JP2010222429A - Hydrogen production method and device - Google Patents

Hydrogen production method and device Download PDF

Info

Publication number
JP2010222429A
JP2010222429A JP2009069512A JP2009069512A JP2010222429A JP 2010222429 A JP2010222429 A JP 2010222429A JP 2009069512 A JP2009069512 A JP 2009069512A JP 2009069512 A JP2009069512 A JP 2009069512A JP 2010222429 A JP2010222429 A JP 2010222429A
Authority
JP
Japan
Prior art keywords
reactor
carbon material
water vapor
space
swirl flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009069512A
Other languages
Japanese (ja)
Other versions
JP5334638B2 (en
Inventor
Shinichi Inage
真一 稲毛
Toshio Ogura
利夫 小倉
Tomokatsu Oguro
友勝 小黒
Masumi Kuga
真澄 久我
Rei Okawa
令 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kyowa Engineering Co Ltd
Original Assignee
Hitachi Kyowa Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kyowa Engineering Co Ltd filed Critical Hitachi Kyowa Engineering Co Ltd
Priority to JP2009069512A priority Critical patent/JP5334638B2/en
Publication of JP2010222429A publication Critical patent/JP2010222429A/en
Application granted granted Critical
Publication of JP5334638B2 publication Critical patent/JP5334638B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for hydrogen production, capable of further improving reaction efficiency between a carbon material and steam and therefore hydrogen production efficiency. <P>SOLUTION: The hydrogen production method comprises: applying a microwave to the carbon material 2 and the steam 1 fed to a reactor 10; and heating the carbon material with the microwave and inducing its reaction with the steam so as to produce hydrogen and carbon monoxide. In the hydrogen production process, a rotational flow 18 of the steam is formed in the reactor 10 so as to secure an air retention time of the carbon material in the steam. The microwave is applied to the carbon material and the steam in an air retention space so as to produce hydrogen and carbon monoxide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、カーボンと水蒸気とを加熱反応させることにより水素を生成する水素製造方法及び装置に関する。   The present invention relates to a hydrogen production method and apparatus for producing hydrogen by heating and reacting carbon and water vapor.

図2には、本願発明者らが先に提案した水素製造装置を示す。この従来技術は、特開2006−89322号公報に開示されている。この水素製造装置によれば、反応器20の上部には、蒸気配管21とカーボン供給口23とが設けられる。カーボン供給口23を介して供給されるカーボン2と蒸気配管21を介して供給される水蒸気1は、反応器20内に設置された多孔板24上に保持される。マイクロ波27は、導波管26を経て反応器20内に照射される。マイクロ波照射によって、炭素材料は自己加熱し1000℃程度まで昇温する。1000℃の条件下では、炭素と水蒸気は以下のように反応し、水素及び一酸化炭素を発生する。この水素及び一酸化炭素は、符号28に示すように反応器20の下部に設けた排出ポート22を介して外部に放出される。なお、符号の25は、金属遮蔽板である。   FIG. 2 shows a hydrogen production apparatus previously proposed by the present inventors. This prior art is disclosed in Japanese Patent Laid-Open No. 2006-89322. According to this hydrogen production apparatus, the upper part of the reactor 20 is provided with the steam pipe 21 and the carbon supply port 23. Carbon 2 supplied through the carbon supply port 23 and water vapor 1 supplied through the steam pipe 21 are held on a porous plate 24 installed in the reactor 20. The microwave 27 is irradiated into the reactor 20 through the waveguide 26. By the microwave irradiation, the carbon material is self-heated and heated up to about 1000 ° C. Under the condition of 1000 ° C., carbon and water vapor react as follows to generate hydrogen and carbon monoxide. The hydrogen and carbon monoxide are discharged to the outside through a discharge port 22 provided at the lower portion of the reactor 20 as indicated by reference numeral 28. Reference numeral 25 denotes a metal shielding plate.

C+HO→CO+H C + H 2 O → CO + H 2

特開2006−89322号公報JP 2006-89322 A

上記した従来方式は、炭素材料を多孔板上に堆積した状態で水蒸気を流通させる形式であり、反応器を小型にして高効率に水素を発生させることが可能である。ただし、炭素材料同士が接触する箇所においては、蒸気が接触しないことも考えられ、その分だけ、反応面積が犠牲になることも考えられる。   The conventional system described above is a form in which water vapor is circulated in a state where a carbon material is deposited on a perforated plate, and it is possible to generate hydrogen with high efficiency by reducing the size of the reactor. However, it is conceivable that the vapor does not come into contact at the place where the carbon materials are in contact with each other, and the reaction area may be sacrificed accordingly.

また、マイクロ波により加熱された炭素材料のうち反応器内壁に接する箇所では、壁材による吸熱により温度が低下し、その部分での反応が抑制されることも考えられる。   Moreover, in the location which contact | connects the reactor inner wall among the carbon materials heated by the microwave, it is also considered that temperature falls by the heat absorption by a wall material and the reaction in that part is suppressed.

本願発明は、上記課題を解決して、炭素材料と水蒸気との反応効率ひいては水素発生効率をさらに向上させることのできる水素製造方法及び装置を提供することにある。   The present invention is to solve the above problems and provide a hydrogen production method and apparatus capable of further improving the reaction efficiency between the carbon material and water vapor, and thus the hydrogen generation efficiency.

本願発明は、反応器内に供給される炭素材料と水蒸気とにマイクロ波を照射し、前記マイクロ波により前記炭素材料を加熱して前記水蒸気と反応させることにより、水素と一酸化炭素を発生させる水素製造方法において、
反応器内で前記水蒸気の旋回流を形成し、この水蒸気旋回流により前記炭素材料の水蒸気内での空中滞留時間を確保し、この空中滞留領域で前記炭素材料及び水蒸気にマイクロ波を照射することにより、水素と一酸化炭素を発生させることを特徴とする。
The present invention generates hydrogen and carbon monoxide by irradiating the carbon material and water vapor supplied into the reactor with microwaves and heating the carbon material by the microwaves to react with the water vapor. In the hydrogen production method,
Forming a swirl flow of the water vapor in the reactor, ensuring the air residence time in the water vapor of the carbon material by the water vapor swirl flow, and irradiating the carbon material and water vapor in the air stay region To generate hydrogen and carbon monoxide.

上記水素製造方法を実施するための装置を、次のように構成する。   An apparatus for carrying out the hydrogen production method is configured as follows.

炭素材料と水蒸気とが供給される水素製造用の反応器と、反応器内に供給される炭素材料と水蒸気とにマイクロ波を照射するマイクロ波照射装置とを備える。さらに、反応器内で水蒸気の旋回流を形成し、この水蒸気旋回流により反応器内での炭素材料へのマイクロ波照射に必要な空中滞留時間を確保するサイクロン部を有する。また、前記マイクロ波照射装置は、反応器内の炭素材料の空中滞留領域にマイクロ波を照射するように設けられている。   A reactor for producing hydrogen to which a carbon material and water vapor are supplied, and a microwave irradiation device for irradiating the carbon material and water vapor supplied into the reactor with microwaves. In addition, it has a cyclone section that forms a swirling flow of water vapor in the reactor and secures the air residence time necessary for microwave irradiation to the carbon material in the reaction vessel by this water vapor swirling flow. Further, the microwave irradiation device is provided so as to irradiate microwaves to a region where the carbon material in the reactor stays in the air.

本願発明によれば、粉体或いは粒状体の炭素材料は、水蒸気旋回流により反応器内で空中滞留(空中浮動)した状態を作り出すことが可能となり、またその空中滞留に必要時間、すなわち水素発生のための水蒸気及び炭素材料の加熱反応(マイクロ波照射)に必要な空中滞留時間を確保することができる。   According to the present invention, the carbon material in the form of powder or granules can be made to stay in the reactor (floating in the air) by the steam swirl flow, and the time required for the air residence, that is, hydrogen generation Therefore, it is possible to ensure the residence time in the air necessary for the heating reaction (microwave irradiation) of water vapor and carbon material.

本願発明によれば、マイクロ波照射時に、粉体或いは粒状体の炭素材料が空中滞留状態にあるので、炭素材料同士の接触や炭素材料と反応器壁面との接触を極力なくし、また、接触したとしても直ぐに離れるので、炭素材料の粉体や粒状体が水蒸気とほとんど全表面積に対して加熱反応することができ、反応効率が向上し、高効率の水素製造が可能になる。   According to the present invention, since the powder or granular carbon material is in the air at the time of microwave irradiation, the contact between the carbon materials and the contact between the carbon material and the reactor wall surface are minimized and contacted. In this case, the carbon material powders and granules can react with water vapor almost with respect to the entire surface area, improving the reaction efficiency and enabling highly efficient hydrogen production.

本発明の第1実施例に係る水素製造装置の概略断面構成図。1 is a schematic cross-sectional configuration diagram of a hydrogen production apparatus according to a first embodiment of the present invention. 従来の水素製造装置の一例を示した概略断面構成図。The schematic cross-section block diagram which showed an example of the conventional hydrogen production apparatus. 炭素材料へマイクロ波を照射して加熱試験を行った実験結果を示す図。The figure which shows the experimental result which irradiated the microwave to the carbon material, and performed the heating test. 上記実施例による水素及び一酸化炭素の生成試験結果を示す図。The figure which shows the production | generation test result of hydrogen and carbon monoxide by the said Example. 各種物質の比誘電率を比較して示す図。The figure which compares and shows the dielectric constant of various substances. 本発明の第2実施例に係る水素製造装置の概略断面構成図。The schematic cross section block diagram of the hydrogen production apparatus which concerns on 2nd Example of this invention. 本発明の第3実施例に係る水素製造装置の概略断面構成図。The schematic cross section block diagram of the hydrogen production apparatus which concerns on 3rd Example of this invention.

本発明の実施例を図1及び図6ないし図7を用いて説明する。
[実施例1]
図1は、本発明の第1実施例に係る水素製造装置の構成図である。
An embodiment of the present invention will be described with reference to FIG. 1 and FIGS.
[Example 1]
FIG. 1 is a configuration diagram of a hydrogen production apparatus according to a first embodiment of the present invention.

本例のサイクロン型反応器10は、縦型の筒型形状をなし、その内部の上部に、反応器10のハウジング10A上部の内径よりも小径な縦穴状の筒状ダクト11が設けられる。この筒状ダクト11の外周と反応器10のハウジング上部内周との間の環状空間10Bにより、サイクロン部の水蒸気旋回流18を形成するための空間10Bが形成される。   The cyclone reactor 10 of this example has a vertical cylindrical shape, and a vertical hole-shaped cylindrical duct 11 having a smaller diameter than the inner diameter of the upper portion of the housing 10A of the reactor 10 is provided in the upper part of the inside. A space 10B for forming a steam swirl flow 18 in the cyclone portion is formed by the annular space 10B between the outer periphery of the cylindrical duct 11 and the inner periphery of the upper portion of the housing of the reactor 10.

反応器10の上部周壁或いは上部に、水蒸気1と粉体或いは粒状体の炭素材料2を反応器10内に射出する原料供給ポート19が設けられる。炭素材料2は、微粉炭などであり、バイオマス等からも製造可能である。   A raw material supply port 19 for injecting water vapor 1 and powder or granular carbon material 2 into the reactor 10 is provided on the upper peripheral wall or upper portion of the reactor 10. The carbon material 2 is pulverized coal or the like, and can be manufactured from biomass or the like.

水蒸気の供給配管13には、炭素材料搬送用の配管14の供給口15が接続され、炭素材料2を、反応器10内に供給される前の搬送過程において、水蒸気と合流させる配管系が構成されている。合流した水蒸気1と炭素材料2は、原料供給ポート19を介して一緒に反応器10内の水蒸気旋回流形成用空間10B内に射出される。   A supply port 15 of a carbon material transfer pipe 14 is connected to the water supply pipe 13, and a pipe system is formed to join the carbon material 2 with water vapor in the transfer process before being supplied into the reactor 10. Has been. The merged water vapor 1 and carbon material 2 are injected together through a raw material supply port 19 into a water vapor swirl flow forming space 10B in the reactor 10.

反応器10内の旋回流形成用空間10B及び筒状ダクト11と反応器10の内底との間に、マイクロ波17の照射領域10Cが設けられる。   An irradiation region 10 </ b> C of the microwave 17 is provided between the swirling flow forming space 10 </ b> B and the cylindrical duct 11 in the reactor 10 and the inner bottom of the reactor 10.

マイクロ波17は、マイクロ波照射装置30の導波管16を介して金属遮蔽板4に囲まれた反応器10に照射される。金属遮蔽板4は、反応器周囲に漏洩しようとするマイクロ波を反応器10に反射し、反射マイクロ波も炭素材料に吸収させる役割を果たす。金属遮蔽板4は、既存の種々の部材を使用することが可能である。   The microwave 17 is irradiated to the reactor 10 surrounded by the metal shielding plate 4 through the waveguide 16 of the microwave irradiation device 30. The metal shielding plate 4 plays a role of reflecting the microwave to be leaked around the reactor to the reactor 10 and absorbing the reflected microwave by the carbon material. The metal shielding plate 4 can use various existing members.

マイクロ波17の照射により炭素材料2が加熱され、この炭素材料が水蒸気1と反応して生成されたガス28(水素及び一酸化炭素)が筒状ダクト11を介して反応器外に導かれる構造を有している。   A structure in which the carbon material 2 is heated by irradiation of the microwave 17 and a gas 28 (hydrogen and carbon monoxide) generated by reacting the carbon material with the water vapor 1 is led out of the reactor through the cylindrical duct 11. have.

ここで、反応器10の材質、仕様の一例について説明する。   Here, an example of the material and specifications of the reactor 10 will be described.

一般に誘電体がマイクロ波電磁場中に置かれると、誘電体を構成した双極子が電界の極性変化により、激しく振動する。この際に双極子振動が外部電界に追従できなくなると熱が発生し、誘電体の温度を上昇させる。単位体積あたりの誘電体の発熱量Qは、以下式となる。   In general, when a dielectric is placed in a microwave electromagnetic field, the dipole constituting the dielectric vibrates violently due to a change in the polarity of the electric field. At this time, if the dipole vibration becomes unable to follow the external electric field, heat is generated and the temperature of the dielectric is increased. The calorific value Q of the dielectric per unit volume is expressed by the following equation.

Q=2π×ε×f×E×ε×tanδ
ここで、εは真空の誘電率、fはマイクロ波周波数、Eは電界強度、εは比誘電率、tanδは誘電正接である。特にε×tanδを誘電損失と呼ぶ。図5には、各種物質の比誘電率の比較を示す。仮に反応器10の材質を炭素に近い比誘電率を選択した場合には、炭素同様にマイクロ波を吸収し反応器自身が加熱されてしまうので、好ましくない。したがって、本実施例では、マイクロ波は、炭素材料を効率良く加熱するための周波数を選択するため、反応器10の材質は、アルミナやセラミックスのように、炭素と比誘電率ε×tanδ、つまり誘電損失が顕著に小さい高融点物質で構成することが好ましい。アルミナやセラミックスを使用すれば、マイクロ波を炭素材料のみに選択的に吸収加熱することが可能となる。
Q = 2π × ε 0 × f × E 2 × ε r × tan δ
Here, ε 0 is the dielectric constant of vacuum, f is the microwave frequency, E is the electric field strength, ε r is the relative dielectric constant, and tan δ is the dielectric loss tangent. In particular, ε r × tan δ is called dielectric loss. FIG. 5 shows a comparison of relative dielectric constants of various substances. If the relative dielectric constant close to carbon is selected as the material of the reactor 10, it is not preferable because the microwave is absorbed and the reactor itself is heated like carbon. Therefore, in this embodiment, since the microwave selects a frequency for efficiently heating the carbon material, the material of the reactor 10 is carbon and a relative dielectric constant ε r × tan δ, such as alumina or ceramics. In other words, it is preferable to use a high melting point material having a remarkably small dielectric loss. If alumina or ceramics is used, the microwave can be selectively absorbed and heated only by the carbon material.

例えば、マイクロ波照射装置は、50〜100W程度であり、周波数が2,500MHzである。   For example, the microwave irradiation apparatus is about 50 to 100 W and the frequency is 2,500 MHz.

サイクロン部の仕様は様々であり、一例をあげれば、例えば、反応器10の縦の長さが1500mm、内径が530mm、ダクト11の外径が210mm、ダクト長が350 mm程度である。水蒸気の旋回流18を形成するためには、原料供給ポート19は、その噴射方向が反応器の径方向に対して斜めの角度をなすように配置され、例えば水蒸気を流量1.5m3/sで射出する。 The specifications of the cyclone section are various. For example, the vertical length of the reactor 10 is 1500 mm, the inner diameter is 530 mm, the outer diameter of the duct 11 is 210 mm, and the duct length is about 350 mm. In order to form the swirl flow 18 of the steam, the raw material supply port 19 is arranged so that the injection direction forms an oblique angle with respect to the radial direction of the reactor, for example, the steam is flowed at a flow rate of 1.5 m 3 / s. Eject.

マイクロ波17の照射領域10Cの容量は、炭素材料2が1000℃程度に加熱され水蒸気1と反応して水素ガスと一酸化炭素を発生できる空中滞留時間を確保できるように設定される。例えば、50〜100W程度のマイクロ波の照射条件において、10秒以上の滞空時間を確保できる容量に設定すればよい。図3には、本発明者らが実験で上記マイクロ波を微粉炭に照射して加熱した時の、カーボンの温度の時間変化を示す。   The capacity of the irradiation region 10C of the microwave 17 is set so that the carbon material 2 can be heated to about 1000 ° C. and can react with the water vapor 1 to generate an air residence time during which hydrogen gas and carbon monoxide can be generated. For example, it may be set to a capacity capable of securing a dwell time of 10 seconds or more under microwave irradiation conditions of about 50 to 100 W. FIG. 3 shows the time change of the temperature of carbon when the present inventors irradiate and heat pulverized coal with the above microwaves in an experiment.

マイクロ波のパワーに依存するが、本実験結果から、10秒以下でカーボン温度が100℃を超えていることが判る。このような急速な昇温過程は、通常の熱伝達に依存する加熱方法では困難であり、本実施例により効率良くカーボンが加熱されることが判る。   Although it depends on the power of the microwave, it can be seen from the results of this experiment that the carbon temperature exceeds 100 ° C. in 10 seconds or less. Such a rapid temperature raising process is difficult with a heating method that relies on normal heat transfer, and it can be seen that carbon is efficiently heated by this embodiment.

さらに、図4は、本発明者による、炭素材料と水蒸気の熱反応からの水素及び一酸化炭素の生成試験結果を示すものである。実験条件が制定した10(無次元時間)以降は、ガス生成も安定し、反応により、時間に対して一定流量割合で、水素及び一酸化炭素が生成していることを確認している。   Furthermore, FIG. 4 shows the production test results of hydrogen and carbon monoxide from the thermal reaction between a carbon material and water vapor by the present inventor. After 10 (dimensionless time) established by the experimental conditions, gas generation is stable, and it has been confirmed that hydrogen and carbon monoxide are generated at a constant flow rate ratio with respect to time.

上記構成を用いた水素製造方法を以下に説明する。   A method for producing hydrogen using the above configuration will be described below.

水蒸気1が蒸気配管13を介して反応器10に搬送される過程で、カーボン供給口15から炭素材料2が蒸気配管13に投入され、炭素材料2を含む水蒸気1が原料供給ポート19を介して反応器10内の環状空間(旋回流形成空間)10Bに供給される。   In the process of transporting the steam 1 to the reactor 10 via the steam pipe 13, the carbon material 2 is introduced into the steam pipe 13 from the carbon supply port 15, and the steam 1 containing the carbon material 2 passes through the raw material supply port 19. An annular space (swirl flow forming space) 10B in the reactor 10 is supplied.

反応器10内の環状空間で炭素材料2を含む水蒸気の旋回流18が形成される。この水蒸気旋回流18及び炭素材料2は、筒状ダクト11の外周に沿いながら下降していきマイクロ波照射空間10Cに至る。マイクロ波照射空間10Cでは、炭素材料2は、水蒸気旋回流の力により水蒸気内での空中滞留時間(例えば10秒前後或いはそれ以上)が確保される。この空中滞留状態(空中浮動状態)で炭素材料及び水蒸気にマイクロ波を照射することにより、炭素材料を1000℃程度まで加熱し、炭素材料が水蒸気と加熱反応することにより、既述した式に基づいて水素と一酸化炭素を発生させる。   A swirl flow 18 of water vapor containing the carbon material 2 is formed in the annular space in the reactor 10. The water vapor swirling flow 18 and the carbon material 2 descend along the outer periphery of the cylindrical duct 11 and reach the microwave irradiation space 10C. In the microwave irradiation space 10C, the carbon material 2 has an air residence time (for example, around 10 seconds or more) in the water vapor by the force of the water vapor swirling flow. By irradiating the carbon material and water vapor with microwaves in this air residence state (floating state in the air), the carbon material is heated to about 1000 ° C., and the carbon material is heated and reacted with the water vapor. To generate hydrogen and carbon monoxide.

生成した水素及び一酸化炭素は、余剰の水蒸気と共にガス28としてダクト11を介してサイクロン型反応器10の上部より、反応器外(反応器下流)のガス搬送配管に移送される。   The generated hydrogen and carbon monoxide are transferred as gas 28 together with surplus water vapor from the upper part of the cyclone reactor 10 through the duct 11 to the gas conveyance pipe outside the reactor (downstream of the reactor).

本実施例によれば、次のような効果を奏する。
(1)マイクロ波照射時に、微粉炭同士の接触や微粉炭と反応器壁面との接触を極力なくし、また、接触したとしても直ぐに離れるので、微粉炭を均一加熱することが可能になり、微粉炭の水蒸気への加熱反応面積を最大化することで、反応効率が向上し、高効率の水素製造が可能になる。
(2)旋回流水蒸気により微粉炭が一定時間保持される空中滞留空間をマイクロ波を吸収しない材料にて形成することで、マイクロ波は全て炭素材料(微粉炭)に吸収され、炭素材料の加熱効率を高めることができる。
(3)反応器に投与される水蒸気や炭素材料は、単位時間あたりの搬送量を流体速度から求めることができ、炭素材料の量的管理を行うことができる。
[実施例2]
図6に本発明の第2実施例に係る水素製造装置の概略断面構成図を示す。
According to the present embodiment, the following effects can be obtained.
(1) During microwave irradiation, contact between pulverized coals and contact between the pulverized coal and the reactor wall surface is minimized, and even if contacted, the pulverized coal can be heated uniformly. Maximizing the heating reaction area of charcoal to water vapor improves the reaction efficiency and enables highly efficient hydrogen production.
(2) By forming an air retention space where pulverized coal is held for a certain period of time by swirling steam with a material that does not absorb microwaves, all the microwaves are absorbed by the carbon material (pulverized coal) and the carbon material is heated. Efficiency can be increased.
(3) For water vapor and carbon material administered to the reactor, the transport amount per unit time can be determined from the fluid velocity, and the carbon material can be quantitatively managed.
[Example 2]
FIG. 6 shows a schematic cross-sectional configuration diagram of a hydrogen production apparatus according to the second embodiment of the present invention.

図6において、第1実施例と同一の構成要素に同一の符号を付してある。反応器10の構造、原料供給系及びプラズマ照射系の構成は、第1実施例と同一であるので、その説明を省略する。   In FIG. 6, the same components as those in the first embodiment are denoted by the same reference numerals. Since the structure of the reactor 10, the structure of the raw material supply system, and the plasma irradiation system are the same as those in the first embodiment, description thereof is omitted.

本実施例において、第1実施例と相違する点は、反応器10のガス排出系に熱交換器30、水凝縮器31、フィルター33を設けた点にある。   The present embodiment is different from the first embodiment in that a heat exchanger 30, a water condenser 31, and a filter 33 are provided in the gas discharge system of the reactor 10.

凝縮器31にて、ガス排出系は水素ガス移送配管35と水排出系配管36とに分岐される。   In the condenser 31, the gas discharge system is branched into a hydrogen gas transfer pipe 35 and a water discharge system pipe 36.

反応器10外に移送されるガス28(水素ガス及び一酸化炭素)は、その移送過程で、熱交換器30と熱交換して100℃以下に冷却される。その際に交換した熱は、水蒸気1を発生させるための熱源として活用することも可能である。ガス28中の残留水蒸気は、凝縮器31にて冷却され残留炭素を含有した凝縮水32となる。凝縮水32からフィルター33を介して固形分の残留炭素が除去され、濾過された水34は、反応用水蒸気1を生成するのに再利用される。   The gas 28 (hydrogen gas and carbon monoxide) transferred to the outside of the reactor 10 is cooled to 100 ° C. or less by exchanging heat with the heat exchanger 30 in the transfer process. The heat exchanged at that time can be used as a heat source for generating water vapor 1. Residual water vapor in the gas 28 is cooled by a condenser 31 to become condensed water 32 containing residual carbon. Residual carbon is removed from the condensed water 32 through the filter 33, and the filtered water 34 is reused to produce the reaction water vapor 1.

本実施例によれば、水素ガス生成後の回収水を反応用の蒸気生成用の水として再利用でき、また、熱交換器30で回収した熱も蒸気生成用の熱として利用できるので、省エネルギーを図ることができる。   According to the present embodiment, the recovered water after hydrogen gas generation can be reused as water for reaction steam generation, and the heat recovered by the heat exchanger 30 can also be used as heat for steam generation. Can be achieved.

なお、本実施例では、縦型反応器を例示したが、水素製造は、横型反応器であってもよい。すなわち、横型反応器内で水平方向に進行する水蒸気旋回流を形成して本発明を実行することができる。
[実施例3]
図7に本発明の第3実施例に係る水素製造装置の概略断面構成図を示す。
In addition, although the vertical reactor was illustrated in the present Example, the hydrogen production may be a horizontal reactor. That is, the present invention can be carried out by forming a steam swirl flow that proceeds in the horizontal direction in a horizontal reactor.
[Example 3]
FIG. 7 shows a schematic cross-sectional configuration diagram of a hydrogen production apparatus according to the third embodiment of the present invention.

図7において、第1実施例と同一の構成要素に同一の符号を付してある。反応器10の構造、原料供給系の構成は、第1実施例と同一であるので、その説明を省略する。   In FIG. 7, the same components as those in the first embodiment are denoted by the same reference numerals. Since the structure of the reactor 10 and the structure of the raw material supply system are the same as those in the first embodiment, description thereof is omitted.

本実施例において、第1実施例と相違する点は、筒状ダクト11Aの外周側に炭素材料を捕集するフィルターを設ける点、及び、マイクロ波照射装置30の導波管と金属遮蔽板を一体構造とした金属遮蔽部4aを設け、マイクロ波照射空間10Cを反応器10の縦方向に拡大した点にある。   In this embodiment, the difference from the first embodiment is that a filter for collecting the carbon material is provided on the outer peripheral side of the cylindrical duct 11A, and the waveguide and the metal shielding plate of the microwave irradiation device 30 are provided. The metal shielding part 4a having an integral structure is provided, and the microwave irradiation space 10C is enlarged in the vertical direction of the reactor 10.

筒状ダクト11Aの外側面には、炭素材料の粒子径より小さい孔が分布したフィルターが設けられている。このフィルターが反応器内部の炭素材料を捕集するため、反応器下流側に炭素材料が流出することを抑制できる。また、反応器下流側へ炭素材料が流出しないため、反応器の下流側には、反応器から排出される水素と一酸化炭素を二酸化炭素と水に変化させるシフト反応システムを設けることが可能である。同時に、反応器下流側に流出したエネルギーをシフト反応システムに利用することが可能である。なお、前記フィルターは、筒状ダクト11Aの外周面だけでなく、底面にも装着することで、反応器内部の炭素材料をほぼ全量捕集できる。   A filter in which pores smaller than the particle diameter of the carbon material are distributed is provided on the outer surface of the cylindrical duct 11A. Since this filter collects the carbon material inside the reactor, the carbon material can be prevented from flowing out to the downstream side of the reactor. In addition, since the carbon material does not flow out to the downstream side of the reactor, a shift reaction system that changes hydrogen and carbon monoxide discharged from the reactor into carbon dioxide and water can be provided on the downstream side of the reactor. is there. At the same time, it is possible to use the energy flowing out downstream of the reactor in the shift reaction system. The filter can be attached not only to the outer peripheral surface of the cylindrical duct 11A but also to the bottom surface, so that almost all of the carbon material inside the reactor can be collected.

そして、図6に示すマイクロ波照射装置30の導波管16と金属遮蔽板4を図7のように一体構造4aとし、マイクロ波照射空間10Cを反応器10の縦方向に拡大することで、マイクロ波を筒状ダクト11Aに照射させる。筒状ダクト11Aにはフィルターが設けられているため、フィルターに捕集された炭素材料も全てガス化できる。   And the waveguide 16 and the metal shielding plate 4 of the microwave irradiation apparatus 30 shown in FIG. 6 are made into the integral structure 4a as shown in FIG. A microwave is irradiated to the cylindrical duct 11A. Since the cylindrical duct 11A is provided with a filter, all of the carbon material collected by the filter can be gasified.

なお、筒状ダクト11Aにフィルターを設ける代わりに、筒状ダクトの側面に設けられた孔を炭素材料より小さい孔径としても、フィルターと同様の効果を得ることが出来る。   In addition, instead of providing a filter in the cylindrical duct 11A, the same effect as that of the filter can be obtained even if the hole provided in the side surface of the cylindrical duct has a smaller diameter than the carbon material.

本発明は、バイオマスからも製造可能な炭素材料を水素生成の原料とすることも可能である。   In the present invention, a carbon material that can also be produced from biomass can be used as a raw material for hydrogen generation.

1…水蒸気、2…炭素材料、10…反応器、10A…反応器ハウジング、10B…旋回流形成用空間、10C…マイクロ波照射空間、11…筒状ダクト、19…原料投入口、17…マイクロ波、30…マイクロ照射装置、30…熱交換器、31…凝縮器、33…フィルター。 DESCRIPTION OF SYMBOLS 1 ... Steam, 2 ... Carbon material, 10 ... Reactor, 10A ... Reactor housing, 10B ... Space for forming swirl flow, 10C ... Microwave irradiation space, 11 ... Cylindrical duct, 19 ... Raw material inlet, 17 ... Micro Wave, 30 ... micro irradiation device, 30 ... heat exchanger, 31 ... condenser, 33 ... filter.

Claims (8)

反応器内に供給される炭素材料と水蒸気とにマイクロ波を照射し、前記マイクロ波により前記炭素材料を加熱して前記水蒸気と反応させることにより、水素と一酸化炭素を発生させる水素製造方法において、
反応器内で前記水蒸気の旋回流を形成し、この水蒸気旋回流により前記炭素材料の水蒸気内での空中滞留時間を確保し、この空中滞留領域で前記炭素材料及び水蒸気にマイクロ波を照射することにより、水素と一酸化炭素を発生させることを特徴とする水素製造方法。
In a hydrogen production method for generating hydrogen and carbon monoxide by irradiating a carbon material and water vapor supplied into a reactor with microwaves, heating the carbon material by the microwaves and reacting with the water vapor. ,
Forming a swirl flow of the water vapor in the reactor, ensuring the air residence time in the water vapor of the carbon material by the water vapor swirl flow, and irradiating the carbon material and water vapor in the air stay region To generate hydrogen and carbon monoxide.
前記炭素材料は、炭素及び炭素含有物質の少なくとも一つからなる粉体或いは粒状体であり、
この炭素材料を、前記反応器内に供給される前の搬送過程において、前記水蒸気と合流させ、合流した前記水蒸気と炭素材料を一緒に反応器内の水蒸気旋回流形成空間内に射出させる工程を有する請求項1記載の水素製造方法。
The carbon material is a powder or granule made of at least one of carbon and a carbon-containing substance,
The carbon material is combined with the water vapor in a conveying process before being supplied into the reactor, and the combined water vapor and the carbon material are injected together into a water vapor swirl flow formation space in the reactor. The method for producing hydrogen according to claim 1.
炭素材料と水蒸気とが供給される水素製造用の反応器と、反応器内に供給される炭素材料と水蒸気とにマイクロ波を照射するマイクロ波照射装置とを備える水素製造装置において、
前記反応器内で前記水蒸気の旋回流を形成し、この水蒸気旋回流により前記反応器内での前記炭素材料への前記マイクロ波照射に必要な空中滞留時間を確保するサイクロン部を有し、
前記マイクロ波照射装置は、前記反応器内の前記炭素材料の空中滞留領域に前記マイクロ波を照射するように設けられていることを特徴とする水素製造装置。
In a hydrogen production apparatus comprising a hydrogen production reactor to which a carbon material and water vapor are supplied, and a microwave irradiation apparatus for irradiating the carbon material and water vapor to be supplied into the reactor with microwaves,
Forming a swirl flow of the water vapor in the reactor, and having a cyclone section for ensuring a residence time in air necessary for the microwave irradiation to the carbon material in the reactor by the water vapor swirl flow;
The said microwave irradiation apparatus is provided so that the said microwave may be irradiated to the air residence area | region of the said carbon material in the said reactor, The hydrogen production apparatus characterized by the above-mentioned.
前記反応器内の上部には、反応器のハウジング上部の内径よりも小径な縦穴状の筒状ダクトが設けられ、この筒状ダクトの外周と前記反応器のハウジング上部内周との間の環状空間により、前記サイクロン部の水蒸気旋回流形成用の空間が形成され、
前記反応器の上部に前記水蒸気と前記炭素材料を反応器内に射出する原料供給ポートが設けられ、
前記反応器内の前記水蒸気旋回流形成用の空間と反応器内底との間に、前記炭素材料の空中滞留時間を確保して前記マイクロ波を前記炭素材料に照射するマイクロ波照射空間が設けられ、
前記マイクロ波照射により前記炭素材料を加熱して水蒸気と反応させて生成された水素及び一酸化炭素が、前記筒状ダクトを介して反応器外に導かれる構造を有している請求項3記載の水素製造装置。
In the upper part of the reactor, a cylindrical duct having a vertical hole shape smaller than the inner diameter of the upper part of the housing of the reactor is provided, and an annular shape between the outer periphery of the cylindrical duct and the inner upper part of the housing of the reactor is provided. By the space, a space for forming a steam swirl flow in the cyclone portion is formed,
A raw material supply port for injecting the water vapor and the carbon material into the reactor is provided at the top of the reactor,
A microwave irradiation space for irradiating the carbon material with the microwave while ensuring the air residence time of the carbon material is provided between the space for forming the water vapor swirl flow in the reactor and the bottom of the reactor. And
The hydrogen and carbon monoxide produced | generated by heating the said carbon material by the said microwave irradiation and making it react with water vapor | steam has the structure guide | induced outside a reactor through the said cylindrical duct. Hydrogen production equipment.
前記炭素材料を前記反応器に供給される前に前記水蒸気と合流させる原料供給配管を有し、この合流した前記炭素材料と水蒸気とを前記原料供給ポートを介して前記反応器内の上部の前記旋回流形成用の空間に射出するようにした請求項3又は4記載の水素製造装置。   The carbon material is provided with a raw material supply pipe for joining the water vapor before being supplied to the reactor, and the joined carbon material and the water vapor are connected to the upper part of the reactor through the raw material supply port. The hydrogen production apparatus according to claim 3 or 4, wherein the hydrogen production apparatus is injected into a space for forming a swirl flow. 前記反応容器内の前記マイクロ波が照射される空間は、マイクロ波を吸収しない壁材により形成されている請求項5記載の水素製造装置。   The hydrogen production apparatus according to claim 5, wherein the space irradiated with the microwave in the reaction vessel is formed by a wall material that does not absorb the microwave. 炭素材料と水蒸気とが供給される水素製造用の反応器と、反応器内に供給される炭素材料と水蒸気とにマイクロ波を照射するマイクロ波照射装置とを備える水素製造装置において、
前記反応器内で前記水蒸気の旋回流を形成し、この水蒸気旋回流により前記反応器内での前記炭素材料への前記マイクロ波照射に必要な空中滞留時間を確保するサイクロン部を有し、
前記反応器内の上部には、反応器のハウジング上部の内径よりも小径な縦穴状であり、
前記炭素材料を捕集するフィルターを備える筒状ダクトが設けられ、この筒状ダクトの外周と前記反応器のハウジング上部内周との間の環状空間により、前記サイクロン部の水蒸気旋回流形成用の空間が形成され、
前記反応器の上部に前記水蒸気と前記炭素材料を反応器内に射出する原料供給ポートが設けられ、
前記反応器内の前記水蒸気旋回流形成用の空間、及び前記反応器内の前記水蒸気旋回流形成用の空間と反応器内底との間の空間に、前記炭素材料の空中滞留時間を確保して前記マイクロ波を前記炭素材料に照射するマイクロ波照射空間が設けられ、
前記マイクロ波照射により前記炭素材料を加熱して水蒸気と反応させて生成された水素及び一酸化炭素が、前記筒状ダクトを介して反応器外に導かれる構造を有している水素製造装置。
In a hydrogen production apparatus comprising a hydrogen production reactor to which a carbon material and water vapor are supplied, and a microwave irradiation apparatus for irradiating the carbon material and water vapor to be supplied into the reactor with microwaves,
Forming a swirl flow of the water vapor in the reactor, and having a cyclone section for ensuring an air residence time necessary for the microwave irradiation to the carbon material in the reactor by the water vapor swirl flow;
The upper part in the reactor has a vertical hole shape smaller than the inner diameter of the upper part of the housing of the reactor,
A cylindrical duct having a filter for collecting the carbon material is provided, and an annular space between the outer periphery of the cylindrical duct and the inner periphery of the upper part of the housing of the reactor is used to form a steam swirl flow in the cyclone section. A space is formed,
A raw material supply port for injecting the water vapor and the carbon material into the reactor is provided at the top of the reactor,
An air residence time of the carbon material is secured in the space for forming the steam swirl flow in the reactor and in the space between the space for forming the steam swirl flow and the bottom of the reactor in the reactor. A microwave irradiation space for irradiating the carbon material with the microwave is provided,
A hydrogen production apparatus having a structure in which hydrogen and carbon monoxide generated by heating the carbon material by the microwave irradiation and reacting with water vapor are guided to the outside of the reactor through the cylindrical duct.
炭素材料と水蒸気とが供給される水素製造用の反応器と、反応器内に供給される炭素材料と水蒸気とにマイクロ波を照射するマイクロ波照射装置とを備える水素製造装置において、
前記反応器内で前記水蒸気の旋回流を形成し、この水蒸気旋回流により前記反応器内での前記炭素材料への前記マイクロ波照射に必要な空中滞留時間を確保するサイクロン部を有し、
前記反応器内の上部には、反応器のハウジング上部の内径よりも小径な縦穴状であり、
前記炭素材料より小さい孔径の孔を設けている筒状ダクトが設けられ、この筒状ダクトの外周と前記反応器のハウジング上部内周との間の環状空間により、前記サイクロン部の水蒸気旋回流形成用の空間が形成され、
前記反応器の上部に前記水蒸気と前記炭素材料を反応器内に射出する原料供給ポートが設けられ、
前記反応器内の前記水蒸気旋回流形成用の空間、及び前記反応器内の前記水蒸気旋回流形成用の空間と反応器内底との間の空間に、前記炭素材料の空中滞留時間を確保して前記マイクロ波を前記炭素材料に照射するマイクロ波照射空間が設けられ、
前記マイクロ波照射により前記炭素材料を加熱して水蒸気と反応させて生成された水素及び一酸化炭素が、前記筒状ダクトを介して反応器外に導かれる構造を有している水素製造装置。
In a hydrogen production apparatus comprising a hydrogen production reactor to which a carbon material and water vapor are supplied, and a microwave irradiation apparatus for irradiating the carbon material and water vapor to be supplied into the reactor with microwaves,
Forming a swirl flow of the water vapor in the reactor, and having a cyclone section for ensuring an air residence time necessary for the microwave irradiation to the carbon material in the reactor by the water vapor swirl flow;
The upper part in the reactor has a vertical hole shape smaller than the inner diameter of the upper part of the housing of the reactor,
A cylindrical duct provided with a hole having a smaller diameter than the carbon material is provided, and a steam swirl flow formation in the cyclone section is formed by an annular space between the outer periphery of the cylindrical duct and the inner periphery of the upper part of the housing of the reactor. A space for is formed,
A raw material supply port for injecting the water vapor and the carbon material into the reactor is provided at the top of the reactor,
An air residence time of the carbon material is ensured in the space for forming the steam swirl flow in the reactor and in the space between the space for forming the steam swirl flow and the bottom of the reactor in the reactor. A microwave irradiation space for irradiating the carbon material with the microwave is provided,
A hydrogen production apparatus having a structure in which hydrogen and carbon monoxide generated by heating the carbon material by the microwave irradiation and reacting with water vapor are guided to the outside of the reactor through the cylindrical duct.
JP2009069512A 2009-03-23 2009-03-23 Hydrogen production method and apparatus Expired - Fee Related JP5334638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009069512A JP5334638B2 (en) 2009-03-23 2009-03-23 Hydrogen production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069512A JP5334638B2 (en) 2009-03-23 2009-03-23 Hydrogen production method and apparatus

Publications (2)

Publication Number Publication Date
JP2010222429A true JP2010222429A (en) 2010-10-07
JP5334638B2 JP5334638B2 (en) 2013-11-06

Family

ID=43039966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069512A Expired - Fee Related JP5334638B2 (en) 2009-03-23 2009-03-23 Hydrogen production method and apparatus

Country Status (1)

Country Link
JP (1) JP5334638B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249352A (en) * 2012-05-31 2013-12-12 Hitachi Kyowa Engineering Co Ltd Method and device for producing hydrogen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102555530B1 (en) * 2021-05-12 2023-07-13 한국기계연구원 Thermal decomposition reactor, hydrogen production system including the same, and hydrogen production method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126300A (en) * 2005-11-01 2007-05-24 Tokyo Electric Power Co Inc:The Method of and device for generating hydrogen from solid carbonaceous material using microwave
JP2008063169A (en) * 2006-09-05 2008-03-21 National Institute Of Advanced Industrial & Technology Method for producing carbonized product and decomposed product
JP2009007475A (en) * 2007-06-28 2009-01-15 Shimizu Corp Biomass gasification apparatus and biomass gasification method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126300A (en) * 2005-11-01 2007-05-24 Tokyo Electric Power Co Inc:The Method of and device for generating hydrogen from solid carbonaceous material using microwave
JP2008063169A (en) * 2006-09-05 2008-03-21 National Institute Of Advanced Industrial & Technology Method for producing carbonized product and decomposed product
JP2009007475A (en) * 2007-06-28 2009-01-15 Shimizu Corp Biomass gasification apparatus and biomass gasification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249352A (en) * 2012-05-31 2013-12-12 Hitachi Kyowa Engineering Co Ltd Method and device for producing hydrogen

Also Published As

Publication number Publication date
JP5334638B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP6207524B2 (en) Microwave plasma biomass spouted bed gasifier and method
RU2516533C2 (en) Method and device for obtaining synthesis-gas with low content of resins from biomass
US10041667B2 (en) Apparatuses for controlling heat for rapid thermal processing of carbonaceous material and methods for the same
US4469508A (en) Process and installation for heating a fluidized bed by plasma injection
CA2699714A1 (en) Gasification reactor and process for entrained-flow gasification
US9279090B2 (en) Method for cleaning producer gas using a microwave induced plasma cleaning device
CN108027171B (en) Solar receiver
RU2540644C2 (en) Method and device to produce super pure silicon
US8430939B2 (en) Radiant heat flux enhanced organic material gasification system
EA008269B1 (en) A method of converting coal into fuels
JPS5984855A (en) Fluidized bed reaction apparatus
JP5334638B2 (en) Hydrogen production method and apparatus
KR101557690B1 (en) Hybrid Reforming System Using Carbon Dioxide Plasma And Catalyst
JP2006275351A (en) Gas heating device
CN113336196A (en) Gasification cracking device based on microwave heating and method for rapidly preparing sulfur gas
US8754001B2 (en) Self sustained system for sorbent production
KR101923231B1 (en) Exchanger-reactor for the production of hydrogen with an integrated steam generation bundle
KR101752979B1 (en) System for hydrogen production using plasma
BR102014003116B1 (en) feed preparation system, coal beneficiation system and method for singas generation system
TWI522453B (en) Facility and method for producing synthesis gas
JP7008426B2 (en) Methods for Partial Oxidation of Fuel and Equipment for Applying That Method
JP2010195895A (en) Method and apparatus for manufacturing degraded product of plastic
JP5886690B2 (en) Hydrogen production method and apparatus
CN109395896A (en) A kind of heat recovery cyclone separator
JP4555947B2 (en) Chemical reaction apparatus and chemical reaction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5334638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees