JP2008069693A - Failure diagnosis system of internal combustion engine - Google Patents

Failure diagnosis system of internal combustion engine Download PDF

Info

Publication number
JP2008069693A
JP2008069693A JP2006248068A JP2006248068A JP2008069693A JP 2008069693 A JP2008069693 A JP 2008069693A JP 2006248068 A JP2006248068 A JP 2006248068A JP 2006248068 A JP2006248068 A JP 2006248068A JP 2008069693 A JP2008069693 A JP 2008069693A
Authority
JP
Japan
Prior art keywords
cylinder
internal combustion
combustion engine
fluctuation amount
failure diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006248068A
Other languages
Japanese (ja)
Other versions
JP4830741B2 (en
Inventor
Daisuke Shibata
大介 柴田
Yutaka Sawada
裕 澤田
Daisuke Harai
大輔 原井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006248068A priority Critical patent/JP4830741B2/en
Publication of JP2008069693A publication Critical patent/JP2008069693A/en
Application granted granted Critical
Publication of JP4830741B2 publication Critical patent/JP4830741B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of early and correctly detecting abnormality of a fuel supply system in a failure diagnosis system of an internal combustion engine for diagnose failures of the fuel supply system of each cylinder. <P>SOLUTION: To solve the problem, this invention comprises a first detection means for detecting a fluctuation amount of engine speed of each cylinder when the internal combustion engine is in an idling state, a second detection means for detecting a torque fluctuation amount of each cylinder of the internal combustion engine, and a diagnosis means for diagnosing failures of the fuel supply system of each cylinder based on the detection results of the first/second detection means. The invention is designed to diagnose abnormalities of the fuel supply system of each cylinder in view of the torque fluctuation amount of each cylinder as well as the engine speed fluctuation amount of each cylinder. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の故障診断技術に関し、特に燃料供給系の故障を診断する技術に関する。   The present invention relates to a failure diagnosis technique for an internal combustion engine, and more particularly to a technique for diagnosing a failure in a fuel supply system.

従来、内燃機関の燃料供給系の故障或いは異常を診断する技術として、アイドル運転時における機関回転数の変動を解消すべく各気筒の燃料噴射量を補正するシステムにおいて、補正量が基準範囲を超える気筒が存在する場合に、補正量を強制的に増加又は減少させ、それによって生じる機関回転数の変動が補正量の増加又は減少に見合っているか否かを判別する技術が知られている(例えば、特許文献1を参照)。
特開2002−188501号公報 特開2006−138293号公報 特開2000−186603号公報 特開平10−122031号公報 特許第2595663号公報 特開平11−44246号公報
Conventionally, as a technique for diagnosing a failure or abnormality in a fuel supply system of an internal combustion engine, a correction amount exceeds a reference range in a system that corrects the fuel injection amount of each cylinder in order to eliminate fluctuations in engine speed during idle operation. There is known a technique for forcibly increasing or decreasing a correction amount when a cylinder is present, and determining whether or not a fluctuation in the engine speed caused thereby matches the increase or decrease of the correction amount (for example, , See Patent Document 1).
JP 2002-188501 A JP 2006-138293 A JP 2000-186603 A JP 10-122031 A Japanese Patent No. 2595663 JP 11-44246 A

ところで、内燃機関のアイドル運転時は各気筒の燃料噴射量が極めて少なくなるため、燃料供給系の故障による機関回転数の変動量も極めて少なくなり易い。よって、前述した従来の技術において故障診断の精度を高めるためには、燃料噴射量の補正量が大幅に増加又は減少される必要がある。   By the way, during the idling operation of the internal combustion engine, the fuel injection amount of each cylinder is extremely small, and therefore the amount of fluctuation of the engine speed due to the failure of the fuel supply system tends to be extremely small. Therefore, in order to increase the accuracy of fault diagnosis in the above-described conventional technology, the correction amount of the fuel injection amount needs to be greatly increased or decreased.

しかしながら、燃料噴射量の補正量が大幅に増加又は減少されると、機関回転数の変動が顕著となるため、運転者に違和感を与える可能性がある。   However, if the correction amount of the fuel injection amount is significantly increased or decreased, the engine speed fluctuates significantly, which may give the driver a sense of discomfort.

これに対し、燃料噴射量の補正量を徐々に増減させる方法も考えられるが、故障診断処理の所要時間が長くなる。故障診断処理の所要時間が長くなると、故障診断処理の終了前に内燃機関がアイドル運転状態から逸脱してしまう場合が想定される。そのような場合は、燃料供給系の故障を早期に検出することができない可能性がある。   On the other hand, a method of gradually increasing or decreasing the correction amount of the fuel injection amount is conceivable, but the time required for the failure diagnosis process becomes longer. If the time required for the failure diagnosis process becomes long, it is assumed that the internal combustion engine deviates from the idle operation state before the completion of the failure diagnosis process. In such a case, there is a possibility that failure of the fuel supply system cannot be detected at an early stage.

本発明は、上記したような実情に鑑みてなされたものであり、その目的は、各気筒の燃料供給系の故障を診断する内燃機関の故障診断システムにおいて、燃料供給系の異常を早期に且つ正確に検出可能な技術の提供にある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to quickly detect an abnormality in the fuel supply system in an internal combustion engine failure diagnosis system for diagnosing a fuel supply system failure in each cylinder. Providing technology that can be detected accurately.

本発明は、上記した課題を解決するために、内燃機関が定常運転状態にある時に気筒毎の機関回転変動量を検出可能な内燃機関の故障診断システムにおいて、気筒毎の機関回転変動量に加え、気筒毎のトルク変動量も考慮して各気筒の燃料供給系の異常を診断するようにした。   In order to solve the above-described problems, the present invention provides an internal combustion engine failure diagnosis system capable of detecting an engine rotation fluctuation amount for each cylinder when the internal combustion engine is in a steady operation state, in addition to the engine rotation fluctuation amount for each cylinder. The abnormality of the fuel supply system of each cylinder is diagnosed in consideration of the torque fluctuation amount for each cylinder.

詳細には、本発明にかかる内燃機関の故障診断システムは、内燃機関が定常運転状態にある時に気筒毎の機関回転変動量を検出する第1検出手段と、前記内燃機関の気筒毎のトルク変動量を検出する第2検出手段と、前記第1及び第2検出手段の検出結果に基づいて各気筒の燃料供給系の故障を診断する診断手段と、を備えるようにした。   Specifically, the failure diagnosis system for an internal combustion engine according to the present invention includes first detection means for detecting an engine rotation fluctuation amount for each cylinder when the internal combustion engine is in a steady operation state, and torque fluctuation for each cylinder of the internal combustion engine. Second detection means for detecting the amount, and diagnosis means for diagnosing a failure in the fuel supply system of each cylinder based on the detection results of the first and second detection means.

気筒間のトルク変動量は、内燃機関が定常運転状態から逸脱した場合であっても検出可能である。逆に、内燃機関が定常運転状態から逸脱している時は各気筒の目標燃料噴射量が多くなるため、故障時のトルク変動量と正常時のトルク変動量との差が明確になり易い。このため、内燃機関が定常運転状態を長期間継続しなくとも故障診断を行うことが可能である。   The torque fluctuation amount between the cylinders can be detected even when the internal combustion engine deviates from the steady operation state. On the contrary, when the internal combustion engine deviates from the steady operation state, the target fuel injection amount of each cylinder increases, so that the difference between the torque fluctuation amount at the time of failure and the torque fluctuation amount at the time of normality is easily clarified. For this reason, it is possible to perform a failure diagnosis even if the internal combustion engine does not continue the steady operation state for a long time.

一方、内燃機関が過渡運転状態にある時のトルク変動量は、燃料供給系が正常な気筒においても比較的大きくなる場合がある。このため、該気筒の燃料供給系が故障していると誤診断される可能性がある。   On the other hand, the amount of torque fluctuation when the internal combustion engine is in a transient operation state may be relatively large even in a cylinder in which the fuel supply system is normal. For this reason, there is a possibility of erroneous diagnosis that the fuel supply system of the cylinder is out of order.

しかしながら、本発明にかかる内燃機関の故障診断システムは、定常運転時の機関回転変動量に基づいて正常な気筒が選別されるため、正常な気筒が故障していると誤診断されることがない。さらに、定常運転時の機関回転変動量は極短時間に検出可能であるため、内燃機関が定常運転状態を長期間継続しなくともよい。   However, in the internal combustion engine failure diagnosis system according to the present invention, normal cylinders are selected based on the amount of engine rotation fluctuation during steady operation, so that there is no erroneous diagnosis that the normal cylinders have failed. . Furthermore, since the engine rotation fluctuation amount at the time of steady operation can be detected in a very short time, the internal combustion engine does not have to continue the steady operation state for a long time.

よって、本発明にかかる内燃機関の故障診断システムによれば、燃料供給系の故障を早期に且つ正確に検出することが可能となる。   Therefore, according to the failure diagnosis system for an internal combustion engine according to the present invention, it is possible to detect a failure in the fuel supply system early and accurately.

本発明にかかる内燃機関の故障診断システムにおいて、診断手段は、第1検出手段により検出された機関回転変動量が最大となる気筒の燃料供給系について、第2検出手段により検出されたトルク変動量に基づく故障診断を行うようにしてもよい。   In the internal combustion engine failure diagnosis system according to the present invention, the diagnosis means includes a torque fluctuation amount detected by the second detection means for the fuel supply system of the cylinder having the maximum engine rotation fluctuation amount detected by the first detection means. Failure diagnosis based on the above may be performed.

かかる構成によれば、機関回転変動量が相対的に大きな気筒に対してのみトルク変動量に基づく故障診断が行われるため、故障診断精度の向上を図ることができる。   According to such a configuration, failure diagnosis based on the torque fluctuation amount is performed only for the cylinder having a relatively large engine rotation fluctuation amount, so that the failure diagnosis accuracy can be improved.

本発明にかかる内燃機関の故障診断システムにおいて、診断手段は、第1検出手段により検出された機関回転変動量が所定量を超えた気筒の燃料供給系について、第2検出手段により検出されたトルク変動量に基づく故障診断を行うようにしてもよい。   In the failure diagnosis system for an internal combustion engine according to the present invention, the diagnosis means includes a torque detected by the second detection means for a fuel supply system of a cylinder whose engine rotation fluctuation amount detected by the first detection means exceeds a predetermined amount. A failure diagnosis based on the fluctuation amount may be performed.

かかる構成によれば、機関回転変動量の絶対値が大きな気筒に対してのみトルク変動量に基づく故障診断が行われるため、故障診断精度の向上を図ることができる。   According to such a configuration, failure diagnosis based on the torque fluctuation amount is performed only for the cylinder having a large absolute value of the engine rotation fluctuation amount, so that the failure diagnosis accuracy can be improved.

尚、診断手段は、第1検出手段により検出された機関回転変動量が最大且つ所定量を超えている気筒の燃料供給系について、第2検出手段により検出されたトルク変動量に基づく故障診断を行うことにより、故障診断精度の更なる向上を図るようにしてもよい。   The diagnosis means performs failure diagnosis based on the torque fluctuation amount detected by the second detection means for the fuel supply system of the cylinder in which the engine rotation fluctuation amount detected by the first detection means exceeds the predetermined amount. By doing so, the fault diagnosis accuracy may be further improved.

また、本発明における故障診断の具体的な実行方法としては、第1検出手段により検出された機関回転変動量と第2検出手段により検出されたトルク変動量との乗算値が基準値を超えていることを条件に燃料供給系が故障していると診断する方法を例示することができる。   Further, as a specific execution method of the failure diagnosis in the present invention, the multiplication value of the engine rotation fluctuation amount detected by the first detection means and the torque fluctuation amount detected by the second detection means exceeds the reference value. It is possible to exemplify a method of diagnosing that the fuel supply system has failed on the condition that

機関回転変動量とトルク変動量との乗算値がパラメータにされた場合は、機関回転変動量若しくはトルク変動量の何れか一方のみがパラメータとされた場合に比べ、正常時と故障時との差が助長及び増幅される。よって、故障診断精度の一層の向上を図ることが可能になるとともに、軽微な故障も検出することが可能になる。   When the multiplication value of the engine rotation fluctuation amount and the torque fluctuation amount is used as a parameter, the difference between the normal time and the failure time is larger than when only one of the engine rotation fluctuation amount or the torque fluctuation amount is used as a parameter. Is promoted and amplified. Therefore, it is possible to further improve the failure diagnosis accuracy and detect a minor failure.

尚、本発明における故障診断の他の実行方法としては、機関回転変動量が最大および/または所定量を超える気筒についてトルク変動量が所定の診断基準値より大きいか否かを判別する方法において、前記診断基準値が機関回転変動量の大きさに応じて可変とされるようにしてもよい。   In addition, as another execution method of the failure diagnosis in the present invention, in a method for determining whether or not the torque fluctuation amount is larger than a predetermined diagnosis reference value for a cylinder whose engine rotation fluctuation amount is maximum and / or exceeds a predetermined amount, The diagnostic reference value may be variable according to the magnitude of the engine rotation fluctuation amount.

例えば、機関回転変動量が小さくなるほど診断基準値を大きくすることにより、誤診断の発生を抑制するとともに診断精度の向上を図るようにしてもよい。   For example, the diagnosis reference value may be increased as the engine rotation fluctuation amount is reduced, thereby suppressing the occurrence of misdiagnosis and improving the diagnosis accuracy.

本発明によれば、各気筒の燃料供給系の故障を診断する内燃機関の故障診断システムにおいて、燃料供給系の異常を早期に且つ正確に検出可能となる。   According to the present invention, an abnormality in a fuel supply system can be detected early and accurately in a failure diagnosis system for an internal combustion engine that diagnoses a failure in a fuel supply system of each cylinder.

以下、本発明の具体的な実施形態について図面に基づいて説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は、本発明を適用する内燃機関の概略構成を示す図である。図1に示す内燃機関1は、複数の4つの気筒(1番気筒(#1)、2番気筒(#2)、3番気筒(#3)、及び4番気筒(#4))2を有する圧縮着火式の内燃機関(ディーゼルエンジン)である。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied. An internal combustion engine 1 shown in FIG. 1 includes a plurality of four cylinders (first cylinder (# 1), second cylinder (# 2), third cylinder (# 3), and fourth cylinder (# 4)) 2. A compression ignition type internal combustion engine (diesel engine).

各気筒2には、気筒2内へ直接燃料を噴射する燃料噴射弁3が取り付けられている。燃料噴射弁3はコモンレール4と接続され、コモンレール4は燃料供給管5を介して燃料ポンプ6と連通している。   Each cylinder 2 is provided with a fuel injection valve 3 that injects fuel directly into the cylinder 2. The fuel injection valve 3 is connected to a common rail 4, and the common rail 4 communicates with a fuel pump 6 through a fuel supply pipe 5.

燃料ポンプ6から吐出された燃料は、燃料供給管5を経てコモンレール4へ供給され、該コモンレール4から各気筒2の燃料噴射弁3へ分配される。燃料噴射弁3から噴射された燃料は、吸気通路7から導入された空気とともに燃焼される。気筒2内で燃焼されたガス(既燃ガス)は、排気通路8へ排出される。   The fuel discharged from the fuel pump 6 is supplied to the common rail 4 through the fuel supply pipe 5 and is distributed from the common rail 4 to the fuel injection valve 3 of each cylinder 2. The fuel injected from the fuel injection valve 3 is burned together with the air introduced from the intake passage 7. Gas (burned gas) burned in the cylinder 2 is discharged to the exhaust passage 8.

このように構成された内燃機関1には、該内燃機関1の運転状態を制御する電子制御ユニット(ECU)9が併設されている。ECU9は、燃料噴射弁3や燃料ポンプ6と電気的に接続され、クランクポジションセンサ10等の各種センサの測定値に基づいて燃料噴射弁3や燃料ポンプ6を制御する。   The internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 9 for controlling the operating state of the internal combustion engine 1. The ECU 9 is electrically connected to the fuel injection valve 3 and the fuel pump 6 and controls the fuel injection valve 3 and the fuel pump 6 based on measured values of various sensors such as the crank position sensor 10.

例えば、ECU9は、内燃機関1の運転条件に基づく燃料噴射量制御などの既知の制御に加え、本発明の要旨となる故障診断処理を実行する。故障診断処理は、各気筒2の燃料供給系(コモンレール4から燃料噴射弁3に至る経路、及び燃料噴射弁3を含む)の故障を診断する処理である。   For example, the ECU 9 executes failure diagnosis processing that is the gist of the present invention in addition to known control such as fuel injection amount control based on the operating conditions of the internal combustion engine 1. The failure diagnosis process is a process for diagnosing a failure in the fuel supply system (including the path from the common rail 4 to the fuel injection valve 3 and the fuel injection valve 3) of each cylinder 2.

以下、本実施例における故障診断処理について述べる。本実施例における故障診断処理では、ECU9は、内燃機関1がアイドル運転状態にあるときの機関回転変動量と、内燃機関1が非アイドル運転状態にあるときのトルク変動量との2つのパラメータに基づいて各気筒2の燃料供給系の故障診断を行う。   Hereinafter, the failure diagnosis process in this embodiment will be described. In the failure diagnosis process in the present embodiment, the ECU 9 uses two parameters, namely, an engine rotation fluctuation amount when the internal combustion engine 1 is in an idle operation state and a torque fluctuation amount when the internal combustion engine 1 is in a non-idle operation state. Based on this, failure diagnosis of the fuel supply system of each cylinder 2 is performed.

ECU9は、内燃機関1がアイドル運転状態にある時に、気筒間の機関回転変動を抑制するために各気筒2の燃料噴射量を補正する(以下、このような制御を「アイドル時燃料噴射制御」と称する)。   The ECU 9 corrects the fuel injection amount of each cylinder 2 in order to suppress the engine rotation fluctuation between the cylinders when the internal combustion engine 1 is in the idling operation state (hereinafter, such control is referred to as “idle fuel injection control”). Called).

具体的には、ECU9は、各気筒2の膨張行程時の機関回転速度(例えば、膨張行程上死点から90°CA回転するのに要する時間)を直前に燃焼された気筒2の機関回転速度と比較する。   Specifically, the ECU 9 determines the engine rotation speed of the cylinder 2 burned immediately before the engine rotation speed of each cylinder 2 during the expansion stroke (for example, the time required to rotate 90 ° CA from the top dead center of the expansion stroke). Compare with

直前に燃焼された気筒2に比して機関回転速度が高い気筒2については、ECU9は、該気筒2の次サイクルの燃料噴射量を減量補正する。一方、直前に燃焼された気筒2に比して機関回転速度が低い気筒2については、ECU9は、該気筒2の次サイクルの燃料噴
射量を増量補正する。
For the cylinder 2 whose engine speed is higher than that of the cylinder 2 burned immediately before, the ECU 9 corrects the fuel injection amount in the next cycle of the cylinder 2 by reducing the amount. On the other hand, for the cylinder 2 whose engine rotational speed is lower than that of the cylinder 2 burned immediately before, the ECU 9 increases and corrects the fuel injection amount of the next cycle of the cylinder 2.

その際、燃料供給系に故障が生じた気筒2の燃料噴射量は、目標燃料噴射量に比して過多或いは過少となるため、該気筒2の機関回転変動量が多くなるとともに燃料噴射量の補正量が多くなる。その際の補正量は、図2に示すように、故障の程度が高くなるほど(言い換えれば、目標燃料噴射量と実際の燃料噴射量との差が大きくなるほど)多くなる。   At this time, the fuel injection amount of the cylinder 2 in which a failure has occurred in the fuel supply system is excessive or small as compared with the target fuel injection amount, so that the engine rotation fluctuation amount of the cylinder 2 increases and the fuel injection amount The amount of correction increases. As shown in FIG. 2, the correction amount at that time increases as the degree of failure increases (in other words, the difference between the target fuel injection amount and the actual fuel injection amount increases).

よって、ECU9は、アイドル時燃料噴射制御における補正量が閾値を超えた気筒2を検出した場合は、該気筒2の燃料供給系が異常であると診断することも可能である。   Therefore, the ECU 9 can diagnose that the fuel supply system of the cylinder 2 is abnormal when detecting the cylinder 2 in which the correction amount in the idle fuel injection control exceeds the threshold value.

ところで、内燃機関1がアイドル運転状態にある時は目標燃料噴射量が少ないため、正常時の機関回転変動量と故障時の機関回転変動量との差が小さくなり易い。その結果、アイドル時燃料噴射制御の補正量のみをパラメータとして燃料供給系の故障診断が行われると、診断精度が低くなり易いとともに軽微な故障を検出することが困難となる。   By the way, since the target fuel injection amount is small when the internal combustion engine 1 is in the idling operation state, the difference between the normal engine rotation fluctuation amount and the engine rotation fluctuation amount at the time of failure tends to be small. As a result, when the fuel supply system failure diagnosis is performed using only the correction amount of the fuel injection control during idling as a parameter, the diagnosis accuracy tends to be low and it is difficult to detect a minor failure.

これに対し、目標燃料噴射量が比較的多くなる非アイドル運転時における気筒間のトルク変動量をパラメータとして、各気筒2の燃料供給系の故障を診断する方法が考えられる。   On the other hand, a method of diagnosing a failure in the fuel supply system of each cylinder 2 using a torque fluctuation amount between cylinders during non-idle operation where the target fuel injection amount is relatively large as a parameter is conceivable.

図3は、トルク変動量と相関するクランクシャフトの角加速度変動量と、燃料供給系の故障の程度との関係を示す図である。図3に示すように、燃料供給系の故障の程度が高くなるほど、角加速度変動量が大きくなる。よって、角加速度変動量が閾値を超える気筒2の燃料供給系が異常であると診断することができる。   FIG. 3 is a diagram showing the relationship between the angular acceleration fluctuation amount of the crankshaft correlated with the torque fluctuation amount and the degree of failure of the fuel supply system. As shown in FIG. 3, as the degree of failure of the fuel supply system increases, the angular acceleration fluctuation amount increases. Therefore, it can be diagnosed that the fuel supply system of the cylinder 2 whose angular acceleration fluctuation amount exceeds the threshold value is abnormal.

但し、内燃機関1が非アイドル運転状態にある時は加減速に伴う角加速度変動量のバラツキ(図3中の△α)も考慮する必要がある。このようなバラツキ△αを考慮して故障診断が行われると、図3中の例Cにおいて燃料供給系が正常であるにもかかわらず故障していると誤診断され、或いは図3中の例Dにおいて燃料供給系が故障しているにもかかわらず正常であると誤診断される可能性がある。   However, when the internal combustion engine 1 is in a non-idle operation state, it is necessary to take into account variations in the amount of change in angular acceleration accompanying acceleration / deceleration (Δα in FIG. 3). When failure diagnosis is performed in consideration of such variation Δα, it is erroneously diagnosed that the fuel supply system is malfunctioning in Example C in FIG. 3 or the example in FIG. There is a possibility that the fuel supply system in D is erroneously diagnosed as being normal despite the failure.

そこで、本実施例の故障診断処理では、ECU9は、アイドル時燃料噴射制御における補正量が4気筒中で最大となり、および/またはアイドル時燃料噴射制御における補正量が所定量を超える気筒2についてのみ、角加速度変動量に基づく故障診断を行うようにした。   Therefore, in the failure diagnosis process of the present embodiment, the ECU 9 performs the correction only for the cylinder 2 in which the correction amount in the idle fuel injection control is the largest among the four cylinders and / or the correction amount in the idle fuel injection control exceeds the predetermined amount. In addition, failure diagnosis based on the angular acceleration fluctuation amount was performed.

このような故障診断方法によれば、図3中の例Cのような正常な気筒2について角加速度変動量に基づく故障診断が行われなくなるため、該気筒2の燃料供給系が正常であるにもかかわらず故障していると誤診断されることをなくなる。   According to such a failure diagnosis method, failure diagnosis based on the angular acceleration fluctuation amount is not performed for the normal cylinder 2 as in Example C in FIG. 3, so that the fuel supply system of the cylinder 2 is normal. Nevertheless, it is no longer misdiagnosed as malfunctioning.

また、図3中の例Dのような軽微な故障については、アイドル時燃料噴射制御の補正量と角加速度変動量との乗算値をパラメータとして故障診断を行うことにより、誤診断の発生を抑制することができる。   Further, for minor failures such as Example D in FIG. 3, the occurrence of misdiagnosis is suppressed by performing failure diagnosis using the product of the correction amount of the fuel injection control during idling and the angular acceleration fluctuation amount as a parameter. can do.

詳細には、アイドル時燃料噴射制御の補正量と角加速度変動量との乗算値が予め定められた基準値より大きいことを条件に故障の診断が下されるようにすればよい。このような故障診断方法によれば、アイドル時燃料噴射制御の補正量若しくは非アイドル運転時の角加速度変動量の何れか一方のみパラメータとして故障診断が行われる場合に比して、正常時と故障時との差が助長及び増幅される。よって、故障診断精度が向上するとともに図3中の例Dに示すような軽微な故障も検出することが可能になる。   Specifically, the failure diagnosis may be performed on the condition that the multiplication value of the correction amount of the fuel injection control during idling and the angular acceleration fluctuation amount is larger than a predetermined reference value. According to such a failure diagnosis method, compared with the case where the failure diagnosis is performed with only one of the correction amount of the fuel injection control during idling and the angular acceleration fluctuation amount during non-idle operation as a parameter, The difference with time is encouraged and amplified. Therefore, the failure diagnosis accuracy is improved, and a minor failure as shown in Example D in FIG. 3 can be detected.

以下、本実施例における故障診断処理について図4に基づいて説明する。図4は、故障診断ルーチンを示すフローチャートである。この故障診断ルーチンは、所定期間毎に割り込み処理されるルーチンであり、予めECU9のROMに記憶されている。   Hereinafter, failure diagnosis processing in the present embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing a failure diagnosis routine. This failure diagnosis routine is a routine that is interrupted at predetermined intervals, and is stored in advance in the ROM of the ECU 9.

故障診断処理ルーチンにおいて、ECU9は、先ずS101において故障診断条件が成立しているか否かを判別する。故障診断条件としては、目標燃料噴射量が一定量以上である等の条件を例示することができる。その際、前記した一定量は、アイドル運転時の目標燃料噴射量に比して十分に多い量である。   In the failure diagnosis processing routine, the ECU 9 first determines whether or not a failure diagnosis condition is satisfied in S101. Examples of the failure diagnosis condition include a condition that the target fuel injection amount is a certain amount or more. At this time, the above-described constant amount is a sufficiently large amount as compared with the target fuel injection amount during the idling operation.

前記S101において否定判定された場合は、ECU9は、本ルーチンの実行を一旦終了する。一方、前記S101において肯定判定された場合は、ECU9は、S102へ進む。   If a negative determination is made in S101, the ECU 9 once ends the execution of this routine. On the other hand, if an affirmative determination is made in S101, the ECU 9 proceeds to S102.

S102では、ECU9は、膨張行程を迎える気筒2が1番気筒(#1)〜4番気筒(#4)の何れの気筒2であるかを判別する。   In S102, the ECU 9 determines which cylinder 2 of the first cylinder (# 1) to the fourth cylinder (# 4) is the cylinder 2 in the expansion stroke.

S103では、ECU9は、前記S102で判別された気筒(以下、「診断気筒」と称する)2のアイドル時燃料噴射制御の補正量が4つの気筒2のうち最大量であるか否かを判別する。   In S103, the ECU 9 determines whether or not the correction amount of the idle fuel injection control of the cylinder (hereinafter referred to as "diagnostic cylinder") 2 determined in S102 is the maximum amount among the four cylinders 2. .

尚、各気筒2のアイドル時燃料噴射制御の補正量は、図5に示すようなアイドル時燃料噴射制御ルーチンによって求められる。図5のアイドル時燃料噴射制御ルーチンでは、ECU9は、S201において所定条件が成立しているか否かを判別する。所定条件としては、内燃機関1を搭載した車両の速度が零である、アクセルペダルの操作量が零である、及び実際の機関回転数と目標回転数との差が許容値以内である等の条件を例示することができる。   The correction amount of the idle fuel injection control for each cylinder 2 is obtained by an idle fuel injection control routine as shown in FIG. In the idle fuel injection control routine of FIG. 5, the ECU 9 determines whether or not a predetermined condition is satisfied in S201. As predetermined conditions, the speed of the vehicle equipped with the internal combustion engine 1 is zero, the operation amount of the accelerator pedal is zero, and the difference between the actual engine speed and the target speed is within an allowable value. Conditions can be exemplified.

S201において否定判定された場合は、ECU9は、本ルーチンの実行を終了する。一方、前記S201において肯定判定された場合は、ECU9は、S202において各気筒2の機関回転変動量を演算する。   If a negative determination is made in S201, the ECU 9 ends the execution of this routine. On the other hand, if an affirmative determination is made in S201, the ECU 9 calculates the engine rotation fluctuation amount of each cylinder 2 in S202.

S203では、ECU9は、前記S202において算出された機関回転変動量に応じて各気筒2の燃料噴射量の補正量を算出し、それらの算出結果をECU9のRAM又はバックアップRAMの所定領域に記憶させる。   In S203, the ECU 9 calculates a correction amount of the fuel injection amount of each cylinder 2 in accordance with the engine rotation fluctuation amount calculated in S202, and stores those calculation results in a predetermined area of the ECU 9 RAM or backup RAM. .

S204では、ECU9は、前記S203において算出された補正量に基づいて各気筒2の目標燃料噴射量を補正する。   In S204, the ECU 9 corrects the target fuel injection amount of each cylinder 2 based on the correction amount calculated in S203.

ここで図4に戻り、ECU9は、S103において前記図3のアイドル時燃料噴射制御ルーチンにより求められた各気筒2の補正量をRAM又はバックアップRAMから読み出し、診断気筒2の補正量が4つの気筒2のうち最大であるか否かを判別する。   Returning to FIG. 4, the ECU 9 reads the correction amount of each cylinder 2 obtained by the idle fuel injection control routine of FIG. 3 in S103 from the RAM or the backup RAM, and the correction amount of the diagnostic cylinder 2 is four cylinders. It is determined whether or not 2 is the maximum.

S103において否定判定された場合は、ECU9は、本ルーチンの実行を終了する。一方、前記S103において肯定判定された場合は、ECU9は、S104へ進む。   If a negative determination is made in S103, the ECU 9 ends the execution of this routine. On the other hand, if an affirmative determination is made in S103, the ECU 9 proceeds to S104.

S104では、ECU9は、診断気筒2の補正量が所定量より多いか否かを判別する。前記S104において否定判定された場合は、ECU9は本ルーチンの実行を終了する。一方、前記S104において肯定判定された場合は、ECU9はS105へ進む。   In S104, the ECU 9 determines whether or not the correction amount of the diagnostic cylinder 2 is larger than a predetermined amount. If a negative determination is made in S104, the ECU 9 ends the execution of this routine. On the other hand, if an affirmative determination is made in S104, the ECU 9 proceeds to S105.

S105では、ECU9は、診断気筒2の角加速度変動量を演算する。具体的には、E
CU9は、先ず診断気筒の膨張行程上死点から90°CA回転する時の機関回転速度を演算する。次いで、ECUは、前記機関回転速度を微分して角加速度を演算する。さらに、ECU9は、診断気筒2の直前に燃焼された気筒2の角加速度と該診断気筒2の角加速度との差の絶対値を演算する。
In S105, the ECU 9 calculates the angular acceleration fluctuation amount of the diagnostic cylinder 2. Specifically, E
The CU 9 first calculates the engine rotational speed when rotating 90 ° CA from the top dead center of the expansion stroke of the diagnostic cylinder. Next, the ECU calculates angular acceleration by differentiating the engine rotational speed. Further, the ECU 9 calculates the absolute value of the difference between the angular acceleration of the cylinder 2 burned immediately before the diagnostic cylinder 2 and the angular acceleration of the diagnostic cylinder 2.

S106では、ECU9は、診断気筒2の補正量と角加速度変動量との乗算値を演算する。   In S106, the ECU 9 calculates a multiplication value of the correction amount of the diagnostic cylinder 2 and the angular acceleration fluctuation amount.

S107では、ECU9は、前記S106で算出された乗算値が基準値より大きいか否かを判別する。   In S107, the ECU 9 determines whether or not the multiplication value calculated in S106 is larger than a reference value.

前記S107において肯定判定された場合は、ECU9はS108へ進み、診断気筒2の燃料供給系が故障していると診断する。一方、前記S107において否定判定された場合は、ECU9はS109へ進み、診断気筒2の燃料供給系が正常であると診断する。   If an affirmative determination is made in S107, the ECU 9 proceeds to S108 and diagnoses that the fuel supply system of the diagnostic cylinder 2 has failed. On the other hand, if a negative determination is made in S107, the ECU 9 proceeds to S109 and diagnoses that the fuel supply system of the diagnostic cylinder 2 is normal.

以上述べたようにECU9が故障診断処理ルーチンを実行することにより、本発明にかかる第1検出手段、第2検出手段、及び診断手段が実現される。その結果、燃料供給系の故障を早期に且つ正確に検出することが可能となる。   As described above, the ECU 9 executes the failure diagnosis processing routine, thereby realizing the first detection means, the second detection means, and the diagnosis means according to the present invention. As a result, it becomes possible to detect the failure of the fuel supply system early and accurately.

尚、本実施例では、直列4気筒の圧縮着火式内燃機関を例に挙げたが、これに限られるものではないことは勿論であり、多気筒の内燃機関であればよく、火花点火式内燃機関であってもよい。   In this embodiment, an in-line four-cylinder compression ignition type internal combustion engine has been described as an example. However, the present invention is not limited to this, and a multi-cylinder internal combustion engine may be used. It may be an institution.

本発明を適用する内燃機関の概略構成を示す図である。1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied. 燃料供給系の故障の程度とアイドル時燃料噴射制御の補正量との関係を示す図である。It is a figure which shows the relationship between the grade of the failure of a fuel supply system, and the correction amount of idle time fuel injection control. 燃料供給系の故障の程度と角加速度変動量との関係を示す図である。It is a figure which shows the relationship between the grade of the failure of a fuel supply system, and angular acceleration fluctuation amount. 故障診断処理ルーチンを示すフローチャートである。It is a flowchart which shows a failure diagnosis processing routine. アイドル時燃料噴射制御ルーチンを示すフローチャートである。It is a flowchart which shows a fuel injection control routine at the time of idling.

符号の説明Explanation of symbols

1・・・・・内燃機関
2・・・・・気筒
3・・・・・燃料噴射弁
4・・・・・コモンレール
5・・・・・燃料供給管
6・・・・・燃料ポンプ
9・・・・・ECU
10・・・・クランクポジションセンサ
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Cylinder 3 ... Fuel injection valve 4 ... Common rail 5 ... Fuel supply pipe 6 ... Fuel pump 9. .... ECU
10 .... Crank position sensor

Claims (5)

内燃機関が定常運転状態にある時に気筒毎の機関回転変動量を検出する第1検出手段と、
前記内燃機関の気筒毎のトルク変動量を検出する第2検出手段と、
前記第1及び第2検出手段の検出結果に基づいて各気筒の燃料供給系の故障診断を行う診断手段と、
を備えたことを特徴とする内燃機関の故障診断システム。
First detection means for detecting an engine rotation fluctuation amount for each cylinder when the internal combustion engine is in a steady operation state;
Second detecting means for detecting a torque fluctuation amount for each cylinder of the internal combustion engine;
Diagnostic means for diagnosing a failure in the fuel supply system of each cylinder based on the detection results of the first and second detection means;
A failure diagnosis system for an internal combustion engine, comprising:
請求項1において、前記診断手段は、前記第1検出手段により検出された機関回転変動量が最大となる気筒の燃料供給系について、前記第2検出手段により検出されたトルク変動量に基づく故障診断を行うことを特徴とする内燃機関の故障診断システム。   2. The failure diagnosis according to claim 1, wherein the diagnosis unit is based on a torque fluctuation amount detected by the second detection unit with respect to a fuel supply system of a cylinder having the maximum engine rotation fluctuation amount detected by the first detection unit. A fault diagnosis system for an internal combustion engine, characterized in that: 請求項1において、前記診断手段は、前記第1検出手段により検出された機関回転変動量が所定量を超えた気筒の燃料供給系について、前記第2検出手段により検出されたトルク変動量に基づく故障診断を行うことを特徴とする内燃機関の故障診断システム。   2. The diagnosis unit according to claim 1, wherein the diagnosis unit is based on a torque fluctuation amount detected by the second detection unit for a fuel supply system of a cylinder in which the engine rotation fluctuation amount detected by the first detection unit exceeds a predetermined amount. A failure diagnosis system for an internal combustion engine characterized by performing failure diagnosis. 請求項1において、前記診断手段は、前記第1検出手段により検出された機関回転変動量が最大且つ所定量を超えている気筒の燃料供給系について、前記第2検出手段により検出されたトルク変動量に基づく故障診断を行うことを特徴とする内燃機関の故障診断システム。   2. The torque variation detected by the second detection unit according to claim 1, wherein the diagnosis unit detects a fuel supply system of a cylinder in which the engine rotation variation amount detected by the first detection unit is maximum and exceeds a predetermined amount. A failure diagnosis system for an internal combustion engine characterized by performing failure diagnosis based on a quantity. 請求項1〜4の何れかにおいて、前記診断手段は、前記第1検出手段により検出された機関回転変動量と前記第2検出手段により検出されたトルク変動量との乗算値が基準値を超えていることを条件に前記気筒の燃料供給系が故障していると診断することを特徴とする内燃機関の故障診断システム。   5. The diagnosis unit according to claim 1, wherein a multiplication value of the engine rotation fluctuation amount detected by the first detection unit and the torque fluctuation amount detected by the second detection unit exceeds a reference value. A failure diagnosis system for an internal combustion engine that diagnoses that the fuel supply system of the cylinder has failed on the condition that
JP2006248068A 2006-09-13 2006-09-13 Fault diagnosis system for internal combustion engine Expired - Fee Related JP4830741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248068A JP4830741B2 (en) 2006-09-13 2006-09-13 Fault diagnosis system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248068A JP4830741B2 (en) 2006-09-13 2006-09-13 Fault diagnosis system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008069693A true JP2008069693A (en) 2008-03-27
JP4830741B2 JP4830741B2 (en) 2011-12-07

Family

ID=39291495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248068A Expired - Fee Related JP4830741B2 (en) 2006-09-13 2006-09-13 Fault diagnosis system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4830741B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012991A (en) * 2010-06-30 2012-01-19 Toyota Motor Corp Fuel injection control device of multi-cylinder internal combustion engine
CN109488473A (en) * 2018-12-17 2019-03-19 中国船舶重工集团公司第七研究所 The online anticipation system of engine and online pre-judging method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144246A (en) * 1997-07-25 1999-02-16 Nissan Motor Co Ltd Abnormality diagnostic device for engine
JP2002122037A (en) * 2000-10-17 2002-04-26 Denso Corp Abnormal cylinder detecting device for multi-cylinder internal combustion engine
JP2004308464A (en) * 2003-04-03 2004-11-04 Denso Corp Fault diagnosis device of fuel injection device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144246A (en) * 1997-07-25 1999-02-16 Nissan Motor Co Ltd Abnormality diagnostic device for engine
JP2002122037A (en) * 2000-10-17 2002-04-26 Denso Corp Abnormal cylinder detecting device for multi-cylinder internal combustion engine
JP2004308464A (en) * 2003-04-03 2004-11-04 Denso Corp Fault diagnosis device of fuel injection device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012991A (en) * 2010-06-30 2012-01-19 Toyota Motor Corp Fuel injection control device of multi-cylinder internal combustion engine
CN109488473A (en) * 2018-12-17 2019-03-19 中国船舶重工集团公司第七研究所 The online anticipation system of engine and online pre-judging method
CN109488473B (en) * 2018-12-17 2021-08-13 中国船舶重工集团公司第七一一研究所 Online prejudgment system and online prejudgment method of engine

Also Published As

Publication number Publication date
JP4830741B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US7549284B2 (en) Diagnostic device and method of engine exhaust purifying system
JP4748462B2 (en) Abnormality diagnosis device for internal combustion engine
US7934418B2 (en) Abnormality diagnosis device of intake air quantity sensor
JPWO2011132678A1 (en) Air flow meter failure diagnosis device
JP2007085176A (en) Fuel injection valve failure diagnosis for each cylinder
US8245568B2 (en) Abnormality detection apparatus and abnormality detection method for air/fuel ratio sensor
JP2010138796A (en) Malfunction diagnosis device for intake air temperature sensor
JP2008274836A (en) Failure diagnostic device for intake air flow rate sensor
JP2009270492A (en) Failure diagnosis device of cylinder deactivation system
US10487765B2 (en) Failure detection apparatus for fuel systems of engine
US7200508B2 (en) Method and device for monitoring a control unit of an internal combustion engine
JP2011226363A (en) Abnormality diagnosis apparatus of internal combustion engine
JP4868173B2 (en) Abnormality diagnosis device for internal combustion engine
JP2008223516A (en) Failure diagnosis device of exhaust gas recirculation device for engine
JP4830741B2 (en) Fault diagnosis system for internal combustion engine
JP4259570B2 (en) Valve abnormality determination device, abnormality determination method, program for realizing the method, and recording medium recording the program
JP5083045B2 (en) Abnormality diagnosis device for fuel injection valve
JP2010163932A (en) Catalyst degradation diagnostic device for internal combustion engine
US9429089B2 (en) Control device of engine
JP2011157852A (en) Control device of internal combustion engine
JP4706670B2 (en) Fuel injection control device for diesel engine
JP4854796B2 (en) Abnormality detection device for internal combustion engine
JP2002364442A (en) Fuel system diagnosing device for cylinder direct injection type internal combustion engine
JP2009257117A (en) Abnormality diagnosis device for intake system of internal combustion engine
JP4532516B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R151 Written notification of patent or utility model registration

Ref document number: 4830741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees