JP2008061628A - Method for creating salt-tolerant mutant line of rice - Google Patents

Method for creating salt-tolerant mutant line of rice Download PDF

Info

Publication number
JP2008061628A
JP2008061628A JP2006245980A JP2006245980A JP2008061628A JP 2008061628 A JP2008061628 A JP 2008061628A JP 2006245980 A JP2006245980 A JP 2006245980A JP 2006245980 A JP2006245980 A JP 2006245980A JP 2008061628 A JP2008061628 A JP 2008061628A
Authority
JP
Japan
Prior art keywords
salt
ion beam
tolerant
rice
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006245980A
Other languages
Japanese (ja)
Inventor
Tomoko Abe
知子 阿部
Yoriko Hayashi
依子 林
Hiromitsu Ryuto
啓充 龍頭
Nobuhisa Fukunishi
暢尚 福西
Masashi Sato
雅志 佐藤
Hinako Takehisa
妃奈子 竹久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2006245980A priority Critical patent/JP2008061628A/en
Publication of JP2008061628A publication Critical patent/JP2008061628A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/13Abiotic stress
    • Y02A40/135Plants tolerant to salinity

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means enabling the evaluation of salt tolerance in a field-level culture to efficiently create a tolerant mutant line in a short time by increasing the mutation rate and decreasing the number of selection lines. <P>SOLUTION: The method for creating a salt-tolerant mutant line of rice contains the following steps (a) to (c): (a) a step to irradiate rice seeds with heavy ion beam; (b) a step to culture the rice seeds irradiated with heavy ion beam and collect M<SB>2</SB>seeds from the obtained M<SB>1</SB>plant; and (c) a step to culture the collected M<SB>2</SB>seeds on a paddy field added with saline water and select a plant having salt tolerance from the obtained M<SB>2</SB>plants. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、重イオンビームを照射することによって耐塩性イネ突然変異系統を効率よく作出する方法に関する。   The present invention relates to a method for efficiently producing a salt-tolerant rice mutant line by irradiation with a heavy ion beam.

土壌に塩分が集積し、土壌環境や農業に深刻な被害をもたらす塩害は、アフリカ諸国やパキスタン、中国などのアジアの諸外国で深刻化している。また、インドやアメリカにおいては地下水の渇水による耕地での塩害が問題になっている。このため、塩害による育成阻害をいかに防止するかが大きな課題となっており、近年、耐塩性イネの育成方法の研究開発が望まれている。一般に環境耐性は1遺伝子ではなく、複数の遺伝子に支配されているため、耐性変異系統を育成することは難しいとされている。イネでは耐塩性品種(Pokkali、Nona Bokra、IR4630など)や塩感受性品種(I Kong Pao、IR28など)が知られており、交配や変異処理により感受性品種に耐性を付与する実験が行われている。これに対し、通常の栽培イネ品種を用いて体細胞変異やEMSやエックス(X)線などによる突然変異誘発により耐塩性変異系統の作出、育成を試みた例は少ない。例えば、Zhangら(非特許文献1)は、EMS(ethyl methanesulfonate)処理による耐塩性変異系統の作出を報告している。Zhang文献においては、EMS処理した葯1800個より誘導したカルスをNaCl添加した培地に置床し、耐塩性カルスを選抜し、再分化個体を育成したところ、稔性が22個体(R0)に認められた。それらより得た種子(R1)を0.5%NaCl(85.6 mM)を添加した土壌に播種した結果、生育可能な9系統を耐塩性系統として選抜したことが記載されている。Guoら(非特許文献2)は、上記で得られた耐塩性系統の自殖を繰り返し、R9からR11世代で耐塩性を検討したところ、最も強い系統で、稔実率が77%、千粒重が無処理区に比べて82%(20.5/25.1)であったことを記述している。また、Leeら(非特許文献3)は、ガンマ(γ)線照射による耐塩性変異系統の作出を報告している。Lee文献においては、イネカルスにガンマ(γ)線を照射し、再分化個体(M)を圃場に展開し、生長が悪いものを除いた200個体よりM種子を収穫し、M種子を自殖して得られたM種子3000系統を冠水状態でポット栽培し、10日間冠水状態に置き、3葉期に草丈、根長、根の本数を指標として冠水抵抗性の選抜を行った結果、64系統の冠水抵抗性系統が得られ、そのうち1系統が耐塩性を示したことが記載されている。しかしながら、これらの報告ではいずれも幼植物期段階やポット栽培における耐塩性を確認したにすぎず、実際の圃場レベルの栽培において耐塩性を示すか否かは確認されていない。一般に耐性変異系統の選抜には1000系統から10000系統が必要とされており、そのような多くの系統の栽培には広い面積を要する。従って、実際の圃場レベルの栽培において耐塩性を評価することは事実上困難であり、これまで行われた例はない。従って、圃場レベルの栽培における耐塩性の評価を実現するには、変異率を上げて選抜系統数を減少させることが必要である。 Salt damage, which accumulates salt in the soil and causes serious damage to the soil environment and agriculture, is becoming more serious in other Asian countries such as African countries, Pakistan, and China. In India and the United States, salt damage in arable land due to drought of groundwater is a problem. For this reason, how to prevent growth inhibition due to salt damage has become a major issue, and in recent years, research and development of methods for growing salt-tolerant rice has been desired. In general, environmental resistance is not controlled by one gene but by a plurality of genes, and thus it is considered difficult to cultivate resistant mutant lines. In rice, salt-tolerant varieties (Pokkali, Nona Bokra, IR4630, etc.) and salt-sensitive varieties (I Kong Pao, IR28, etc.) are known, and experiments are carried out to confer resistance to sensitive varieties by crossing and mutation treatment. . On the other hand, there have been few examples of attempts to create and breed salt-tolerant mutant lines by mutagenesis by somatic mutation or EMS or X (X) rays using normal cultivated rice varieties. For example, Zhang et al. (Non-Patent Document 1) have reported the creation of salt-tolerant mutant lines by EMS (ethyl methanesulfonate) treatment. In Zhang literature, callus derived from 1800 cocoons treated with EMS was placed on a medium supplemented with NaCl, salt-tolerant callus was selected, and redifferentiated individuals were cultivated. 22 fertility (R 0 ) were observed. It was. As a result of seeding the seeds (R 1 ) obtained from them on soil supplemented with 0.5% NaCl (85.6 mM), nine viable lines were selected as salt-tolerant lines. Guo et al. (Non-patent Document 2) repeated self-breeding of the salt-tolerant line obtained above, and examined salt tolerance in the R 9 to R 11 generations. It describes that the thousand grain weight was 82% (20.5 / 25.1) compared to the untreated area. Lee et al. (Non-patent Document 3) have reported the production of salt-tolerant mutant lines by gamma (γ) irradiation. In Lee, gamma (γ) rays are irradiated to rice callus, redifferentiated individuals (M 1 ) are developed in the field, M 2 seeds are harvested from 200 individuals except those with poor growth, and M 2 seeds are pots cultivated M 3 seeds 3000 strains obtained by selfing in submerged state, placed in 10-day flood state, plant height to 3 leaf stage, root length, were selected for flooding tolerance, the number of roots as an index As a result, 64 submergence resistant lines were obtained, and it was described that one of them showed salt tolerance. However, these reports only confirm the salt tolerance in the seedling stage and pot cultivation, and it is not confirmed whether or not the salt tolerance is exhibited in actual field level cultivation. Generally, 1000 to 10,000 lines are required for selection of resistant mutant lines, and cultivation of such many lines requires a large area. Therefore, it is practically difficult to evaluate salt tolerance in cultivation at an actual field level, and there has been no example so far. Therefore, in order to realize the evaluation of salt tolerance in field level cultivation, it is necessary to increase the mutation rate and reduce the number of selected lines.

また、これまで用いられていたガンマ(γ)線やエックス(X)線などの放射線は植物の特定の組織を正確に照射することが困難であるので、一部の細胞に起こった遺伝子変異を個体全体の遺伝形質として固定するために、多大な労力を必要とする。また、EMS等の薬剤は、突然変異を誘発するとともに植物体自体を損傷させ、発芽率を低下させるので、多数の突然変異体を得るのは困難である。さらに、耐性変異系統を選抜後の後代に発現される目的としない変異の排除に、優良系統との交配を繰り返さなければならず、長い年月、労力、および費用を必要とする。従って、変異処理によって耐塩性以外の形質に影響を及ぼすことなく、かつ選抜の短期化と労力の軽減化を図る手段が望まれる。   In addition, radiation such as gamma (γ) rays and X (X) rays that have been used so far is difficult to accurately irradiate specific tissues of plants. In order to fix it as an inheritance of the whole individual, a great deal of labor is required. In addition, drugs such as EMS induce mutations, damage plant bodies themselves, and reduce germination rate, so it is difficult to obtain a large number of mutants. Furthermore, crossing with a superior line must be repeated in order to eliminate unintended mutations that are expressed in progeny after selection of resistant mutant lines, which requires a long time, labor, and cost. Therefore, there is a demand for means for shortening selection and reducing labor without affecting the traits other than salt tolerance by mutation treatment.

一方、炭素などのイオン原子を、加速器を用いて高速に加速した重イオンビーム(重粒子線)を照射する変異誘発方法が新たに開発されており、すでに植物に対しても変異体の作出に利用されている(特許文献1〜3)。重イオンビームは花卉園芸植物の変異原として実用化が進んでおり、その際の花色や花型変異株の出現率は数%から数十%と高率である。さらに、変異体出現率を向上させるために、重イオンビーム照射条件(照射イオンビームの種類や強さ、照射材料の前処理)の検討について報告がある(非特許文献4〜7)。重イオンビーム照射はガンマ(γ線)より強いエネルギーを持ち、染色体に大きな変化をもたらすため、ガンマ(γ線)では得られない突然変異を誘発できる期待がある。   On the other hand, a new mutagenesis method has been developed to irradiate heavy ion beams (heavy particle beams) in which ion atoms such as carbon are accelerated at high speed using an accelerator. (Patent Documents 1 to 3). Heavy ion beams have been put into practical use as mutagens for flower garden plants, and the appearance of flower color and flower type mutants at that time is as high as several to tens of percent. Furthermore, in order to improve the appearance rate of mutants, there are reports on the examination of heavy ion beam irradiation conditions (type and intensity of irradiated ion beam, pretreatment of irradiation material) (Non-Patent Documents 4 to 7). Heavy ion beam irradiation has stronger energy than gamma (γ-rays) and causes large changes in chromosomes, so it is expected to induce mutations that cannot be obtained with gamma (γ-rays).

特開平09−28220号公報Japanese Patent Laid-Open No. 09-28220 特開2002−125496号公報JP 2002-12596 A 特開2003−199447号公報JP 2003-199447 A Zhang G.-Y., Guo Y., Liu F.-H. Chen S.-Y. Chen, S.-L. (1994) RFLP analysis of nine salt tolerant rice mutants, Acta Botanica Sinica, 36(5), 345-350Zhang G.-Y., Guo Y., Liu F.-H. Chen S.-Y. Chen, S.-L. (1994) RFLP analysis of nine salt tolerant rice mutants, Acta Botanica Sinica, 36 (5) , 345-350 Guo Y., Chen, S.-L., Zhang G.-Y., Chen S.-Y. (1997) Salt-tolerance in rice mutant lines controlled by a major effector gene was obtained by a cell engineering technique, Acta Genet. Sin., 24, 122-126.Guo Y., Chen, S.-L., Zhang G.-Y., Chen S.-Y. (1997) Salt-tolerance in rice mutant lines controlled by a major effector gene was obtained by a cell engineering technique, Acta Genet. Sin., 24, 122-126. Lee I. S., Kim D. S., Hua J. Kang S. Y., Song H. S., Lee S. J., Lim Y. P., Lee Y. I. (2003) Selection and characterizations of gamma radiation-induced submergence tolerant line in rice, J. Plant Biotechnology, 5(3) 173-179Lee IS, Kim DS, Hua J. Kang SY, Song HS, Lee SJ, Lim YP, Lee YI (2003) Selection and characterizations of gamma radiation-induced submergence tolerant line in rice, J. Plant Biotechnology, 5 (3) 173 -179 Abe T., et al. (1999) Effective plant-mutation method using heavy-ion beams (III), RIKEN Accel. Prog. Rep., 32, 145Abe T., et al. (1999) Effective plant-mutation method using heavy-ion beams (III), RIKEN Accel.Prog. Rep., 32, 145 Abe T., et al. (2005) Chlorophyll-deficient mutants of rice induced by C-ion irradiation, RIKEN Accel. Prog. Rep., 38, 132Abe T., et al. (2005) Chlorophyll-deficient mutants of rice induced by C-ion irradiation, RIKEN Accel.Prog. Rep., 38, 132 Abe T., et.al. (2006) Isolation of morphological mutants of rice induced by heavy-ion irradiation, RIKEN Accel. Prog. Rep., 39, 137Abe T., et.al. (2006) Isolation of morphological mutants of rice induced by heavy-ion irradiation, RIKEN Accel.Prog. Rep., 39, 137 Abe T., et al. (2000) Stress-tolerant mutants induced by heavy-ion beams, Gamma Field Symp., 39, 45-54Abe T., et al. (2000) Stress-tolerant mutants induced by heavy-ion beams, Gamma Field Symp., 39, 45-54

従って、本発明の目的は、変異率を増加させ、選抜系統数を減少させることにより圃場レベルの栽培での耐塩性評価を可能にし、かつ短期間に効率よく耐性変異系統を作出する手段を提供することにある。   Accordingly, an object of the present invention is to provide a means for enabling the evaluation of salt tolerance in field level cultivation by increasing the mutation rate and decreasing the number of selected lines, and for efficiently creating a resistant mutant line in a short period of time. There is to do.

本発明者らは、上記課題を達成すべく鋭意検討を行った結果、重イオンビーム照射を行ったイネ種子を栽培したM個体から採種したM種子を塩水付加水田(塩水を付加して作られた水田)にて直接栽培すると、M個体の中に耐塩性を示す個体が1%という高い出現率で得られることを見出した。また耐塩性を示した個体は環境制御室内の過剰なNaClを付与した水耕栽培試験においても耐塩性を示すことも確認した。本発明はかかる知見により完成されたものである。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors found that M 2 seeds collected from M 1 individuals cultivated rice seeds that had been irradiated with heavy ion beams were subjected to salt-added paddy fields (added with salt water). When cultivated directly in the paddy field), it was found that individuals exhibiting salt tolerance were obtained at a high appearance rate of 1% among the M 2 individuals. In addition, it was confirmed that individuals exhibiting salt tolerance also exhibited salt tolerance in hydroponic cultivation tests with excess NaCl in the environmental control room. The present invention has been completed based on such findings.

すなわち、本発明は以下の発明を包含する。
(1) 以下の(a)〜(c)の工程を含む耐塩性イネ突然変異系統の作出方法。
(a) イネ種子に重イオンビームを照射する工程
(b) 重イオンビームを照射したイネ種子を栽培し、得られたM個体からM種子を採種する工程
(c) 採種したM種子を塩水付加水田で栽培し、得られたM個体の中から耐塩性を示す個体を選抜する工程
(2) 塩水付加水田の湛水のナトリウムイオン濃度が50〜100mMであることを特徴とする、(1)に記載の耐塩性イネ突然変異系統の作出方法。
(3) 重イオンビームが100MeV/u以上の重イオンビームであって、LETが20-40 keV/μmの範囲にある、(1)または(2)に記載の耐塩性イネ突然変異系統の作出方法。
(4) 重イオンビームが、炭素イオンビームまたは窒素イオンビームである、(1)から(3)のいずれかに記載の耐塩性イネ突然変異系統の作出方法。
(5) 選抜が、M個体の葉身の枯れ程度、草丈、穂数、及び穂重から成る群から選択される少なくとも1種以上の形態または形質を指標に行う、(1)から(4)のいずれかに記載の耐塩性イネ突然変異系統の作出方法。
(6) 耐塩性を示すM2個体よりM種子を採種し、採種したM種子を塩水付加水田で栽培し、M植物および/またはその後代植物において耐塩性形質を固定化する工程をさらに含む、(1)から(5)のいずれかに記載の耐塩性イネ突然変異系統の作出方法。
(7) (1)から(6)のいずれかに記載の方法により得られた耐塩性イネ突然変異系統。
(8) 耐塩性イネ突然変異系統6-99(FERM AP-21011)。
(9) 耐塩性イネ突然変異系統19-55(FERM AP-21012)。
That is, the present invention includes the following inventions.
(1) A method for producing a salt-tolerant rice mutant line comprising the following steps (a) to (c):
(A) A step of irradiating a rice seed with a heavy ion beam (b) A step of cultivating a rice seed irradiated with a heavy ion beam and seeding an M 2 seed from the obtained M 1 individual (c) A seeded M 2 seed A process of cultivating a salt-added paddy field and selecting individuals exhibiting salt tolerance from the obtained M 2 individuals
(2) The method for producing a salt-tolerant rice mutant strain according to (1), wherein the sodium ion concentration of the brine in the salt-added paddy field is 50 to 100 mM.
(3) Production of a salt-tolerant rice mutant strain according to (1) or (2), wherein the heavy ion beam is a heavy ion beam of 100 MeV / u or higher and the LET is in the range of 20-40 keV / μm. Method.
(4) The method for producing a salt-tolerant rice mutant strain according to any one of (1) to (3), wherein the heavy ion beam is a carbon ion beam or a nitrogen ion beam.
(5) Selection is performed using at least one form or trait selected from the group consisting of the degree of leaf blade mortality, plant height, number of panicles, and panicle weight of M 2 individuals as an index (1) to (4 ) A method for producing a salt-tolerant rice mutant strain according to any one of the above.
(6) Seed the M 3 seeds from M 2 individuals showing salt resistance, the seed was M 3 seeds were cultivated with brine adding paddy, the step of fixing the salt tolerance trait in M 3 plants and / or after progeny plants The method for producing a salt-tolerant rice mutant strain according to any one of (1) to (5).
(7) A salt tolerant rice mutant obtained by the method according to any one of (1) to (6).
(8) Salt-tolerant rice mutant line 6-99 (FERM AP-21011).
(9) Salt-tolerant rice mutant line 19-55 (FERM AP-21012).

本発明の方法によれば、重イオンビームによって変異誘発したイネ種子のM世代において耐塩性を示す個体を1%という高出現率で得ることができる。すなわち、変異率の増加によって、目的とする耐塩性変異系統を取得するための選抜系統数を減少させることができる。その結果、限られた栽培面積である塩水付加水田において、耐塩性変異系統を短期間に効率よく作出できる。本発明の方法に作出された耐塩性変異系統は、圃場レベルにおいて耐塩性を評価したものであるので、実際の塩害水田の栽培で十分な耐塩性を発揮できるものである。また、選抜した耐塩性変異系統の塩害耐性形質は、M世代やM世代で固定できたということより、単一遺伝子に支配されていると考えられる。従って、これらの変異系統を交配親に用いることにより栽培イネに耐塩性を付与でき、塩害が進んだ耕地でも栽培可能な塩害耐性のイネ育種が実現できる。 According to the method of the present invention, it is possible to obtain the individual exhibiting the salt tolerance in M 2 generation rice seeds mutagenized by heavy ion beam with a high occurrence rate of 1%. That is, by increasing the mutation rate, the number of selected lines for obtaining the target salt-tolerant mutant line can be reduced. As a result, salt-tolerant mutant lines can be efficiently produced in a short time in a salt-added paddy field having a limited cultivation area. Since the salt tolerance mutant produced by the method of the present invention has been evaluated for salt tolerance at the field level, it can exhibit sufficient salt tolerance in the cultivation of actual salt-damaged paddy fields. Further, salt damage resistance traits were selected salt tolerance mutant strain, than that made fixed by M 2 generations and M 3 generation, believed to be dominated by a single gene. Therefore, salt tolerance can be imparted to cultivated rice by using these mutant lines as mating parents, and salt damage-tolerant rice breeding that can be cultivated even in cultivated land where salt damage has advanced can be realized.

以下、本発明について詳細に説明する。
本発明の耐塩性イネ突然変異系統の作出方法であって、以下の(a)〜(c)の工程を含む。
(a) イネ種子に重イオンビームを照射する工程
(b) 重イオンビームを照射したイネ種子を栽培し、得られたM個体からM種子を採種する工程
(c) 採種したM種子を塩水付加水田で栽培し、得られたM個体の中から耐塩性を示す個体を選抜する工程
Hereinafter, the present invention will be described in detail.
A method for producing a salt-tolerant rice mutant line of the present invention, comprising the following steps (a) to (c):
(A) A step of irradiating a rice seed with a heavy ion beam (b) A step of cultivating a rice seed irradiated with a heavy ion beam and seeding M 2 seed from the obtained M 1 individual (c) A seeded M 2 seed A process of cultivating a salt-added paddy field and selecting individuals exhibiting salt tolerance from the obtained M 2 individuals

まず、工程(a)では、イネ種子に重イオンビームを照射する。重イオンビームを照射するイネ種子の品種は、公知の耐塩性品種を除く普通品種であれば特に限定はされないが、例えば、水稲品種「日本晴」、「コシヒカリ」、「ヒトメボレ」、「ヒノヒカリ」、「ササニシキ」、「あきたこまち」、「キヌヒカリ」などが挙げられる。   First, in step (a), a heavy ion beam is irradiated to rice seeds. Rice seed varieties that are irradiated with heavy ion beams are not particularly limited as long as they are ordinary varieties except known salt-tolerant varieties. "Sasanishiki", "Akitakomachi", "Kinuhikari" and so on.

イネ種子は重イオンビーム照射前に吸水(浸種)し催芽種子とする。吸水は、例えば種子量の約2倍量の水に温度25〜30℃にて2〜3日間浸漬することにより行う。また、催芽種子は、吸水により発芽した種子のことである。   Rice seeds are water-absorbed (soaked) before irradiation with heavy ion beams to form germinated seeds. Water absorption is performed, for example, by immersing in water about twice the amount of seeds at a temperature of 25-30 ° C. for 2-3 days. The germinated seed is a seed germinated by water absorption.

重イオンビームの種類は、イネに耐塩性を誘発できるものであれば特に限定されず、例えば、炭素(C)イオンビーム、窒素(N)イオンビーム、アルゴン(Ar)イオンビーム、ネオン(Ne)イオンビーム、鉄(Fe)イオンビームなどを用いることができるが、好ましい重イオンビームとしては、炭素(C)イオンビーム、窒素(N)イオンビームが挙げられる。   The type of heavy ion beam is not particularly limited as long as it can induce salt tolerance in rice. For example, carbon (C) ion beam, nitrogen (N) ion beam, argon (Ar) ion beam, neon (Ne) An ion beam, an iron (Fe) ion beam, or the like can be used, but preferred heavy ion beams include a carbon (C) ion beam and a nitrogen (N) ion beam.

重イオンビーム照射におけるLET (Linear Energy Transfer)は、20〜40 keV/μmの範囲が好ましく、22.6-37.4keV/μmの範囲がより好ましい。重イオンビームの照射線量は、用いるイオンビームの種類に応じて決めればよく、イネ種子に損傷を与えず、変異を誘発できる範囲内であれば特に限定されないが、高い頻度で変異を誘発する上で、炭素または窒素イオンビーム(135MeV/u)であれば、20〜40Grayの範囲が好ましい。   LET (Linear Energy Transfer) in heavy ion beam irradiation is preferably in the range of 20 to 40 keV / μm, and more preferably in the range of 22.6-37.4 keV / μm. The irradiation dose of the heavy ion beam may be determined according to the type of ion beam used, and is not particularly limited as long as it does not damage rice seeds and can induce mutations. In the case of a carbon or nitrogen ion beam (135 MeV / u), the range of 20 to 40 Gray is preferable.

次に、工程(b)では、イオンビームを照射した種子を普通田で栽培し、得られたM個体より、個体別(系統)に後代種子(M種子)を採種する。採種したM種子を、系統ごとに50粒づつ湛水のNa+濃度を50〜100 mMに調整した塩水付加水田で栽培する。 Next, in step (b), and cultivated seeds irradiated with ion beams in the usual fields, from M 1 individuals obtained to seed progeny seed (M 2 seeds) in Individual (strain). The seed was M 2 seeds, cultivated with brine additional paddy adjusting the Na + concentration of 50 grain increments flooding every system in 50 to 100 mM.

続いて、工程(c)では、上記の塩水付加水田で栽培したM個体の中から耐塩性を示す個体を選抜する。このとき、耐塩性を示さない正常個体は生育が阻害され草丈が短くなり、収穫時に落水し根圏の塩濃度が上昇すると枯れ上がる。従って、選抜は、葉身の枯れ程度、草丈、穂数、穂重などを指標にして行う。耐塩性変異株はNaClを添加した培養液で水耕栽培を行い、耐塩性形質の特長を分析、確認する。 Subsequently, in the step (c), an individual exhibiting salt tolerance is selected from the M 2 individuals cultivated in the above-described salt water-added paddy field. At this time, normal individuals that do not exhibit salt tolerance are hindered in growth and plant height is shortened, and they die when water drops during harvesting and the salt concentration in the rhizosphere increases. Therefore, selection is performed using the degree of leaf wilt, plant height, number of spikes, panicle weight and the like as indicators. The salt-tolerant mutants are hydroponically cultivated in a culture solution supplemented with NaCl, and the characteristics of the salt-tolerant character are analyzed and confirmed.

選抜した耐塩性変異株よりM種子を採種する。耐塩性変異株よりとれたM種子は上記と同じ塩水付加水田に播種してM植物を栽培し、あるいは同様にしてさらに後代植物まで栽培し、耐塩性形質の安定性を調査する。 Than it selected the salt-tolerant mutant strain to seed the M 3 seed. M 3 seeds taken from the salt-tolerant mutant are sown in the same salt-added paddy field as described above, and M 3 plants are cultivated, or in the same manner, further progeny plants are cultivated, and the stability of the salt-tolerant character is investigated.

上記の方法により得られる耐塩性イネ突然変異系統のうち、6-99系統と19-55系統の系統の種子は2006(平成18)年8月29日付で独立行政法人産業技術総合研究所特許生物寄託センター(IPOD)(茨城県つくば市東1−1−3)にそれぞれ受託番号FERM AP-21011、FERM AP-21012として寄託されている。   Among the salt-tolerant rice mutant lines obtained by the above method, the seeds of lines 6-99 and 19-55 were patented organisms as of August 29, 2006 (National Institute of Advanced Industrial Science and Technology). Deposited as deposit numbers FERM AP-21011 and FERM AP-21012 at the Deposit Center (IPOD) (1-1-3 East Tsukuba City, Ibaraki Prefecture).

尚、6-99系統の塩水付加水田における稔実率は普通田の78%(67/86)、千粒重は88%(18.4/20.8)、また、19-55系統の塩水付加水田における稔実率は普通田の100%(93/93)、千粒重は102%(20.2/19.9)であり、極端な低下は認められない。   In addition, the fruiting rate in 6-99 salt water-added paddy field is 78% (67/86) of ordinary rice field, and the grain weight is 88% (18.4 / 20.8). Is 100% of regular rice (93/93) and the weight of 1,000 grains is 102% (20.2 / 19.9).

以下、実施例によって本発明を更に具体的に説明するが、これらの実施例は本発明を限定するものでない。
(実施例1)変異処理および変異系統作成
(1) 変異系統1の作成
理化学研究所仁科加速器研究センター施設内のリングサイクロトロンにおいて、日本水稲品種「日本晴」を吸水(28℃, 3日間)後、催芽種子150粒に、炭素イオン(核子当り135MeV、LET 22.6 keV/μm)を40Gy照射した。照射種子は圃場で栽培し、M個体それぞれからM種子を採種し、M128系統を得た。そのうち稔性が低い系統、形態変異株が分離する系統などを除いたM91系統を、耐塩性系統の選抜に用いた。
(2) 変異系統2の作成
理化学研究所仁科加速器研究センター施設内のリングサイクロトロンにおいて、日本水稲品種「日本晴」を吸水(28℃, 3日間)後、催芽種子150粒に、炭素イオン(核子当り135MeV、LET 22.6 keV/μm)を20Gy照射した。照射種子は圃場で栽培し、M個体それぞれからM種子を採種し、M82系統を得た。これらすべてを耐塩性系統の選抜に用いた。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but these examples do not limit the present invention.
(Example 1) Mutation treatment and creation of mutant strain
(1) Creation of mutant line 1 At the ring cyclotron in the RIKEN Nishina Accelerator Research Center facility, after absorbing the Japanese rice cultivar “Nippon Hare” (28 ° C, 3 days), 150 sprouting seeds were charged with carbon ions (per nucleon). 135 MeV, LET 22.6 keV / μm) was irradiated by 40 Gy. The irradiated seeds were cultivated in the field, and M 2 seeds were collected from each of the M 1 individuals to obtain M 2 128 lines. Of these strains low fertility, the M 2 91 strains except for such lines form mutants separated, was used for selection of salt tolerance system.
(2) Creation of mutant line 2 In the ring cyclotron at the Institute of Physical and Chemical Research, Nishina Accelerator Research Center, the Japanese rice cultivar “Nippon Hare” was absorbed (28 ° C, 3 days), then 150 germinated seeds were charged with carbon ions (per nucleon). 135 MeV, LET 22.6 keV / μm) was irradiated by 20 Gy. Irradiation Seeds were grown in the field, and seed the M 2 seed from M 1 individuals respectively, to obtain a M 2 82 lines. All of these were used to select salt tolerant lines.

(実施例2)耐塩性系統の選抜方法および変異形質の固定
実施例1で得た合計M173系統の種子を吸水発芽誘導処理(30℃)開始から2日目にイネ育苗用培土(合成培土3号、三井東圧肥料)を入れたビニールポットに播種し(4月上旬)、温室で育成した。4葉展開にまで生育したイネを、5月下旬に東北大学大学院生命科学研究科・湛水生態系野外実験施設内の試験水田に30×15cmの間隔で移植した。試験水田には、遅効性化成肥料(コープケミカル製、商品名:てまいらず)を、移植7日前に水田10 aあたり、18.75kgの割合で散布した。この遅効性肥料は、窒素、リン酸およびカリを成分比でそれぞれ16%の割合で含んでいる。移植後2週間は、全処理区に農業用水(Na+ 濃度10 mM以下)のみを湛水した。塩水付加処理は、移植2週間目から開始した。塩水付加処理区の湛水の塩濃度は、Na+ 濃度120mMの塩水と上述した農業用水とを流し入れることにより、50〜100 mMに調節した。湛水のNa+濃度は、ナトリウムイオン電極(NA-2011、東亜電波工業株式会社製、東京)を用いて1週間毎に計測し、調整した。
(Example 2) Selection method of salt-tolerant lines and fixation of mutation traits Rice seedling culture medium (synthesis) on the second day from the start of water-absorbing germination induction treatment (30 ° C) for the seeds of the total M 2 173 lines obtained in Example 1 The seedlings were sown in a plastic pot containing cultivated soil No. 3 (Mitsui East Pressure Fertilizer) (early April) and grown in a greenhouse. In late May, rice that had grown to four-leaf deployment was transplanted at 30 × 15 cm intervals in a test paddy field in the Tohoku University Graduate School of Life Sciences, a submerged ecosystem outdoor experiment facility. The test paddy field was sprayed with a slow-acting chemical fertilizer (manufactured by Coop Chemical Co., Ltd., trade name: Tezuruzu) at a rate of 18.75 kg per 10 a paddy field 7 days before transplanting. This slow-acting fertilizer contains nitrogen, phosphoric acid, and potassium at a component ratio of 16%. For 2 weeks after transplantation, only the agricultural water (Na + concentration of 10 mM or less) was submerged in all treatment areas. The salt water addition treatment was started from the second week of transplantation. The salt concentration of the brine in the salt water addition treatment zone was adjusted to 50 to 100 mM by pouring salt water having a Na + concentration of 120 mM and the above-described agricultural water. The Na + concentration of brine was measured and adjusted every week using a sodium ion electrode (NA-2011, manufactured by Toa Denpa Kogyo Co., Ltd., Tokyo).

耐塩性評価の指標として、10月下旬収穫時に耐塩性個体と感受性個体の分離比や草丈を観測し、種子を乾燥した後、穂重などを測定した。各個体の耐塩性は、葉身の枯れ程度、草丈、穂数、穂重を指標として評価した。耐塩性を示した変異系統は種子を採種し、M世代を塩水付加水田で育成し、変異形質の安定性の確認および固定を行った。その結果、実施例1で作成した変異系統1の中から6-99系統、変異系統2の中から19-55系統の2系統を耐塩性イネとして選抜した。耐塩性株の出現率は1.1%(6-99系統)および1.2%(19-55系統)であった。塩水付加水田において、6-99系統は他の個体より背が高くて草の勢いが強く、また19-55系統は他の個体よりも背は高くないが、草の勢いが非常に強いという特徴を呈し(表1、図1)、稔性が高く(表2)、収穫時にも葉色が緑色を保っていた。6-99系統はM世代では耐塩性株と感受性株が1:3に分離したが、M世代で固定できた。それに対して19-55系統はM世代ですべての個体が耐塩性を示した。 As an index for evaluating salt tolerance, the separation ratio and plant height of salt-tolerant individuals and sensitive individuals were observed at the time of harvest in late October. After seeds were dried, ear weights were measured. The salt tolerance of each individual was evaluated using the degree of leaf wilt, plant height, number of ears, and panicle weight as indicators. Mutant strains showing salt resistance is collecting seeds, the M 3 generation grown with brine additional paddy were confirmation and fixed stability mutation traits. As a result, 6-99 strains from the mutant strain 1 prepared in Example 1 and 19-55 strains from the mutant strain 2 were selected as salt-tolerant rice. The incidence of salt-tolerant strains was 1.1% (6-99 lines) and 1.2% (19-55 lines). In salt-added paddy field, line 6-99 is taller than other individuals and has strong grass momentum, while line 19-55 is not taller than other individuals, but has very strong grass momentum. (Table 1, FIG. 1), fertility was high (Table 2), and the leaf color was green even at the time of harvest. 6-99 strain M 2 salt-tolerant strains and sensitive strains in generation 1: separated into three, but can be fixed by M 3 generation. 19-55 system, on the other hand all of the individuals in the M 2 generation showed salt tolerance.

Figure 2008061628
Figure 2008061628

Figure 2008061628
Figure 2008061628

(実施例3)耐塩性系統の耐塩性検定方法
選抜した耐塩性系統の耐塩性の程度を評価するため、ネットフロートによる水耕栽培法、すなわち、プラスチック製のネットを水耕液に浮かべて幼植物を栽培する方法を用いた。187×130 mmに切断したネットを、中をくりぬいた厚さの異なる2枚のノリ付き発泡スチロール(187×130×5mm、187×130×7mm)で挟みネットフロートを作成した。次に、このネットフロートを発泡スチロール容器(220×145×237mm)内の水耕液上に浮かべた水耕装置を作成した。水耕栽培に用いた水耕液は、文献(Mae, T. and Ohira, K. (1981) The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza sativa L.), Plant and Cell Physiology, 22, 1067-1074)の水耕液養分組成に従って作成した。6-99系統(M世代)、19-55系統(M世代)の催芽種子を5,000 mlの水耕液を入れた容器内のネット上に1容器当たり約90粒播種した。それらの水耕容器を、ただちに気温25℃の12時間日長に調節された環境調節装置内に搬入した。
(Example 3) Salt tolerance test method for salt-tolerant lines In order to evaluate the degree of salt tolerance of selected salt-tolerant lines, hydroponics using a net float, that is, a plastic net is floated on a hydroponic liquid. The method of cultivating plants was used. A net float was created by sandwiching a net cut into 187 x 130 mm with two styrofoam foams (187 x 130 x 5 mm, 187 x 130 x 7 mm) with different thicknesses. Next, a hydroponic apparatus in which the net float was floated on a hydroponic liquid in a polystyrene foam container (220 × 145 × 237 mm) was prepared. Hydroponics used for hydroponics is the literature (Mae, T. and Ohira, K. (1981) The remobilization of nitrogen related to leaf growth and senescence in rice plants ( Oryza sativa L.), Plant and Cell Physiology, 22, 1067-1074). 6-99 strain (M 5 generations) were seeded approximately 90 grains per vessel on the net in a vessel the germinated seeds were placed 5,000 ml of a water culture medium for 19-55 strain (M 3 generation). These hydroponic containers were immediately brought into an environmental control device adjusted to a 12-hour day length of 25 ° C.

播種から5日後、第2葉展開時期イネ幼植物にNaClを付与した。NaClは、水耕液のNa+濃度がそれぞれ0、50、75、100mMになるように特級塩化ナトリウム(和光純薬)を添加した。水耕液のpHは、0.1Mの塩酸または水酸化ナトリウム水溶液を用いて5.5に調節した。pHの測定にはpHメーター(HM-20P、東亜電波工業株式会社製、東京)を用いた。また、栽培期間中の水耕液の交換は一日一回行った。試験は再現性を確認するため、最低2回繰り返した。 Five days after sowing, NaCl was applied to rice seedlings at the second leaf development period. As for NaCl, special grade sodium chloride (Wako Pure Chemical Industries) was added so that the Na + concentration of the hydroponic solution would be 0, 50, 75, and 100 mM, respectively. The pH of the hydroponic solution was adjusted to 5.5 using 0.1 M hydrochloric acid or sodium hydroxide aqueous solution. A pH meter (HM-20P, manufactured by Toa Denpa Kogyo Co., Ltd., Tokyo) was used for pH measurement. In addition, the water culture medium was changed once a day during the cultivation period. The test was repeated at least twice to confirm reproducibility.

耐塩性評価は播種後16〜20日目に行い、耐塩性の指標として草丈を計測した。また、測定後、植物体を封筒に入れ、5日間80℃で乾燥した後、地上部の乾燥重を計測した。その結果、NaCl(Na+濃度50、75、100mM)付与に対し、塩害耐性イネとして選抜された6-99系統および19-55系統の草丈と地上部乾燥重の相対成長率は、正常株に比較して高く保たれた(表3及び表4、図2)。特にNa+濃度75mM条件下における6-99系統の草丈の相対成長率は81%で、日本晴に比較して24%高かった。また、同条件下で19-55系統の地上部乾燥重の相対成長率は97%で、日本晴に比較して16%高い値を示した。これらの結果から、野外の塩水付加水田において選抜された6-99系統および19-55系統は、NaCl付与に対し耐性を示す耐塩性系統であることが示された。さらに、高塩濃度Na+濃度100mMの塩水においても両系統は強い耐性を示すことが明らかになった。 Evaluation of salt tolerance was performed 16 to 20 days after sowing, and plant height was measured as an index of salt tolerance. Moreover, after the measurement, the plant body was put in an envelope, dried at 80 ° C. for 5 days, and then the dry weight of the above-ground part was measured. As a result, the relative growth rate of 6-99 and 19-55 strains selected as salt-tolerant rice plants and dry weight above the ground was higher than that of normal strains when NaCl (Na + concentration 50, 75, 100 mM) was applied. It was kept high in comparison (Tables 3 and 4, FIG. 2). In particular, the relative growth rate of the plant height of 6-99 line under the condition of Na + concentration of 75 mM was 81%, which was 24% higher than that of Nipponbare. Under the same conditions, the relative growth rate of the above-ground dry weight of the 19-55 line was 97%, which was 16% higher than that of Nipponbare. From these results, it was shown that the 6-99 and 19-55 lines selected in the salt-added paddy field in the field are salt-tolerant lines that are resistant to NaCl application. Furthermore, it was revealed that both lines showed strong tolerance even in salt water with high salt concentration Na + concentration of 100 mM.

Figure 2008061628
Figure 2008061628

Figure 2008061628
Figure 2008061628

図1は、耐塩性株(6-99系統)の塩水付加水田における草姿を示す。FIG. 1 shows the grass appearance of a salt-tolerant strain (6-99 strain) in a salt-added paddy field. 図1は、播種後16日目のの耐塩性株(6-99系統)、播種後20日目の耐塩性株(19-55系統)の正常株と比較した草丈を示す。FIG. 1 shows plant heights compared to normal strains of a salt-tolerant strain (6-99 strain) on the 16th day after sowing and a salt-tolerant strain (19-55 strain) on the 20th day after sowing.

Claims (9)

以下の(a)〜(c)の工程を含む耐塩性イネ突然変異系統の作出方法。
(a) イネ種子に重イオンビームを照射する工程
(b) 重イオンビームを照射したイネ種子を栽培し、得られたM個体からM種子を採種する工程
(c) 採種したM種子を塩水付加水田で栽培し、得られたM個体の中から耐塩性を示す個体を選抜する工程
A method for producing a salt-tolerant rice mutant line comprising the following steps (a) to (c):
(A) A step of irradiating a rice seed with a heavy ion beam (b) A step of cultivating a rice seed irradiated with a heavy ion beam and seeding an M 2 seed from the obtained M 1 individual (c) A seeded M 2 seed A process of cultivating a salt-added paddy field and selecting individuals exhibiting salt tolerance from the obtained M 2 individuals
塩水付加水田の湛水のナトリウムイオン濃度が50〜100mMであることを特徴とする、請求項1に記載の耐塩性イネ突然変異系統の作出方法。   The method for producing a salt-tolerant rice mutant strain according to claim 1, wherein the sodium ion concentration of the brine in the salt-added paddy field is 50 to 100 mM. 重イオンビームが100MeV/u以上の重イオンビームであって、LETが20-40 keV/μmの範囲にある、請求項1または2に記載の耐塩性イネ突然変異系統の作出方法。   The method for producing a salt-tolerant rice mutant strain according to claim 1 or 2, wherein the heavy ion beam is a heavy ion beam of 100 MeV / u or more and LET is in the range of 20-40 keV / μm. 重イオンビームが、炭素イオンビームまたは窒素イオンビームである、請求項1から3のいずれかに記載の耐塩性イネ突然変異系統の作出方法。   The method for producing a salt-tolerant rice mutant strain according to any one of claims 1 to 3, wherein the heavy ion beam is a carbon ion beam or a nitrogen ion beam. 選抜が、M個体の葉身の枯れ程度、草丈、穂数、及び穂重から成る群から選択される少なくとも1種以上の形態または形質を指標に行う、請求項1から4のいずれかに記載の耐塩性イネ突然変異系統の作出方法。 Selection is about withered leaves only M 2 individuals, plant height, number of ears, and performs an index of at least 1 or more forms or trait selected from the group consisting of panicle weight, to any one of claims 1 to 4 A method for producing the described salt-tolerant rice mutant line. 耐塩性を示すM2個体よりM種子を採種し、採種したM種子を塩水付加水田で栽培し、M植物および/またはその後代植物において耐塩性形質を固定化する工程をさらに含む、請求項1から5のいずれかに記載の耐塩性イネ突然変異系統の作出方法。 To seed the M 3 seeds from M 2 individuals showing salt resistance, the seed was M 3 seeds were cultivated with brine additional paddy, further comprising the step of immobilizing the salt tolerance trait in M 3 plants and / or after generations plants, A method for producing a salt-tolerant rice mutant strain according to any one of claims 1 to 5. 請求項1から6のいずれかに記載の方法により得られた耐塩性イネ突然変異系統。   A salt-tolerant rice mutant obtained by the method according to any one of claims 1 to 6. 耐塩性イネ突然変異系統6-99(FERM AP-21011)。   Salt-tolerant rice mutant line 6-99 (FERM AP-21011). 耐塩性イネ突然変異系統19-55(FERM AP-21012)。   Salt-tolerant rice mutant line 19-55 (FERM AP-21012).
JP2006245980A 2006-09-11 2006-09-11 Method for creating salt-tolerant mutant line of rice Pending JP2008061628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006245980A JP2008061628A (en) 2006-09-11 2006-09-11 Method for creating salt-tolerant mutant line of rice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006245980A JP2008061628A (en) 2006-09-11 2006-09-11 Method for creating salt-tolerant mutant line of rice

Publications (1)

Publication Number Publication Date
JP2008061628A true JP2008061628A (en) 2008-03-21

Family

ID=39284878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006245980A Pending JP2008061628A (en) 2006-09-11 2006-09-11 Method for creating salt-tolerant mutant line of rice

Country Status (1)

Country Link
JP (1) JP2008061628A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102511325A (en) * 2011-12-26 2012-06-27 杭州市园林绿化工程有限公司 Method for sieving salt-tolerant varieties of osmanthus fragrans
CN103314755A (en) * 2013-06-26 2013-09-25 江苏沿海地区农业科学研究所 Method of detecting purity of photo-thermo genic male sterile NaCl 582S seeds
CN103828667A (en) * 2014-03-14 2014-06-04 广东海洋大学 Method of raising seedlings in greenhouse by using rice salt tolerance differences to achieve impurity removal and purity preservation
CN104756696A (en) * 2015-03-24 2015-07-08 河北省林业科学研究院 Breeding method for culturing salt-tolerant plants
CN106472137A (en) * 2016-09-19 2017-03-08 江苏省农业科学院 A kind of method improving Salt Tolerance in Rice Seedlings
JP2019126339A (en) * 2018-01-23 2019-08-01 国立研究開発法人理化学研究所 Production method of plant whose seed is increased in size
CN110226382A (en) * 2019-05-20 2019-09-13 湖北省农业科学院经济作物研究所 Nature seawater coerces cotton seed germination phase Tolerant salt method
CN110384029A (en) * 2019-08-30 2019-10-29 花王生态工程股份有限公司 A kind of saline land greening dedicated substrate
CN113229076A (en) * 2021-06-04 2021-08-10 沧州市农林科学院 Wheat breeding method for screening excellent salt-tolerant strains by using salt pond
CN113439501A (en) * 2021-06-18 2021-09-28 中国农业科学院草原研究所 Method for improving activity of grass seeds
CN115067168A (en) * 2022-06-09 2022-09-20 广东省农业科学院水稻研究所 Application of strong-salt-tolerance local rice seed long rough rice

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201372A (en) * 2000-09-29 2002-07-19 Suntory Ltd Plant pigment compound and its use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201372A (en) * 2000-09-29 2002-07-19 Suntory Ltd Plant pigment compound and its use

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102511325A (en) * 2011-12-26 2012-06-27 杭州市园林绿化工程有限公司 Method for sieving salt-tolerant varieties of osmanthus fragrans
CN103314755A (en) * 2013-06-26 2013-09-25 江苏沿海地区农业科学研究所 Method of detecting purity of photo-thermo genic male sterile NaCl 582S seeds
CN103314755B (en) * 2013-06-26 2015-05-06 江苏沿海地区农业科学研究所 Method of detecting purity of photo-thermo genic male sterile NaCl 582S seeds
CN103828667A (en) * 2014-03-14 2014-06-04 广东海洋大学 Method of raising seedlings in greenhouse by using rice salt tolerance differences to achieve impurity removal and purity preservation
CN104756696A (en) * 2015-03-24 2015-07-08 河北省林业科学研究院 Breeding method for culturing salt-tolerant plants
CN106472137A (en) * 2016-09-19 2017-03-08 江苏省农业科学院 A kind of method improving Salt Tolerance in Rice Seedlings
JP2019126339A (en) * 2018-01-23 2019-08-01 国立研究開発法人理化学研究所 Production method of plant whose seed is increased in size
CN110226382A (en) * 2019-05-20 2019-09-13 湖北省农业科学院经济作物研究所 Nature seawater coerces cotton seed germination phase Tolerant salt method
CN110384029A (en) * 2019-08-30 2019-10-29 花王生态工程股份有限公司 A kind of saline land greening dedicated substrate
CN110384029B (en) * 2019-08-30 2022-02-15 花王生态工程股份有限公司 Matrix special for saline-alkali soil greening
CN113229076A (en) * 2021-06-04 2021-08-10 沧州市农林科学院 Wheat breeding method for screening excellent salt-tolerant strains by using salt pond
CN113439501A (en) * 2021-06-18 2021-09-28 中国农业科学院草原研究所 Method for improving activity of grass seeds
CN115067168A (en) * 2022-06-09 2022-09-20 广东省农业科学院水稻研究所 Application of strong-salt-tolerance local rice seed long rough rice
CN115067168B (en) * 2022-06-09 2023-06-09 广东省农业科学院水稻研究所 Application of strong salt tolerance local rice seed length Mao Gu

Similar Documents

Publication Publication Date Title
JP2008061628A (en) Method for creating salt-tolerant mutant line of rice
Kingsbury et al. Selection for Salt‐Resistant Spring Wheat 1
Salahuddin et al. Response of nitrogen and plant spacing of transplanted aman rice
Wang et al. Effects of soil compaction on plant growth, nutrient absorption, and root respiration in soybean seedlings
Horn et al. Radio-sensitivity of selected cowpea (Vigna unguiculata) genotypes to varying gamma irradiation doses
CN103828713A (en) Saline-alkaline tolerant germplasm screening and high-yield cultivating method of barley
Mondal et al. Physiology of seed yield in mungbean: growth and dry matter production
CN104719162A (en) Method for screening dandelion salt-tolerance mutants
Hodgson-Kratky et al. Recurrent selection for rubber yield in Russian dandelion
Haque et al. Identification of potential hybrid rice (Oryza sativa L.) variety in Bangladesh by evaluating the yield potential
Chun et al. Development of a mutant population of micro-tom tomato using gamma-irradiation.
CN105594589A (en) Rapid breeding method for salt and alkali rice
Kumar et al. Heavy metals scavenging of soils and sludges by ornamental plants
Li et al. A novel two-step method for screening shade tolerant mutant plants via dwarfism
JP2015181370A (en) Method of enhancing stress resistance of plant in next generation and seeds and seedlings with stress resistance enhanced
KR101147576B1 (en) Method for Producing Grass Having Dwarfism
Kadam et al. Evaluation of pre-emergence herbicides in gladiolus (Gladiolus)
Miko et al. Morphological and biological characteristics of fruits and seed of the service tree (Sorbus domestica L.)
Gautam et al. Study of genetic variability in genotypes of rice (Oryza sativa L.)
Afsharmanesh et al. Introducing the new planting methods for cultivation of alfalfa cultivars in highly saline soils
CN109984033A (en) A method of utilizing the mutagenic obtained cotton mutant of heavy ion beam
Tong et al. Effects of temperature, sowing depth and soil hardness on seedling establishment and yield of Cambodian rice direct-seeded in flood paddy fields
KR102258631B1 (en) Method for increasing the induction frequency of flower-color mutants
KR101190576B1 (en) Method for Producing Grass Having Dwarfism
Snehi et al. Augmenting Salinity Tolerance in Rice Through Genetic Enhancement in the Post-genomic Era

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911