に対して対称な位置にアライメントマーク13A、13Bが付されている。   When there is no positional deviation between the substrate and the wiring substrate, as shown in FIG. 1, the substrate 11 and the wiring substrate 12 on which the electrodes 21 and 22 are arranged at a predetermined interval are face-up, and the ink jet method is used. Electrical connection is made by connecting the electrodes 21 and 22 using the. The substrate 11 and the wiring substrate 12 are respectively provided with alignment marks 13A and 13B at positions symmetrical to the boundary portion.

ここで、本実施形態では、図2から図4に示すように、基板11と配線基板12とに位置ずれが存在する場合であってもインクジェット法を用いて電極21,22間を接続することにより電気接続を行う配線方法を提案する。なお、図3(b)のように隣り合う配線同士の絶縁性を確実に確保するため、隣り合う配線の間に絶縁性インク26を着弾させてもよい。   Here, in this embodiment, as shown in FIGS. 2 to 4, the electrodes 21 and 22 are connected using the ink jet method even when there is a positional shift between the substrate 11 and the wiring substrate 12. A wiring method for electrical connection is proposed. As shown in FIG. 3B, the insulating ink 26 may be landed between the adjacent wirings in order to ensure the insulation between the adjacent wirings.

そこで、図4に示すようにX軸とY軸をとるときに、基板11の電極21aと、この電極21aに対応して接続される配線基板12の電極22aとの間で、X軸方向に位置ずれが生じている場合の電極間の接続について説明する。   Therefore, when taking the X axis and the Y axis as shown in FIG. 4, between the electrode 21a of the substrate 11 and the electrode 22a of the wiring substrate 12 connected corresponding to the electrode 21a, in the X axis direction. The connection between the electrodes when a positional shift has occurred will be described.

図4に示すように、各々のアライメントマーク13A、13BのXY座標における位置を(X,Y)、(X,Y)とする。 As shown in FIG. 4, the positions of the alignment marks 13A and 13B in the XY coordinates are (X A , Y A ) and (X B , Y B ).

また、両基板の電極21、22の中心軸間のX軸方向の距離をΔXとすると、ΔXは両基板の電極21、22間のX軸方向の位置ずれ量に等しく、アライメントマーク13A、13BのXY座標からΔX=(X−X)の関係が成立する。また、各々のアライメントマーク13A、13BのY軸方向の距離は、両基板の電極の先端部のY軸方向の距離に等しく、ΔY=(Y−Y)の関係が成立する。 If the distance in the X-axis direction between the central axes of the electrodes 21 and 22 on both substrates is ΔX, ΔX is equal to the amount of positional deviation in the X-axis direction between the electrodes 21 and 22 on both substrates, and the alignment marks 13A and 13B. The relationship of ΔX = (X A −X B ) is established from the XY coordinates of Further, the distance in the Y-axis direction of each alignment mark 13A, 13B is equal to the distance in the Y-axis direction of the tip portions of the electrodes of both substrates, and the relationship ΔY = (Y A −Y B ) is established.

また、図4に示すように、導電部材である導電性インク23の着弾径をDとし、隣り合う配線部分の端同士の最短距離(以下、最隣接配線間距離という)をSとし、電極の幅をL、隣り合う当該電極の端同士の間隔をSとする。さらに、図示のごとくtanθ=(ΔX/ΔY)との関係で示されるように、角度θをとる。 Further, as shown in FIG. 4, the landing diameter of the conductive ink 23 which is a conductive member is D, the shortest distance between the ends of the adjacent wiring portions (hereinafter referred to as the distance between the adjacent wirings) is S, and the electrode The width is L 0 , and the interval between the adjacent electrodes is S 0 . Further, as shown in the figure, the angle θ is taken as shown by the relationship tan θ = (ΔX / ΔY).

以上のような設定とすると、S={(L+S)×cosθ−D}の関係式が成立する。 With the above settings, the relational expression S = {(L 0 + S 0 ) × cos θ−D} is established.

ここで、インクジェット法を用いて着弾される導電性インク23の打滴位置にはばらつきが存在するため、最隣接配線間距離Sは導電性インク23の打滴位置のばらつきを考慮した値でなければならない。図5は、導電性インク23の打滴位置のばらつきを考慮した標準偏差σに関する概要図であり、導電性インク23の打滴位置のばらつきの様子および正規分布を示したものである。   Here, since there is a variation in the droplet ejection position of the conductive ink 23 that is landed using the ink jet method, the distance S between the adjacent wirings must be a value that considers the variation in the droplet ejection position of the conductive ink 23. I must. FIG. 5 is a schematic diagram regarding the standard deviation σ in consideration of variations in the droplet ejection position of the conductive ink 23, and shows the variation in the droplet ejection position of the conductive ink 23 and the normal distribution.

図5に示すように、導電性インク23の打滴位置のばらつきを考慮した値を標準偏差σの関数で表すと、配線1本あたりについて3σとなる。そのため、最隣接部分においては隣り合う配線同士のばらつきを考慮して、最隣接配線間距離Sとして合計6σ以上の距離が必要になる。この関係を式で示すと、S={(L+S)×cosθ−D}>6σとなり、これを整理すると以下のようになる。 As shown in FIG. 5, when a value in consideration of variations in the droplet ejection position of the conductive ink 23 is expressed as a function of the standard deviation σ, 3σ is obtained for each wiring. For this reason, in the most adjacent portion, in consideration of variations between adjacent wirings, a distance of 6σ or more in total is required as the distance S between the adjacent wirings. This relationship is expressed by an equation: S = {(L 0 + S 0 ) × cos θ−D}> 6σ, which is summarized as follows.

Figure 2008071902
Figure 2008071902

そのため、上記の数1の式の条件を満たす場合には、電極21と電極22に位置ずれが生じかつ導電性インク23の打滴位置にばらつきが生じた場合でも、隣り合う配線同士が接触することがなくなる。したがって、隣り合う配線同士が接触することなく確実に両基板の電極21、22を接続することができる。そこで、本実施形態では、数1の数式の条件のもとインクジェット法を用いて導電性インク23を着弾させて電極21、22の配線を形成する配線方法を提案する。   Therefore, when the condition of the above equation 1 is satisfied, even if the electrode 21 and the electrode 22 are misaligned and the droplet ejection position of the conductive ink 23 varies, adjacent wirings are in contact with each other. Nothing will happen. Therefore, it is possible to reliably connect the electrodes 21 and 22 on both substrates without contact between adjacent wirings. Therefore, in the present embodiment, a wiring method is proposed in which the conductive ink 23 is landed using the ink jet method under the conditions of the mathematical formula 1 to form the wiring of the electrodes 21 and 22.

ここで具体例として、導電性インク23の打滴サイズを10plとし、L=50μm、S=50μm、D=54μm、σ=3μmとする。そこで数1の式より、cosθ>0.72となり、−44deg<θ<44degの範囲の位置ずれに対して電極21、22の配線が可能となる。 As a specific example, the droplet ejection size of the conductive ink 23 is 10 pl, and L 0 = 50 μm, S 0 = 50 μm, D = 54 μm, and σ = 3 μm. Therefore, from the equation (1), cos θ> 0.72, and the electrodes 21 and 22 can be wired with respect to a positional shift in the range of −44 deg <θ <44 deg.

以上のような第1実施形態により、電極21aとこれに対応する電極22aの間でX軸方向に位置ずれが存在する場合であっても、アライメントマーク13A、13Bからこの位置ずれ量ΔXおよび電極21aと電極22aの先端部のY軸方向の距離ΔYを検知し、cosθ>{(6σ+D)/(L+S)}の条件のもと対応する電極21、22の間で配線を行うことにより、確実に隣り合う配線同士が接触することなく確実に電極21、22間を接続させることができる。 According to the first embodiment as described above, even if there is a displacement in the X-axis direction between the electrode 21a and the corresponding electrode 22a, the displacement amount ΔX and the electrode from the alignment marks 13A and 13B. The distance ΔY in the Y-axis direction between the tip of the electrode 21a and the electrode 22a is detected, and wiring is performed between the corresponding electrodes 21 and 22 under the condition of cos θ> {(6σ + D) / (L 0 + S 0 )}. Thus, the electrodes 21 and 22 can be reliably connected without reliably contacting adjacent wirings.

また、数1の式より、導電性インク23の液体積を変更して着弾径Dの値を調整することにより、θの範囲を調整することができるので、任意の電極21、22間の位置ずれ量に対応して確実に配線することができる。また、同様に任意の電極21、22の幅Lに対応して確実に配線することもできる。 Further, from the equation (1), the range of θ can be adjusted by changing the liquid volume of the conductive ink 23 and adjusting the value of the landing diameter D, so the position between any electrodes 21 and 22 can be adjusted. Wiring can be reliably performed according to the amount of deviation. Similarly, it is possible to reliably wire corresponding to the width L 0 of the arbitrary electrodes 21 and 22.

以上が第1実施形態の説明である。
<第2実施形態>
次に、第2実施形態について説明する。図6は第2実施形態の概要図を示し、図7は第2実施形態のより具体的な工程図を示す。
The above is the description of the first embodiment.
<Second Embodiment>
Next, a second embodiment will be described. FIG. 6 shows a schematic diagram of the second embodiment, and FIG. 7 shows a more specific process diagram of the second embodiment.

図6(a)に示すように、第2実施形態は、基板11と電極基板12に段差が存在する場合についての実施形態である。図6(b)は第2実施形態の配線方法により配線がなされた状態の両基板の接続部分の外観斜視図を示し、図6(c)は(b)のA−A断面図を示す。図6(b)、(c)に示すように第2実施形態では、絶縁性インクを用いて階段形状の絶縁層を形成し、その絶縁層の上にて配線を行い電極間を接続している。   As shown to Fig.6 (a), 2nd Embodiment is embodiment about the case where a level | step difference exists in the board | substrate 11 and the electrode substrate 12. FIG. FIG. 6B is an external perspective view of a connection portion between both substrates in a state where wiring is performed by the wiring method according to the second embodiment, and FIG. 6C is a cross-sectional view taken along line AA in FIG. As shown in FIGS. 6B and 6C, in the second embodiment, a step-shaped insulating layer is formed using insulating ink, and wiring is connected on the insulating layer to connect the electrodes. Yes.

この第2実施形態の具体的な工程について、図7を用いて説明する。まず、図7(a)に示すように、長作動レンズによりアライメントマーク13A,13Bの間隔幅(アライメントパターン幅)を認識し、ピントが一致した部分(アライメントパターン幅が最小の部分)でレンズの作動距離から段差の高さHを判定する。   A specific process of the second embodiment will be described with reference to FIG. First, as shown in FIG. 7 (a), the distance between the alignment marks 13A and 13B (alignment pattern width) is recognized by the long working lens, and the lens is adjusted at the portion where the focus is matched (the portion where the alignment pattern width is the smallest). The height H of the step is determined from the working distance.

次に図7(b)に示すように基板11上に絶縁性インク24を印刷して、その後キュアすることにより絶縁層の1層目が形成される。   Next, as shown in FIG. 7B, the insulating ink 24 is printed on the substrate 11, and then cured to form the first layer of the insulating layer.

次に図7(c)に示すように絶縁層の1層目に重ねて絶縁性インク24を印刷して、その後キュアすることにより絶縁層の2層目が形成される。このとき、2層目は1層目よりも印刷幅を小さくして先端部を階段形状にする。   Next, as shown in FIG. 7C, the insulating ink 24 is printed on the first layer of the insulating layer, and then cured to form the second layer of the insulating layer. At this time, the printing width of the second layer is made smaller than that of the first layer, and the tip portion is stepped.

その後図7(d)に示すように、絶縁性インク24による絶縁層の高さが基板の段差の高さHに達するまで印刷とキュアを繰り返す。これにより、高さHの階段形状の絶縁層が形成される。このように階段形状に形成する理由は、スロープ状に形成した場合には、後述する導電性インク23の着弾形状を制御することができる。   Thereafter, as shown in FIG. 7D, printing and curing are repeated until the height of the insulating layer by the insulating ink 24 reaches the height H of the step of the substrate. Thereby, a step-shaped insulating layer having a height H is formed. The reason for forming the stepped shape in this way is that when it is formed in a slope shape, the landing shape of the conductive ink 23 described later can be controlled.

次に図7(e)に示すように、絶縁層の上に重ねて導電性インク23を印刷して、その後キュアすることにより導電層が形成される。そして、この導電層が第1電極21と第2電極22の間における配線の役割を果たす。ここで、絶縁層の上に重ねて導電性インク23を印刷する際には、階段形状に形成された絶縁層の階段形状部のステップ部分31(図7(d)参照)に合わせて導電性インク23を着弾させるようにする。導電性インク23を絶縁層の階段形状部のステップ部分31に合わせて印刷した場合には、導電性インク23が着弾した後に流動せず、着弾形状を制御することができるからである。   Next, as shown in FIG. 7E, a conductive layer is formed by printing the conductive ink 23 on the insulating layer and then curing. The conductive layer serves as a wiring between the first electrode 21 and the second electrode 22. Here, when the conductive ink 23 is printed over the insulating layer, the conductive ink 23 is conductive in accordance with the step portion 31 (see FIG. 7D) of the stepped portion of the insulating layer formed in the stepped shape. The ink 23 is landed. This is because when the conductive ink 23 is printed according to the step portion 31 of the staircase shape portion of the insulating layer, the landing shape can be controlled without flowing after the conductive ink 23 has landed.

以上のような第2実施形態により、両基板に段差が生じた場合であっても確実に電極間の接続を確保することができる。   According to the second embodiment as described above, the connection between the electrodes can be reliably ensured even when a step is generated between the two substrates.

ここで、絶縁層の表面をスロープ状にして両基板に生じた段差を埋めることも考えられる。しかし、絶縁層の表面をスロープ状にしてしまうと、導電性インク23が絶縁層の表面に着弾した後に流動しやすくなるため、着弾させる導電性インク23の着弾形状を制御することができない。   Here, it is conceivable that the surface of the insulating layer is sloped so as to fill a step formed on both substrates. However, if the surface of the insulating layer is sloped, the conductive ink 23 tends to flow after landing on the surface of the insulating layer, so that the landing shape of the landing conductive ink 23 cannot be controlled.

一方、本実施形態のように絶縁層の表面を階段形状にして両基板に生じた段差を埋めることとすると、導電性インク23が絶縁層の階段部分の表面に積み重なるように着弾し安定するため、着弾させる導電性インク23の着弾形状を制御することができる。この階段のステップに相当する部分に導電性インク23を打滴し、ステップ上の部分は複数回打滴することで、階段の上下左右の導電を確実に確保することが出来る。   On the other hand, when the surface of the insulating layer is stepped to fill the step formed on both substrates as in this embodiment, the conductive ink 23 lands and stabilizes so as to be stacked on the surface of the stepped portion of the insulating layer. The landing shape of the conductive ink 23 to be landed can be controlled. Conductive ink 23 is ejected onto the portion corresponding to the step of the staircase, and the portion on the step is ejected a plurality of times, so that electrical conduction on the top, bottom, left and right of the staircase can be ensured.

以上、本発明の配線方法について詳細に説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。   The wiring method of the present invention has been described in detail above, but the present invention is not limited to the above examples, and various improvements and modifications may be made without departing from the scope of the present invention. It is.

基板と配線基板の位置ずれが存在しない場合において電極基板の電極と配線基板の電極が接続された状態の概要図である。It is a schematic diagram of a state in which the electrode of the electrode substrate and the electrode of the wiring substrate are connected when there is no positional deviation between the substrate and the wiring substrate. 基板と配線基板の位置ずれが存在する場合において基板の電極と配線基板の電極が接続された状態の概要図である。It is a schematic diagram of a state in which the electrode of the substrate and the electrode of the wiring substrate are connected when there is a positional deviation between the substrate and the wiring substrate. 図2に示す配線部分の拡大図である。It is an enlarged view of the wiring part shown in FIG. 図3に対応するものであり、基板の電極と配線基板の電極の位置関係および諸寸法の説明図である。FIG. 4 corresponds to FIG. 3, and is an explanatory view of the positional relationship and various dimensions of a substrate electrode and a wiring substrate electrode. 導電性インクの打滴位置精度と滴径ばらつきの様子および正規分布を示した図である。It is the figure which showed the mode of droplet ejection position accuracy of a conductive ink, the mode of variation in droplet diameter, and normal distribution. 第2実施形態の概要図である。It is a schematic diagram of 2nd Embodiment. 第2実施形態のより具体的な工程図である。It is a more specific process diagram of the second embodiment.

符号の説明Explanation of symbols

11 基板
12 配線基板
21 電極
22 電極
23 導電性インク
24 絶縁性インク
11 Substrate 12 Wiring substrate 21 Electrode 22 Electrode 23 Conductive ink 24 Insulating ink

Claims (2)

インクジェット法を用いて導電部材を着弾させて配線を形成することにより、第1基板に配列される第1電極と第2基板に配列される第2電極との配列方向が平行になるようにしつつ各々1対に電気的に接続される配線方法において、
前記第1電極の中心軸と前記第2電極の中心軸の前記配列方向の距離をΔXとし前記配列方向と垂直な方向の距離をΔYとし、前記ΔYを隣辺とし前記ΔXを対辺としてtanθ=(ΔX/ΔY)とし、前記導電部材の着弾位置の標準偏差をσとし、前記導電部材の着弾径をDとし、前記第1電極と前記第2電極の前記配列方向の幅をLとし、前記第1電極と前記第2電極の前記配列方向の配置間隔をSとするときに、
cosθ>{(6σ+D)/(L+S)}の条件のもと、前記条件を満たす場合には配線を形成し前記条件を満たさない場合には配線を形成しないこと、
を特徴とする配線方法。
By forming the wiring by landing the conductive member using the ink jet method, the arrangement direction of the first electrode arranged on the first substrate and the second electrode arranged on the second substrate is made parallel. In the wiring method in which each pair is electrically connected,
The distance between the central axis of the first electrode and the central axis of the second electrode in the arrangement direction is ΔX, the distance in the direction perpendicular to the arrangement direction is ΔY, ΔY is the adjacent side, ΔX is the opposite side, and tan θ = (ΔX / ΔY), the standard deviation of the landing position of the conductive member as σ, the landing diameter of the conductive member as D, and the width of the first electrode and the second electrode in the arrangement direction as L 0 , When the arrangement interval of the first electrode and the second electrode in the arrangement direction is S 0 ,
Under the condition of cos θ> {(6σ + D) / (L 0 + S 0 )}, a wiring is formed when the above condition is satisfied, and a wiring is not formed when the above condition is not satisfied.
Wiring method characterized by.
請求項1に記載の配線方法において、
インクジェット法を用いて絶縁部材を着弾させて前記絶縁層を階段形状に重ねて形成し、前記第1電極が配列される面と前記第2電極が配列される面との間の段差を埋め、前記導電部材を前記階段形状のステップ部分に着弾させること、
を特徴とする配線方法。
The wiring method according to claim 1,
Insulating members are landed using an inkjet method to form the insulating layer in a staircase shape, filling a step between the surface on which the first electrode is arranged and the surface on which the second electrode is arranged, Landing the conductive member on the stepped step portion;
Wiring method characterized by.
JP2006248568A 2006-09-13 2006-09-13 Wiring method Pending JP2008071902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248568A JP2008071902A (en) 2006-09-13 2006-09-13 Wiring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248568A JP2008071902A (en) 2006-09-13 2006-09-13 Wiring method

Publications (1)

Publication Number Publication Date
JP2008071902A true JP2008071902A (en) 2008-03-27

Family

ID=39293246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248568A Pending JP2008071902A (en) 2006-09-13 2006-09-13 Wiring method

Country Status (1)

Country Link
JP (1) JP2008071902A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118075A (en) * 2006-11-08 2008-05-22 Seiko Epson Corp Electronic component mounting method, electronic substrate, and electronic apparatus
WO2010010813A1 (en) * 2008-07-25 2010-01-28 コニカミノルタホールディングス株式会社 Wire forming method
JP2013101090A (en) * 2010-12-03 2013-05-23 Ngk Spark Plug Co Ltd Method for forming conductor pattern
JP2014107484A (en) * 2012-11-29 2014-06-09 Jsr Corp Connection method and conductive ink
WO2016129705A1 (en) * 2015-02-13 2016-08-18 パイクリスタル株式会社 Method for forming laminated circuit board, and laminated circuit board formed using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118075A (en) * 2006-11-08 2008-05-22 Seiko Epson Corp Electronic component mounting method, electronic substrate, and electronic apparatus
WO2010010813A1 (en) * 2008-07-25 2010-01-28 コニカミノルタホールディングス株式会社 Wire forming method
JP2013101090A (en) * 2010-12-03 2013-05-23 Ngk Spark Plug Co Ltd Method for forming conductor pattern
US9192055B2 (en) 2010-12-03 2015-11-17 Ngk Spark Plug Co., Ltd. Conductor pattern forming method
JP2014107484A (en) * 2012-11-29 2014-06-09 Jsr Corp Connection method and conductive ink
WO2016129705A1 (en) * 2015-02-13 2016-08-18 パイクリスタル株式会社 Method for forming laminated circuit board, and laminated circuit board formed using same
US11122693B2 (en) 2015-02-13 2021-09-14 Pi-Crystal Incorporation Method for forming laminated circuit board
US11985768B2 (en) 2015-02-13 2024-05-14 Pi-Crystal Incorporation Laminated circuit board

Similar Documents

Publication Publication Date Title
CN101681902B (en) Array of small contacts for solar cell fabrication
JP6565238B2 (en) Liquid jet head
TWI606767B (en) Accurate positioning and alignment of a component during processes such as reflow soldering
US20150207254A1 (en) Molded Plastic Structures With Graphene Signal Paths
JP2008071902A (en) Wiring method
JP5380800B2 (en) Manufacturing method of electronic parts
CN103633052B (en) Electronic building brick with three-dimensional ink-jet printing path line
CN110877486B (en) Liquid ejection head and method of manufacturing liquid ejection head
JP2016168807A (en) Electronic device
JP2017124540A (en) Wiring board, mems device, and liquid jet head
JP6769034B2 (en) MEMS devices, liquid injection heads, and liquid injection devices
US7354794B2 (en) Printed conductive connectors
US20080043067A1 (en) Method of manufacturing substrate and substrate, method of manufacturing liquid drop ejecting head and liquid drop ejecting head, and liquid drop ejecting device
JP4371039B2 (en) Mounting method of semiconductor chip
US20140176645A1 (en) Piezoelectric actuator, inkjet print head assembly, and method of manufacturing the piezoelectric actuator and the inkjet print head assembly
JP2010147084A (en) Circuit board and flexible substrate
JP2006128253A (en) Method of mounting electronic component element and method of manufacturing electronic device
US10194531B2 (en) Wiring board and connection structure
CN107409471B (en) Imaging member and imaging module provided with same
JP6669056B2 (en) Terminal connection structure and inkjet device
JP4438374B2 (en) Inkjet head assembly
JP2009170657A (en) Method and device for forming wiring
TWI657723B (en) Electronic device and manufacturing method thereof
JP2015079889A (en) Wiring board and wiring board manufacturing method
JP2009200164A (en) Wiring board, and semiconductor device and manufacturing method thereof