JP2007085176A - Fuel injection valve failure diagnosis for each cylinder - Google Patents

Fuel injection valve failure diagnosis for each cylinder Download PDF

Info

Publication number
JP2007085176A
JP2007085176A JP2005271288A JP2005271288A JP2007085176A JP 2007085176 A JP2007085176 A JP 2007085176A JP 2005271288 A JP2005271288 A JP 2005271288A JP 2005271288 A JP2005271288 A JP 2005271288A JP 2007085176 A JP2007085176 A JP 2007085176A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinder
diagnosis
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005271288A
Other languages
Japanese (ja)
Inventor
Yoshihisa Fujii
義久 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005271288A priority Critical patent/JP2007085176A/en
Publication of JP2007085176A publication Critical patent/JP2007085176A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To quickly detect abnormalities of a fuel injection valve for each cylinder by employing an air-fuel ratio sensor (LAF sensor) as compared with the utilization of an O<SB>2</SB>sensor in an internal combustion engine. <P>SOLUTION: A plurality of exhaust passages communicating with each cylinder are gathered. An air-fuel ratio detecting means for detecting an air-fuel ratio is provided to the exhaust gathered part. The engine is provided with a processing unit for controlling the fuel injection amount on the basis of an output signal of the air-fuel ratio detecting means. On the basis of the output signal or output signal waveform of the air-fuel ratio detecting means, the occurrence of abnormalities in a fuel injection valve of a specific cylinder is diagnosed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、気筒別燃料系診断を空燃比センサ(LAFセンサ)を用いて実施することで、各気筒の燃料噴射弁の異常を素早く検出することを特徴とする内燃機関の故障診断システムに関する。   The present invention relates to a failure diagnosis system for an internal combustion engine that quickly detects an abnormality of a fuel injection valve of each cylinder by performing an individual fuel system diagnosis using an air-fuel ratio sensor (LAF sensor).

内燃機関の燃料系診断は、排出ガスの空燃比の異常から、エミッションの悪化を検知する診断であり、北米のOBDII法規にて車両に搭載が義務付けられている。   The fuel system diagnosis of an internal combustion engine is a diagnosis that detects deterioration of emissions from an abnormality in the air-fuel ratio of exhaust gas, and is required to be mounted on a vehicle according to North American OBDII regulations.

その診断方法の一つとして、各気筒に通じる複数の排気通路を集合させ、その排気集合部に設けられた排出ガス中の酸素濃度を検出するO2 センサにより、そのセンサ信号から算出された空燃比補正値と空燃比学習値が、ある一定範囲内に収まらない場合、異常と判定する方法が知られている。 As one of the diagnostic methods, a plurality of exhaust passages communicating with each cylinder are gathered, and an empty space calculated from the sensor signal by an O 2 sensor that detects the oxygen concentration in the exhaust gas provided in the exhaust gathering portion. There is known a method for determining an abnormality when the fuel ratio correction value and the air-fuel ratio learning value do not fall within a certain range.

しかし、この方法では、燃料系診断で故障と判定された場合、燃料系の故障原因までは自動的に特定できない問題点がある。この場合、故障原因としては、燃料ポンプ・燃料噴射弁・プレッシャーレギュレータ・空気流量計が考えられ、また、ガス欠・吸気系のエア漏れ・燃料配管からの燃料漏れ等も考えられる。このように故障原因が多岐に渡り、故障発生時には、原因特定が困難である。   However, in this method, when it is determined that the fuel system has failed, there is a problem that the cause of the fuel system failure cannot be automatically identified. In this case, the cause of the failure may be a fuel pump, a fuel injection valve, a pressure regulator, an air flow meter, a gas shortage, an air leak in the intake system, a fuel leak from the fuel pipe, or the like. In this way, there are a variety of causes of failure, and it is difficult to identify the cause when a failure occurs.

そこで、少なくとも燃料噴射弁の異常に対し、その異常気筒を自動的に検出する方法として、各気筒に設定される空燃比補正値を用いて、気筒別燃料系診断を実施するもの特許文献1にて提案されている。   Therefore, as a method of automatically detecting an abnormal cylinder at least for an abnormality of the fuel injection valve, a fuel system diagnosis for each cylinder is performed using an air-fuel ratio correction value set for each cylinder. Has been proposed.

特開平7−34946号公報Japanese Patent Laid-Open No. 7-34946

しかしながら、特許文献1では、O2 センサを用いるため、気筒別に空燃比学習制御を使用しなければならず、学習が終了するまでの時間が必要となるため、異常が発生してから異常を検出するまでに、結果としてかなりの多大な時間を要することとなる。 However, in Patent Document 1, since an O 2 sensor is used, air-fuel ratio learning control must be used for each cylinder, and time is required until learning is completed. As a result, a considerable amount of time is required.

そこで本発明では、各気筒からの排気集合部に設けられた、空燃比センサ(LAFセンサ)を用いて、燃料噴射弁の異常気筒を素早く検出する方法を提供するものである。   Therefore, the present invention provides a method for quickly detecting an abnormal cylinder of a fuel injection valve using an air-fuel ratio sensor (LAF sensor) provided in an exhaust collecting portion from each cylinder.

上記課題は、各気筒に通じる複数の排気通路を集合させ、前記複数の排気通路の集合部に空燃比を検出する空燃比検出手段を設け、前記空燃比検出手段の出力信号に基づいて燃料噴射量を制御する演算処理装置を有すると共に、前記空燃比検出手段の出力信号又は出力信号波形に基づき、特定気筒の燃料噴射弁に異常が発生したことを診断する異常診断手段を有することを特徴とする内燃機関の故障診断システムにより解決される。   The object is to provide a fuel injection based on an output signal of the air-fuel ratio detecting means by collecting a plurality of exhaust passages communicating with each cylinder, and providing an air-fuel ratio detecting means for detecting an air-fuel ratio at a collection portion of the plurality of exhaust passages. And an abnormality diagnosis means for diagnosing that an abnormality has occurred in the fuel injection valve of the specific cylinder based on an output signal or an output signal waveform of the air-fuel ratio detection means. This is solved by a failure diagnosis system for an internal combustion engine.

燃料系診断にて故障判定された場合、故障原因が多岐に渡り、ディーラー等にて原因特定に時間がかかることも多い。時間が無い場合には、燃料噴射弁のアッセンブリー交換
(正常品も含めての燃料噴射弁の全数交換)をすることもある。少なくとも燃料噴射弁故障の際には、その気筒を検出できれば、部品代と交換工賃を節約することができる。
When a failure is determined by the fuel system diagnosis, there are many causes of the failure, and it often takes time to specify the cause at a dealer or the like. If there is no time, the fuel injection valve assembly may be replaced (the entire number of fuel injection valves including normal ones may be replaced). If the cylinder can be detected at least in the event of a fuel injection valve failure, the cost of parts and replacement labor can be saved.

その一方、LAFセンサを用いるため、故障検出に空燃比学習制御が不要であり、故障が発生してから故障検出までの時間を短縮できる。   On the other hand, since the LAF sensor is used, air-fuel ratio learning control is not required for failure detection, and the time from failure occurrence to failure detection can be shortened.

また、近年、内燃機関の筒内に直接燃料を噴射する直噴方式をガソリンエンジンでも採用する車種が増えている。その場合、燃料噴射弁の噴射口にカーボン堆積物が付着し易くなり、特定の燃料噴射弁において、燃料流量が意図した流量より少なくなる不具合が懸念されており、燃料噴射弁の異常気筒特定は重要性が増している。   In recent years, an increasing number of vehicles have adopted a direct injection system in which a fuel is directly injected into a cylinder of an internal combustion engine even in a gasoline engine. In that case, carbon deposits are likely to adhere to the injection port of the fuel injection valve, and there is a concern that the fuel flow rate will be lower than the intended flow rate in a specific fuel injection valve. The importance is increasing.

ここでは一例として、直列4気筒の内燃機関で、空燃比センサが排気集合部に1つだけついているものにて説明を行う。   Here, as an example, an in-line four-cylinder internal combustion engine having only one air-fuel ratio sensor in the exhaust collecting portion will be described.

実施例1では、オンボード上での診断を想定しており、実施例2では、車のディーラー等の整備場で、メカニックがオフボード上で診断する場合を想定している。   In the first embodiment, on-board diagnosis is assumed, and in the second embodiment, it is assumed that a mechanic makes a diagnosis on off-board at a maintenance site such as a car dealer.

図1に、内燃機関の構成について説明する。吸入空気は、内燃機関の運転状態計測手段の一つである空気流量計6を通り、空気流量を制御するスロットル弁8を通ってコレクタ9に入る。前記空気流量計6からは、前記空気流量を表す信号が内燃機関制御装置であるエンジンコントロールモジュール(ECM)7に出力されている。前記コレクタ9に吸入された空気は、内燃機関1の各燃焼室11に分配されて導かれる。   FIG. 1 illustrates the configuration of the internal combustion engine. The intake air passes through the air flow meter 6 which is one of the operating state measuring means of the internal combustion engine, and enters the collector 9 through the throttle valve 8 which controls the air flow rate. A signal representing the air flow rate is output from the air flow meter 6 to an engine control module (ECM) 7 which is an internal combustion engine control device. The air sucked into the collector 9 is distributed and guided to each combustion chamber 11 of the internal combustion engine 1.

一方、ガソリン等の燃料は、燃料タンク12から燃料ポンプ13によりプレッシャーレギュレータ10にて調圧され、各燃焼室11に配置されている燃料噴射弁2に圧送される。前記燃料は、ECM7からの信号により燃料噴射弁2から噴射される。噴射された燃料は吸入空気と混合され、各燃焼室11毎に配置されている火花点火装置3で点火され燃焼する。   On the other hand, fuel such as gasoline is pressure-regulated by a pressure regulator 10 from a fuel tank 12 by a fuel pump 13 and is pumped to a fuel injection valve 2 disposed in each combustion chamber 11. The fuel is injected from the fuel injection valve 2 by a signal from the ECM 7. The injected fuel is mixed with the intake air, and is ignited and burned by the spark ignition device 3 arranged for each combustion chamber 11.

また、エンジンの回転やクランク角度を検出するためにクランク角センサ5を設け、その出力はECM7に送られる。   In addition, a crank angle sensor 5 is provided to detect the rotation and crank angle of the engine, and the output is sent to the ECM 7.

さらに、排気管15中の触媒14の上流に設けられた空燃比センサ(LAFセンサ)4は、排出ガスの空燃比を検出し、その検出信号をECM7に出力する。該ECM7は、各種のセンサ等からの信号を入力として取り込み、所定の演算処理を実行し、この演算結果として算出された各種の制御信号を出力し、各燃料噴射弁2,火花点火装置3に所定の制御信号を供給して燃料供給量制御,燃料噴射時期制御,点火時期制御を実行する。   Further, an air-fuel ratio sensor (LAF sensor) 4 provided upstream of the catalyst 14 in the exhaust pipe 15 detects the air-fuel ratio of the exhaust gas and outputs the detection signal to the ECM 7. The ECM 7 receives signals from various sensors as inputs, executes predetermined calculation processing, outputs various control signals calculated as the calculation results, and supplies the fuel injection valves 2 and the spark ignition device 3 with each control signal. A predetermined control signal is supplied to execute fuel supply amount control, fuel injection timing control, and ignition timing control.

図2は本実施例の一形態のフローチャートを示す。   FIG. 2 shows a flowchart of one embodiment of this embodiment.

ステップ1(S1)は、従来の燃料系診断にてNG判定されたか判定する。   In step 1 (S1), it is determined whether NG is determined in the conventional fuel system diagnosis.

NOの場合、ステップ1(S1)にて、YES判定されるまで、気筒別燃料噴射弁故障診断を開始しない。   In the case of NO, the cylinder-by-cylinder fuel injection valve failure diagnosis is not started until YES is determined in step 1 (S1).

YESの場合、ステップ2(S2)に進み、気筒別燃料噴射弁故障診断を開始する。   In the case of YES, the process proceeds to Step 2 (S2), and the cylinder-by-cylinder fuel injection valve failure diagnosis is started.

ステップ3(S3)は、診断領域に入っているか判定する。   In step 3 (S3), it is determined whether the diagnostic area is entered.

診断領域は、あらかじめECMに記憶されているエンジン回転数と負荷の領域とする。このエンジン回転数と負荷は、気筒別の空燃比が検出可能な回転数と負荷に設定されている。診断中においても、この領域を外れたら直ちに診断を中止する。   The diagnosis area is an engine speed and load area stored in advance in the ECM. The engine speed and load are set to a speed and load at which the air-fuel ratio for each cylinder can be detected. Even during the diagnosis, the diagnosis is stopped as soon as it leaves this area.

また、空燃比センサと、クランク角度検出手段,吸入空気流量測定手段、或いは吸入空気圧測定手段が自己診断にて故障と判定されている場合、診断領域外とする。   Further, if the air-fuel ratio sensor, the crank angle detection means, the intake air flow rate measurement means, or the intake air pressure measurement means are determined to be out of order by self-diagnosis, it is out of the diagnosis area.

ここで、NOの場合、ステップ3(S3)にて、YES判定されるまで、気筒別燃料噴射弁故障診断を開始しない。   In the case of NO, the cylinder-by-cylinder fuel injection valve failure diagnosis is not started until YES is determined in step 3 (S3).

YESの場合、ステップ4(S4)に進む。   If yes, go to step 4 (S4).

ステップ4(S4)は、空燃比フィードバック制御を停止させる。   Step 4 (S4) stops air-fuel ratio feedback control.

ステップ5(S5)は、空燃比センサ出力信号の振幅が、ECMに格納されている、ある一定値を超えているか判定する。   Step 5 (S5) determines whether the amplitude of the air-fuel ratio sensor output signal exceeds a certain value stored in the ECM.

例えば、ある気筒で燃料噴射弁が故障している場合、故障気筒のみ空燃比が異常となるので、正常気筒との空燃比差が大きくなることにより、空燃比センサの振幅も大きくなり、ここではYESとなり、ステップ6(S6)に進む。   For example, when the fuel injection valve is malfunctioning in a certain cylinder, the air-fuel ratio becomes abnormal only in the failed cylinder, so the air-fuel ratio difference from the normal cylinder increases, so the amplitude of the air-fuel ratio sensor also increases. It becomes YES and progresses to step 6 (S6).

また、燃料噴射弁が全て正常、もしくは全て異常の場合は、各気筒間で空燃比差が無く、燃料噴射弁の故障気筒は特定不可能となる。そのため、ここではNOとなり、ステップ13(S13)に進み、故障気筒を特定不可能であったことを記憶装置に格納し、診断を終了する。   Further, when the fuel injection valves are all normal or all abnormal, there is no air-fuel ratio difference between the cylinders, and the failed cylinder of the fuel injection valve cannot be specified. Therefore, the determination here is NO, the process proceeds to step 13 (S13), the fact that the failed cylinder cannot be specified is stored in the storage device, and the diagnosis is terminated.

ステップ6(S6)は、空燃比センサ出力信号とクランク角度,エンジン回転数,空気流量から、各気筒毎の空燃比を算出する。   Step 6 (S6) calculates the air-fuel ratio for each cylinder from the air-fuel ratio sensor output signal, the crank angle, the engine speed, and the air flow rate.

各気筒毎の空燃比は、各気筒の排出ガスが空燃比センサに到達したときの空燃比(特定のクランク角度の範囲内の空燃比だけを平均化する)により算出する。   The air-fuel ratio for each cylinder is calculated from the air-fuel ratio (only the air-fuel ratio within a specific crank angle range is averaged) when the exhaust gas from each cylinder reaches the air-fuel ratio sensor.

ステップ7(S7)は、各気筒の空燃比と、演算処理装置にて算出された目標空燃比を比較し、その差分がある一定値を超えている気筒があるか判定する。   In step 7 (S7), the air-fuel ratio of each cylinder is compared with the target air-fuel ratio calculated by the arithmetic processing unit, and it is determined whether there is a cylinder whose difference exceeds a certain value.

YESの場合、ステップ8(S8)に進む。   If yes, go to Step 8 (S8).

NOの場合、燃料噴射弁の故障気筒が特定不可能となり、ステップ13(S13)に進み、故障気筒を特定不可能であったことを記憶装置に格納し、診断を終了する。   In the case of NO, the failed cylinder of the fuel injection valve cannot be specified, and the process proceeds to step 13 (S13), where it is stored in the storage device that the failed cylinder cannot be specified, and the diagnosis ends.

ステップ8(S8)は、ステップ7(S7)での該当気筒は全気筒か判定する。ここで、YESの場合、燃料噴射弁が全て異常であるか、もしくは他に故障原因があるかの判別が不可能であるため、ステップ13(S13)に進み、故障気筒を特定不可能であったことを記憶装置に格納し、診断を終了する。   In step 8 (S8), it is determined whether the corresponding cylinder in step 7 (S7) is all cylinders. Here, in the case of YES, since it is impossible to determine whether all of the fuel injection valves are abnormal or other causes of failure, the process proceeds to step 13 (S13), and the failed cylinder cannot be specified. Is stored in the storage device and the diagnosis is terminated.

NOの場合、ステップ9(S9)に進む。   If NO, the process proceeds to step 9 (S9).

ステップ9(S9)は、ステップ7(S7)での該当気筒を故障気筒と判定する。   In step 9 (S9), the corresponding cylinder in step 7 (S7) is determined as a failed cylinder.

ステップ10(S10)は、ステップ9(S9)の故障気筒の空燃比が、目標空燃比よりも大きいか判定する。   In step 10 (S10), it is determined whether the air-fuel ratio of the failed cylinder in step 9 (S9) is larger than the target air-fuel ratio.

YESの場合、ステップ11(S11)に進み、故障気筒はリーン故障(燃料噴射量が目標噴射量より少ない)と判定し、故障気筒番号とリーン故障であることを記憶装置に格納し、終了する。   If YES, the process proceeds to step 11 (S11), where the failed cylinder is determined to be a lean failure (the fuel injection amount is smaller than the target injection amount), the failure cylinder number and the lean failure are stored in the storage device, and the process ends. .

NOの場合、ステップ12(S12)に進み、故障気筒はリッチ故障(燃料噴射量が目標噴射量より多い)と判定し、故障気筒番号とリッチ故障であることを記憶装置に格納し、終了する。   If NO, the process proceeds to step 12 (S12), the failed cylinder is determined to be a rich failure (the fuel injection amount is larger than the target injection amount), the failure cylinder number and the rich failure are stored in the storage device, and the process is terminated. .

内燃機関の構成については、実施例1と同じであるので説明は省略する。   Since the configuration of the internal combustion engine is the same as that of the first embodiment, the description thereof is omitted.

図3は本実施例の一形態のフローチャートを示す。   FIG. 3 shows a flowchart of one embodiment of the present embodiment.

ステップ101(S101)は、診断ツールを車両につなぎ、診断ツール上で診断開始ボタンを押したか判定する。   In step 101 (S101), it is determined whether the diagnostic tool is connected to the vehicle and the diagnosis start button is pressed on the diagnostic tool.

NOの場合、ステップ101(S101)にて、YES判定されるまで、気筒別燃料噴射弁故障診断を開始しない。   In the case of NO, the cylinder-by-cylinder fuel injection valve failure diagnosis is not started until YES is determined in step 101 (S101).

YESの場合、ステップ102(S102)に進む。   If yes, go to step 102 (S102).

ステップ102(S102)は、診断領域に入っているか判定する。   In step 102 (S102), it is determined whether the diagnostic area is entered.

診断領域とは、診断を実施する条件で、ここでは、車速が完全に止まっている場合に診断を実施する。診断中においても車速が0km/hを超えたら、直ちに診断を中止することを基本とする。これは診断中はエンジンの回転変動が生じるため必ずも安定した運転状態が確保できない可能性もあることによるものである。   The diagnosis area is a condition for performing diagnosis. Here, diagnosis is performed when the vehicle speed is completely stopped. If the vehicle speed exceeds 0 km / h during diagnosis, the diagnosis should be stopped immediately. This is due to the possibility that a stable operating state may not always be ensured because engine rotation fluctuations occur during diagnosis.

また、空燃比センサと、クランク角度検出手段,吸入空気流量測定手段、或いは吸入空気圧測定手段が自己診断にて故障と判定されている場合は、診断領域外とする。   Further, if the air-fuel ratio sensor, the crank angle detection means, the intake air flow rate measurement means, or the intake air pressure measurement means are determined to be out of order by self-diagnosis, they are out of the diagnosis area.

ステップ102(S102)は診断許可条件を示し、車速が0km/hの場合、ステップ103(S103)に進み、気筒別燃料噴射弁故障診断を開始する。また診断中でも車速が0km/hを超えたら、直ちに診断を中止することを基本とするものである。これは、上述の理由と同じものによるものである。   Step 102 (S102) indicates a diagnosis permission condition. When the vehicle speed is 0 km / h, the process proceeds to step 103 (S103), and the cylinder-by-cylinder fuel injection valve failure diagnosis is started. Even during diagnosis, if the vehicle speed exceeds 0 km / h, the diagnosis should be stopped immediately. This is due to the same reason as described above.

ステップ104(S104)は、空燃比フィードバック制御を停止させ、エンジン回転数を2000r/min.に保つ。回転数をアイドル回転数より上昇させるのは、エンスト防止である。   In step 104 (S104), the air-fuel ratio feedback control is stopped, and the engine speed is kept at 2000 r / min. Raising the rotational speed from the idle rotational speed is to prevent engine stall.

ステップ105(S105)は、1cyl.から各気筒1気筒ずつ順番にECMから燃料カットの指令を30秒間出しつづけ、その時の空燃比センサ信号出力を記録する。この時、エンスト防止のため、回転が落ちたら、スロットルを開けて、2000r/min.に保つ。   In step 105 (S105), the fuel cut command is continuously issued from the ECM for 30 seconds in order from 1 cyl. To each cylinder, and the air-fuel ratio sensor signal output at that time is recorded. At this time, in order to prevent engine stall, if the rotation falls, the throttle is opened and kept at 2000 r / min.

ステップ106(S106)は、ステップ105(S105)の空燃比センサ出力結果から、異常気筒を検出したか判定する。   In step 106 (S106), it is determined from the air-fuel ratio sensor output result in step 105 (S105) whether an abnormal cylinder has been detected.

ここで、例えば1番気筒の空燃比が18で異常であり、その他の2〜4番気筒の空燃比が14.5 で正常である場合について示す。   Here, for example, the case where the air-fuel ratio of the first cylinder is 18 and abnormal and the air-fuel ratio of the other cylinders 2 to 4 is normal and 14.5 is shown.

この場合、2〜4番気筒のいずれかの気筒を燃料カットした場合、
平均空燃比は、4/(1/18+2/14.5)=20.67となる。
In this case, if any one of the cylinders 2-4 is cut off,
The average air-fuel ratio is 4 / (1/18 + 2 / 14.5) = 20.67.

異常の1番気筒を燃料カットした場合、
平均空燃比は、4/(3/14.5)=19.33となる。
When the abnormal cylinder # 1 is fuel cut,
The average air-fuel ratio is 4 / (3 / 14.5) = 19.33.

また、1番気筒にECMから燃料カットの指令を出しても、指令通りに燃料噴射弁が燃料カットしない不具合も考えられる。その場合、
平均平均空燃比は、4/(1/18+3/14.5)=15.24となる。
In addition, even if a fuel cut command is issued from the ECM to the first cylinder, the fuel injection valve may not cut as per the command. In that case,
The average average air-fuel ratio is 4 / (1/18 + 3 / 14.5) = 15.24.

よって、1番気筒に燃料カットの指令を出した場合のみ、2〜4番気筒のいずれかの気筒を燃料カットした場合と空燃比が異なるので、異常気筒を検出することができる。   Therefore, only when the fuel cut command is issued to the first cylinder, the air-fuel ratio is different from that when any one of the second to fourth cylinders is fuel cut, so that an abnormal cylinder can be detected.

ステップ107(S107)は、ステップ106(S106)でYESの場合、その該当気筒を、故障気筒と判定し、故障気筒番号を記憶装置に格納し、終了する。   If YES in step 106 (S106), step 107 (S107) determines that the corresponding cylinder is a failed cylinder, stores the failed cylinder number in the storage device, and ends.

ステップ108(S108)は、ステップ106(S106)でNOの場合、故障気筒を特定不可能であったことを記憶装置に格納し、終了する。   In step 108 (S108), in the case of NO in step 106 (S106), the fact that the failed cylinder could not be specified is stored in the storage device, and the process ends.

本発明のシステム構成図。The system block diagram of this invention. 本発明の第1の実施形態におけるフローチャート。The flowchart in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるフローチャート。The flowchart in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるフローチャート。The flowchart in the 1st Embodiment of this invention. 本発明の第2の実施形態におけるフローチャート。The flowchart in the 2nd Embodiment of this invention. 本発明の第2の実施形態におけるフローチャート。The flowchart in the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…内燃機関、2…燃料噴射弁、3…火花点火装置、4…空燃比センサ(LAFセンサ)、5…クランク角センサ、6…空気流量計、7…エンジンコントロールモジュール(ECM)、8…スロットル弁、9…コレクタ、10…プレッシャーレギュレータ、11…燃焼室、12…燃料タンク、13…燃料ポンプ、14…触媒、15…排気管。

DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Fuel injection valve, 3 ... Spark ignition device, 4 ... Air-fuel ratio sensor (LAF sensor), 5 ... Crank angle sensor, 6 ... Air flow meter, 7 ... Engine control module (ECM), 8 ... Throttle valve, 9 ... collector, 10 ... pressure regulator, 11 ... combustion chamber, 12 ... fuel tank, 13 ... fuel pump, 14 ... catalyst, 15 ... exhaust pipe.

Claims (9)

各気筒に通じる複数の排気通路を集合させ、前記複数の排気通路の集合部に空燃比を検出する空燃比検出手段を設け、前記空燃比検出手段の出力信号に基づいて燃料噴射量を制御する演算処理装置を有すると共に、前記空燃比検出手段の出力信号又は出力信号波形に基づき、特定気筒の燃料噴射弁に異常が発生したことを診断する異常診断手段を有することを特徴とする内燃機関の故障診断システム。   A plurality of exhaust passages communicating with each cylinder are gathered, an air-fuel ratio detection means for detecting an air-fuel ratio is provided at a collection portion of the plurality of exhaust passages, and a fuel injection amount is controlled based on an output signal of the air-fuel ratio detection means An internal combustion engine comprising: an arithmetic processing unit; and an abnormality diagnosing unit that diagnoses that an abnormality has occurred in a fuel injection valve of a specific cylinder based on an output signal or an output signal waveform of the air-fuel ratio detecting unit. Fault diagnosis system. 請求項1において、前記異常診断手段による異常診断中は、空燃比センサ信号出力による燃料噴射量のフィードバック制御を禁止することを特徴とする内燃機関の故障診断システム。   2. The failure diagnosis system for an internal combustion engine according to claim 1, wherein feedback control of the fuel injection amount based on an air-fuel ratio sensor signal output is prohibited during abnormality diagnosis by the abnormality diagnosis means. 請求項1において、前記異常診断手段による異常診断は、空燃比センサ信号出力の振幅に基づいて行われることを特徴とする内燃機関の故障診断システム。   2. The failure diagnosis system for an internal combustion engine according to claim 1, wherein the abnormality diagnosis by the abnormality diagnosis means is performed based on an amplitude of an air-fuel ratio sensor signal output. 請求項1において、前記異常診断手段による異常診断は、1気筒ずつ燃料カットを実施し、そのときの空燃比センサ信号出力結果から、特定気筒の燃料噴射弁に異常が発生したことを判断することを特徴とする内燃機関の故障診断システム。   The abnormality diagnosis by the abnormality diagnosis means according to claim 1, wherein the fuel cut is performed for each cylinder, and it is determined from the air / fuel ratio sensor signal output result at that time that an abnormality has occurred in the fuel injection valve of the specific cylinder. An internal combustion engine failure diagnosis system. 請求項1〜4のいずれかにおいて前記異常診断手段による異常診断は、別に定める燃料系全体の故障診断にて、故障と判断されたときに実施することを特徴とする内燃機関の故障診断システム。   5. The failure diagnosis system for an internal combustion engine according to claim 1, wherein the failure diagnosis by the failure diagnosis means is performed when it is determined that a failure has occurred in a failure diagnosis of the entire fuel system determined separately. 請求項1において、前記異常診断手段による異常診断は、車両に外部に診断ツールを接続し、前記診断ツールからの開始動作をトリガーとして診断を開始することを特徴とする内燃機関の故障診断システム。   2. The failure diagnosis system for an internal combustion engine according to claim 1, wherein the abnormality diagnosis by the abnormality diagnosing means is performed by connecting a diagnostic tool to a vehicle and starting the diagnosis with a start operation from the diagnostic tool as a trigger. 請求項1において、空燃比センサと、クランク角度検出手段,吸入空気流量測定手段、又は吸入空気圧測定手段の少なくともいずれかが別に定める自己診断にて異常と判定されている場合、前記異常診断手段による異常判定を禁止することを特徴とする内燃機関の故障診断システム。   In claim 1, when at least one of the air-fuel ratio sensor, the crank angle detection means, the intake air flow rate measurement means, and the intake air pressure measurement means is determined to be abnormal by a self-diagnosis determined separately, the abnormality diagnosis means A failure diagnosis system for an internal combustion engine, wherein abnormality determination is prohibited. 請求項1から6のいずれかにおいて、特定気筒の異常が検出された場合、その特定気筒を車載されているコンピュータもしくは、診断ツールに記憶することを特徴とする内燃機関の故障診断システム。   7. The internal combustion engine failure diagnosis system according to claim 1, wherein when an abnormality of a specific cylinder is detected, the specific cylinder is stored in a computer or a diagnostic tool mounted on the vehicle. 請求項1において前記異常判断手段の診断領域を、気筒別の空燃比が検出可能な予め定める回転数と負荷とすることを特徴とする内燃機関の故障診断システム。
2. The failure diagnosis system for an internal combustion engine according to claim 1, wherein the diagnosis area of the abnormality determination means is a predetermined rotation speed and load capable of detecting an air-fuel ratio for each cylinder.
JP2005271288A 2005-09-20 2005-09-20 Fuel injection valve failure diagnosis for each cylinder Pending JP2007085176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005271288A JP2007085176A (en) 2005-09-20 2005-09-20 Fuel injection valve failure diagnosis for each cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005271288A JP2007085176A (en) 2005-09-20 2005-09-20 Fuel injection valve failure diagnosis for each cylinder

Publications (1)

Publication Number Publication Date
JP2007085176A true JP2007085176A (en) 2007-04-05

Family

ID=37972422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005271288A Pending JP2007085176A (en) 2005-09-20 2005-09-20 Fuel injection valve failure diagnosis for each cylinder

Country Status (1)

Country Link
JP (1) JP2007085176A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7487035B2 (en) * 2006-11-15 2009-02-03 Denso Corporation Cylinder abnormality diagnosis unit of internal combustion engine and controller of internal combustion engine
KR100888142B1 (en) 2007-07-31 2009-03-13 콘티넨탈 오토모티브 시스템 주식회사 Method for diagnosing injection line of bi fuel car
DE102009000269A1 (en) 2008-01-31 2009-08-06 DENSO CORPORATION, Kariya-shi Abnormality diagnostic device of an internal combustion engine
JP2009203938A (en) * 2008-02-28 2009-09-10 Toyota Motor Corp Control device and control method of internal combustion engine
WO2010073369A1 (en) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 Device for controlling internal combustion engine using variable valve mechanism
JP2012052499A (en) * 2010-09-03 2012-03-15 Honda Motor Co Ltd Method and device for diagnosing internal combustion engine
US20120174900A1 (en) * 2010-12-24 2012-07-12 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting variation abnormality in air-fuel ratio between cylinders
CN102483005B (en) * 2009-08-28 2015-07-08 丰田自动车株式会社 Device for determining imbalance in air/fuel ratio among cylinders of internal combustion engine
US9488123B2 (en) 2010-09-03 2016-11-08 Honda Motor Co., Ltd. Internal combustion engine diagnostic device and internal combustion engine diagnostic method
CN113250838A (en) * 2021-06-28 2021-08-13 潍柴动力股份有限公司 Injection valve fault diagnosis method, system, equipment and storage medium
CN113518856A (en) * 2019-04-26 2021-10-19 日立建机株式会社 Injector diagnostic device and injector diagnostic method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7487035B2 (en) * 2006-11-15 2009-02-03 Denso Corporation Cylinder abnormality diagnosis unit of internal combustion engine and controller of internal combustion engine
KR100888142B1 (en) 2007-07-31 2009-03-13 콘티넨탈 오토모티브 시스템 주식회사 Method for diagnosing injection line of bi fuel car
DE102009000269B4 (en) * 2008-01-31 2018-02-08 Denso Corporation Abnormality diagnostic devices of an internal combustion engine
DE102009000269A1 (en) 2008-01-31 2009-08-06 DENSO CORPORATION, Kariya-shi Abnormality diagnostic device of an internal combustion engine
US7933710B2 (en) 2008-01-31 2011-04-26 Denso Corporation Abnormality diagnosis device of internal combustion engine
JP2009203938A (en) * 2008-02-28 2009-09-10 Toyota Motor Corp Control device and control method of internal combustion engine
WO2010073369A1 (en) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 Device for controlling internal combustion engine using variable valve mechanism
US8285469B2 (en) 2008-12-26 2012-10-09 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine including variable valve operating mechanism
JP5099216B2 (en) * 2008-12-26 2012-12-19 トヨタ自動車株式会社 Control device for internal combustion engine having variable valve mechanism
CN102483005B (en) * 2009-08-28 2015-07-08 丰田自动车株式会社 Device for determining imbalance in air/fuel ratio among cylinders of internal combustion engine
US9488123B2 (en) 2010-09-03 2016-11-08 Honda Motor Co., Ltd. Internal combustion engine diagnostic device and internal combustion engine diagnostic method
JP2012052499A (en) * 2010-09-03 2012-03-15 Honda Motor Co Ltd Method and device for diagnosing internal combustion engine
US20120174900A1 (en) * 2010-12-24 2012-07-12 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting variation abnormality in air-fuel ratio between cylinders
CN113518856A (en) * 2019-04-26 2021-10-19 日立建机株式会社 Injector diagnostic device and injector diagnostic method
CN113518856B (en) * 2019-04-26 2023-08-08 日立建机株式会社 Injector diagnostic device and injector diagnostic method
CN113250838A (en) * 2021-06-28 2021-08-13 潍柴动力股份有限公司 Injection valve fault diagnosis method, system, equipment and storage medium

Similar Documents

Publication Publication Date Title
JP2007085176A (en) Fuel injection valve failure diagnosis for each cylinder
JP4831015B2 (en) Abnormality diagnosis device for internal combustion engine
US7387011B2 (en) Deterioration diagnosis system for exhaust gas sensor
US7558667B2 (en) Method for detecting assembled state of gas sensors and apparatus for detecting assembled state of gas sensors
US9488123B2 (en) Internal combustion engine diagnostic device and internal combustion engine diagnostic method
JP4335167B2 (en) Internal combustion engine control device
JP4453836B2 (en) Engine catalyst deterioration diagnosis device and method, and exhaust gas purification catalyst device
US7962277B2 (en) Method and device for operating an internal combustion engine
US7562561B2 (en) Intake air leak determination system and method
JP2010106785A (en) Abnormality diagnostic device for emission gas recirculating system
CA2142396C (en) Misfire-determining controller for internal combustion engine
JP5985499B2 (en) Knock sensor failure diagnosis apparatus and failure diagnosis method
WO2015137047A1 (en) Device for determining abnormality in engine system
JP4259570B2 (en) Valve abnormality determination device, abnormality determination method, program for realizing the method, and recording medium recording the program
JP5056548B2 (en) Intake system fault diagnosis device for in-vehicle internal combustion engine
JP4210940B2 (en) Abnormality diagnosis device for intake system sensor
JP5603825B2 (en) Air-fuel ratio sensor diagnostic device
JP6358120B2 (en) Vehicle control device
SE1051374A1 (en) Method and apparatus for determining the proportion of ethanol in the fuel of a motor vehicle
JP4830741B2 (en) Fault diagnosis system for internal combustion engine
JP2001073861A (en) Diagnosing device for exhaust gas temperature sensor
KR20180052427A (en) Method for diagnosing faliure of dual port injector of multi-cylinder engine
JP2008215113A (en) Abnormality diagnostic device of internal combustion engine control system
JP2004232602A (en) Engine catalyst deterioration diagnostic device
JP2006242067A (en) Abnormality diagnosing device for intake system sensor