JP2008063169A - Method for producing carbonized product and decomposed product - Google Patents

Method for producing carbonized product and decomposed product Download PDF

Info

Publication number
JP2008063169A
JP2008063169A JP2006240719A JP2006240719A JP2008063169A JP 2008063169 A JP2008063169 A JP 2008063169A JP 2006240719 A JP2006240719 A JP 2006240719A JP 2006240719 A JP2006240719 A JP 2006240719A JP 2008063169 A JP2008063169 A JP 2008063169A
Authority
JP
Japan
Prior art keywords
superheated steam
carbide
temperature
organic
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006240719A
Other languages
Japanese (ja)
Other versions
JP5282323B2 (en
Inventor
Manabu Fukushima
福島  学
Kiyoshi Hirao
喜代司 平尾
Osamu Yamada
修 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSU KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
OSU KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSU KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical OSU KK
Priority to JP2006240719A priority Critical patent/JP5282323B2/en
Publication of JP2008063169A publication Critical patent/JP2008063169A/en
Application granted granted Critical
Publication of JP5282323B2 publication Critical patent/JP5282323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing activated carbon, by which activated carbon or decomposed products can be directly produced in a short time from organic substances without pretreating them for carbonization; and to provide an apparatus for producing the activated carbon. <P>SOLUTION: The method for producing activated carbon and/or decomposed products comprises charging organic substances into a space where overheated steam and a microwave coexist. In the method, a ceramic heater in a furnace and a sample are irradiated with a microwave, thereby, the temperature of the overheated steam can be controlled precisely, and the temperature distribution in the sample is made small and carbonization proceeds also from the inside of the sample by the irradiation with the microwave, and activated carbon having few closed pores is accordingly obtained, and further decomposed products such as gaseous hydrogen can be obtained at once by utilizing discharge of carbon at a temperature of ≥650°C. The apparatus for producing the activated carbon or decomposed products is also provided. By the method and apparatus, high quality activated carbon and/or decomposed products can be produced at a high efficiency. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、活性炭及びその分解生成物の製造方法に関するものであり、更に詳しくは、過熱水蒸気で満たされた空間に有機物原料を投入し、短時間に炭化させた後、マイクロ波照射を施すことにより炭化物及びその分解生成物を製造する方法及びその装置に関するものである。   The present invention relates to a method for producing activated carbon and its decomposition products, and more specifically, an organic material is introduced into a space filled with superheated steam, carbonized in a short time, and then subjected to microwave irradiation. Relates to a method and an apparatus for producing a carbide and a decomposition product thereof.

上下水の処理をはじめ、水の浄化や回収、更には、製糖工業やバイオプロダクトの精製等の分野で、フィルター材等として活性炭が賞用されている。また、地球環境保護や生産コストの観点から、活性炭の原料には樹脂や鋸屑などの廃材をはじめとする有機物も利用し始めている。これらの活性炭の製造工程では、有機物原料を300−800℃でまず炭化させ、次に、水蒸気や炭酸ガス等を用いたガス賦活法(C+HO→CO+H)で賦活化する方法が適用されていた。 Activated carbon is used as a filter material in fields such as water and sewage treatment, water purification and recovery, as well as in the sugar industry and bio product purification. Also, from the viewpoint of global environmental protection and production costs, organic materials such as waste materials such as resin and sawdust have begun to be used as raw materials for activated carbon. In the production process of these activated carbons, a method is used in which an organic material is first carbonized at 300 to 800 ° C., and then activated by a gas activation method (C + H 2 O → CO + H 2 ) using water vapor or carbon dioxide gas. It was.

しかしながら、従来の炭化物の製造方法では、まず、300−800℃付近での炭化処理が必要であり、その後に500−1000℃付近で賦活化を施すという2段プロセスが適用されているため、多量の熱を必要とし、賦活後の洗浄処理を含めると、製造時間も長時間に及んでいた。   However, in the conventional carbide manufacturing method, first, a carbonization treatment at around 300-800 ° C. is required, and then a two-stage process of applying activation at around 500-1000 ° C. is applied. If the heat treatment is required and the cleaning process after activation is included, the production time is long.

加えて、通常の電気炉を用いると、部材表面から内部へ炭化が進行するため、部材内に温度分布ができ、表面近傍では炭化が先に進むため、タールが沈着し、閉気孔が生成するなど、得られる活性炭が不均質であるという問題があった。加えて、代表的な賦活ガスである水蒸気は、温度制御が困難であるため、炭化や賦活が進む高比表面積部位と低比表面積部位が部材内に混在する問題があった。   In addition, when a normal electric furnace is used, carbonization proceeds from the surface of the member to the inside, so that temperature distribution is created in the member, and carbonization proceeds in the vicinity of the surface, so that tar is deposited and closed pores are generated. There was a problem that the activated carbon obtained was inhomogeneous. In addition, since water vapor, which is a typical activation gas, is difficult to control temperature, there is a problem that a high specific surface area and a low specific surface area where carbonization and activation progress are mixed in the member.

これらの炭化物の製造方法に関する先行技術としては、例えば、600℃以上で一度炭化を行った炭素材料を、賦活ガスと接触させ、マイクロ波により加熱する方法が提案されている(特許文献1)。また、バイオマス系材料にマイクロ波を照射して、部材内部を炭化、及び未炭化部を放冷、かつ燃焼除去することにより、500−900m/gの比表面積を有する活性炭が得られている(特許文献2)。加えて、ヒータによる外部加熱、マイクロ波による内部加熱、薬品賦活による活性炭の製造も検討されている(特許文献3−4)。一方、誘電率の大きい発熱体と有機物原料との混合物にマイクロ波を照射し、活性炭を製造する方法も報告されている(特許文献5)。 As a prior art relating to a method for producing these carbides, for example, a method has been proposed in which a carbon material once carbonized at 600 ° C. or higher is brought into contact with an activation gas and heated by microwaves (Patent Document 1). Moreover, activated carbon having a specific surface area of 500-900 m 2 / g is obtained by irradiating the biomass material with microwaves, carbonizing the inside of the member, allowing the uncarbonized part to cool and removing by combustion. (Patent Document 2). In addition, external heating by a heater, internal heating by a microwave, and production of activated carbon by chemical activation have been studied (Patent Documents 3-4). On the other hand, a method for producing activated carbon by irradiating a mixture of a heating element having a large dielectric constant and an organic material with microwaves has also been reported (Patent Document 5).

以上のように、マイクロ波照射により活性炭を製造する方法に関しては、原料を不活性雰囲気下で炭化させ、その後にマイクロ波を用いて再度高温まで昇温し、賦活処理を行う2段階の製造プロセス、あるいは原料にマイクロ波を吸収しやすい発熱体との混合物を使用し、該混合物からの活性炭の製造方法がある。また、マイクロ波を用いて、省エネルギーで活性炭を得る方法は、公知の方法である。   As described above, regarding the method for producing activated carbon by microwave irradiation, the raw material is carbonized under an inert atmosphere, and then the temperature is raised again to a high temperature using microwaves, and the activation process is performed. Alternatively, there is a method for producing activated carbon from the mixture using a mixture of a heating element that easily absorbs microwaves as a raw material. Moreover, the method of obtaining activated carbon by energy saving using a microwave is a well-known method.

しかし、活性炭の製造では、マイクロ波を吸収しにくい有機物を原料とするため、マイクロ波照射を行っても吸着水等の脱水後は、加熱効果が少ないため、予め炭化させること、あるいはマイクロ波照射と同時に外部加熱を行うこと、がプロセス上重要であった。しかしながら、予め炭化する処理は、電気炉等を用いると、表面から炭化が始まり内部へ伝熱されてゆくため、表面へのタールの沈着に伴う閉気孔の形成の問題があった。マイクロ波照射と同時に外部加熱することも、結局は、原料有機物の表面から炭化が始まるため、同様に閉気孔形成の問題があった。   However, in the production of activated carbon, organic materials that are difficult to absorb microwaves are used as raw materials. Therefore, even after microwave irradiation, after dehydration of adsorbed water, etc., there is little heating effect. At the same time, external heating was important in the process. However, in the pre-carbonizing process, when an electric furnace or the like is used, carbonization starts from the surface and heat is transferred to the inside, so that there is a problem of formation of closed pores due to deposition of tar on the surface. In the case of external heating simultaneously with the microwave irradiation, carbonization starts from the surface of the raw material organic material, and thus there is a problem of closed pore formation as well.

一方、上記の炭素と水蒸気の反応は、水素製造反応としても利用されている。今後、燃料電池普及の見込みから、水素ステーションの設置や短時間、かつ高効率での水素製造が期待されている。その温度は、一般に、800−1000℃程度である。しかしながら、従来法では、炭素材の燃焼熱を用いて炭素を改質し、水素を生成するため、均一な加熱が困難である上、炭素を酸化により消費し、加えて、改質ガスである水蒸気の温度制御も困難であった。   On the other hand, the reaction between carbon and water vapor is also used as a hydrogen production reaction. In the future, it is expected that hydrogen stations will be installed and hydrogen will be produced in a short time and with high efficiency in view of the spread of fuel cells. The temperature is generally about 800-1000 ° C. However, in the conventional method, carbon is reformed using the heat of combustion of the carbon material to generate hydrogen, so that uniform heating is difficult, carbon is consumed by oxidation, and in addition, it is a reformed gas It was also difficult to control the temperature of the water vapor.

水素製造に関する先行技術としては、例えば、上述したように、炭素材の燃焼(酸化)熱を用いて炭素を改質し、水素を生成するため、炭素材全体の均一な加熱が困難であり、そのため、反応制御が難しく、改質ガスである水蒸気の温度制御が困難であった(特許文献6)。マイクロ波を用いた炭素材の水蒸気改質も報告が観られるが、この種の方法では、製造した高温の水素や炭酸ガスの熱を水蒸気生成の熱に利用していた(特許文献7)。   As prior art related to hydrogen production, for example, as described above, carbon is reformed using combustion (oxidation) heat of carbon material to generate hydrogen, and thus uniform heating of the entire carbon material is difficult, Therefore, reaction control is difficult and temperature control of water vapor | steam which is reformed gas was difficult (patent document 6). There are reports of steam reforming of carbon materials using microwaves, but in this type of method, the heat of the produced high-temperature hydrogen or carbon dioxide is used for the heat of steam generation (Patent Document 7).

上述のように、従来法では、例えば、水素は、炭化物と水蒸気とを反応させることにより製造されているが、水素採取に必要である炭化物の均一加熱や、水蒸気の高精度での温度制御が困難であるため、改質反応に分布ができることを解決できないという問題があった。以上、活性炭及び水素ガス製造に関する先行技術としては、下記に示す数報が報告されている。   As described above, in the conventional method, for example, hydrogen is produced by reacting carbide and water vapor. However, uniform heating of the carbide necessary for hydrogen collection and high-precision temperature control of water vapor are possible. Due to the difficulty, there is a problem that the distribution in the reforming reaction cannot be solved. As described above, the following reports have been reported as prior art relating to activated carbon and hydrogen gas production.

特開昭51−37890号公報Japanese Patent Laid-Open No. 51-37890 特開2002−161278号公報JP 2002-161278 A 特開2004−352595号公報JP 2004-352595 A 特開2006−89344号公報JP 2006-89344 A 特開2000−34114号公報JP 2000-34114 A 特開平6−184565号公報JP-A-6-184565 特開2006−89322号公報JP 2006-89322 A

このような状況の中で、本発明者らは、上記従来技術に鑑みて、炭化物部材内での炭化あるいは賦活の進行に分布が少なく、かつ微細な細孔が連続孔として存在する活性炭、そして、過熱水蒸気の高精度での温度制御が可能で、有機物の分解生成物、活性炭の短時間での製造を可能とする新しい活性炭及び/又は分解生成物の製造方法を開発することを目標として鋭意研究を積み重ねた。   In such a situation, the present inventors, in view of the above prior art, activated carbon in which the distribution of carbonization or activation in the carbide member is small and fine pores exist as continuous pores, and The goal is to develop a new activated carbon and / or decomposition product manufacturing method that can control the temperature of superheated steam with high accuracy and enables the production of organic decomposition products and activated carbon in a short time. Accumulated research.

その結果、過熱水蒸気用のマイクロ波吸収性セラミックヒータがマイクロ波照射装置内に存在し、かつ試料室がヒータ直上に存在するようにすることで、過熱水蒸気の精密な温度制御が可能になり、加えて、試料室内の有機物原料は、他のガスより伝熱効果の高い過熱水蒸気により炭化が短時間で進行し、かつ試料にもマイクロ波照射されていることから、炭化時の温度斑を防ぎ、高精度に高温に昇温させた過熱水蒸気により炭化物の賦活反応を均一に進行させることができ、それにより、所期の目的を達成し得ることを見出し、本発明を完成するに至った。   As a result, a microwave-absorbing ceramic heater for superheated steam is present in the microwave irradiation apparatus, and the temperature of the superheated steam can be precisely controlled by allowing the sample chamber to be located immediately above the heater. In addition, the organic material in the sample chamber is carbonized in a short time by superheated steam, which has a higher heat transfer effect than other gases, and the sample is also irradiated with microwaves, preventing temperature spots during carbonization. The inventors have found that the carbide activation reaction can be uniformly advanced by superheated steam heated to a high temperature with high accuracy, thereby achieving the intended purpose, and the present invention has been completed.

本発明者らは、有機物の炭化、賦活化、ガス化は、過熱水蒸気の温度制御が大変重要なプロセスであり、セラミックヒータと試料室内の原料とが同時にチャンバ内に設置されること、それによって、はじめて高い精度での温度制御が可能となること、を見出した。本発明は、高精度に過熱水蒸気の温度制御をすることで、有機物原料の炭化や賦活時の温度斑や反応進行に分布がなく、かつ高効率で活性炭あるいは水素をはじめとする有機物の分解生成物を製造する方法及びその装置を提供することを目的とするものである。   In the carbonization, activation, and gasification of organic substances, the temperature control of superheated steam is a very important process, and the ceramic heater and the raw material in the sample chamber are installed in the chamber at the same time. For the first time, it has been found that temperature control with high accuracy becomes possible. By controlling the temperature of superheated steam with high accuracy, the present invention has no distribution in the temperature fluctuation and reaction progress at the time of carbonization or activation of organic raw materials, and decomposes and generates organic substances such as activated carbon or hydrogen with high efficiency. It is an object of the present invention to provide a method for manufacturing a product and an apparatus therefor.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)過熱水蒸気処理とマイクロ波処理を併用して有機物から炭化物及び/又は分解生成物を製造する方法であって、1)過熱水蒸気とマイクロ波が共存する炉内の空間に有機物原料を投入すること、2)その際に、炉内に導入した水蒸気をセラミックヒータで加熱して、高精度に温度制御した過熱水蒸気を該ヒータ直上に位置させた有機物原料に供給して所定の温度領域で炭化及び/又は賦活反応を進行させて、あるいは更に生成した炭化物間の放電を利用して、炭化物及び/又は分解生成物を製造すること、を特徴とする炭化物及び/又は分解生成物の製造方法。
(2)炉内に導入した水蒸気をセラミックヒータで加熱して、500℃以下、500−700℃、700℃以上の温度で高精度に温度制御した過熱水蒸気を生成し、有機物に供給する、前記(1)に記載の炭化物及び/又は分解生成物の製造方法。
(3)上記有機物が、廃材、石炭、石油残渣、石油コークス、石油ピッチ、藻類、鋸屑、プラスチック、又は廃衣類である、前記(1)に記載の炭化物及び/又は分解成生物の製造方法。
(4)有機物から300m/g以上の比表面積を有する炭化物を1回の工程で製造する、前記(1)に記載の炭化物の製造方法。
(5)500℃以下の過熱水蒸気を有機物と接触させることで有機物の炭化を進行させる、前記(1)に記載の炭化物の製造方法。
(6)600℃以上に過熱水蒸気を昇温させることで炭化物の賦活反応を進行させる、前記(1)に記載の炭化物の製造方法。
(7)700℃以上でマイクロ波照射による炭素物の放電を利用することで、炭化物をガス化させ、少なくとも水素ガスを含む分解生成物を製造する、前記(1)に記載の分解生成ガスの製造方法。
(8)導入した水蒸気を加熱して過熱水蒸気を発生させる過熱水蒸気発生用セラミックヒータ、被処理材料の有機物原料を投入する試料室、該有機物原料にマイクロ波を照射するマイクロ波照射装置を具備した有機物原料から炭化物及び分解生成物を製造する装置であって、過熱水蒸気発生用セラミックヒータがマイクロ波照射装置内に存在し、かつ試料室がヒータ直上に存在すること、それにより、試料室内の被処理材料に供給する過熱水蒸気の温度を高精度に制御し、かつ大容量の過熱水蒸気の発生を容易としたこと、を特徴とする炭化物及び/又は分解生成物製造装置。
(9)上記過熱水蒸気発生用セラミックヒータが、マイクロ波吸収性の炭化珪素、又はジルコニア材料で構成される、前記(8)に記載の装置。
(10)上記有機物に供給する過熱水蒸気の温度を所定の温度領域に高精度に制御する過熱水蒸気の温度制御手段を有する、前記(8)に記載の装置
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for producing carbides and / or decomposition products from organic substances by using both superheated steam treatment and microwave treatment, and 1) charging organic materials into the space in the furnace where superheated steam and microwaves coexist. 2) At that time, the steam introduced into the furnace is heated by a ceramic heater, and the superheated steam whose temperature is controlled with high accuracy is supplied to the organic raw material positioned immediately above the heater in a predetermined temperature range. A method for producing a carbide and / or a decomposition product, characterized by producing a carbide and / or a decomposition product by proceeding a carbonization and / or activation reaction, or further using an electric discharge between generated carbides. .
(2) The steam introduced into the furnace is heated with a ceramic heater to generate superheated steam with temperature control at a high temperature of 500 ° C. or lower, 500-700 ° C., 700 ° C. or higher, and supplied to the organic matter. The manufacturing method of the carbide | carbonized_material and / or decomposition product as described in (1).
(3) The method for producing a carbide and / or decomposition product according to (1), wherein the organic material is waste material, coal, petroleum residue, petroleum coke, petroleum pitch, algae, sawdust, plastic, or waste clothing.
(4) The method for producing carbide according to (1), wherein a carbide having a specific surface area of 300 m 2 / g or more is produced from an organic substance in one step.
(5) The method for producing a carbide according to (1), wherein carbonization of the organic matter proceeds by bringing superheated steam at 500 ° C. or less into contact with the organic matter.
(6) The method for producing a carbide according to (1), wherein the activation reaction of the carbide is advanced by raising the temperature of the superheated steam to 600 ° C. or higher.
(7) The decomposition product gas according to (1) above, wherein the carbonized material is gasified by utilizing discharge of carbon material by microwave irradiation at 700 ° C. or higher to produce a decomposition product containing at least hydrogen gas Production method.
(8) A superheated steam generating ceramic heater for heating the introduced steam to generate superheated steam, a sample chamber for introducing the organic material of the material to be treated, and a microwave irradiation device for irradiating the organic material with microwaves An apparatus for producing carbides and decomposition products from organic raw materials, wherein a ceramic heater for superheated steam generation is present in the microwave irradiation apparatus, and the sample chamber is directly above the heater, thereby A carbide and / or decomposition product manufacturing apparatus characterized by controlling the temperature of superheated steam supplied to a treatment material with high accuracy and facilitating generation of a large volume of superheated steam.
(9) The apparatus according to (8), wherein the ceramic heater for generating superheated steam is made of microwave-absorbing silicon carbide or zirconia material.
(10) The apparatus according to (8), further including superheated steam temperature control means for controlling the temperature of the superheated steam supplied to the organic substance in a predetermined temperature range with high accuracy.

次に、本発明について更に詳細に説明する。
本発明は、過熱水蒸気処理とマイクロ波処理を併用して有機物から炭化物及び/又は分解生成物を製造する方法であって、1)過熱水蒸気とマイクロ波が共存する炉内の空間に有機物原料を投入すること、2)その際に、炉内に導入した水蒸気をセラミックヒータで加熱して、高精度に温度制御した過熱水蒸気を該ヒータ直上に位置させた有機物原料に供給して所定の温度領域で炭化及び/又は賦活反応を進行させて、あるいは更に生成した炭化物間の放電を利用して炭化物及び/又は分解生成物を製造すること、を特徴とするものである。
Next, the present invention will be described in more detail.
The present invention relates to a method for producing carbides and / or decomposition products from organic substances by using both superheated steam treatment and microwave treatment, and 1) organic material raw material in a space in a furnace where superheated steam and microwaves coexist. 2) At that time, the steam introduced into the furnace is heated by a ceramic heater, and the superheated steam whose temperature is controlled with high accuracy is supplied to the organic raw material positioned immediately above the heater to be in a predetermined temperature range. The carbonization and / or activation reaction is allowed to proceed, or the carbide and / or the decomposition product is produced using the discharge between the generated carbides.

また、本発明は、導入した水蒸気を加熱して過熱水蒸気を発生させる過熱水蒸気発生用セラミックヒータ、被処理材料の有機物原料を投入する試料室、該有機物原料にマイクロ波を照射するマイクロ波照射装置を具備した有機物原料から炭化物及び分解生成物を製造する装置であって、過熱水蒸気発生用セラミックヒータがマイクロ波照射装置内に存在し、かつ試料室がヒータ直上に存在すること、それにより、試料室内の被処理材料に供給する過熱水蒸気の温度を高精度に制御し、かつ大容量の過熱水蒸気の発生を容易としたこと、を特徴とするものである。   The present invention also provides a superheated steam generating ceramic heater for heating the introduced steam to generate superheated steam, a sample chamber for introducing an organic material of a material to be processed, and a microwave irradiation device for irradiating the organic material with microwaves An apparatus for producing carbides and decomposition products from an organic raw material comprising: a ceramic heater for superheated steam generation is present in the microwave irradiation apparatus, and a sample chamber is present immediately above the heater, whereby a sample It is characterized in that the temperature of superheated steam supplied to the material to be treated in the room is controlled with high accuracy and generation of a large volume of superheated steam is facilitated.

本発明は、活性炭製造時に、炭化あるいは賦活の進行に分布が少なく、かつ高精度に温度制御された過熱水蒸気による有機物の炭化物及び/又は分解生成物の製造方法及びその装置を提供することを目標とする。本発明では、過熱水蒸気用ヒータと試料室とがマイクロ波照射装置内に存在するようにすることで、水蒸気の精密な温度制御が可能になり、試料室内に有機物原料を投入することでヒータと原料とを同時にマイクロ波照射することで、高効率に炭化物及び/又は分解ガスを製造するものである。   It is an object of the present invention to provide a method and an apparatus for producing an organic carbide and / or decomposition product with superheated steam having a small distribution in the progress of carbonization or activation during the production of activated carbon and temperature control with high accuracy. And In the present invention, the heater for superheated water vapor and the sample chamber are present in the microwave irradiation device, so that precise temperature control of water vapor is possible, and the organic material is introduced into the sample chamber, and the heater and By simultaneously irradiating the raw material with microwaves, carbide and / or cracked gas is produced with high efficiency.

出発原料の有機物としては、例えば、廃材、石炭、石油残渣、石油コークス、石油ピッチ、藻類、鋸屑、プラスチック、衣類などが例示されるが、これらに制限されるものではない。炭化後に、主に炭素から構成されていれば、微量の酸素、水素、窒素、硫黄、リン、金属等を含有していてもよく、出発物質は、特に限定されるものではない。これを、試料室内に投入した後にマイクロ波を照射する。   Examples of the organic material as the starting material include, but are not limited to, waste materials, coal, petroleum residue, petroleum coke, petroleum pitch, algae, sawdust, plastic, clothing, and the like. If it is mainly composed of carbon after carbonization, it may contain a trace amount of oxygen, hydrogen, nitrogen, sulfur, phosphorus, metal, etc., and the starting material is not particularly limited. After this is put into the sample chamber, it is irradiated with microwaves.

上記有機物原料の形状は何ら限定されるものではない。各種成形方法を適用して成形することが可能であり、所望の形状に成形するための添加物との混合、あるいは溶解させ基材へ塗膜することなど、本発明の趣意から逸脱するものでなければ、よく知られた成形方法を利用、又は複数種類の方法を伴用することもできる。   The shape of the organic material is not limited at all. It can be molded by applying various molding methods, and it deviates from the spirit of the present invention, such as mixing with an additive for molding into a desired shape, or dissolving and coating a substrate. Otherwise, a well-known molding method can be used, or a plurality of types of methods can be used.

過熱水蒸気の温度は、200−1300℃で制御することが望ましいが、好適には200−1000℃で制御する。これは、1300℃以上の温度では、セラミックヒータの腐食が進行するため望ましくないためである。尚、雰囲気としては、過熱水蒸気との混合ガスを用いることができ、あるいは過熱水蒸気流通の前後に他の酸化性ガス、非酸化性ガスを用いることも適宜可能である。   The temperature of the superheated steam is desirably controlled at 200 to 1300 ° C, but is preferably controlled at 200 to 1000 ° C. This is because a temperature of 1300 ° C. or higher is not desirable because the corrosion of the ceramic heater proceeds. As the atmosphere, a mixed gas with superheated steam can be used, or other oxidizing gas and non-oxidizing gas can be used appropriately before and after circulation of superheated steam.

従来のマイクロ波を用いた活性炭の製造においては、有機物を原料とするため、マイクロ波照射を行っても吸着水等の脱水後は加熱効果が少ないため、予め炭化させる必要や、マイクロ波吸収性の不純物との混合、あるいは外部加熱により複合的に加熱する必要性があった。   In the production of activated carbon using conventional microwaves, since organic materials are used as raw materials, there is little heating effect after dehydration of adsorbed water, etc. even if microwave irradiation is performed. There was a need to heat in a complex manner by mixing with impurities or by external heating.

このように、マイクロ波を吸収しにくい有機物を原料に用いて、マイクロ波照射により活性炭を得る際には、炭化のために外部加熱の必要性があった。マイクロ波照射により得られる活性炭は、内部から加熱されるため、閉気孔が少ないことがよく知られている。しかしながら、マイクロ波照射と外部加熱との複合加熱法を用いても、有機物原料は、結局、表面から加熱されるため、表面にタール分等が沈着してしまい、閉気孔が生成するというマイクロ波照射の利点を生かせない問題があった。   As described above, when using an organic substance that hardly absorbs microwaves as a raw material to obtain activated carbon by microwave irradiation, there is a need for external heating for carbonization. Since activated carbon obtained by microwave irradiation is heated from the inside, it is well known that there are few closed pores. However, even if a combined heating method of microwave irradiation and external heating is used, the organic material is eventually heated from the surface, so that tar components and the like are deposited on the surface, and closed pores are generated. There was a problem that could not make use of the advantages of irradiation.

加えて、マイクロ波吸収性の他原料と有機物とを混合させ、活性炭を得る手法には、不純物が混入する問題があった。以上のように、有機物をマイクロ波照射チャンバ内で直接炭化を行う炭化物の製造方法には、各種の方法が観られるものの、従来法では、閉気孔が少なく、かつ均質な炭化物を得ることは困難であった。加えて、炭化後に賦活処理を行う手法に関しては、水蒸気を導入させた際に炉内に充満する水蒸気に温度勾配を持たせないためには、大きなエネルギーが必要であるため、賦活斑のない活性炭の製造方法は、これまでに検討されていなかった。   In addition, there is a problem that impurities are mixed in the method of obtaining activated carbon by mixing raw materials and organic substances other than microwave absorption. As described above, although various methods are observed in the method for producing a carbide in which organic matter is directly carbonized in a microwave irradiation chamber, it is difficult to obtain a uniform carbide with few closed pores by the conventional method. Met. In addition, with regard to the method of performing the activation treatment after carbonization, activated carbon without activation spots is necessary because a large amount of energy is required in order to prevent the steam filling the furnace from having a temperature gradient when the steam is introduced. The production method has not been studied so far.

これに対し、本発明では、マイクロ波吸収性のセラミックを過熱水蒸気発生用ヒータとして炉内に設置することで、大容量の過熱水蒸気の温度を制御することができ、かつヒータ直上に試料室を存在させることにより、有機物原料を高精度に温度制御された伝熱効率の高い過熱水蒸気と接触させることで、短時間に炭化を進行させることが可能となった。炭化は、一般的には、有機物がアルゴンや窒素などの不活性雰囲気で処理されるが、過熱水蒸気も500℃以下の温度であれば、有機物に対して不活性である。   On the other hand, in the present invention, the temperature of the large-capacity superheated steam can be controlled by installing the microwave absorbing ceramic in the furnace as a heater for generating the superheated steam, and the sample chamber is provided immediately above the heater. By making it exist, it became possible to advance carbonization in a short time by bringing the organic raw material into contact with superheated steam with high heat transfer efficiency and temperature controlled with high accuracy. In general, carbonization is performed in an inert atmosphere such as argon or nitrogen, but superheated steam is also inert to organic matter at a temperature of 500 ° C. or lower.

加えて、過熱水蒸気の伝熱効果は、対流伝熱に加え、放射伝熱、凝縮電熱などの複合伝熱作用を有しており、他のガスより、非常に熱効率が高い。過熱水蒸気の温度制御は、これまで熱源の問題があり、試料室まで温度を保持することが非常に困難であったが、本発明により、マイクロ波で照射され高温に加熱されたセラミックスヒータを熱源とし、その直上に試料室を設置させることで、瞬時の炭化と過熱水蒸気の温度保持の両方の問題を解決することが可能となった。   In addition, the heat transfer effect of superheated steam has a combined heat transfer effect such as radiant heat transfer and condensation heat transfer in addition to convection heat transfer, and is much more heat efficient than other gases. Controlling the temperature of superheated steam has been a problem of the heat source so far, and it has been very difficult to maintain the temperature up to the sample chamber. However, according to the present invention, the ceramic heater irradiated with microwaves and heated to a high temperature is used as the heat source. By installing a sample chamber immediately above it, it became possible to solve both problems of instantaneous carbonization and maintaining the temperature of superheated steam.

加えて、本発明では、まず、500℃以下の大容量の過熱水蒸気を有機物と接触させることで、炭化を進行させたため、タール等の分解生成物を大容量の蒸気と共に瞬時に部材外に放出させることが可能である。その後、600℃以上に過熱水蒸気を昇温させることで、炭化物の賦活反応を進行させることが可能である。また、過熱水蒸気温度が700℃以上であれば、炭化物のガス化、即ち、水素製造も進行させることができる。これは、有機物の炭化等をマイクロ波照射環境下で行うため、炭化物間では放電が始まり、繊維状の炭化物等であれば、瞬時にガス化が起こり、水素ガスを得ることができるためである。   In addition, in the present invention, since carbonization progressed by bringing a large volume of superheated steam of 500 ° C. or less into contact with an organic substance, a decomposition product such as tar is instantaneously released out of the member together with a large volume of steam. It is possible to make it. Then, it is possible to advance the activation reaction of a carbide | carbonized_material by heating up superheated steam to 600 degreeC or more. Moreover, if superheated steam temperature is 700 degreeC or more, the gasification of a carbide | carbonized_material, ie, hydrogen production, can also be advanced. This is because carbonization of organic matter is performed in a microwave irradiation environment, so discharge starts between the carbides, and if it is fibrous carbide, gasification occurs instantaneously and hydrogen gas can be obtained. .

これらの操作では、試料室とヒータ両方にマイクロ波が照射されていることから、炭化や賦活の進行に斑が少ない。以上詳述したように、有機物の炭化、賦活化では、過熱水蒸気の温度制御が大変重要なプロセスであり、活性炭の特性上、原料全体が均一に賦活される必要があり、均一な炭化、均一な賦活を達成するには、セラミックスヒータと試料室内の原料とを同時にチャンバ内に設置することが重要であり、それにより、はじめて、高い精度での温度制御が可能となり、それによって、はじめて、本発明の効果を得ることが可能となる。   In these operations, since both the sample chamber and the heater are irradiated with microwaves, there are few spots in the progress of carbonization and activation. As detailed above, in the carbonization and activation of organic matter, temperature control of superheated steam is a very important process. Due to the characteristics of activated carbon, the entire raw material needs to be activated uniformly. In order to achieve proper activation, it is important to place the ceramic heater and the raw material in the sample chamber in the chamber at the same time. This makes it possible to control the temperature with high accuracy for the first time. The effects of the invention can be obtained.

本発明により、次のような効果が奏される。
(1)500℃以下の大容量の過熱水蒸気とマイクロ波が共存する空間に有機物原料を投入することで、部材内に比表面積の高い部位と低い部位とが混在しない、即ち、炭化斑の少ない炭化物を得ることができる。
(2)上記(1)の後、500℃以上の過熱水蒸気を流通させることで、炭化物の賦活を進行させることができ、かつマイクロ波が照射されているため、賦活に斑の無い、即ち、部材内で比表面積の差が少ない活性炭を得ることができる。
(3)一方、上記(2)の後、700℃以上の過熱水蒸気中を流通させ、マイクロ波照射を行うことで、炭化物間で放電が始まり、瞬時にガス化が進行するため、水素を含む分解生成物を効率よく製造することが可能となる。
(4)有機物をマイクロ波と過熱水蒸気が共存する空間に投入することで、炭化の前処理なしに650℃以下で300−700m/gの比表面積を有する中品位の活性炭を1時間以内に製造することができる。
(5)650℃以上では、マイクロ波照射に起因する炭化物間の放電と過熱水蒸気の存在により瞬時に水素ガス等が得られる。
The present invention has the following effects.
(1) By introducing an organic raw material into a space in which superheated steam having a large capacity of 500 ° C. or less and microwaves coexist, a portion having a high specific surface area and a portion having a low specific surface area do not coexist in the member, that is, there are few carbonization spots Carbide can be obtained.
(2) After the above (1), the activation of the carbide can be promoted by circulating superheated steam at 500 ° C. or higher, and the microwave is irradiated, so there is no unevenness in the activation. Activated carbon having a small difference in specific surface area within the member can be obtained.
(3) On the other hand, after the above (2), by passing through superheated steam at 700 ° C. or higher and performing microwave irradiation, discharge starts between the carbides, and gasification proceeds instantaneously, so hydrogen is included. It becomes possible to produce a decomposition product efficiently.
(4) By introducing an organic substance into a space where microwaves and superheated steam coexist, medium-grade activated carbon having a specific surface area of 300 to 700 m 2 / g at 650 ° C. or less is obtained within one hour without carbonization pretreatment. Can be manufactured.
(5) Above 650 ° C., hydrogen gas or the like can be obtained instantaneously due to the discharge between carbides caused by microwave irradiation and the presence of superheated steam.

次に、実施例に基づいて本発明を具体的に説明するが、以下の実施例によって、本発明は、何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following examples.

本実施例では、有機物原料として、衣類(コットン;セルロース)、あるいはプレス成形した鋸屑を用いた。2gあるいは4g秤量後、試料室に投入した。図1に示すように、マイクロ波照射装置内にセラミックヒータを、かつその直上に有機物原料を載置するための試料室を設置した。ヒータは、炭化珪素、ジルコニア等のマイクロ波吸収性のセラミックを使用した。マイクロ波照射を開始すると、まず、ヒータが加熱され、400℃の時点で、過熱水蒸気を流通させた。過熱水蒸気流通前の試料室の温度は、室温近傍である。   In this example, clothing (cotton; cellulose) or press-formed sawdust was used as the organic material. After weighing 2 g or 4 g, it was put into the sample chamber. As shown in FIG. 1, a ceramic heater was installed in the microwave irradiation apparatus, and a sample chamber for placing an organic material was placed immediately above the ceramic heater. The heater used was a microwave-absorbing ceramic such as silicon carbide or zirconia. When microwave irradiation was started, first, the heater was heated, and superheated steam was circulated at 400 ° C. The temperature of the sample chamber before the superheated steam flow is around room temperature.

以上のセラミックヒータの温度は、熱電対で測温し、試料の温度は、二色高温計あるいは熱電対で測温した。過熱水蒸気流通後のヒータと試料室との温度差は徐々に小さくなった。水蒸気流通後、おおよそ5−10分以内に、マイクロ波出力によりセラミックヒータの温度が制御可能になり、即ち、過熱水蒸気の温度制御も可能になった。試料の目標温度は500℃、600℃、650℃、700℃とし、それぞれ10分保持を行った。水蒸気導入後の試料室の昇温速度は、約40℃/分であり、ヒータ加熱時間を含め、全操作時間も500℃処理で30分、700℃処理で40分と、いずれの操作も、1時間程度であった。   The temperature of the above ceramic heater was measured with a thermocouple, and the temperature of the sample was measured with a two-color pyrometer or a thermocouple. The temperature difference between the heater and the sample chamber after the superheated steam flow gradually decreased. Within about 5-10 minutes after the circulation of the steam, the temperature of the ceramic heater can be controlled by the microwave output, that is, the temperature of the superheated steam can be controlled. The target temperatures of the samples were 500 ° C., 600 ° C., 650 ° C., and 700 ° C., and each sample was held for 10 minutes. The temperature increase rate of the sample chamber after the introduction of water vapor is about 40 ° C./min. The total operation time including the heater heating time is 30 minutes for the 500 ° C. treatment and 40 minutes for the 700 ° C. treatment. It was about 1 hour.

活性炭の比表面積は、窒素吸着装置を用い、BET法からP/P=0.05−0.3の範囲でBETプロットから求めた。表1に、コットンの過熱水蒸気及びマイクロ波照射併用処理を行った活性炭の比表面積を示す。尚、結果に示す処理温度は、試料室の温度とした。 The specific surface area of the activated carbon was determined from the BET plot in the range of P / P 0 = 0.05-0.3 from the BET method using a nitrogen adsorption device. Table 1 shows the specific surface area of activated carbon subjected to the combined treatment of cotton superheated steam and microwave irradiation. The treatment temperature shown in the results was the temperature of the sample chamber.

比表面積は650℃で最大値を示した。過熱水蒸気との接触により炭化することにより、マイクロ波が吸収しやすくなる。そのため、700℃以上から試料室内の炭化物間で放電が始まり、瞬時にガス化が起こる。そのため、活性炭を得る際には、700℃以下で処理し、水素ガスを得る際には700℃で処理することが望ましい。一度、600℃で比表面積が低下するのは、炭化の進行に伴う収縮により、一部の微細孔が潰されるためである。炭化が終了した後の650℃処理では、再び比表面積が増大するため、賦活が進んでいることが伺える。   The specific surface area showed a maximum value at 650 ° C. By carbonizing by contact with superheated steam, microwaves are easily absorbed. Therefore, discharge starts between carbides in the sample chamber from 700 ° C. or higher, and gasification occurs instantaneously. Therefore, when obtaining activated carbon, it is desirable to treat at 700 ° C. or lower, and when obtaining hydrogen gas, it is desirable to treat at 700 ° C. The reason why the specific surface area decreases once at 600 ° C. is that some fine pores are crushed by shrinkage accompanying the progress of carbonization. In the 650 degreeC process after carbonization complete | finished, since a specific surface area increases again, it can be seen that activation is advancing.

一般的に、水素ガスを得る際には、天然ガスの水蒸気改質が用いられ、800℃での処理が行われているが、本発明では、廃衣類をはじめとする綿を原料にして、700℃程度で水素ガスを得ることが可能である。   Generally, when hydrogen gas is obtained, steam reforming of natural gas is used, and processing at 800 ° C. is performed. In the present invention, cotton such as waste clothing is used as a raw material, Hydrogen gas can be obtained at about 700 ° C.

比較例
マイクロ波照射を行わず、通常の電気炉を用いて、アルゴン中、あるいは誘導加熱を用いて発生させた過熱水蒸気中で、実施例と同様にコットンの処理を行った。処理温度は、この場合は電気炉内の試料から、1cm以内の熱電対の温度とした。また、昇温、保持時間と共に、実施例と同様の条件を適用した。表2に、コットンの雰囲気、処理温度に対する活性炭の収率と比表面積を示す。
Comparative Example The treatment of cotton was performed in the same manner as in the example, in a superheated steam generated by using an ordinary electric furnace in argon or by using induction heating, without performing microwave irradiation. In this case, the treatment temperature was a thermocouple temperature within 1 cm from the sample in the electric furnace. Further, the same conditions as in the examples were applied together with the temperature rise and holding time. Table 2 shows the yield and specific surface area of activated carbon with respect to the cotton atmosphere and the treatment temperature.

本発明により得られた表1の比表面積と比較すると、マイクロ波照射を行わない場合は低い比表面積となった。これは、電気炉を用いた際には、試料表面から炭化が始まり、内部まで伝熱される際の温度斑、それらに伴うタール分の表面沈着に起因するものと考えられる。加えて、過熱水蒸気による処理は、アルゴン処理よりも大きな比表面積が得られたが、表1のマイクロ波照射と過熱水蒸気の併用処理の比表面積よりは低い値であった。   When compared with the specific surface area of Table 1 obtained by the present invention, the specific surface area was low when microwave irradiation was not performed. This is considered to be due to temperature spots when carbonization starts from the surface of the sample when the electric furnace is used and heat is transferred to the inside, and surface deposition of tar accompanying them. In addition, the treatment with superheated steam gave a larger specific surface area than the argon treatment, but the value was lower than the specific surface area of the combined treatment of microwave irradiation and superheated steam in Table 1.

表2での600℃及び650℃で過熱水蒸気処理を行った比表面積を観ると、処理温度は、50℃と僅かな温度差であるものの、比表面積は2倍以上と大きく異なる値が得られた。50℃差であっても、水蒸気の温度制御は、非常に重要であることを意味している。   Looking at the specific surface area that was subjected to the superheated steam treatment at 600 ° C. and 650 ° C. in Table 2, although the treatment temperature was a slight temperature difference from 50 ° C., the specific surface area was greatly different from twice or more. It was. Even with a difference of 50 ° C., it means that temperature control of water vapor is very important.

次に、図2に、表1に示した過熱水蒸気とマイクロ波の併用処理650℃(a−b)、表2に示したアルゴン雰囲気下650℃処理(c−d)の活性炭のSEM観察像を示す。観察結果(a−b)では、得られた繊維は平滑であり、斑が無く、均一に炭化されていることが伺える。   Next, FIG. 2 shows an SEM observation image of activated carbon subjected to the combined treatment of superheated steam and microwave shown in Table 1 at 650 ° C. (ab) and 650 ° C. in an argon atmosphere shown in Table 2 (cd). Indicates. In the observation result (ab), it can be seen that the obtained fiber is smooth, free from spots, and uniformly carbonized.

一方、アルゴン中で炭化させた観察結果(c−d)を観ると、部分的に沈着物が観られ(丸印で示す)、高倍率像では、捻れた繊維が顕著に観察された。これは、電気炉での炭化では、温度斑が存在するため、炭化の進む部位と進まない部位とが混在してしまい、その結果、均一に収縮することができないためであると考えられる。このように、マイクロ波と過熱水蒸気を用いることにより、均質性が高い活性炭が得られた。   On the other hand, when the observation result (cd) carbonized in argon was observed, deposits were partially observed (indicated by circles), and twisted fibers were remarkably observed in the high magnification image. This is presumably because carbonization in an electric furnace has temperature spots, so that a portion where carbonization proceeds and a portion where the carbonization does not proceed are mixed, and as a result, uniform shrinkage cannot be achieved. Thus, activated carbon with high homogeneity was obtained by using microwaves and superheated steam.

以上、比表面積とSEM観察の比較から明らかなように、マイクロ波と過熱水蒸気が共存する試料室に有機物を投入することで、最短30分以内、最長でも1時間以内程度の短時間で、炭化の前処理や外部加熱の必要が無く、炭化斑、賦活斑の少ない活性炭を製造することが可能となった。   As can be seen from the comparison of specific surface area and SEM observation, carbonization can be carried out in a short time of 30 minutes at the shortest and within 1 hour at the longest by introducing the organic substance into the sample chamber where microwaves and superheated steam coexist. This makes it possible to produce activated carbon with less carbonization and activation spots.

次に、表3に、鋸屑を過熱水蒸気とマイクロ波照射併用処理を行った際の比表面積を示す。   Next, Table 3 shows specific surface areas when sawdust is subjected to superheated steam and microwave irradiation combined treatment.

高温処理では、比表面積の増大が効果的であり、賦活が進んでいることが伺える。   In the high temperature treatment, it can be seen that an increase in specific surface area is effective, and activation is progressing.

次に、表4に、鋸屑のアルゴン中での処理温度に対する収率と比表面積を示す。処理条件は、実施例と同様とした。   Next, Table 4 shows the yield and specific surface area with respect to the processing temperature of sawdust in argon. The processing conditions were the same as in the example.

高温処理の方が比表面積は大きいものの、表3の過熱水蒸気とマイクロ波照射の併用処理例と比較すると、比表面積は小さい値であった。また、水素ガスは、廃衣類等の繊維状有機物の方が、効率よく低温で採取することができた。   Although the specific surface area was higher in the high temperature treatment, the specific surface area was a small value as compared with the combined treatment example of superheated steam and microwave irradiation in Table 3. In addition, hydrogen gas could be collected more efficiently at low temperatures in fibrous organic materials such as waste clothing.

以上詳述したように、本発明は、マイクロ波と過熱水蒸気が共存する空間内に有機物を投入することによる炭化物及びその分解生成物の製造方法及び装置に係るものであり、本発明により、炭化の前処理なく有機物を直接高比表面積化、あるいはガス化する技術を提供することができる。本発明により、水の浄化や回収、分離用のフィルター等に有用である活性炭を短時間で製造し、提供することができる。加えて、本発明では、炭化物間の放電を利用することで、瞬時にガス化が可能なため、水素ガス等の分解生成物の製造にも有用である。   As described in detail above, the present invention relates to a method and an apparatus for producing a carbide and its decomposition product by introducing an organic substance into a space where microwaves and superheated steam coexist. Thus, it is possible to provide a technique for directly increasing the specific surface area or gasifying an organic substance without any pretreatment. According to the present invention, it is possible to produce and provide activated carbon useful for purification, recovery, separation filters, and the like of water in a short time. In addition, in the present invention, since gasification can be instantaneously performed by using the discharge between carbides, it is also useful for the production of decomposition products such as hydrogen gas.

マイクロ波照射及び過熱水蒸気導入に関する従来法と本発明の相違を示す説明図である。It is explanatory drawing which shows the difference with the conventional method regarding microwave irradiation and superheated steam introduction, and this invention. マイクロ波照射及び過熱水蒸気の併用処理した650℃処理炭化物(a−b)及び電気炉中650℃で処理した炭化物(c−d)のSEM写真である。It is a SEM photograph of the 650 degreeC process carbide | carbonized_material (ab) processed together with microwave irradiation and superheated steam, and the carbide | carbonized_material (cd) processed at 650 degreeC in the electric furnace.

Claims (10)

過熱水蒸気処理とマイクロ波処理を併用して有機物から炭化物及び/又は分解生成物を製造する方法であって、1)過熱水蒸気とマイクロ波が共存する炉内の空間に有機物原料を投入すること、2)その際に、炉内に導入した水蒸気をセラミックヒータで加熱して、高精度に温度制御した過熱水蒸気を該ヒータ直上に位置させた有機物原料に供給して所定の温度領域で炭化及び/又は賦活反応を進行させて、あるいは更に生成した炭化物間の放電を利用して、炭化物及び/又は分解生成物を製造すること、を特徴とする炭化物及び/又は分解生成物の製造方法。   A method for producing carbides and / or decomposition products from organic matter by using superheated steam treatment and microwave treatment in combination, 1) introducing an organic raw material into a space in the furnace where superheated steam and microwave coexist, 2) At that time, the steam introduced into the furnace is heated by a ceramic heater, and superheated steam whose temperature is controlled with high accuracy is supplied to the organic raw material positioned immediately above the heater to carbonize and / or in a predetermined temperature range. Alternatively, a method for producing a carbide and / or a decomposition product is characterized by producing a carbide and / or a decomposition product by causing an activation reaction to proceed or further using a discharge between generated carbides. 炉内に導入した水蒸気をセラミックヒータで加熱して、500℃以下、500−700℃、700℃以上の温度で高精度に温度制御した過熱水蒸気を生成し、有機物に供給する、請求項1に記載の炭化物及び/又は分解生成物の製造方法。   The steam introduced into the furnace is heated with a ceramic heater to generate superheated steam with temperature control at a high temperature of 500 ° C. or lower, 500-700 ° C., 700 ° C. or higher and supplied to the organic matter. A method for producing the described carbide and / or decomposition product. 上記有機物が、廃材、石炭、石油残渣、石油コークス、石油ピッチ、藻類、鋸屑、プラスチック、又は廃衣類である、請求項1に記載の炭化物及び/又は分解成生物の製造方法。   The manufacturing method of the carbide | carbonized_material and / or decomposition product of Claim 1 whose said organic substance is a waste material, coal, a petroleum residue, petroleum coke, petroleum pitch, algae, sawdust, plastic, or waste clothing. 有機物から300m/g以上の比表面積を有する炭化物を1回の工程で製造する、請求項1に記載の炭化物の製造方法。 The manufacturing method of the carbide | carbonized_material of Claim 1 which manufactures the carbide | carbonized_material which has a specific surface area of 300 m < 2 > / g or more from organic substance by one process. 500℃以下の過熱水蒸気を有機物と接触させることで有機物の炭化を進行させる、請求項1に記載の炭化物の製造方法。   The manufacturing method of the carbide | carbonized_material of Claim 1 which advances carbonization of organic substance by making superheated steam of 500 degrees C or less contact with organic substance. 600℃以上に過熱水蒸気を昇温させることで炭化物の賦活反応を進行させる、請求項1に記載の炭化物の製造方法。   The manufacturing method of the carbide | carbonized_material of Claim 1 which advances the activation reaction of carbide | carbonized_material by heating up superheated steam to 600 degreeC or more. 700℃以上でマイクロ波照射による炭素物の放電を利用することで、炭化物をガス化させ、少なくとも水素ガスを含む分解生成物を製造する、請求項1に記載の分解生成ガスの製造方法。   The method for producing a cracked product gas according to claim 1, wherein a carbonized product is gasified by utilizing discharge of carbon matter by microwave irradiation at 700 ° C or higher to produce a cracked product containing at least hydrogen gas. 導入した水蒸気を加熱して過熱水蒸気を発生させる過熱水蒸気発生用セラミックヒータ、被処理材料の有機物原料を投入する試料室、該有機物原料にマイクロ波を照射するマイクロ波照射装置を具備した有機物原料から炭化物及び分解生成物を製造する装置であって、過熱水蒸気発生用セラミックヒータがマイクロ波照射装置内に存在し、かつ試料室がヒータ直上に存在すること、それにより、試料室内の被処理材料に供給する過熱水蒸気の温度を高精度に制御し、かつ大容量の過熱水蒸気の発生を容易としたこと、を特徴とする炭化物及び/又は分解生成物製造装置。   From an organic material source equipped with a ceramic heater for generating superheated steam by heating the introduced water vapor, a sample chamber for introducing an organic material of the material to be treated, and a microwave irradiation device for irradiating the organic material with microwaves An apparatus for producing carbides and decomposition products, in which a ceramic heater for superheated steam generation is present in the microwave irradiation apparatus, and the sample chamber is located immediately above the heater, whereby the material to be processed in the sample chamber A carbide and / or decomposition product manufacturing apparatus characterized by controlling the temperature of superheated steam to be supplied with high accuracy and facilitating generation of a large volume of superheated steam. 上記過熱水蒸気発生用セラミックヒータが、マイクロ波吸収性の炭化珪素、又はジルコニア材料で構成される、請求項8に記載の装置。   The apparatus according to claim 8, wherein the ceramic heater for generating superheated steam is made of microwave-absorbing silicon carbide or zirconia material. 上記有機物に供給する過熱水蒸気の温度を所定の温度領域に高精度に制御する過熱水蒸気の温度制御手段を有する、請求項8に記載の装置。   The apparatus according to claim 8, further comprising a superheated steam temperature control means for accurately controlling a temperature of the superheated steam supplied to the organic substance in a predetermined temperature range.
JP2006240719A 2006-09-05 2006-09-05 Method for producing carbide and decomposition products Expired - Fee Related JP5282323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240719A JP5282323B2 (en) 2006-09-05 2006-09-05 Method for producing carbide and decomposition products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240719A JP5282323B2 (en) 2006-09-05 2006-09-05 Method for producing carbide and decomposition products

Publications (2)

Publication Number Publication Date
JP2008063169A true JP2008063169A (en) 2008-03-21
JP5282323B2 JP5282323B2 (en) 2013-09-04

Family

ID=39286192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240719A Expired - Fee Related JP5282323B2 (en) 2006-09-05 2006-09-05 Method for producing carbide and decomposition products

Country Status (1)

Country Link
JP (1) JP5282323B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222429A (en) * 2009-03-23 2010-10-07 Rei Okawa Hydrogen production method and device
GB2476819A (en) * 2010-01-11 2011-07-13 Univ Surrey Method for preparing activated charcoal
JP2012241109A (en) * 2011-05-19 2012-12-10 Shigeki Kobayashi Electric heating type biomass gasification device
JP2013249352A (en) * 2012-05-31 2013-12-12 Hitachi Kyowa Engineering Co Ltd Method and device for producing hydrogen
CN109181781A (en) * 2018-11-01 2019-01-11 大连海洋大学 The method and its used equipment of synthesis gas are prepared using the biomass comprising seaweed
CN110092378A (en) * 2018-12-13 2019-08-06 山东科朗特微波设备有限公司 Microwave carbonization coal activated carbon continuous production line and its control method
WO2021186579A1 (en) * 2020-03-17 2021-09-23 株式会社大木工藝 Orally ingestible adsorbent and method for producing same
CN113735116A (en) * 2021-09-29 2021-12-03 中钢集团鞍山热能研究院有限公司 Method for regulating and controlling high vitrinite caking coal-based activated carbon structure by textile waste

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137890A (en) * 1974-09-27 1976-03-30 Mitsubishi Chem Ind Katsuseitan no seizohoho
JPH09309714A (en) * 1996-05-22 1997-12-02 Heiyou Shoji Kk Active modification of carbonaceous material and apparatus using the same
JP2000034114A (en) * 1998-07-17 2000-02-02 Kubota Corp Carbonization and production of activated carbon
JP2002220201A (en) * 2001-01-19 2002-08-09 Tsutomu Sakurai Method of manufacturing hydrogen from steam by microwave discharge
JP2003212531A (en) * 2002-01-21 2003-07-30 Kumagawa:Kk Activation apparatus for activated carbon
JP2004352595A (en) * 2003-05-30 2004-12-16 Kanac Corp Manufacturing method of activated carbon by microwave heating and its device
JP2005281447A (en) * 2004-03-29 2005-10-13 Osu:Kk Gasification method of organic material or its carbonized matter
JP2006089322A (en) * 2004-09-22 2006-04-06 Hitachi Ltd Hydrogen production method and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137890A (en) * 1974-09-27 1976-03-30 Mitsubishi Chem Ind Katsuseitan no seizohoho
JPH09309714A (en) * 1996-05-22 1997-12-02 Heiyou Shoji Kk Active modification of carbonaceous material and apparatus using the same
JP2000034114A (en) * 1998-07-17 2000-02-02 Kubota Corp Carbonization and production of activated carbon
JP2002220201A (en) * 2001-01-19 2002-08-09 Tsutomu Sakurai Method of manufacturing hydrogen from steam by microwave discharge
JP2003212531A (en) * 2002-01-21 2003-07-30 Kumagawa:Kk Activation apparatus for activated carbon
JP2004352595A (en) * 2003-05-30 2004-12-16 Kanac Corp Manufacturing method of activated carbon by microwave heating and its device
JP2005281447A (en) * 2004-03-29 2005-10-13 Osu:Kk Gasification method of organic material or its carbonized matter
JP2006089322A (en) * 2004-09-22 2006-04-06 Hitachi Ltd Hydrogen production method and device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222429A (en) * 2009-03-23 2010-10-07 Rei Okawa Hydrogen production method and device
GB2476819A (en) * 2010-01-11 2011-07-13 Univ Surrey Method for preparing activated charcoal
GB2476819B (en) * 2010-01-11 2014-05-07 Univ Surrey Activated charcoal
JP2012241109A (en) * 2011-05-19 2012-12-10 Shigeki Kobayashi Electric heating type biomass gasification device
JP2013249352A (en) * 2012-05-31 2013-12-12 Hitachi Kyowa Engineering Co Ltd Method and device for producing hydrogen
CN109181781A (en) * 2018-11-01 2019-01-11 大连海洋大学 The method and its used equipment of synthesis gas are prepared using the biomass comprising seaweed
CN109181781B (en) * 2018-11-01 2020-08-18 大连海洋大学 Method for preparing synthesis gas by utilizing biomass containing seaweed and equipment adopted by method
CN110092378A (en) * 2018-12-13 2019-08-06 山东科朗特微波设备有限公司 Microwave carbonization coal activated carbon continuous production line and its control method
WO2021186579A1 (en) * 2020-03-17 2021-09-23 株式会社大木工藝 Orally ingestible adsorbent and method for producing same
CN113735116A (en) * 2021-09-29 2021-12-03 中钢集团鞍山热能研究院有限公司 Method for regulating and controlling high vitrinite caking coal-based activated carbon structure by textile waste
CN113735116B (en) * 2021-09-29 2023-02-10 中钢集团鞍山热能研究院有限公司 Method for regulating and controlling high vitrinite caking coal-based activated carbon structure by textile waste

Also Published As

Publication number Publication date
JP5282323B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5282323B2 (en) Method for producing carbide and decomposition products
Guerrero et al. Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity
Namazi et al. Benefits of microwave heating method in production of activated carbon
Xiqiang et al. Temperature rise and weight loss characteristics of wheat straw under microwave heating
JP4266711B2 (en) Method and apparatus for producing activated carbon by microwave heating
CN103846273A (en) Method and system for treating circuit board
KR20140089905A (en) A method for preparing absorbents using waste printed circuit board and absorbents prepared from it
JP4308740B2 (en) Hybrid reactor and high-functional material manufacturing method using the same
KR20070089037A (en) A method and apparatus for bamboo activated carbon
KR100979641B1 (en) Microwave assisted treatment of carbon foam
JP3506893B2 (en) Method for producing carbide from waste solid fuel
Iniesta et al. Yields and CO2 reactivity of chars from almond shells obtained by a two heating step carbonisation process. Effect of different chemical pre-treatments and ash content
KR101857609B1 (en) Porous activated carbon using radiation technology and method of preparing the same
RU2490207C2 (en) Method of obtaining activated coal
JP4487017B1 (en) Method and apparatus for producing biomass carbon black using biomass as raw material
RU2555468C2 (en) Heat treatment of fibrous carbon-bearing materials
KR101306237B1 (en) Apparatus for manufacturing bamboo activated carbon
DE102009005039A1 (en) Plasma-assisted production of water gas and activated carbon from wood using microwaves
JP3501925B2 (en) Method for producing carbide from waste solid fuel
KR101704768B1 (en) Gasifier using pyroelectric effect
KR20170018134A (en) Manufacturing method of carbon black by thermosetting plastic waste
JP4138294B2 (en) Process for producing activated carbon fiber for flue gas desulfurization
RU2785096C1 (en) Gas generator set and method for gas generation for producing hydrogen-containing synthesis gas
RU2768879C1 (en) Reactor for activating a micro- and mesoporous carbon material
JP2010536536A (en) Method and apparatus for pyrolytic conversion of combustible materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130508

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees