JP2008064694A - Interference measuring instrument - Google Patents

Interference measuring instrument Download PDF

Info

Publication number
JP2008064694A
JP2008064694A JP2006244980A JP2006244980A JP2008064694A JP 2008064694 A JP2008064694 A JP 2008064694A JP 2006244980 A JP2006244980 A JP 2006244980A JP 2006244980 A JP2006244980 A JP 2006244980A JP 2008064694 A JP2008064694 A JP 2008064694A
Authority
JP
Japan
Prior art keywords
temperature
measured
vacuum chamber
lens
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006244980A
Other languages
Japanese (ja)
Other versions
JP2008064694A5 (en
Inventor
Hitoshi Iijima
仁 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006244980A priority Critical patent/JP2008064694A/en
Publication of JP2008064694A publication Critical patent/JP2008064694A/en
Publication of JP2008064694A5 publication Critical patent/JP2008064694A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve processing cycle time for measurement by suppressing temperature deterioration of an object to be measured due to adiabatic expansion of air generated when decompressing a vacuum chamber. <P>SOLUTION: An interference measuring instrument is provided with flow passages 110 and 111 for fluidizing temperature regulation water on stages 105 and 106 mounting the object to be measured W<SB>1</SB>and a TS lens 107 in the vacuum chamber 113. The interference measuring instrument supplies the temperature regulation water to the flow passages 110 and 111 by a process for decompressing the vacuum chamber 113 with a vacuum pump 117, and suppresses the temperature deterioration of the object to be measured W<SB>1</SB>and the TS lens 107 by controlling the temperature of the stages 105 and 106. Therefore measurement is enabled at high processing cycle time in highly accurate measurement in a decompression state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体露光装置用の縮小投影光学レンズ、ミラー等の光学部品の面形状や光学系の波面収差を高精度に測定するための干渉計測装置に関するものである。   The present invention relates to an interference measurement apparatus for measuring the surface shape of optical components such as a reduction projection optical lens and a mirror for a semiconductor exposure apparatus and the wavefront aberration of an optical system with high accuracy.

従来より高精度な球面レンズ、ミラーの形状測定方法として干渉計を用いるのが一般的である。また近年、半導体露光装置の微細化、高精度化と共に露光光源波長はKrFエキシマレーザ(λ=248nm)、ArFエキシマレーザ(λ=193nm)、F2 レーザ(λ=157nm)と短波長化している。さらにはEUV光(Extreme Ultra Violet:λ=13.6nm)までも露光光源として使用されるに至っている。これらの露光装置用の投影光学レンズ、ミラーについては1〜0.1nmの形状精度が求められる。このような高精度な測定を行うためには測定環境の制御が重要であり、特に高精度な測定を行うためには空気の揺らぎを排除する必要がある。従って被測定物を真空(減圧)環境化にして測定する必要がある。 It is common to use an interferometer as a highly accurate spherical lens and mirror shape measuring method. In recent years, the wavelength of the exposure light source has been shortened to KrF excimer laser (λ = 248 nm), ArF excimer laser (λ = 193 nm), and F 2 laser (λ = 157 nm) along with miniaturization and higher precision of the semiconductor exposure apparatus. . Furthermore, EUV light (Extreme Ultra Violet: λ = 13.6 nm) has also been used as an exposure light source. The projection optical lens and mirror for these exposure apparatuses are required to have a shape accuracy of 1 to 0.1 nm. In order to perform such highly accurate measurement, control of the measurement environment is important. In particular, in order to perform highly accurate measurement, it is necessary to eliminate air fluctuations. Therefore, it is necessary to measure the object to be measured in a vacuum (reduced pressure) environment.

しかし、被測定物を真空(減圧)環境化する際に、空気の断熱膨張による温度低下により被測定物の表面温度が低下し熱変形を起こす。従って通常は、真空(減圧)環境にしてから十分な温度ならし時間をおいて測定する必要がある。要求測定精度が高いほど、この温度慣らし時間が必要となり、EUVレベルにおいては1日以上必要となる。   However, when the object to be measured is brought into a vacuum (decompressed) environment, the surface temperature of the object to be measured is lowered due to a temperature drop due to adiabatic expansion of air, causing thermal deformation. Therefore, it is usually necessary to measure with sufficient temperature leveling time after making a vacuum (depressurized) environment. The higher the required measurement accuracy, the more this temperature break-in time is required, and more than one day is required at the EUV level.

減圧時の空気の断熱膨張による被測定物の温度低下による面変形を避け、かつ測定タクトを向上させるために、例えば図4に示す構成が知られている。これは、干渉計測光学系を収容する真空チャンバー1017内に複数の被測定物1008を置けるストッカー1012を有している。干渉計測光学系はレーザ光源1001、ビームエキスパンダー1002、偏光ビームスプリッター1003、参照平面ミラー1005、真空チャンバー1007、集光レンズ1010からなっている。1008は測定される被測定物である。あらかじめサブチャンバー1018およびゲートバルブ1020a、1020bを用いて被測定物1008を減圧環境に置き、ストッカー1012上で測定の順番を待つ間に温度慣らしを完了させることができる(特許文献1参照)。   For example, a configuration shown in FIG. 4 is known in order to avoid surface deformation due to a temperature drop of an object to be measured due to adiabatic expansion of air during decompression and to improve measurement tact. This has a stocker 1012 in which a plurality of objects to be measured 1008 can be placed in a vacuum chamber 1017 that houses the interference measurement optical system. The interference measurement optical system includes a laser light source 1001, a beam expander 1002, a polarization beam splitter 1003, a reference plane mirror 1005, a vacuum chamber 1007, and a condenser lens 1010. Reference numeral 1008 denotes an object to be measured. The object to be measured 1008 is placed in a reduced pressure environment using the sub-chamber 1018 and the gate valves 1020a and 1020b in advance, and the temperature break-in can be completed while waiting for the order of measurement on the stocker 1012 (see Patent Document 1).

しかし、十分な温度ならし時間を確保し、かつ測定タクト上げるためには一定数の被測定物を真空チャンバー内に保管する必要がある。また真空チャンバー内での作業になるため被測定物を自動で交換する機構も有する必要がある。従って、必然的に真空チャンバーのサイズが大きくなってしまうという未解決の課題がある。   However, it is necessary to store a certain number of objects to be measured in the vacuum chamber in order to ensure a sufficient temperature adjustment time and increase the measurement tact time. In addition, since the work is performed in a vacuum chamber, it is also necessary to have a mechanism for automatically changing the object to be measured. Therefore, there is an unsolved problem that the size of the vacuum chamber is necessarily increased.

また、空気の揺らぎの影響を押さえる方法としては、他に、屈折率が空気の約1/10のHeガスで置換する方法や、参照面と被測定物を近接させる方法が知られている。しかし、前者は測定ごとにHe充填が必要でコストがかかり、測定空間をHeで満たすためには時間を要し、後者は参照面を非常に近接させるため、接近時に参照面と被測定物の接触の危険性がある。また、球面測定においては被測定物の曲率毎にほぼ同じ曲率の参照面を用意する必要がある。   As other methods for suppressing the influence of air fluctuations, there are known a method of replacing with a He gas whose refractive index is about 1/10 that of air, and a method of bringing the reference surface close to the object to be measured. However, the former requires He filling for each measurement and is costly, and it takes time to fill the measurement space with He, and the latter brings the reference surface very close to each other. Risk of contact. In spherical surface measurement, it is necessary to prepare a reference surface having substantially the same curvature for each curvature of the object to be measured.

従って、一般には測定空間を真空(減圧)環境にして測定することが高精度な測定においては有利である。
特許第3466707号公報
Therefore, in general, it is advantageous for high-accuracy measurement to perform measurement in a vacuum (decompression) environment.
Japanese Patent No. 3466707

従来の真空チャンバーを用いる干渉計測装置では、被測定物を真空(減圧)環境にしてから、被測定物の温度が安定するまでに非常に長い時間を必要とするため測定タクトが非常に悪くなる。特に高精度な測定を行う場合は長時間の被測定物の温度慣らしが必要となる。   In a conventional interference measuring apparatus using a vacuum chamber, the measurement tact becomes very bad because it takes a very long time for the temperature of the object to be measured to stabilize after the object to be measured is in a vacuum (depressurized) environment. . In particular, when performing highly accurate measurement, it is necessary to acclimate the temperature of the object to be measured for a long time.

本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、断熱膨張による被測定物の温度低下を抑制し、装置を大型化することなく測定タクトの向上を図ることのできる干渉計測装置を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and suppresses the temperature decrease of the object to be measured due to adiabatic expansion, and improves the measurement tact without increasing the size of the apparatus. It is an object of the present invention to provide an interference measurement apparatus that can perform the above.

本発明の干渉計測装置は、真空チャンバーと、前記真空チャンバー内において被測定物の形状を測定するための干渉光学系と、前記真空チャンバーの減圧時に、空気の断熱膨張による前記被測定物の温度低下を抑制するための温調手段と、を有することを特徴とする。   The interference measurement apparatus of the present invention includes a vacuum chamber, an interference optical system for measuring the shape of the object to be measured in the vacuum chamber, and the temperature of the object to be measured by adiabatic expansion of air when the vacuum chamber is depressurized. And a temperature control means for suppressing the decrease.

減圧時の被測定物の温度低下を検出し、能動的に抑制することで、温度慣らし時間を短縮し、測定タクトを向上できる。   By detecting and actively suppressing the temperature drop of the object to be measured during decompression, the temperature break-in time can be shortened and the measurement tact can be improved.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1は、実施例1によるフィゾー干渉計を用いた干渉計測装置を示すものであるが、フィゾー型以外の干渉計でもよい。この干渉計測装置は、レーザ光源、干渉縞画像取得用のCCDカメラ等を内蔵する干渉計本体101、測定光径を拡大するビームエキスパンダー102、レーザ光を90度折り曲げるための折り曲げミラー103を有する。さらに、減圧環境と大気を分ける真空窓104、x、y、z、xチルト、yチルトができるステージ105、106、参照球面を有し透過波面を球面波に変換するTSレンズ107を備えている。   FIG. 1 shows an interference measuring apparatus using a Fizeau interferometer according to the first embodiment, but an interferometer other than a Fizeau type may be used. This interference measuring apparatus has an interferometer body 101 incorporating a laser light source, an interference fringe image acquisition CCD camera, and the like, a beam expander 102 for enlarging the measurement light diameter, and a bending mirror 103 for bending the laser light by 90 degrees. Furthermore, a vacuum window 104 that separates the decompressed environment from the atmosphere, stages 105 and 106 that can perform x, y, z, x tilt, and y tilt, and a TS lens 107 that has a reference spherical surface and converts a transmitted wavefront into a spherical wave are provided. .

また、取得した干渉縞からステージ105上の被測定物W1 の形状を計算するPC108と、ステージ105、106またはホルダを温調するための温調水の流路(配管手段)110、111と、を有する。流路110、111は、温調水の温度を制御するためのチラー等を含む温度制御器112に接続される。被測定物W1 とTSレンズ107を内蔵する真空チャンバー113には、チャンバー内圧力を制御するための真空制御器114、リークバルブ115、排気バルブ116、真空ポンプ117、圧力計118が接続される。 Further, a PC 108 for calculating the shape of the object W 1 on the stage 105 from the acquired interference fringes, and flow paths (piping means) 110 and 111 for temperature adjustment water for adjusting the temperature of the stages 105 and 106 or the holder, Have. The flow paths 110 and 111 are connected to a temperature controller 112 including a chiller for controlling the temperature of temperature-controlled water. A vacuum chamber 113 which incorporates a DUT W 1 and TS lens 107, a vacuum controller 114 for controlling the pressure in the chamber, the leak valve 115, exhaust valve 116, vacuum pump 117, pressure gauge 118 is connected .

干渉計本体101から出射したレーザ光はビームエキスパンダー102でレーザ径を広げ、折り曲げミラー103により上方へ90度折り曲げられる。その後レーザ光は真空窓104を通過してTSレンズ107に入射する。TSレンズ107ではその中の参照面においてレーザ光の一部が反射され、同じ光路を干渉計本体101へ戻っていく。   Laser light emitted from the interferometer main body 101 is widened by a beam expander 102 and bent upward by 90 degrees by a bending mirror 103. Thereafter, the laser light passes through the vacuum window 104 and enters the TS lens 107. In the TS lens 107, a part of the laser beam is reflected on the reference surface in the TS lens 107, and returns to the interferometer body 101 through the same optical path.

ステージ106上のTSレンズ107を透過したレーザ光は球面波に変換され、被測定物W1 により反射されて、同じ光路を干渉計本体101へ戻る。干渉計本体101内ではTSレンズ107からの反射光と被測定物W1 からの反射光が干渉して干渉縞を作り、この干渉縞をCCDカメラにて取得し、PC108により被測定物W1 の形状が算出される。 The laser light that has passed through the TS lens 107 on the stage 106 is converted into a spherical wave, reflected by the object to be measured W 1 , and returns to the interferometer body 101 through the same optical path. In the interferometer body 101, the reflected light from the TS lens 107 interferes with the reflected light from the object to be measured W 1 to form an interference fringe. This interference fringe is acquired by a CCD camera, and the object to be measured W 1 is obtained by the PC. The shape of is calculated.

被測定物W1 を真空チャンバー113内に設置した後、真空ポンプ117により真空チャンバー113内を真空(減圧)にする。この排気動作の際、真空チャンバー113内の空気が断熱膨張し、真空チャンバー113内の温度が低下し、被測定物W1 およびTSレンズ107の表面温度が低下する。 After the object to be measured W 1 is placed in the vacuum chamber 113, the vacuum chamber 113 is evacuated (reduced pressure) by the vacuum pump 117. During this exhausting operation, the air in the vacuum chamber 113 is adiabatically expanded, the temperature in the vacuum chamber 113 is lowered, and the surface temperatures of the object to be measured W 1 and the TS lens 107 are lowered.

通常、高精度な測定においてはこの温度低下が元に戻り、温度分布がなくなるまで温度慣らしとして放置しておくが、真空環境のため空気による熱伝達がなく、温度慣らしのための時間は大気の場合よりも長くなる。   Normally, in high-accuracy measurement, this temperature drop is restored and left as a temperature break-in until the temperature distribution disappears.However, because of the vacuum environment, there is no heat transfer by air, and the time for the temperature break-in is Longer than the case.

規定した圧力になったあとは真空制御器114により規定の圧力になるように真空ポンプ117、リークバルブ115、排気バルブ116を制御する。   After reaching the specified pressure, the vacuum controller 114 controls the vacuum pump 117, the leak valve 115, and the exhaust valve 116 so that the specified pressure is reached.

本実施例では、被測定物W1 、TSレンズ107に直接接しているステージ105、106またはホルダに温調された温調水を流すことでこの温度慣らし時間の短縮を行う。具体的には真空チャンバー113の排気時に被測定物W1 およびTSレンズ107に取り付けられた温度センサー119の検出値を用いて、被測定物W1 およびTSレンズ107の温度が規定の温度になるように温調水の温度を温度制御器112にて制御する。 In this embodiment, the temperature break-in time is shortened by flowing the temperature-controlled water through the stage 105, 106 or the holder directly in contact with the object to be measured W 1 and the TS lens 107. Specifically, when the vacuum chamber 113 is evacuated, the temperature of the object to be measured W 1 and the TS lens 107 becomes a specified temperature by using the detection value of the object to be measured W 1 and the temperature sensor 119 attached to the TS lens 107. Thus, the temperature controller 112 controls the temperature of the temperature-controlled water.

これにより、排気中においても被測定物W1 、TSレンズ107の温度を一定に保つことができるため、排気後の温度慣らし時間を大幅に短縮することができる。さらに、真空チャンバー113内の圧力が規定の圧力に到達した後は、一定の温度を保つように温度制御器112にて温調水の温度を制御することにより温度が安定した環境で測定することができる。 As a result, the temperature of the object to be measured W 1 and the TS lens 107 can be kept constant even during exhaust, and the temperature break-in time after exhaust can be greatly reduced. Furthermore, after the pressure in the vacuum chamber 113 reaches a specified pressure, the temperature controller 112 controls the temperature of the temperature-controlled water so as to maintain a constant temperature, and the measurement is performed in an environment where the temperature is stable. Can do.

真空チャンバー113の排気中の被測定物W1 、TSレンズ107の温度低下を抑えることにより温度慣らし時間が短縮され、高精度な測定にも関わらず測定タクトの向上を行うことができる。 By suppressing the temperature drop of the object to be measured W 1 and the TS lens 107 in the exhaust of the vacuum chamber 113, the temperature break-in time can be shortened, and the measurement tact can be improved despite high-precision measurement.

図2は実施例2による干渉計測装置を示す。この干渉計測装置は、レーザ光源、干渉縞画像取得用のCCDカメラ等を内蔵する干渉計本体101、測定光径を拡大するビームエキスパンダー102、レーザ光を90度折り曲げるための折り曲げミラー103を有する。さらに、減圧環境と大気を分ける真空窓104、x、y、z、xチルト、yチルトができるステージ105、106、参照球面を有し透過波面を球面波に変換するTSレンズ107を備えている。   FIG. 2 shows an interference measuring apparatus according to the second embodiment. This interference measuring apparatus has an interferometer body 101 incorporating a laser light source, an interference fringe image acquisition CCD camera, and the like, a beam expander 102 for enlarging the measurement light diameter, and a bending mirror 103 for bending the laser light by 90 degrees. Furthermore, a vacuum window 104 that separates the decompressed environment from the atmosphere, stages 105 and 106 that can perform x, y, z, x tilt, and y tilt, and a TS lens 107 that has a reference spherical surface and converts a transmitted wavefront into a spherical wave are provided. .

また、取得した干渉縞からステージ105上の被測定物W2 の形状を計算するためのPC108と、被測定物W2 、TSレンズ107の近傍にそれぞれ配設された放熱部材である放熱板210、211と、これらの温度を制御する温度制御器212とを有する。真空チャンバー113は、チャンバー内圧力を制御するための真空制御器114、リークバルブ115、排気バルブ116、真空ポンプ117、圧力計118が接続される。 Further, the PC 108 for calculating the shape of the object to be measured W 2 on the stage 105 from the acquired interference fringes, and the heat radiating plate 210 which is a heat radiating member disposed in the vicinity of the object to be measured W 2 and the TS lens 107, respectively. 211 and a temperature controller 212 for controlling these temperatures. The vacuum chamber 113 is connected to a vacuum controller 114 for controlling the pressure in the chamber, a leak valve 115, an exhaust valve 116, a vacuum pump 117, and a pressure gauge 118.

干渉計本体101から出射したレーザ光はビームエキスパンダー102でレーザ径を広げ、折り曲げミラー103により上方へ90度折り曲げられる。その後レーザ光は真空窓104を通過してTSレンズ107に入射する。TSレンズ107ではその中の参照面においてレーザ光の一部が反射され、同じ光路を干渉計本体101へ戻っていく。ステージ106上のTSレンズ107を透過したレーザ光は球面波に変換され、被測定物W2 により反射されて、同じ光路を干渉計本体101へ戻る。干渉計本体101内ではTSレンズ107からの反射光と被測定物W2 からの反射光が干渉して干渉縞を作り、この干渉縞をCCDカメラにて取得し、PC108により被測定物W2 の形状が算出される。 Laser light emitted from the interferometer main body 101 is widened by a beam expander 102 and bent upward by 90 degrees by a bending mirror 103. Thereafter, the laser light passes through the vacuum window 104 and enters the TS lens 107. In the TS lens 107, a part of the laser beam is reflected on the reference surface in the TS lens 107, and returns to the interferometer body 101 through the same optical path. The laser light transmitted through the TS lens 107 on the stage 106 is converted into a spherical wave, reflected by the object to be measured W 2 , and returns to the interferometer body 101 through the same optical path. In the interferometer main body 101, the reflected light from the TS lens 107 interferes with the reflected light from the object to be measured W 2 to form an interference fringe. The interference fringe is acquired by a CCD camera, and the object to be measured W 2 is obtained by the PC. The shape of is calculated.

被測定物W2 を真空チャンバー113内に設置した後、真空ポンプ117により真空チャンバー113内を真空(減圧)にする。この排気動作の際、真空チャンバー113内の空気が断熱膨張し、真空チャンバー113内の温度が低下し、被測定物W2 およびTSレンズ107の表面温度が低下する。 After the object to be measured W 2 is placed in the vacuum chamber 113, the vacuum chamber 113 is evacuated (reduced pressure) by the vacuum pump 117. During this exhausting operation, the air in the vacuum chamber 113 adiabatically expands, the temperature in the vacuum chamber 113 decreases, and the surface temperature of the object to be measured W 2 and the TS lens 107 decreases.

通常、高精度な測定においてはこの温度低下が元に戻り、温度分布がなくなるまで温度慣らしとして放置しておくが、真空環境のため空気による熱伝達がなく、温度慣らしのための時間は大気の場合よりも長くなる。   Normally, in high-accuracy measurement, this temperature drop is restored and left as a temperature break-in until the temperature distribution disappears.However, because of the vacuum environment, there is no heat transfer by air, and the time for the temperature break-in is Longer than the case.

規定した圧力になったあとは真空制御器114により規定の圧力になるように真空ポンプ117、リークバルブ115、排気バルブ116を制御する。   After reaching the specified pressure, the vacuum controller 114 controls the vacuum pump 117, the leak valve 115, and the exhaust valve 116 so that the specified pressure is reached.

本実施例では、被測定物W2 、TSレンズ107の近傍に放熱板210、211を配置し、減圧時の空気の断熱膨張による温度低下によって被測定物W2 およびTSレンズ107表面から奪われた熱を放熱板210、211に供給する。これによって、慣らし時間の短縮が可能となる。具体的には排気中および排気後に、温度センサー119によって真空チャンバー113内の温度を測定し、真空チャンバー113内の空気の温度が規定の温度になるように放熱板210、211を加熱する。 In this embodiment, placing the heat radiating plate 210, 211 in the vicinity of the object W 2, TS lens 107, deprived from the measurement object W 2 and TS lens 107 surface by a temperature drop caused by the adiabatic expansion of the air during decompression Heat is supplied to the heat sinks 210 and 211. As a result, the break-in time can be shortened. Specifically, after exhausting and after exhausting, the temperature sensor 119 measures the temperature in the vacuum chamber 113 and heats the radiator plates 210 and 211 so that the temperature of the air in the vacuum chamber 113 becomes a specified temperature.

温度センサー119は、真空チャンバー113内の空気の温度ではなく、直接被測定物W2 、TSレンズ107表面の温度を測定してもよい。この場合も被測定物W2 、TSレンズ107の温度が規定した値になるように放熱板210、211の温度を制御する。 The temperature sensor 119 may directly measure the temperature of the object to be measured W 2 and the surface of the TS lens 107 instead of the temperature of the air in the vacuum chamber 113. Also in this case, the temperatures of the heat sinks 210 and 211 are controlled so that the temperatures of the object to be measured W 2 and the TS lens 107 become the prescribed values.

あらかじめ実験または計算から排気速度に対する被測定物W2 およびTSレンズ107の温度変化が見積もられている場合には、排気速度に合わせて放熱板210、211の温度を制御することで、さらに温度慣らし時間を短縮することができる。このように能動的に被測定物W2 およびTSレンズ107の温度低下を抑制することにより、温度慣らしに必要な時間を短縮することが可能となり、高精度な測定にも関わらず測定タクトの向上を行うことができる。 When the temperature change of the object W 2 to be measured and the TS lens 107 with respect to the exhaust speed is estimated in advance from experiments or calculations, the temperature is further controlled by controlling the temperature of the heat radiation plates 210 and 211 according to the exhaust speed. The break-in time can be shortened. In this way, by actively suppressing the temperature drop of the workpiece W 2 and the TS lens 107, it becomes possible to shorten the time required for the temperature habituation and improve the measurement tact despite the high-precision measurement. It can be performed.

図3は実施例3による干渉計測装置を示す。この干渉計測装置は、レーザ光源、干渉縞画像取得用のCCDカメラ等を内蔵する干渉計本体101、測定光径を拡大するビームエキスパンダー102、レーザ光を90度折り曲げるための折り曲げミラー103を有する。また、減圧環境と大気を分ける真空窓104、x、y、z、xチルト、yチルトができるステージ105、106、参照球面を有し透過波面を球面波に変換するTSレンズ107を備えている。   FIG. 3 shows an interference measuring apparatus according to the third embodiment. This interference measuring apparatus has an interferometer body 101 incorporating a laser light source, an interference fringe image acquisition CCD camera, and the like, a beam expander 102 for enlarging the measurement light diameter, and a bending mirror 103 for bending the laser light by 90 degrees. In addition, a vacuum window 104 that separates the decompressed environment from the atmosphere, stages 105 and 106 that can perform x, y, z, x tilt, and y tilt, and a TS lens 107 that has a reference spherical surface and converts a transmitted wavefront into a spherical wave are provided. .

さらに、取得した干渉縞からステージ105上の被測定物W3 の形状を計算するためのPC108を有する。真空チャンバー113には、チャンバー内圧力を制御するための真空制御器114、リークバルブ115、排気バルブ116、真空ポンプ117、圧力計118、リークさせる空気(気体)の温度を制御するための温度制御器312が接続される。 Furthermore, a PC 108 for calculating the shape of the workpiece W 3 on the stage 105 from the acquired interference fringes is provided. The vacuum chamber 113 includes a vacuum controller 114 for controlling the pressure in the chamber, a leak valve 115, an exhaust valve 116, a vacuum pump 117, a pressure gauge 118, and temperature control for controlling the temperature of air (gas) to be leaked. A device 312 is connected.

干渉計本体101から出射したレーザ光はビームエキスパンダー102でレーザ径を広げ、折り曲げミラー103により上方へ90度折り曲げられる。その後レーザ光は真空窓104を通過してTSレンズ107に入射する。TSレンズ107ではその中の参照面においてレーザ光の一部が反射され、同じ光路を干渉計本体101へ戻っていく。ステージ106上のTSレンズ107を透過したレーザ光は球面波に変換され、被測定物W3 により反射されて、同じ光路を干渉計本体101へ戻る。干渉計本体101内ではTSレンズ107からの反射光と被測定物W3 からの反射光が干渉して干渉縞を作り、この干渉縞をCCDカメラにて取得し、PC108により被測定物W3 の形状が算出される。 Laser light emitted from the interferometer main body 101 is widened by a beam expander 102 and bent upward by 90 degrees by a bending mirror 103. Thereafter, the laser light passes through the vacuum window 104 and enters the TS lens 107. In the TS lens 107, a part of the laser beam is reflected on the reference surface in the TS lens 107, and returns to the interferometer body 101 through the same optical path. The laser beam that has passed through the TS lens 107 on the stage 106 is converted into a spherical wave, reflected by the object to be measured W 3 , and returns to the interferometer body 101 through the same optical path. In interferometer 101 within create an interference pattern to interfere the reflected light from the reflection light and the object to be measured W 3 from the TS lens 107 to acquire the interference fringe by the CCD camera, the measured object W 3 by PC108 The shape of is calculated.

被測定物W3 を真空チャンバー113内に設置した後、真空ポンプ117により真空チャンバー113内を真空(減圧)にする。この排気動作の際、真空チャンバー113内の空気が断熱膨張し、真空チャンバー113内の温度が低下し、被測定物W3 およびTSレンズ107の表面温度が低下する。 After the object to be measured W 3 is placed in the vacuum chamber 113, the inside of the vacuum chamber 113 is evacuated (depressurized) by the vacuum pump 117. During the exhaust operation, the air in the vacuum chamber 113 is adiabatically expanded, the temperature in the vacuum chamber 113 is lowered, and the surface temperatures of the object to be measured W 3 and the TS lens 107 are lowered.

通常、高精度な測定においてはこの温度低下が元に戻り、温度分布がなくなるまで温度慣らしとして放置しておくが、真空環境のため空気による熱伝達がなく、温度慣らしのための時間は大気の場合よりも長くなる。   Normally, in high-accuracy measurement, this temperature drop is restored and left as a temperature break-in until the temperature distribution disappears.However, because of the vacuum environment, there is no heat transfer by air, and the time for the temperature break-in is Longer than the case.

規定した圧力になったあとは真空制御器114により規定の圧力になるように真空ポンプ117、リークバルブ115、排気バルブ116を制御する。   After reaching the specified pressure, the vacuum controller 114 controls the vacuum pump 117, the leak valve 115, and the exhaust valve 116 so that the specified pressure is reached.

本実施例では、真空制御時にリークバルブ115から供給する空気の温度をコントロールすることでこの温度慣らし時間を短縮する。具体的には、真空チャンバー113内が規定の圧力に到達した後に、排気バルブ116により排気流量を一定にし、リークバルブ115を制御することにより吸入する空気の流量をコントロールすることで真空チャンバー113内の圧力を維持する。真空チャンバー113の排気時には空気の断熱膨張による温度低下が生じるが、この温度低下を補うために必要な分、温度制御器312によって温度を上げた空気をリークバルブ115から真空チャンバー113内に供給する。これによって、被測定物W3 およびTSレンズ107の温度低下を抑制し、かつ温度慣らし時間を短縮することができる。 In this embodiment, the temperature break-in time is shortened by controlling the temperature of the air supplied from the leak valve 115 during vacuum control. Specifically, after the inside of the vacuum chamber 113 reaches a prescribed pressure, the exhaust flow rate is made constant by the exhaust valve 116, and the flow rate of the sucked air is controlled by controlling the leak valve 115. Maintain the pressure. When the vacuum chamber 113 is evacuated, a temperature drop occurs due to adiabatic expansion of the air. Air that has been raised in temperature by the temperature controller 312 is supplied from the leak valve 115 into the vacuum chamber 113 by an amount necessary to compensate for this temperature drop. . As a result, the temperature drop of the object to be measured W 3 and the TS lens 107 can be suppressed, and the temperature break-in time can be shortened.

また、排気動作時にリークバルブ115から温度を上昇させた空気を供給しながら減圧にすることで、被測定物W3 およびTSレンズ107の温度低下を抑制してもよい。減圧に要する時間が多少長くなったとしても慣らしの時間を大幅に短縮することができるため、全体として減圧後から測定開始できるまでの時間を短縮することができる。このように能動的に被測定物W3 およびTSレンズ107の温度低下を抑制することにより温度慣らしに必要な時間を短縮することが可能となり、高精度な測定にも関わらず測定タクトの向上を行うことができる。 Further, the temperature drop of the object to be measured W 3 and the TS lens 107 may be suppressed by reducing the pressure while supplying air whose temperature has been increased from the leak valve 115 during the exhaust operation. Even if the time required for decompression is somewhat longer, the break-in time can be significantly shortened, so that the time from the decompression to the start of measurement can be shortened as a whole. Thus actively it becomes possible to reduce the time required to break temperature by suppressing the temperature drop of the measured object W 3 and TS lens 107, improvement in measurement tact despite accurate measurements It can be carried out.

実施例1を示す模式図である。1 is a schematic diagram illustrating Example 1. FIG. 実施例2を示す模式図である。6 is a schematic diagram showing Example 2. FIG. 実施例3を示す模式図である。6 is a schematic diagram showing Example 3. FIG. 従来例を示す模式図である。It is a schematic diagram which shows a prior art example.

符号の説明Explanation of symbols

101 干渉計本体
102 ビームエキスパンダー
103 折り曲げミラー
104 真空窓
105、106 ステージ
107 TSレンズ
110、111 流路
112、212、312 温度制御器
113 真空チャンバー
115 リークバルブ
116 排気バルブ
117 真空ポンプ
118 圧力計
119 温度センサー
210、211 放熱板
1001 レーザ光源
1002 ビームエキスパンダー
1003 偏光ビームスプリッター
1005 参照平面ミラー
1007 真空チャンバー
1008 被測定物
1010 集光レンズ
1012 ストッカー
1018 ワーク交換用サブチャンバー
1020a、1020b ゲートバルブ
DESCRIPTION OF SYMBOLS 101 Interferometer body 102 Beam expander 103 Bending mirror 104 Vacuum window 105, 106 Stage 107 TS lens 110, 111 Flow path 112, 212, 312 Temperature controller 113 Vacuum chamber 115 Leak valve 116 Exhaust valve 117 Vacuum pump 118 Pressure gauge 119 Temperature Sensors 210 and 211 Radiation plate 1001 Laser light source 1002 Beam expander 1003 Polarizing beam splitter 1005 Reference plane mirror 1007 Vacuum chamber 1008 Object to be measured 1010 Condensing lens 1012 Stocker 1018 Subchamber 1010a, 1020b for exchanging workpieces

Claims (4)

真空チャンバーと、前記真空チャンバー内において被測定物の形状を測定するための干渉光学系と、前記真空チャンバーの減圧時に、空気の断熱膨張による前記被測定物の温度低下を抑制するための温調手段と、を有することを特徴とする干渉計測装置。   A vacuum chamber, an interference optical system for measuring the shape of the object to be measured in the vacuum chamber, and a temperature control for suppressing a temperature drop of the object to be measured due to adiabatic expansion of air when the vacuum chamber is depressurized. And an interference measuring apparatus. 前記温調手段は、断熱膨張により前記被測定物から奪われた熱量を補うための温調水を前記被測定物の近傍に供給する配管手段を有することを特徴とする請求項1記載の干渉計測装置。   2. The interference according to claim 1, wherein the temperature control means includes piping means for supplying temperature control water for supplementing the amount of heat taken from the measurement object by adiabatic expansion to the vicinity of the measurement object. Measuring device. 前記温調手段は、前記被測定物の近傍に配設された放熱部材を有し、前記放熱部材に、断熱膨張により前記被測定物から奪われた熱量を補うのに必要な分の熱量を供給することを特徴とする請求項1記載の干渉計測装置。   The temperature control means includes a heat radiating member disposed in the vicinity of the object to be measured, and the heat radiating member has an amount of heat necessary to supplement the heat amount taken from the object to be measured by adiabatic expansion. The interference measurement apparatus according to claim 1, wherein the interference measurement apparatus is supplied. 前記温調手段は、減圧時の断熱膨張により奪われた熱量を供給するために必要な分だけ温度を上昇させた気体を前記真空チャンバー内に供給する機構を有することを特徴とする請求項1記載の干渉計測装置。   The temperature control means has a mechanism for supplying a gas whose temperature has been increased by an amount necessary for supplying the amount of heat deprived by adiabatic expansion during decompression into the vacuum chamber. The interference measurement apparatus described.
JP2006244980A 2006-09-11 2006-09-11 Interference measuring instrument Pending JP2008064694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244980A JP2008064694A (en) 2006-09-11 2006-09-11 Interference measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244980A JP2008064694A (en) 2006-09-11 2006-09-11 Interference measuring instrument

Publications (2)

Publication Number Publication Date
JP2008064694A true JP2008064694A (en) 2008-03-21
JP2008064694A5 JP2008064694A5 (en) 2009-11-12

Family

ID=39287526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244980A Pending JP2008064694A (en) 2006-09-11 2006-09-11 Interference measuring instrument

Country Status (1)

Country Link
JP (1) JP2008064694A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127901A (en) * 2009-12-15 2011-06-30 Canon Inc Interference measuring apparatus
KR101248369B1 (en) 2011-07-21 2013-04-01 주식회사 현대케피코 Altitude test chamber

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190318A (en) * 1981-05-19 1982-11-22 Toshiba Mach Co Ltd Electron beam exposure device
JPS61239624A (en) * 1985-04-16 1986-10-24 Toshiba Mach Co Ltd Apparatus and process of loading
JPH07318308A (en) * 1994-05-23 1995-12-08 Canon Inc Interference measuring method and device therefor using it
JPH10312960A (en) * 1997-05-13 1998-11-24 Toshiba Mach Co Ltd Sample temperature stabilizer for electronic beam plotting device
JPH11168056A (en) * 1997-12-03 1999-06-22 Nikon Corp Wafer-holding device
JPH11312640A (en) * 1998-02-25 1999-11-09 Canon Inc Processor and device manufacturing method using the processor
JP2000088512A (en) * 1998-09-17 2000-03-31 Nikon Corp Interference measuring apparatus
JP2000161230A (en) * 1998-11-30 2000-06-13 Toshiba Ceramics Co Ltd Vacuum device and evacuating method
JP2003234282A (en) * 2002-02-08 2003-08-22 Canon Inc Semiconductor exposure device and load lock chamber employed therefor
JP2006086387A (en) * 2004-09-17 2006-03-30 Nikon Corp Substrates transfer system, exposure equipment, and substrates transfer method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190318A (en) * 1981-05-19 1982-11-22 Toshiba Mach Co Ltd Electron beam exposure device
JPS61239624A (en) * 1985-04-16 1986-10-24 Toshiba Mach Co Ltd Apparatus and process of loading
JPH07318308A (en) * 1994-05-23 1995-12-08 Canon Inc Interference measuring method and device therefor using it
JPH10312960A (en) * 1997-05-13 1998-11-24 Toshiba Mach Co Ltd Sample temperature stabilizer for electronic beam plotting device
JPH11168056A (en) * 1997-12-03 1999-06-22 Nikon Corp Wafer-holding device
JPH11312640A (en) * 1998-02-25 1999-11-09 Canon Inc Processor and device manufacturing method using the processor
JP2000088512A (en) * 1998-09-17 2000-03-31 Nikon Corp Interference measuring apparatus
JP2000161230A (en) * 1998-11-30 2000-06-13 Toshiba Ceramics Co Ltd Vacuum device and evacuating method
JP2003234282A (en) * 2002-02-08 2003-08-22 Canon Inc Semiconductor exposure device and load lock chamber employed therefor
JP2006086387A (en) * 2004-09-17 2006-03-30 Nikon Corp Substrates transfer system, exposure equipment, and substrates transfer method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127901A (en) * 2009-12-15 2011-06-30 Canon Inc Interference measuring apparatus
KR101248369B1 (en) 2011-07-21 2013-04-01 주식회사 현대케피코 Altitude test chamber

Similar Documents

Publication Publication Date Title
JP5713904B2 (en) Projection system and lithographic apparatus
US7804582B2 (en) Lithographic apparatus, method of calibrating a lithographic apparatus and device manufacturing method
TWI564678B (en) Estimating deformation of a patterning device and/or a change in its position
TWI402633B (en) Lithographic apparatus and device manufacturing method
JP2006024941A (en) Lithography projection equipment and device manufacturing method using the lithography projection equipment
US9310693B2 (en) Method for operating a projection exposure tool and control apparatus
JP4726830B2 (en) Lithographic apparatus, control system, and device manufacturing method
JP5815987B2 (en) Exposure apparatus and device manufacturing method
US20190041758A1 (en) Methods of determining a mechanical property of a layer applied to a substrate, control system for a lithographic apparatus and lithographic apparatus
JP6420895B2 (en) Lithographic apparatus and object positioning system
CN104181780A (en) Aberration compensation device and aberration compensation method of optical system
JP2008064694A (en) Interference measuring instrument
TW201020691A (en) Lithographic apparatus and humidity measurement system
TWI402632B (en) Lithographic apparatus and device manufacturing method
JP7093893B2 (en) Level sensor and lithography equipment incorporating level sensor
TWI618989B (en) Object positioning system, lithographic apparatus, object positioning method and device manufacturing method
JP2019507896A (en) Lithographic apparatus and device manufacturing method
US11879720B2 (en) Device and method for characterizing the surface shape of a test object
TW202205010A (en) Method for thermo-mechanical control of a heat sensitive element and device for use in a lithographic production process
US20200387076A1 (en) Optical Measurement Method and Sensor Apparatus
JPH07318308A (en) Interference measuring method and device therefor using it

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203