JP2008063153A - Substrate glass for display device - Google Patents

Substrate glass for display device Download PDF

Info

Publication number
JP2008063153A
JP2008063153A JP2006239362A JP2006239362A JP2008063153A JP 2008063153 A JP2008063153 A JP 2008063153A JP 2006239362 A JP2006239362 A JP 2006239362A JP 2006239362 A JP2006239362 A JP 2006239362A JP 2008063153 A JP2008063153 A JP 2008063153A
Authority
JP
Japan
Prior art keywords
glass
temperature
expansion coefficient
strain point
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006239362A
Other languages
Japanese (ja)
Inventor
Atsushi Tsuji
篤史 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2006239362A priority Critical patent/JP2008063153A/en
Publication of JP2008063153A publication Critical patent/JP2008063153A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass composition having a suitable thermal expansion coefficient, a low melting temperature and a high strain point, and particularly suitable to a glass substrate used in a display field and requiring high heat resistance such as a substrate for an electronic display such as a PDP (plasma display panel). <P>SOLUTION: The substrate glass for a display device substantially comprises, by wt.%, 55 to 60 SiO<SB>2</SB>, 4 to 12 Al<SB>2</SB>O<SB>3</SB>, 2 to 6% Na<SB>2</SB>O, 4 to 8 K<SB>2</SB>O, 8 to 12 R<SB>2</SB>O (in the total of Na<SB>2</SB>O and K<SB>2</SB>O), 0 to 4 MgO, 6 to 10 CaO, 0 to 6 SrO, 10 to 14 BaO, 20 to 26 R'O (in the total of MgO, CaO, SrO and BaO), and 0 to 4 ZrO<SB>2</SB>. The average linear expansion coefficient at 30 to 300°C is 80 to 84(×10<SP>-7</SP>/°C), and its strain point is ≥570°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐熱性に優れ、軽量でかつ耐久性に優れたガラス組成物に関する。特に適度な熱膨張係数、低い溶融温度と高い歪点を持ち、高い耐熱性が要求されるガラス基板、例えばPDP(プラズマディスプレイパネル)等の電子ディスプレイ用基板に好適なガラス組成物に関する。   The present invention relates to a glass composition having excellent heat resistance, light weight and excellent durability. In particular, the present invention relates to a glass composition suitable for a glass substrate having an appropriate thermal expansion coefficient, a low melting temperature and a high strain point and requiring high heat resistance, for example, a substrate for electronic display such as PDP (plasma display panel).

従来、PDP製造分野においては高歪点ガラスが使用されてきた。初期には、ソーダライムシリカガラスと同様なアルカリ・アルカリ土類・シリカ系ガラスが使用され、そのガラスは熱膨張係数がソーダライムシリカガラスと近似していたが、特徴としては歪点が550℃を超えるような高歪点ガラスである(特許文献1〜3参照)。   Conventionally, high strain point glass has been used in the PDP manufacturing field. Initially, alkali, alkaline earth, and silica glass similar to soda lime silica glass was used, and the glass had a thermal expansion coefficient close to that of soda lime silica glass. It is a high strain point glass that exceeds the range (see Patent Documents 1 to 3).

また、パネル製造工程での熱収縮を小さくするために平均熱膨張係数を調整したものが知られている(特許文献4参照)。   Moreover, what adjusted the average thermal expansion coefficient in order to make the thermal contraction in a panel manufacturing process small is known (refer patent document 4).

さらに、PDP等では、歪点は高い方が望ましいため、歪点を600℃程度まで高くしたものも知られている(特許文献5参照)。
特開平10−045423号公報 特開平11−240735号公報 特開2000−103638号公報 特許第3669022号公報 特許第3770670号公報
Furthermore, since it is desirable that the PDP or the like has a high strain point, it is also known that the strain point is increased to about 600 ° C. (see Patent Document 5).
Japanese Patent Laid-Open No. 10-045423 Japanese Patent Application Laid-Open No. 11-240735 JP 2000-103638 A Japanese Patent No. 3669022 Japanese Patent No. 3770670

しかし、上記特開平10−045423号公報、特開平11−240735号公報及び特開2000−103638号公報に記載のものは、ディスプレイパネルの製造工程において、熱膨張係数がソーダライムシリカガラスに近いため、熱収縮が大きく、パネル製造工程において熱変形が多いという問題点がある。     However, those described in JP-A-10-045423, JP-A-11-240735 and JP-A-2000-103638 have a thermal expansion coefficient close to that of soda lime silica glass in the display panel manufacturing process. However, there is a problem that the thermal contraction is large and the thermal deformation is large in the panel manufacturing process.

また、上記特許第3669022号公報に記載のものは、パネル製造工程での熱収縮に関しては適度な値である平均熱膨張係数を持つが、歪点が低いという問題がある。   Moreover, although the thing of the said patent 3669022 gazette has an average thermal expansion coefficient which is an appropriate value regarding the thermal contraction in a panel manufacturing process, there exists a problem that a strain point is low.

さらに、上記特許第3770670号公報に記載のものは、高い歪点を持つが平均熱膨張係数がソーダライムシリカガラスとほぼ同等であり、熱収縮が大きく、パネル製造工程における熱変形の問題を解決しているとは言えない。   Further, the one described in the above-mentioned Japanese Patent No. 3770670 has a high strain point, but the average thermal expansion coefficient is almost the same as that of soda lime silica glass, and the thermal contraction is large, thereby solving the problem of thermal deformation in the panel manufacturing process. I can't say that.

本発明は、実質的に重量%表示で、SiOが55〜60、Alが4〜12、NaOが2〜6、KOが4〜8、RO(NaOとKOの合計量)が8〜12、MgOが0〜4、CaOが6〜10、SrOが0〜6、BaOが10〜14、R’O(MgO、CaO、SrO、BaOの合計量)が20〜26、ZrOが0〜4であるディスプレイ装置用基板ガラスである。 The present invention is substantially expressed by weight%, SiO 2 is 55-60, Al 2 O 3 is 4-12, Na 2 O is 2-6, K 2 O is 4-8, R 2 O (Na 2 The total amount of O and K 2 O) is 8-12, MgO is 0-4, CaO is 6-10, SrO is 0-6, BaO is 10-14, R′O (MgO, CaO, SrO, BaO) It is a substrate glass for a display device in which the total amount) is 20 to 26 and ZrO 2 is 0 to 4.

また、30〜300℃における平均線膨張係数が80〜84(×10−7/℃)であることを特徴とする上記のディスプレイ装置用基板ガラスである。 Moreover, it is said substrate glass for display apparatuses characterized by the average linear expansion coefficient in 30-300 degreeC being 80-84 (x10 < -7 > / degreeC).

また、歪点が570℃以上であることを特徴とする上記のディスプレイ装置用基板ガラスである。   The display device substrate glass is characterized in that the strain point is 570 ° C. or higher.

また、溶融温度(粘性がlogη=2.0の時の温度(℃))が1520℃以下であることを特徴とする上記のディスプレイ装置用基板ガラスである。   The above-mentioned substrate glass for a display device is characterized in that the melting temperature (temperature (° C.) when the viscosity is log η = 2.0) is 1520 ° C. or less.

さらに、作業温度(粘性がlogη=4.0の時の温度(℃))−失透温度の値が0℃以上であることを特徴とする上記のディスプレイ装置用基板ガラスである。   Furthermore, the substrate glass for a display device according to the above, characterized in that the working temperature (temperature when the viscosity is log η = 4.0 (° C.)) − Devitrification temperature is 0 ° C. or more.

本発明のガラスはパネル製造工程での熱収縮を小さくするために平均熱膨張係数を、80〜84(×10−7/℃)にするとともに、高い歪点も持つものであり、これまでの同種のガラスの問題点を解決するものである。また、溶融温度が低く粘度も小さいため、溶融しやすく、フロート法生産においては、レンガの侵食も少ないという特徴も持つものである。 The glass of the present invention has an average thermal expansion coefficient of 80 to 84 (× 10 −7 / ° C.) in order to reduce thermal shrinkage in the panel manufacturing process, and also has a high strain point. It solves the problem of the same kind of glass. In addition, since the melting temperature is low and the viscosity is small, it is easy to melt, and in the float process production, there is also a feature that brick erosion is small.

本発明のガラスはディスプレイ基板、特にPDP用の問題点を改善した、適度な熱膨張係数と高い歪点をもつものである。   The glass of the present invention has an appropriate coefficient of thermal expansion and a high strain point, which has improved the problems for display substrates, particularly PDPs.

本発明は、実質的に重量%表示で、SiOが55〜60、Alが4〜12、NaOが2〜6、KOが4〜8、RO(NaOとKOの合計量)が8〜12、MgOが0〜4、CaOが6〜10、SrOが0〜6、BaOが10〜14、R’O(MgO、CaO、SrO、BaOの合計量)が20〜26、ZrOが0〜4であるディスプレイ装置用基板ガラスである。 The present invention is substantially expressed by weight%, SiO 2 is 55-60, Al 2 O 3 is 4-12, Na 2 O is 2-6, K 2 O is 4-8, R 2 O (Na 2 The total amount of O and K 2 O) is 8-12, MgO is 0-4, CaO is 6-10, SrO is 0-6, BaO is 10-14, R′O (MgO, CaO, SrO, BaO) It is a substrate glass for a display device in which the total amount) is 20 to 26 and ZrO 2 is 0 to 4.

SiOはガラスの主成分であり、重量%において55%未満ではガラスの耐熱性または化学的耐久性、耐酸処理性を悪化させる。他方、60%を超えるとガラス融液の高温粘度が高くなり、ガラス成形が困難となり、失透温度が下がる。また、ガラスの線膨張係数が小さくなり過ぎて、ディスプレイパネルを構成する他の部材との整合性が悪くなる。従って、55〜60%の範囲とする。 SiO 2 is a main component of glass, and if it is less than 55% by weight, the heat resistance, chemical durability and acid resistance of the glass deteriorate. On the other hand, if it exceeds 60%, the high-temperature viscosity of the glass melt becomes high, glass molding becomes difficult, and the devitrification temperature decreases. Moreover, the linear expansion coefficient of glass becomes too small, and the compatibility with other members constituting the display panel is deteriorated. Therefore, the range is 55-60%.

Alは、歪点を高くし、化学的耐久性、耐酸処理性を向上する成分である。重量%において4%未満ではガラスの耐熱性または化学的耐久性、耐酸処理性を悪化させる。他方、12%を超えるとガラスの溶融温度が高くなり、ガラスの溶融が困難になる。従って4〜12%の範囲が好ましい。 Al 2 O 3 is a component that increases the strain point and improves chemical durability and acid resistance. If the weight percentage is less than 4%, the heat resistance, chemical durability and acid resistance of the glass deteriorate. On the other hand, if it exceeds 12%, the melting temperature of the glass becomes high, and it becomes difficult to melt the glass. Therefore, the range of 4 to 12% is preferable.

NaOは、KOとともにガラス溶解時の融剤として作用する。6%を超えると化学的耐久性、耐酸処理性が悪くなるとともに平均熱膨張係数が高くなりすぎる。また、2%未満では、溶融性が悪くなると共に平均熱膨張係数が低くなりすぎる。従って2〜6%の範囲とする。 Na 2 O acts as a flux at the time of glass melting together with K 2 O. If it exceeds 6%, the chemical durability and acid resistance are deteriorated and the average thermal expansion coefficient is too high. If it is less than 2%, the meltability is deteriorated and the average thermal expansion coefficient is too low. Therefore, the range is 2 to 6%.

Oも、NaOと同様の作用効果を示す。8%を超えると化学的耐久性、耐酸処理性が悪くなるとともに平均熱膨張係数が高くなりすぎる。また、4%未満では、溶融性が悪くなると共に平均熱膨張係数が低くなりすぎる。従って4〜8%の範囲とする。 K 2 O also exhibits the same effect as Na 2 O. If it exceeds 8%, the chemical durability and acid resistance are deteriorated and the average thermal expansion coefficient is too high. If it is less than 4%, the meltability is deteriorated and the average thermal expansion coefficient is too low. Therefore, the range is 4 to 8%.

前記アルカリ成分RO(NaO、KO)は、同様の効果を持つため、合量に関しても適正な範囲があり、それは8〜12%である。この範囲にすることにより、高温粘度および化学的耐久性、耐酸処理性、平均熱膨張係数を適切な範囲に維持することができる。アルカリ成分の合量が8%未満ではガラス融液の高温粘度が高くなり、ガラス溶解が困難となる。12%を超えると化学的耐久性、耐酸処理性が悪くなる。従って、8〜12%の範囲とするものである。より好ましくは10〜12%である。 Since the alkali component R 2 O (Na 2 O, K 2 O) has the same effect, the total amount has an appropriate range, which is 8 to 12%. By setting it in this range, the high temperature viscosity, chemical durability, acid resistance, and average thermal expansion coefficient can be maintained in appropriate ranges. If the total amount of the alkali components is less than 8%, the high-temperature viscosity of the glass melt becomes high and glass melting becomes difficult. If it exceeds 12%, the chemical durability and acid resistance are deteriorated. Therefore, the range is 8 to 12%. More preferably, it is 10 to 12%.

MgOは、必須成分ではないが、ガラス溶解時の溶融ガラスの粘度を下げる作用を有する。4%を超えるとガラスの失透傾向が増大し溶融ガラスの成形が困難になる。MgOは4%以下とする。   MgO is not an essential component, but has the effect of lowering the viscosity of the molten glass during glass melting. If it exceeds 4%, the tendency of devitrification of the glass will increase, making it difficult to mold the molten glass. MgO is 4% or less.

CaOは、ガラス溶解時の溶融ガラスの粘度を下げる作用を有すると共に、ガラスの熱膨張係数を上昇させる作用を有する。6%未満ではガラスの熱膨張係数が低くなりすぎる。他方、10%を超えると失透傾向が大きくなり、溶融ガラスの成形が困難になる。従って6〜10%の範囲とする。   CaO has the effect of lowering the viscosity of the molten glass at the time of melting the glass and the effect of increasing the thermal expansion coefficient of the glass. If it is less than 6%, the thermal expansion coefficient of the glass becomes too low. On the other hand, if it exceeds 10%, the tendency of devitrification increases, and it becomes difficult to mold molten glass. Therefore, the range is 6 to 10%.

SrOは、必須成分ではないが、CaOとの共存下でガラス融液の高温粘度を下げて失透の発生を抑制する作用を有する。6%を超えると密度が高くなり過ぎるので、6%以下が望ましい。特に望ましくは0%である。   SrO is not an essential component, but has the effect of suppressing the occurrence of devitrification by lowering the high-temperature viscosity of the glass melt in the presence of CaO. If it exceeds 6%, the density becomes too high, so 6% or less is desirable. Particularly desirable is 0%.

BaOは、ガラス融液の失透傾向を抑制する作用を有すると共に、平均熱膨張係数を調整する作用を有する。14%を超えると密度が上昇し、平均熱膨張係数が大きくなりすぎる。10%未満では、歪点が低くなりすぎる。従って、10〜14%が望ましい。   BaO has the effect of suppressing the devitrification tendency of the glass melt and the effect of adjusting the average thermal expansion coefficient. If it exceeds 14%, the density increases and the average thermal expansion coefficient becomes too large. If it is less than 10%, the strain point becomes too low. Therefore, 10 to 14% is desirable.

さらに、上記組成範囲内において、二価の金属酸化物R’O(R’は、Mg、Ca、Sr、Ba)の合計量を20〜26%の範囲とすることによって、ガラスの溶融性を良好な範囲に維持しつつ、粘度―温度勾配を適度としてガラスの成形性を良好とし、耐熱性、化学的耐久性、耐酸処理性などに優れ、適切な範囲の熱膨張係数を有するガラスを得ることができる。R’Oの合計が20%未満では、高温粘度が上昇してガラスの溶融と成形が困難となる。また、歪点が下がり過ぎる上に、熱膨張係数が低下する。一方、26%を超えると、特に密度が上昇するとともに失透傾向が増大し、化学的耐久性が低下する。より好ましい範囲は、20〜22%である。   Further, within the above composition range, the total amount of the divalent metal oxide R′O (R ′ is Mg, Ca, Sr, Ba) is set to a range of 20 to 26%, thereby improving the melting property of the glass. While maintaining the good range, the viscosity-temperature gradient is moderated to improve the moldability of the glass, and it has excellent heat resistance, chemical durability, acid resistance, etc., and obtains a glass with an appropriate range of thermal expansion coefficient. be able to. When the total amount of R′O is less than 20%, the high-temperature viscosity increases, making it difficult to melt and mold the glass. In addition, the strain point is lowered too much and the thermal expansion coefficient is lowered. On the other hand, if it exceeds 26%, the density increases, the tendency to devitrification increases, and the chemical durability decreases. A more preferable range is 20 to 22%.

ZrOは、必須成分ではないが、ガラスの歪点を上昇させ、またガラスの化学的耐久性を向上させる効果を有する。しかし、4%を超えると失透傾向が増加し、ガラス成型が困難となるので4%以下が好ましい。 ZrO 2 is not an essential component, but has the effect of raising the strain point of the glass and improving the chemical durability of the glass. However, if it exceeds 4%, the tendency to devitrification increases and glass molding becomes difficult, so 4% or less is preferable.

本発明の好ましい態様のガラスは実質的に上記成分からなるが、本発明の目的を損なわない範囲で他の成分を合量で1%まで含有してもよい。たとえば、ガラスの溶解、清澄、成形性の改善のためにSO、Cl、F、As等を合量で1%まで含有してもよい。また、ガラスを着色するためにFe、CoO、NiO等を合計量で1%まで含有してもよい。さらに、PDPにおける電子線ブラウニング防止等のためにTiOおよびCeOをそれぞれ1%まで、合計量で1%まで含有してもよい。 Although the glass of the preferable aspect of this invention consists of said component substantially, in the range which does not impair the objective of this invention, you may contain other components to 1% in total amount. For example, a total amount of SO 3 , Cl, F, As 2 O 3 and the like may be contained up to 1% in order to improve melting, fining, and moldability of glass. Further, Fe 2 O 3 to color the glass, CoO, may be contained up to 1% in a total amount of NiO and the like. Further, in order to prevent electron beam browning in the PDP, TiO 2 and CeO 2 may each be contained up to 1% and up to 1% in total.

また、本発明は30〜300℃における平均線膨張係数が80〜84(×10−7/℃)であることを特徴とする上記のディスプレイ装置用基板ガラスである。 Moreover, this invention is said board | substrate glass for display apparatuses characterized by the average linear expansion coefficient in 30-300 degreeC being 80-84 (x10 < -7 > / degreeC).

熱膨張係数はガラスの耐熱性を示す特性であり、84×10−7/℃を超えるとディスプレイパネルの製造工程において熱変形が大きくなりすぎるため不適であるとともに、80〜84×10−7/℃の範囲外では、他の部材との変形量が異なり好ましくない。 The coefficient of thermal expansion is a characteristic indicating the heat resistance of glass, and if it exceeds 84 × 10 −7 / ° C., it is unsuitable because thermal deformation becomes excessive in the manufacturing process of the display panel, and 80 to 84 × 10 −7 / Outside the range of ° C., the amount of deformation differs from other members, which is not preferable.

また、歪点が570℃以上であることを特徴とする上記のディスプレイ装置用基板ガラスである。歪点もガラスの耐熱性を示す特性であり、ディスプレイパネルでは歪点は他の性質を損なわない限り高い方が良い。そこで、570℃以上が適当である。このような組成のガラスにおいては、通常、上限は650℃程度である。   The display device substrate glass is characterized in that the strain point is 570 ° C. or higher. The strain point is also a characteristic showing the heat resistance of glass, and in the display panel, the strain point should be high as long as other properties are not impaired. Therefore, 570 ° C. or higher is appropriate. In the glass having such a composition, the upper limit is usually about 650 ° C.

また、溶融温度(粘性がlogη=2.0の時の温度(℃))が1520℃以下であることを特徴とする上記のディスプレイ装置用基板ガラスである。溶融温度が1520℃を超えると、原料の溶融及びガラスの成形が困難になる。このような組成のガラスにおいては、通常、下限は1400℃程度である。   The above-mentioned substrate glass for a display device is characterized in that the melting temperature (temperature (° C.) when the viscosity is log η = 2.0) is 1520 ° C. or less. When the melting temperature exceeds 1520 ° C., it is difficult to melt the raw materials and form the glass. In the glass having such a composition, the lower limit is usually about 1400 ° C.

さらに、さらに、作業温度(粘性がlogη=4.0の時の温度(℃))−失透温度の値が0℃以上であることを特徴とする上記のディスプレイ装置用基板ガラスである。この値が0℃未満では、失透を起こさずにガラス板を生産することが困難となる。このような組成のガラスにおいては、通常、上限は150℃程度である。   Further, the substrate glass for a display device according to the above, characterized in that the working temperature (temperature when the viscosity is log η = 4.0 (° C.)) − Devitrification temperature is 0 ° C. or more. If this value is less than 0 ° C., it is difficult to produce a glass plate without causing devitrification. In the glass having such a composition, the upper limit is usually about 150 ° C.

以下、実施例に基づき、説明する。   Hereinafter, a description will be given based on examples.

(ガラスの作成)
珪砂、酸化アルミニウム、炭酸ナトリウム、硫酸ナトリウム、炭酸カリウム、酸化マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウムおよび珪酸ジルコニウムよりなる調合原料を白金ルツボに充填し、電気炉内で1500〜1600℃、約6時間加熱溶融した。加熱溶融の途中で白金棒によりガラス融液を攪拌してガラスを均質化させた。次に、溶融ガラスを鋳型に流し込み、ガラスブロックとし、550〜600℃に保持した電気炉に移入して該炉内で徐冷した。得られたガラス試料は泡や脈理の無い均質なものであった。
(Creation of glass)
A prepared raw material consisting of silica sand, aluminum oxide, sodium carbonate, sodium sulfate, potassium carbonate, magnesium oxide, calcium carbonate, strontium carbonate, barium carbonate and zirconium silicate is charged into a platinum crucible, and 1500-1600 ° C., about 6 in an electric furnace. It was melted by heating for hours. During the heating and melting, the glass melt was stirred with a platinum rod to homogenize the glass. Next, the molten glass was poured into a mold to form a glass block, which was transferred to an electric furnace maintained at 550 to 600 ° C. and gradually cooled in the furnace. The obtained glass sample was homogeneous without bubbles or striae.

原料調合に基づくガラスの組成(酸化物換算)を表1に示す。これらのガラスについて、30〜300℃の平均線膨張係数(10−7/℃)、溶融温度・作業温度(℃)、歪点(℃)、失透温度(℃)、耐酸処理性を以下の方法により測定した。 Table 1 shows the glass composition (as oxide) based on the raw material formulation. For these glasses, the average coefficient of linear expansion (10 −7 / ° C.) of 30 to 300 ° C., melting temperature / working temperature (° C.), strain point (° C.), devitrification temperature (° C.), and acid resistance are as follows: Measured by the method.

膨張係数は、熱機械分析装置TMA8310(理学電機(株)製)を用いて30〜300℃における平均線膨張係数を測定した。溶融温度・作業温度は球引き上げ粘度計(オプト企業製)を用いて球引き上げ法によりlogη=2.0、4.0の温度をそれぞれ溶融温度・作業温度として測定した。歪点は、JIS R3103−2の規定に基づくビーム曲げ法により測定した。   The expansion coefficient measured the average linear expansion coefficient in 30-300 degreeC using the thermomechanical analyzer TMA8310 (Rigaku Denki Co., Ltd. product). Melting temperature and working temperature were measured by a ball pulling method using a ball pulling viscometer (manufactured by Opto Corporation), with log η = 2.0 and 4.0 as the melting temperature and working temperature, respectively. The strain point was measured by a beam bending method based on JIS R3103-2.

失透温度は、25℃ずつ温度傾斜の付いた炉内に試料を2時間放置し、失透の有無を目視して、失透がなくなる最低の温度とその一つ下の温度の平均を取ることで求めた。   The devitrification temperature is determined by leaving the sample in a furnace with a temperature gradient of 25 ° C. for 2 hours, and visually observing the presence or absence of devitrification, and taking the average of the lowest temperature at which devitrification disappears and the temperature below it. I asked for it.

耐酸処理性は、基板状の試料を3NのHNO溶液で40℃、1min.処理し、反射率の変化からΔRから、ΔRが0.3%を超えるものを耐酸処理性が劣るとして×、0.3%以下のものを○と評価した。 Acid resistance treatment was performed by using a 3N HNO 3 solution for a substrate-like sample at 40 ° C. for 1 min. From the change of reflectance, ΔR was evaluated as “Good” when ΔR was over 0.3%, and “A” was evaluated as “Good” when the acid resistance was inferior.

Figure 2008063153
Figure 2008063153

Figure 2008063153
(結果)
表1の実施例1〜4は本発明におけるガラスであり、表2は比較例である。比較例1はソーダライムシリカガラスである。比較例2、3は従来の高歪点ガラスである。比較例1のソーダライムシリカガラスは、平均熱膨張係数が大きく、歪点が低い。比較例2の高歪点ガラスにおいては、平均熱膨張係数は適切な値であるものの、歪点が低く、溶融温度が高い。比較例3の高歪点ガラスにおいては、歪点や溶融温度は良好であるものの、平均熱膨張係数が大きすぎる。
Figure 2008063153
(result)
Examples 1 to 4 in Table 1 are glasses in the present invention, and Table 2 is a comparative example. Comparative Example 1 is soda lime silica glass. Comparative Examples 2 and 3 are conventional high strain point glasses. The soda lime silica glass of Comparative Example 1 has a large average thermal expansion coefficient and a low strain point. In the high strain point glass of Comparative Example 2, although the average thermal expansion coefficient is an appropriate value, the strain point is low and the melting temperature is high. In the high strain point glass of Comparative Example 3, although the strain point and the melting temperature are good, the average thermal expansion coefficient is too large.

これらに対して実施例1〜3のガラスは、熱膨張係数が80〜84×10−7/℃の範囲内である上に、歪点、溶融温度と(作業温度−失透温度)が所望の値である。従って、本願発明のガラスは、ディスプレイ基板、特にPDP用の問題点を改善した、適度な熱膨張係数と高い歪点をもつものであることは明白である。 On the other hand, the glass of Examples 1 to 3 has a thermal expansion coefficient in the range of 80 to 84 × 10 −7 / ° C., and a strain point, a melting temperature, and (working temperature−devitrification temperature) are desired. Is the value of Therefore, it is clear that the glass of the present invention has an appropriate coefficient of thermal expansion and a high strain point, which has improved the problems for display substrates, particularly PDPs.

本発明は、PDP等のディスプレイパネル用途だけでなく、熱処理工程の必要な電子材料分野全体に利用できるものである。   The present invention can be used not only for display panel applications such as PDP but also for the entire electronic material field requiring a heat treatment process.

Claims (5)

実質的に重量%表示で、SiOが55〜60、Alが4〜12、NaOが2〜6、KOが4〜8、RO(NaOとKOの合計量)が8〜12、MgOが0〜4、CaOが6〜10、SrOが0〜6、BaOが10〜14、R’O(MgO、CaO、SrO、BaOの合計量)が20〜26、ZrOが0〜4であるディスプレイ装置用基板ガラス。 Substantially expressed by weight%, SiO 2 is 55-60, Al 2 O 3 is 4-12, Na 2 O is 2-6, K 2 O is 4-8, R 2 O (Na 2 O and K 2 (Total amount of O) is 8 to 12, MgO is 0 to 4, CaO is 6 to 10, SrO is 0 to 6, BaO is 10 to 14, and R'O (total amount of MgO, CaO, SrO, BaO) is 20-26, a display device substrate glass ZrO 2 is 0-4. 30〜300℃における平均線膨張係数が80〜84(×10−7/℃)であることを特徴とする請求項1に記載のディスプレイ装置用基板ガラス。 The average linear expansion coefficient in 30-300 degreeC is 80-84 (x10 < -7 > / degreeC), The substrate glass for display apparatuses of Claim 1 characterized by the above-mentioned. 歪点が570℃以上であることを特徴とする請求項1及び2のいずれか1項に記載のディスプレイ装置用基板ガラス。 3. The substrate glass for a display device according to claim 1, wherein the strain point is 570 ° C. or higher. 溶融温度(粘性がlogη=2.0の時の温度(℃))が1520℃以下であることを特徴とする請求項1乃至3のいずれか1項に記載のディスプレイ装置用基板ガラス。 4. The substrate glass for a display device according to claim 1, wherein a melting temperature (temperature (° C.) when the viscosity is log η = 2.0) is 1520 ° C. or less. 5. (作業温度(粘性がlogη=4.0の時の温度(℃))−失透温度)の値が0℃以上であることを特徴とする請求項1乃至4のいずれか1項に記載のディスプレイ装置用基板ガラス。
5. The value of (working temperature (temperature when the viscosity is log η = 4.0 (° C.) − Devitrification temperature)) is 0 ° C. or more. 6. Substrate glass for display devices.
JP2006239362A 2006-09-04 2006-09-04 Substrate glass for display device Pending JP2008063153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239362A JP2008063153A (en) 2006-09-04 2006-09-04 Substrate glass for display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239362A JP2008063153A (en) 2006-09-04 2006-09-04 Substrate glass for display device

Publications (1)

Publication Number Publication Date
JP2008063153A true JP2008063153A (en) 2008-03-21

Family

ID=39286178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239362A Pending JP2008063153A (en) 2006-09-04 2006-09-04 Substrate glass for display device

Country Status (1)

Country Link
JP (1) JP2008063153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037346A (en) * 2013-09-13 2014-02-27 Nippon Electric Glass Co Ltd Glass substrate for solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037346A (en) * 2013-09-13 2014-02-27 Nippon Electric Glass Co Ltd Glass substrate for solar cell

Similar Documents

Publication Publication Date Title
JP5573157B2 (en) GLASS COMPOSITION FOR SUBSTRATE AND METHOD FOR PRODUCING PLATE GLASS
JP5764084B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, cover glass for display and method for producing tempered glass article
JP2012041217A (en) Alkali-free glass
JPWO2016017558A1 (en) High transmission glass
TW201226356A (en) Lead-free low melting point glass composition
KR101212910B1 (en) glass composition
JP2007284307A (en) Substrate glass for display device
JP2017178711A (en) Glass substrate for magnetic recording medium and manufacturing method therefor
JP2006206336A (en) Substrate glass for display device
JP4391321B2 (en) Substrate glass for display devices
JP2008308376A (en) Substrate glass for display device
JP5092564B2 (en) Substrate glass for display devices
JP2005324992A (en) Glass substrate for display device
JP2006131482A (en) Glass substrate for display device
JP2005281101A (en) Glass substrate for display device
JP5018141B2 (en) Substrate glass for display devices
JP5382609B2 (en) Glass substrate
JP2008063153A (en) Substrate glass for display device
JP4946310B2 (en) Substrate glass for display devices
JP4807024B2 (en) Substrate glass for display devices
TWI279396B (en) Substrate glass for display device
JP5018279B2 (en) Substrate glass for display devices
JP2005330181A (en) Method for producing substrate glass for display device
JP4972946B2 (en) Substrate glass for display devices
JP2018203571A (en) Glass