JP2008060599A - Ferroelectric element and actuator using the same, ink jet head, ink jet record device, and method of manufacturing ferroelectric element - Google Patents

Ferroelectric element and actuator using the same, ink jet head, ink jet record device, and method of manufacturing ferroelectric element Download PDF

Info

Publication number
JP2008060599A
JP2008060599A JP2007273401A JP2007273401A JP2008060599A JP 2008060599 A JP2008060599 A JP 2008060599A JP 2007273401 A JP2007273401 A JP 2007273401A JP 2007273401 A JP2007273401 A JP 2007273401A JP 2008060599 A JP2008060599 A JP 2008060599A
Authority
JP
Japan
Prior art keywords
film
ferroelectric
electrode
forming
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007273401A
Other languages
Japanese (ja)
Inventor
Shogo Matsubara
正吾 松原
Takanori Nakano
貴徳 中野
Kazuo Nishimura
和夫 西村
Shintaro Hara
慎太郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007273401A priority Critical patent/JP2008060599A/en
Publication of JP2008060599A publication Critical patent/JP2008060599A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a ferroelectric element capable of improving the insulation property of a ferroelectric film, reliability, and the withstand voltage. <P>SOLUTION: A ferroelectric element has a first electrode (used as a vibrating plate 11 at the same time), a ferroelectric function film 10 formed on the first electrode 11, and second electrode 3 formed on the ferroelectric function film 10. The ferroelectric function film 10 includes a ferroelectric film 10a and at least one kind of element constituting the ferroelectric film 10a and composed of an insulation enhancement film 10b having lower crystallinity than the ferroelectric film 10a. When a half width of a diffraction peak of the ferroelectric film 10a by an X-ray analysis method is "a0", that of the ferroelectric function film 10 being "a", and a rate of increase of the half width being p=(a-a0)/a0, 1<p≤2.5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、強誘電体素子およびそれを用いたアクチュエータ、インクジェットヘッド、インクジェット記録装置、ならびに強誘電体素子の製造方法に関する。   The present invention relates to a ferroelectric element, an actuator using the same, an ink jet head, an ink jet recording apparatus, and a method for manufacturing a ferroelectric element.

従来のインクジェット式記録装置のインクジェットヘッドとしては、インク液を収容する圧力室を持つ圧力室部品と、この圧力室からインク滴を吐出させるためのアクチュエータ部である強誘電体素子とを備えている。強誘電体素子には、強誘電体膜と、この強誘電体膜に電圧を印加して収縮及び伸張させる個別電極及び共通電極とを備えており、強誘電体膜の圧電効果により変位する振動板により、インク滴を圧力室のノズル孔から吐出させるように構成されていた。   An ink jet head of a conventional ink jet recording apparatus includes a pressure chamber part having a pressure chamber for storing ink liquid, and a ferroelectric element as an actuator unit for discharging ink droplets from the pressure chamber. . A ferroelectric element includes a ferroelectric film, and individual electrodes and a common electrode that contract and expand by applying a voltage to the ferroelectric film, and vibration that is displaced by the piezoelectric effect of the ferroelectric film. The plate was configured to eject ink droplets from the nozzle holes of the pressure chamber.

例えば、特開平2−49471号公報には、下部電極と、この下部電極上に形成されたポリシリコン酸化膜と、ポリシリコン酸化膜上に形成された強誘電体膜と、強誘電体膜上に形成された上部電極からなる半導体素子が開示されている。   For example, JP-A-2-49471 discloses a lower electrode, a polysilicon oxide film formed on the lower electrode, a ferroelectric film formed on the polysilicon oxide film, and a ferroelectric film. A semiconductor device comprising an upper electrode formed in the above is disclosed.

また、特許第3111416号公報には、半導体上に形成されたトランジスタなどの能動素子と、強誘電体からなるキャパシタとの間に、主成分がSiNからなる絶縁膜を形成する技術が開示されている。   Japanese Patent No. 311416 discloses a technique for forming an insulating film composed mainly of SiN between an active element such as a transistor formed on a semiconductor and a capacitor made of a ferroelectric. Yes.

そして、特許第3139491号公報には、強誘電体が2つの電極で挟まれた構造を有する強誘電体素子において、少なくとも一方の電極の周辺部と強誘電体膜との間にSiO2膜からなる常誘電体層を形成する技術が開示されている。
特開平2−49471号公報 特許第3111416号公報 特許第3139491号公報
Japanese Patent No. 3139491 discloses a ferroelectric element having a structure in which a ferroelectric is sandwiched between two electrodes, and includes a SiO 2 film between at least one electrode peripheral portion and the ferroelectric film. A technique for forming a paraelectric layer is disclosed.
JP-A-2-49471 Japanese Patent No. 311416 Japanese Patent No. 3139491

しかしながら、従来の強誘電体素子においては、強誘電体膜を形成するときに、異物の混入などにより、内部に結晶構造欠陥や結晶粒の異常成長が発生し、強誘電体膜と異常成長粒との界面に隙間やピンホールなどの欠陥が生じる。そして、そのような強誘電体膜を用いて強誘電体素子を作成した場合には、欠陥を起点にして個別電極と共通電極との間で膜が本来有する絶縁耐圧よりも低い電圧印加によっても絶縁破壊が生じることがある。   However, in the conventional ferroelectric element, when a ferroelectric film is formed, crystal structure defects and abnormal growth of crystal grains occur due to contamination of foreign matters, and the ferroelectric film and abnormally grown grains are generated. Defects such as gaps and pinholes occur at the interface. When a ferroelectric element is formed using such a ferroelectric film, a voltage lower than the intrinsic breakdown voltage of the film between the individual electrode and the common electrode can be applied from the defect. Dielectric breakdown may occur.

また、上記のような欠陥に水分が入ると膜の絶縁性が著しく劣化する、また、強誘電体膜と絶縁膜の密着性が悪くなるという課題があった。   In addition, when moisture enters the above defects, there is a problem that the insulating properties of the film are remarkably deteriorated, and the adhesion between the ferroelectric film and the insulating film is deteriorated.

そこで、本発明は、強誘電体膜の絶縁性向上とともに信頼性及び耐圧性の向上を図ることのできる強誘電体素子およびそれを用いたアクチュエータ、インクジェットヘッド、インクジェット記録装置、ならびに強誘電体素子の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, the present invention relates to a ferroelectric element capable of improving reliability and pressure resistance as well as improving the insulation properties of a ferroelectric film, and an actuator, an ink jet head, an ink jet recording apparatus, and a ferroelectric element using the same. It aims at providing the manufacturing method of.

この課題を解決するために、本発明の強誘電体素子は、第1の電極と、前記第1の電極上に形成された強誘電体機能膜と、前記強誘電体機能膜上に形成された第2の電極とを有し、前記強誘電体機能膜は、強誘電体膜及びこの強誘電体膜の構成元素の少なくとも一種類の元素を含み、前記強誘電体膜よりも結晶性の低い絶縁強化膜から構成され、前記強誘電体膜のX線解析法による回折ピークの半値幅をa0、前記強誘電体機能膜のX線解析法による回折ピークの半値幅をa、半値幅の増加率をp=(a−a0)/a0とするとき、1<p≦2.5である強誘電体素子から構成されているものである。   In order to solve this problem, a ferroelectric element of the present invention is formed on a first electrode, a ferroelectric functional film formed on the first electrode, and the ferroelectric functional film. The ferroelectric functional film includes a ferroelectric film and at least one element of constituent elements of the ferroelectric film, and is more crystalline than the ferroelectric film. A half-width of the diffraction peak by the X-ray analysis of the ferroelectric film is a0, the half-width of the diffraction peak by the X-ray analysis of the ferroelectric functional film is a, When the increase rate is p = (a−a0) / a0, it is composed of a ferroelectric element in which 1 <p ≦ 2.5.

このように、強誘電体膜及び当該強誘電体膜の構成元素の少なくとも一種類の元素を含む絶縁強化膜からなる強誘電体機能膜が電極間に形成されているので、強誘電体膜の絶縁性低下の原因となる欠陥(強誘電体膜と異常成長粒との界面に生じる隙間やピンホールなど)が絶縁強化膜により完全に被覆されて強誘電体膜の絶縁性が向上するとともに、強誘電体膜と絶縁強化膜との密着性が良好でかつ絶縁強化膜の誘電率が強誘電体膜の誘電率と近くなって強誘電体膜の信頼性及び耐圧性が向上する。そして、強誘電体膜と強誘電体機能膜とのX線解析法による回折ピークの半値幅の増加率が1<p≦2.5である強誘電体素子で構成されているので、駆動電圧の増加が30%以内に抑えられ強誘電体膜の信頼性及び耐圧性が向上する。   As described above, since the ferroelectric functional film composed of the ferroelectric film and the insulating reinforcing film containing at least one element of the constituent elements of the ferroelectric film is formed between the electrodes, the ferroelectric film Defects (such as gaps and pinholes generated at the interface between the ferroelectric film and abnormally grown grains) that cause a decrease in insulation properties are completely covered by the insulation enhancement film, improving the insulation of the ferroelectric film, The adhesion between the ferroelectric film and the insulation enhancement film is good, and the dielectric constant of the insulation enhancement film is close to the dielectric constant of the ferroelectric film, thereby improving the reliability and pressure resistance of the ferroelectric film. Since the increase rate of the half width of the diffraction peak by the X-ray analysis method of the ferroelectric film and the ferroelectric functional film is 1 <p ≦ 2.5, the driving voltage is set. The increase in the resistance is suppressed to within 30%, and the reliability and pressure resistance of the ferroelectric film are improved.

以上のように、本発明によれば、強誘電体膜及び当該強誘電体膜の構成元素の少なくとも一種類の元素を含む絶縁強化膜からなる強誘電体機能膜が電極間に形成されているので、強誘電体膜の絶縁性低下の原因となる欠陥が絶縁強化膜により完全に被覆されて強誘電体膜の絶縁性が向上するとともに、強誘電体膜と絶縁強化膜との密着性が良好でかつ絶縁強化膜の誘電率が強誘電体膜の誘電率と近くなって駆動電圧を低減できるという有効な効果が得られる。そして、強誘電体膜と強誘電体機能膜とのX線解析法による回折ピークの半値幅の増加率が1<p≦2.5である強誘電体素子で構成されているので、駆動電圧の増加が30%以内に抑えられ強誘電体膜の信頼性及び耐圧性が向上する。   As described above, according to the present invention, the ferroelectric functional film composed of the ferroelectric film and the insulating reinforcing film containing at least one element of the constituent elements of the ferroelectric film is formed between the electrodes. Therefore, defects that cause a decrease in the insulation properties of the ferroelectric film are completely covered by the insulation enhancement film, improving the insulation properties of the ferroelectric film and improving the adhesion between the ferroelectric film and the insulation enhancement film. As a result, the dielectric constant of the insulating enhancement film is close to the dielectric constant of the ferroelectric film, and an effective effect that the driving voltage can be reduced is obtained. Since the increase rate of the half width of the diffraction peak by the X-ray analysis method of the ferroelectric film and the ferroelectric functional film is 1 <p ≦ 2.5, the driving voltage is set. The increase in the resistance is suppressed to within 30%, and the reliability and pressure resistance of the ferroelectric film are improved.

また、絶縁強化膜のPb含有量を強誘電体膜のPb含有量よりも多くすれば、強誘電体膜表面のPb濃度が高くなり、結晶性が低下して絶縁強化膜の絶縁性がより強化されるという有効な効果が得られる。   Further, if the Pb content of the insulation enhancement film is made larger than the Pb content of the ferroelectric film, the Pb concentration on the surface of the ferroelectric film becomes higher, the crystallinity is lowered, and the insulation property of the insulation enhancement film is further increased. An effective effect of strengthening is obtained.

絶縁強化膜の酸素含有量を強誘電体膜の酸素含有量よりも多くすれば、絶縁強化膜の絶縁性の強化を図ることができるという有効な効果が得られる。   If the oxygen content of the insulation enhancement film is made larger than the oxygen content of the ferroelectric film, an effective effect that the insulation of the insulation reinforcement film can be enhanced can be obtained.

絶縁強化膜の結晶性を強誘電体膜の結晶性よりも低くすれば、絶縁強化膜の絶縁性の強化を図ることができるという有効な効果が得られる。   If the crystallinity of the insulation enhancement film is made lower than the crystallinity of the ferroelectric film, an effective effect that the insulation of the insulation enhancement film can be enhanced can be obtained.

このような強誘電体素子を用いたアクチュエータによれば、安定した変位動作を行うことが可能になるという有効な効果が得られる。   According to the actuator using such a ferroelectric element, an effective effect that a stable displacement operation can be performed is obtained.

このようなアクチュエータを用いたインクジェットヘッドによれば、安定したインク吐出を行うことが可能になるという有効な効果が得られる。   According to the ink jet head using such an actuator, it is possible to obtain an effective effect of enabling stable ink discharge.

そして、このようなインクジェットヘッドを備えたインクジェット式記録装置によれば、安定したインク吐出により高画質の印字を行うことが可能になるという有効な効果が得られる。   In addition, according to the ink jet recording apparatus including such an ink jet head, an effective effect that high quality printing can be performed by stable ink ejection is obtained.

本発明の請求項1に記載の発明は、第1の電極と、第1の電極上に形成された強誘電体機能膜と、強誘電体機能膜上に形成された第2の電極とを有し、強誘電体機能膜は、強誘電体膜及びこの強誘電体膜の構成元素の少なくとも一種類の元素を含み、強誘電体膜よりも結晶性の低い絶縁強化膜から構成され、強誘電体膜のX線解析法による回折ピークの半値幅をa0、強誘電体機能膜のX線解析法による回折ピークの半値幅をa、半値幅の増加率をp=(a−a0)/a0とするとき、1<p≦2.5である強誘電体素子であり、強誘電体膜の欠陥が絶縁強化膜に被覆されて強誘電体膜の絶縁性が向上するとともに、強誘電体膜と絶縁強化膜との密着性が良好でかつ絶縁強化膜の誘電率が強誘電体膜の誘電率と近くなって駆動電圧の増加が30%以内に抑えられ強誘電体膜の信頼性及び耐圧性が向上するという作用を有する。   According to a first aspect of the present invention, there is provided a first electrode, a ferroelectric functional film formed on the first electrode, and a second electrode formed on the ferroelectric functional film. The ferroelectric functional film includes a ferroelectric film and at least one element of constituent elements of the ferroelectric film, and is composed of an insulating reinforcing film having lower crystallinity than the ferroelectric film. The full width at half maximum of the diffraction peak by X-ray analysis of the dielectric film is a0, the full width at half maximum of the diffraction peak by X-ray analysis of the ferroelectric functional film is a, and the increase rate of the full width at half maximum is p = (a−a0) / When a0, it is a ferroelectric element in which 1 <p ≦ 2.5, and the defect of the ferroelectric film is covered with the insulating reinforcing film so that the insulating property of the ferroelectric film is improved, and the ferroelectric The adhesion between the film and the insulation enhancement film is good, and the dielectric constant of the insulation enhancement film is close to the dielectric constant of the ferroelectric film, resulting in an increase in driving voltage of 3 Reliability and pressure resistance of the suppressed and the ferroelectric film within% has the effect of improving.

本発明の請求項2に記載の発明は、請求項1に記載の発明において、強誘電体膜のX線解析法による回折ピークが、(001)配向面に基づくものである強誘電体素子であり、強誘電体機能膜の絶縁性が向上するとともに、駆動電圧を低減する作用を有する。   The invention according to claim 2 of the present invention is the ferroelectric element according to claim 1, wherein the diffraction peak of the ferroelectric film by the X-ray analysis method is based on the (001) orientation plane. In addition, the insulation of the ferroelectric functional film is improved and the drive voltage is reduced.

本発明の請求項3に記載の発明は、請求項1に記載の発明において、第1の電極または第2の電極のX線解析法による回折ピークが、強誘電体機能膜のX線解析法による回折ピークと同一の配向面に基づくものである強誘電体素子であり、強誘電体機能膜の絶縁性が向上するとともに、駆動電圧を低減する作用を有する。   The invention according to claim 3 of the present invention is the method according to claim 1, wherein the diffraction peak of the first electrode or the second electrode by the X-ray analysis method is an X-ray analysis method of the ferroelectric functional film. The ferroelectric element is based on the same orientation plane as the diffraction peak due to the above, and has the effect of improving the insulation of the ferroelectric functional film and reducing the driving voltage.

本発明の請求項4に記載の発明は、請求項1に記載の発明において、第1の電極または第2の電極のX線解析法による回折ピークが、(001)配向面に基づくものである強誘電体素子であり、強誘電体機能膜の絶縁性が向上するとともに、駆動電圧を低減する作用を有する。   According to a fourth aspect of the present invention, in the first aspect, the diffraction peak of the first electrode or the second electrode by the X-ray analysis method is based on a (001) orientation plane. This is a ferroelectric element, which has the effect of improving the insulation of the ferroelectric functional film and reducing the driving voltage.

本発明の請求項5に記載の発明は、請求項1に記載の発明において、強誘電体膜が、Pb、La、Zr、Tiの少なくとも一種類の元素を含むペロブスカイト型酸化物である強誘電体素子であり、強誘電体膜の欠陥が絶縁強化膜に被覆されて強誘電体膜の絶縁性が向上するとともに、強誘電体膜と絶縁強化膜との密着性が良好でかつ絶縁強化膜の誘電率が強誘電体膜の誘電率と近くなって強誘電体膜の信頼性及び耐圧性が向上するという作用を有する。   The invention according to claim 5 of the present invention is the ferroelectric material according to claim 1, wherein the ferroelectric film is a perovskite oxide containing at least one element of Pb, La, Zr, and Ti. The ferroelectric element is coated with defects in the ferroelectric film to improve the insulating property of the ferroelectric film, and the adhesion between the ferroelectric film and the insulating reinforcing film is good and the insulating reinforcing film The dielectric constant of the ferroelectric film becomes close to the dielectric constant of the ferroelectric film, thereby improving the reliability and pressure resistance of the ferroelectric film.

本発明の請求項6に記載の発明は、請求項5記載の発明において、絶縁強化膜のPb含有量が強誘電体膜のPb含有量よりも多い強誘電体素子であり、強誘電体膜表面のPb濃度が高くなり、結晶性が低下して絶縁強化膜の絶縁性がより強化されるという作用を有する。   The invention described in claim 6 of the present invention is the ferroelectric element according to claim 5, wherein the Pb content of the insulation enhancement film is larger than the Pb content of the ferroelectric film, and the ferroelectric film The surface Pb concentration is increased, the crystallinity is lowered, and the insulating property of the insulating reinforcing film is further enhanced.

本発明の請求項7に記載の発明は、請求項5または6記載の発明において絶縁強化膜の酸素含有量が強誘電体膜の酸素含有量よりも多い強誘電体素子であり、絶縁強化膜の絶縁性の強化を図ることができるという作用を有する。   The invention according to claim 7 of the present invention is the ferroelectric element according to claim 5 or 6, wherein the oxygen content of the insulating reinforcing film is larger than the oxygen content of the ferroelectric film, and the insulating reinforcing film It has the effect | action that reinforcement | strengthening of can be aimed at.

本発明の請求項8に記載の発明は、請求項1に記載の発明において、絶縁強化膜は、パイロクロア型酸化物とペロブスカイト型酸化物の少なくともいずれか一方を含む多結晶膜またはアモルファス膜である強誘電体素子であり、強誘電体膜の欠陥が絶縁強化膜に被覆されて強誘電体膜の絶縁性が向上するとともに、強誘電体膜と絶縁強化膜との密着性が良好でかつ絶縁強化膜の誘電率が強誘電体膜の誘電率と近くなって強誘電体膜の信頼性及び耐圧性が向上するという作用を有する。   According to an eighth aspect of the present invention, in the first aspect of the present invention, the insulation reinforcing film is a polycrystalline film or an amorphous film containing at least one of a pyrochlore type oxide and a perovskite type oxide. It is a ferroelectric element, and the defects of the ferroelectric film are covered with the insulation enhancement film, so that the insulation property of the ferroelectric film is improved, and the adhesion between the ferroelectric film and the insulation enhancement film is good and insulation is achieved. The dielectric constant of the reinforced film is close to the dielectric constant of the ferroelectric film, so that the reliability and pressure resistance of the ferroelectric film are improved.

本発明の請求項9に記載の発明は、請求項1〜8のいずれか一項に記載の強誘電体素子が用いられているアクチュエータであり、安定した変位動作を行うことが可能になるという作用を有する。   The invention according to claim 9 of the present invention is an actuator in which the ferroelectric element according to any one of claims 1 to 8 is used, and can perform a stable displacement operation. Has an effect.

本発明の請求項10に記載の発明は、請求項9に記載のアクチュエータと、インク液が収容され、アクチュエータの変位が作用する複数の圧力室とを備えたインクジェットヘッドであり、安定したインク吐出を行うことが可能になるという作用を有する。   According to a tenth aspect of the present invention, there is provided an ink jet head comprising the actuator according to the ninth aspect and a plurality of pressure chambers in which ink liquid is accommodated and the displacement of the actuator acts. It has the effect that it becomes possible to perform.

本発明の請求項11に記載の発明は、請求項10記載のインクジェットヘッドを備えたインクジェット式記録装置であり、安定したインク吐出により高画質の印字を行うことが可能になるという作用を有する。   The invention according to an eleventh aspect of the present invention is an ink jet recording apparatus including the ink jet head according to the tenth aspect, and has an effect that high-quality printing can be performed by stable ink ejection.

本発明の請求項12に記載の発明は、第1の電極を形成する工程と、この第1の電極上に強誘電体機能膜を形成する工程と、この強誘電体機能膜上に第2の電極を形成する工程と、を備える強誘電体素子の製造方法であって、強誘電体機能膜を形成する工程は、強誘電体膜及び絶縁強化膜を形成する工程を含み、絶縁強化膜は、強誘電体膜の構成元素の少なくとも一種類の元素を含むアモルファス膜であって、このアモルファス膜は、強誘電体膜を成膜した成膜装置と同一の成膜装置を用いて、少なくとも成膜温度を変化させて形成するようにした強誘電体素子の製造方法であり、強誘電体膜の欠陥が絶縁強化膜に被覆されて強誘電体膜の絶縁性が向上するとともに、強誘電体膜と絶縁強化膜との密着性が良好でかつ絶縁強化膜の誘電率が強誘電体膜の誘電率と近くなって強誘電体膜の信頼性及び耐圧性が向上するとともに、別途の成膜装置が不要で、容易に所望の薄膜を作製できるという作用を有する。   According to a twelfth aspect of the present invention, there is provided a step of forming a first electrode, a step of forming a ferroelectric functional film on the first electrode, and a second step on the ferroelectric functional film. A method of manufacturing a ferroelectric element comprising the step of forming a ferroelectric functional film and a step of forming a ferroelectric film and an insulation enhancement film, Is an amorphous film containing at least one element of the constituent elements of the ferroelectric film, and this amorphous film is at least using the same film forming apparatus as that for forming the ferroelectric film. This is a method for manufacturing a ferroelectric element in which the film formation temperature is changed, and the ferroelectric film is covered with defects in the ferroelectric film to improve the insulation property of the ferroelectric film, and also in ferroelectric The adhesion between the body film and the insulation reinforcement film is good and the dielectric constant of the insulation reinforcement film is strong With reliability is improved and the withstand voltage of the ferroelectric film becomes close to the dielectric constant of the conductor film, has the effect of additional film-forming apparatus is not required, readily produce the desired film.

本発明の請求項13に記載の発明は、請求項12記載の発明において、アモルファス膜を成膜する際の成膜温度を室温とした強誘電体素子の製造方法であり、温度管理が容易になり所望の薄膜を作製できるという作用を有する。   A thirteenth aspect of the present invention is a method of manufacturing a ferroelectric element according to the twelfth aspect of the present invention, wherein the film formation temperature when forming the amorphous film is room temperature, and temperature control is easy. Therefore, the desired thin film can be produced.

以下、本発明の実施の形態について、図1から図5を用いて説明する。なお、これらの図面において同一の部材には同一の符号を付しており、また、重複した説明は省略されている。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. In these drawings, the same members are denoted by the same reference numerals, and redundant description is omitted.

図1は本発明の一実施の形態である強誘電体素子が用いられたインクジェット式記録装置の全体概略構成を示す斜視図、図2は図1のインクジェット式記録装置におけるインクジェットヘッドの全体構成を示す断面図、図3は図2の要部を示す斜視図、図4は図2のインクジェットヘッドのアクチュエータ部の構成を示す断面図、図5は本発明の一実施の形態である強誘電体素子を示す断面図、図6は圧電変位を測定するカンチレバーの構成を示す説明図、図7はアクチュエータの作製方法を示す断面図である。   FIG. 1 is a perspective view showing an overall schematic configuration of an inkjet recording apparatus using a ferroelectric element according to an embodiment of the present invention, and FIG. 2 shows an overall configuration of an inkjet head in the inkjet recording apparatus of FIG. 3 is a perspective view showing the main part of FIG. 2, FIG. 4 is a cross-sectional view showing the configuration of the actuator part of the ink jet head of FIG. 2, and FIG. 5 is a ferroelectric substance according to an embodiment of the present invention. FIG. 6 is a cross-sectional view showing an element, FIG. 6 is an explanatory view showing the configuration of a cantilever for measuring piezoelectric displacement, and FIG. 7 is a cross-sectional view showing a method for manufacturing an actuator.

図1に示すインクジェット式記録装置40は、強誘電体素子の圧電効果を利用して記録を行う本発明のインクジェットヘッド41を備え、このインクジェットヘッド41から吐出したインク滴を紙等の記録媒体42に着弾させて、記録媒体42に記録を行うものである。インクジェットヘッド41は、主走査方向Xに配置したキャリッジ軸43に設けられたキャリッジ44に搭載されていて、キャリッジ44がキャリッジ軸43に沿って往復動するのに応じて、主走査方向Xに往復動する。更に、インクジェット式記録装置40は、記録媒体42をインクジェットヘッド41の幅方向(すなわち、主走査方向X)と略垂直方向の副走査方向Yに移動させる複数個のローラ(移動手段)45を備える。   An ink jet recording apparatus 40 shown in FIG. 1 includes an ink jet head 41 of the present invention that performs recording using the piezoelectric effect of a ferroelectric element, and ink droplets ejected from the ink jet head 41 are recorded on a recording medium 42 such as paper. Is recorded on the recording medium 42. The inkjet head 41 is mounted on a carriage 44 provided on a carriage shaft 43 arranged in the main scanning direction X, and reciprocates in the main scanning direction X as the carriage 44 reciprocates along the carriage shaft 43. Move. Further, the ink jet recording apparatus 40 includes a plurality of rollers (moving means) 45 for moving the recording medium 42 in the sub scanning direction Y substantially perpendicular to the width direction of the ink jet head 41 (that is, the main scanning direction X). .

図2は本発明の実施の形態のインクジェットヘッド41の全体構成を示し、図3はその要部の構成を示す。   FIG. 2 shows the overall configuration of the inkjet head 41 according to the embodiment of the present invention, and FIG. 3 shows the configuration of the main part thereof.

図2及び図3において、Aは圧力室部品であって、圧力室用開口部1が形成される。Bは圧力室用開口部1の上端開口面を覆うように配置されるアクチュエータ部、Cは圧力室用開口部1の下端開口面を覆うように配置されるインク液流路部品である。圧力室部品Aの圧力室用開口部1は、その上下に位置するアクチュエータ部B及びインク液流路部品Cにより区画されて圧力室2となる。アクチュエータ部Bには、圧力室2の上方に位置する個別電極(第2の電極)3が配置されている。これ等圧力室2及び個別電極3は、図2からわかるように、千鳥状に多数配列されている。インク液流路部品Cには、インク液供給方向に並ぶ圧力室2間で共用する共通液室5と、この共通液室5を圧力室2に連通する供給口6と、圧力室2内のインク液が流出するインク流路7とが形成される。Dはノズル板であって、インク流路7に連通するノズル孔8が形成されている。また、図2において、EはICチップであって、ボンディングワイヤーBWを介して多数の個別電極3に対して電圧を供給する。   2 and 3, A is a pressure chamber part, and the pressure chamber opening 1 is formed. B is an actuator portion arranged to cover the upper end opening surface of the pressure chamber opening 1, and C is an ink liquid flow path component arranged to cover the lower end opening surface of the pressure chamber opening 1. The pressure chamber opening 1 of the pressure chamber part A is partitioned by an actuator part B and an ink liquid flow path part C positioned above and below to become a pressure chamber 2. In the actuator part B, an individual electrode (second electrode) 3 located above the pressure chamber 2 is arranged. As can be seen from FIG. 2, a large number of these pressure chambers 2 and individual electrodes 3 are arranged in a staggered manner. The ink liquid flow path component C includes a common liquid chamber 5 shared between the pressure chambers 2 arranged in the ink liquid supply direction, a supply port 6 that communicates the common liquid chamber 5 with the pressure chamber 2, An ink flow path 7 through which the ink liquid flows is formed. D is a nozzle plate, in which a nozzle hole 8 communicating with the ink flow path 7 is formed. In FIG. 2, E is an IC chip, which supplies a voltage to a large number of individual electrodes 3 via bonding wires BW.

次に、アクチュエータ部Bの構成を図4に基づいて説明する。   Next, the structure of the actuator part B is demonstrated based on FIG.

同図において、アクチュエータ部Bは、図2に示したインク液供給方向とは直交する方向の断面図を示す。同図では、直交方向に並ぶ4個の圧力室2を持つ圧力室部品Aが参照的に描かれている。   In the figure, the actuator part B shows a cross-sectional view in a direction orthogonal to the ink liquid supply direction shown in FIG. In the drawing, a pressure chamber part A having four pressure chambers 2 arranged in the orthogonal direction is drawn for reference.

このアクチュエータ部Bは、各圧力室2の上方に位置する個別電極3、この個別電極3の直下に位置する強誘電体機能膜10、この強誘電体機能膜10の圧電効果により変位し振動する振動板11とを有する。振動板11は、導電性物質で形成されていて、各圧力室2で共通する共通電極(第1の電極)を兼用する。更に、アクチュエータ部Bは、各圧力室2の相互を区画する区画壁2aの上方に位置する縦壁13を持つ。なお、同図中、14は圧力室部品Aとアクチュエータ部Bとを接着する接着剤である。各縦壁13は、接着剤14を用いた接着時に、一部の接着剤14が区画壁2aの外方にはみ出した場合にも、この接着剤14が振動板11に付着せず、振動板11が所期通りの変位、振動を起こすように、圧力室2の上面と振動板11の下面との距離を拡げる役割を持つ。但し、振動板と共通電極は別体となっていてもよい。   The actuator portion B is displaced and vibrated by the individual electrode 3 positioned above each pressure chamber 2, the ferroelectric function film 10 positioned immediately below the individual electrode 3, and the piezoelectric effect of the ferroelectric function film 10. And a diaphragm 11. The diaphragm 11 is made of a conductive material and also serves as a common electrode (first electrode) common to the pressure chambers 2. Furthermore, the actuator part B has the vertical wall 13 located above the division wall 2a which divides each pressure chamber 2 mutually. In the figure, reference numeral 14 denotes an adhesive for bonding the pressure chamber part A and the actuator part B together. Each vertical wall 13 does not adhere to the diaphragm 11 even when a part of the adhesive 14 protrudes to the outside of the partition wall 2a at the time of adhesion using the adhesive 14, and the diaphragm 14 It has the role of increasing the distance between the upper surface of the pressure chamber 2 and the lower surface of the diaphragm 11 so that 11 will cause the desired displacement and vibration. However, the diaphragm and the common electrode may be separate.

そして、個別電極3、強誘電体機能膜10及び共通電極11で強誘電体素子が構成されている。   The individual electrode 3, the ferroelectric functional film 10, and the common electrode 11 constitute a ferroelectric element.

なお、個別電極3は例えばPt(白金)で、振動板11は例えばCr(クロム)、Cu(銅)、Mo(モリブデン)またはTa(タンタル)で、形成されている。また、個別電極3は厚さ0.1〜1.0μmに、強誘電体機能膜10は厚さ2〜6μmに、振動板11は厚さ3〜10μmに、各々成膜されている。   The individual electrode 3 is made of, for example, Pt (platinum), and the diaphragm 11 is made of, for example, Cr (chromium), Cu (copper), Mo (molybdenum), or Ta (tantalum). The individual electrode 3 is formed to a thickness of 0.1 to 1.0 μm, the ferroelectric functional film 10 is formed to a thickness of 2 to 6 μm, and the diaphragm 11 is formed to a thickness of 3 to 10 μm.

図5に示すように、強誘電体機能膜10は、例えばチタン酸ジルコン酸鉛(PZT)からなるペロブスカイト型酸化物である強誘電体膜10aと、この強誘電体膜10aの構成元素の少なくとも一種類の元素(この場合には、Pb、Zr、Tiの少なくとも一種類の元素)を含む絶縁強化膜10bとから構成されている。   As shown in FIG. 5, the ferroelectric functional film 10 includes a ferroelectric film 10a that is a perovskite oxide made of, for example, lead zirconate titanate (PZT), and at least constituent elements of the ferroelectric film 10a. The insulating reinforcement film 10b contains one kind of element (in this case, at least one kind of element of Pb, Zr, Ti).

なお、強誘電体膜10aにはPLT膜{例えば(Pb0.9La0.1)TiO3}やPLZT膜{例えば(Pb0.9La0.1)(Zr0.52Ti0.48)O3}などを適用することもできる。したがって、この場合には、絶縁強化膜10bは、Pb、La、Tiの少なくともいずれか一種類の元素を含むことになる。 Note that a PLT film {for example (Pb 0.9 La 0.1 ) TiO 3 } or a PLZT film {for example (Pb 0.9 La 0.1 ) (Zr 0.52 Ti 0.48 ) O 3 } may be applied to the ferroelectric film 10a. Therefore, in this case, the insulating reinforcing film 10b contains at least one element of Pb, La, and Ti.

また、図5はアクチュエータ部Bで、縦壁13に相当する基板上に、共通電極11、強誘電体膜10a、絶縁強化膜10b、個別電極3を順次成膜しているために、絶縁強化膜10bは強誘電体膜10aと個別電極3との間に位置しているが、例えばMgO基板に個別電極、強誘電体膜、絶縁強化膜、共通電極を成膜し、これを縦壁に相当する基板に接着した後にMgO基板をエッチング除去する場合には、絶縁強化膜は強誘電体膜と共通電極との間に位置することになる。したがって、図5においては、強誘電体膜10aが振動板11側に、絶縁強化膜10bが個別電極3側に形成されているが、その逆でもよい。更に、絶縁強化膜10bは一層でなくてもよく、強誘電体膜10aの両側に形成するようにしてもよい。また、強誘電体膜10aと絶縁強化膜10bの積層の繰り返し構造であってもよい。   Further, FIG. 5 shows the actuator portion B. Since the common electrode 11, the ferroelectric film 10a, the insulation reinforcing film 10b, and the individual electrode 3 are sequentially formed on the substrate corresponding to the vertical wall 13, the insulation reinforcement is performed. The film 10b is located between the ferroelectric film 10a and the individual electrode 3. For example, an individual electrode, a ferroelectric film, an insulating reinforcement film, and a common electrode are formed on an MgO substrate, and this is formed on the vertical wall. In the case where the MgO substrate is removed by etching after bonding to the corresponding substrate, the insulating reinforcing film is located between the ferroelectric film and the common electrode. Therefore, in FIG. 5, the ferroelectric film 10 a is formed on the vibration plate 11 side and the insulation reinforcing film 10 b is formed on the individual electrode 3 side, but the reverse is also possible. Furthermore, the insulation reinforcing film 10b may not be a single layer, and may be formed on both sides of the ferroelectric film 10a. Further, it may be a repeating structure in which the ferroelectric film 10a and the insulating reinforcement film 10b are laminated.

なお、PLT膜を成膜しておき、その上にPZT膜などの強誘電体膜10aを成膜するようにすれば、強誘電体膜10aの結晶性が向上する。   If a PLT film is formed in advance and a ferroelectric film 10a such as a PZT film is formed thereon, the crystallinity of the ferroelectric film 10a is improved.

ここで、絶縁強化膜10bは、パイロクロア型酸化物膜の多結晶膜、ペロブスカイト型酸化物の多結晶膜、または結晶性を持たないアモルファス膜、等の低結晶性膜である。なお、絶縁強化膜10bは、パイロクロア型酸化物の多結晶膜とペロブスカイト型酸化物の多結晶膜とで形成されていてもよい。   Here, the insulating enhancement film 10b is a low crystalline film such as a polycrystalline film of a pyrochlore type oxide film, a polycrystalline film of a perovskite type oxide, or an amorphous film having no crystallinity. The insulating enhancement film 10b may be formed of a pyrochlore oxide polycrystalline film and a perovskite oxide polycrystalline film.

このような低結晶性膜は、例えば以下の条件のいずれか、あるいは組み合わせで作製される。   Such a low crystalline film is produced, for example, under any of the following conditions or in combination.

つまり、第1の条件は、成膜温度を強誘電体膜作製時(500〜600℃)よりも下げるというものである。これにより、室温でアモルファス膜が、例えば350〜450℃でパイロクロア膜が作製される。なお、第1の条件は、別途のスパッタ装置は不要で成膜条件を変えるだけなので、容易に所望の薄膜が作製されるという利点がある。   That is, the first condition is that the deposition temperature is lower than that at the time of manufacturing the ferroelectric film (500 to 600 ° C.). Thereby, an amorphous film is produced at room temperature, for example, a pyrochlore film at 350 to 450 ° C. Note that the first condition is advantageous in that a desired thin film can be easily manufactured because a separate sputtering apparatus is not required and only the film forming conditions are changed.

第2の条件は、スパッタリング時の圧力を強誘電体膜作製時(0.1〜0.3Pa)よりも上げ、例えば2〜3Paにするというものである。   The second condition is that the pressure during sputtering is higher than that during production of the ferroelectric film (0.1 to 0.3 Pa), for example, 2 to 3 Pa.

そして、第3の条件は、酸素分圧(O2/Ar流量比)を強誘電体膜作製時(2〜10%)よりも上げ、例えば30〜50%にするというものである。 The third condition is that the oxygen partial pressure (O 2 / Ar flow rate ratio) is increased from that at the time of manufacturing the ferroelectric film (2 to 10%), for example, 30 to 50%.

但し、成膜はスパッタリング法に限定されるものではなく、例えば有機金属を用いたMO−CVD法やゾル・ゲル法など他の成膜技術を適用できるのは勿論である。   However, the film formation is not limited to the sputtering method, and other film formation techniques such as an MO-CVD method using an organic metal or a sol-gel method can be applied.

このように、本実施の形態の強誘電体素子は、強誘電体膜10a及びこの強誘電体膜10aの構成元素の少なくとも一種類の元素を含む絶縁強化膜10bからなる強誘電体機能膜10が電極3,振動板(共通電極)11間に形成されているので、強誘電体膜10aと異常成長粒との界面に生じる隙間やピンホールなど、強誘電体膜10aの絶縁性低下の原因となる欠陥が絶縁強化膜10bにより完全に被覆されることになり、強誘電体膜10aの絶縁性が向上する。   As described above, the ferroelectric element according to the present embodiment includes the ferroelectric functional film 10 including the ferroelectric film 10a and the insulating enhancement film 10b including at least one element of the constituent elements of the ferroelectric film 10a. Is formed between the electrode 3 and the diaphragm (common electrode) 11, which causes a decrease in insulating properties of the ferroelectric film 10 a such as gaps and pinholes formed at the interface between the ferroelectric film 10 a and abnormally grown grains. Thus, the defect is completely covered by the insulating reinforcing film 10b, and the insulating property of the ferroelectric film 10a is improved.

また、このように、絶縁強化膜10bが強誘電体膜10aの構成元素の少なくとも一種類の元素を含んだ膜となっているので、強誘電体膜10aとの密着性が良好になって強誘電体膜10aの信頼性が向上する。   Further, as described above, since the insulating reinforcing film 10b is a film containing at least one element of the constituent elements of the ferroelectric film 10a, the adhesion with the ferroelectric film 10a is improved and strong. The reliability of the dielectric film 10a is improved.

更に、絶縁強化膜10bが強誘電体膜10aの構成元素の少なくとも一種類の元素を含んだ膜となっているので、絶縁強化膜10bの誘電率が強誘電体膜10aの誘電率と近くなって駆動電圧の低減を図ることが可能になる。   Furthermore, since the insulating enhancement film 10b is a film containing at least one element of the constituent elements of the ferroelectric film 10a, the dielectric constant of the insulation enhancement film 10b is close to the dielectric constant of the ferroelectric film 10a. This makes it possible to reduce the drive voltage.

ここで、成膜時において、絶縁強化膜10bのPb含有量を強誘電体膜10aのPb含有量よりも多くすれば、強誘電体膜10a表面のPb濃度が高くなり、結晶性が低下して強誘電体膜10a内部の結晶粒の異常成長を止めることができ、更に欠陥部を覆うので絶縁強化膜10bの絶縁性がより強化される。   Here, at the time of film formation, if the Pb content of the insulating enhancement film 10b is made larger than the Pb content of the ferroelectric film 10a, the Pb concentration on the surface of the ferroelectric film 10a increases and the crystallinity decreases. Thus, the abnormal growth of crystal grains inside the ferroelectric film 10a can be stopped, and further, since the defect portion is covered, the insulating property of the insulating reinforcing film 10b is further strengthened.

また、成膜時において、絶縁強化膜10bの酸素含有量を強誘電体膜10aの酸素含有量よりも多くすれば、絶縁強化膜10bの絶縁性の強化を図ることができる。   Further, at the time of film formation, if the oxygen content of the insulation enhancement film 10b is made larger than the oxygen content of the ferroelectric film 10a, the insulation of the insulation enhancement film 10b can be enhanced.

更に、絶縁強化膜10bの結晶性を強誘電体膜10aの結晶性よりも低くすれば、同様に、絶縁強化膜10bの絶縁性の強化を図ることができる。   Furthermore, if the crystallinity of the insulating enhancement film 10b is made lower than the crystallinity of the ferroelectric film 10a, the insulation of the insulation enhancement film 10b can be similarly enhanced.

ここで、結晶性はX線回折法もしくは電子線回折法で測定される。例えば、強誘電体膜がエピタキシャル単結晶膜である場合には電子線回折パターンはスポットパターンを示すが、低結晶性膜が多結晶である場合はリングパターンとなる。更に、アモルファス膜の場合はリング形状が不明瞭になってハロー状パターンとなる。X線回折法の場合は、強誘電体膜から得られる特定の回折ピークの半値幅によって結晶性を判断する。強誘電体膜にペロブスカイト型PZTを用いた場合について説明する。例えばPZT膜からの回折される(001)回折ピークの半値幅はPZT膜の結晶性を表す。このPZT膜上に絶縁強化膜として低結晶性膜を形成すると、PZT膜からの回折線が低結晶成膜からの散乱を受けてPZT(001)回折ピークの半値幅が増加する。PZT(001)回折ピークの半値幅がa0からaに増加した場合の半値幅の増加率をp=(a−a0)/a0と定義すると、1<p≦2.5が望ましい。更には1.2<p≦2.5が望ましく、更には1.5<p≦2.5が望ましい。p>2.5の場合は、強誘電体膜の特性が著しく低下して駆動電圧が増加するので望ましくない。駆動電圧の増加を30%以内に抑えるためには1<p≦2.5であることが必要である。絶縁耐圧を20%以上向上するには1.2<p≦2.5が必要であり、更に50%以上向上するには1.5<p≦2.5である必要がある。   Here, the crystallinity is measured by an X-ray diffraction method or an electron beam diffraction method. For example, when the ferroelectric film is an epitaxial single crystal film, the electron diffraction pattern shows a spot pattern, but when the low crystalline film is polycrystalline, it becomes a ring pattern. Further, in the case of an amorphous film, the ring shape becomes unclear and a halo pattern is formed. In the case of the X-ray diffraction method, the crystallinity is determined by the half width of a specific diffraction peak obtained from the ferroelectric film. A case where perovskite PZT is used for the ferroelectric film will be described. For example, the half width of the (001) diffraction peak diffracted from the PZT film represents the crystallinity of the PZT film. When a low crystalline film is formed as an insulation enhancement film on this PZT film, the diffraction line from the PZT film is scattered from the low crystal film formation, and the half width of the PZT (001) diffraction peak increases. When the half-width increase rate when the half-width of the PZT (001) diffraction peak increases from a0 to a is defined as p = (a−a0) / a0, 1 <p ≦ 2.5 is desirable. Furthermore, 1.2 <p ≦ 2.5 is desirable, and 1.5 <p ≦ 2.5 is further desirable. When p> 2.5, the characteristics of the ferroelectric film are remarkably deteriorated and the driving voltage is increased, which is not desirable. In order to suppress the increase in driving voltage within 30%, it is necessary that 1 <p ≦ 2.5. 1.2 <p ≦ 2.5 is necessary to improve the withstand voltage by 20% or more, and 1.5 <p ≦ 2.5 is necessary to further improve it by 50% or more.

ここで、実施の形態として、図5において、縦壁13にMgO基板上を用い、MgO基板上に、振動板11にPt、強誘電体膜10aにPZT{Pb(Zr0.53Ti0.47)O3}、個別電極3にPtを用い、絶縁強化膜10bに種々の膜を用いて膜の圧電特性と絶縁特性を評価した。 Here, as an embodiment, in FIG. 5, an MgO substrate is used for the vertical wall 13, Pt is used for the diaphragm 11, and PZT {Pb (Zr 0.53 Ti 0.47 ) O 3 is used for the ferroelectric film 10 a. }, Pt was used for the individual electrode 3 and various films were used for the insulation reinforcing film 10b to evaluate the piezoelectric characteristics and insulating characteristics of the films.

先ず、(100)方位のMgO単結晶基板上にPt膜0.2μmとPZT膜2.7μmを連続成膜した。成膜装置としてはRFマグネトロンスパッタ装置を用いた。Pt膜はArガス、0.3Pa、基板温度650℃で成膜し、PZT膜はArに酸素分圧10%のAr混合ガス、0.3Pa、基板温度620℃で成膜した。粉末X線回折装置を用いて膜の結晶構造を解析すると、Pt膜とPZT膜のいずれもMgO単結晶基板の(001)方位にそろったエピタキシャル膜であった。   First, a 0.2 μm Pt film and a 2.7 μm PZT film were successively formed on a (100) oriented MgO single crystal substrate. An RF magnetron sputtering apparatus was used as the film forming apparatus. The Pt film was formed at an Ar gas, 0.3 Pa, and a substrate temperature of 650 ° C., and the PZT film was formed at an Ar mixed gas of 10% oxygen partial pressure, 0.3 Pa, at a substrate temperature of 620 ° C. When the crystal structure of the film was analyzed using a powder X-ray diffractometer, both the Pt film and the PZT film were epitaxial films aligned in the (001) direction of the MgO single crystal substrate.

次に、同じPZTターゲットを用い、RFマグネトロンスパッタ装置により絶縁強化膜0.3μmを形成した。   Next, using the same PZT target, an insulation reinforcing film of 0.3 μm was formed by an RF magnetron sputtering apparatus.

サンプルAは、基板温度を400℃で成膜した。他のスパッタ条件はPZT膜と同じにした。   Sample A was deposited at a substrate temperature of 400 ° C. Other sputtering conditions were the same as those for the PZT film.

サンプルBは、スパッタ圧を2Paで成膜した。他のスパッタ条件はPZT膜と同じにした。   Sample B was deposited at a sputtering pressure of 2 Pa. Other sputtering conditions were the same as those for the PZT film.

サンプルCは、酸素分圧を50%で成膜した。他のスパッタ条件はPZT膜と同じにした。   Sample C was formed with an oxygen partial pressure of 50%. Other sputtering conditions were the same as those for the PZT film.

比較例Dは、比較例として、SiO2膜をスパッタにより形成した。 In Comparative Example D, as a comparative example, a SiO 2 film was formed by sputtering.

比較例Eは、比較例として、PZT3μmを形成し、絶縁強化膜は形成しなかった。   In Comparative Example E, PZT of 3 μm was formed as a comparative example, and no insulation reinforcing film was formed.

サンプルA,B,Cについて粉末X線回折装置を用いて膜の結晶構造を解析すると、絶縁強化膜の構造は、アモルファス、パイロクロア多結晶、ペロブスカイト多結晶、あるいはこれらの結晶相の混合であることがわかった。また、強誘電体膜と絶縁強化膜の組成をEPMA分析で測定し、(表1)の結果を得た。絶縁強化膜は強誘電体膜に比べてPb含有量(Pb/(Zr+Ti)原子比)、あるいは、酸素含有量(O/(Zr+Ti)原子比)が多い。   Analyzing the crystal structure of the samples A, B, and C using a powder X-ray diffractometer, the structure of the insulation enhancement film is amorphous, pyrochlore polycrystal, perovskite polycrystal, or a mixture of these crystal phases I understood. Further, the compositions of the ferroelectric film and the insulation reinforcing film were measured by EPMA analysis, and the results shown in Table 1 were obtained. The insulating reinforcing film has a higher Pb content (Pb / (Zr + Ti) atomic ratio) or oxygen content (O / (Zr + Ti) atomic ratio) than the ferroelectric film.

Figure 2008060599
Figure 2008060599

上記のサンプルにPt膜を室温でスパッタ成膜して、上部電極とした。各サンプルの絶縁破壊電圧と、同じ圧電変位を得るために上下電極に印加する電圧(駆動電圧)の相対値を(表2)にまとめた。絶縁破壊電圧は素子のリーク電流密度が1μA/cm2以上となる電圧と定義した。圧電変位は、図6に示す、長さ15mm、幅2mmの板状のカンチレバーを作製し、一端を固定して電圧を印加した時のもう一端の変位をレーザードップラー変位計で測定した。 A Pt film was formed on the above sample by sputtering at room temperature to form an upper electrode. The relative values of the breakdown voltage of each sample and the voltage (drive voltage) applied to the upper and lower electrodes to obtain the same piezoelectric displacement are summarized in Table 2. The dielectric breakdown voltage was defined as a voltage at which the leakage current density of the device was 1 μA / cm 2 or more. For the piezoelectric displacement, a plate-shaped cantilever having a length of 15 mm and a width of 2 mm shown in FIG. 6 was prepared, and the displacement at the other end when a voltage was applied with one end fixed was measured with a laser Doppler displacement meter.

Figure 2008060599
Figure 2008060599

以上のように、本発明を用いることにより高い絶縁性が得られるとともに、駆動電圧を低減することができる。   As described above, by using the present invention, high insulation can be obtained and the driving voltage can be reduced.

本実施の形態では、(100)方位のMgO単結晶基板上にエピタキシャル成長した強誘電体膜を用いたが、例えばSi基板や石英基板上にPt多結晶膜、強誘電体多結晶膜を形成しても本発明の効果を損なうものではない。   In this embodiment, a ferroelectric film epitaxially grown on a (100) -oriented MgO single crystal substrate is used. For example, a Pt polycrystalline film or a ferroelectric polycrystalline film is formed on a Si substrate or a quartz substrate. However, the effect of the present invention is not impaired.

次にインクジェットヘッドのアクチュエータ作製について図7を用いて説明する。図7(a)はサンプルAの構成であり、71はMgO単結晶基板、72は振動板かつ共通電極となるPt膜、73は強誘電体膜であるPZTエピタキシャル膜、74は絶縁強化膜である低結晶膜、75は個別電極であるPt膜である。次にMgO基板の所望の部分をエッチングにより除去して図7(b)の構造体を形成する。MgO基板のエッチングは80℃に過熱した燐酸水溶液を用いた。MgOを残したい部分にはレジストを塗布して燐酸によるエッチングを阻止すればよい。Pt膜は燐酸によって溶解しないので、MgOエッチングはPt膜に達するとそれ以上進行することはない。また、一部MgOを残して振動板としてとして用いてもよい。更にMgO基板側の面にインク遮断層76としてレジストやポリイミドを形成する。このような工法で、図5のアクチュエータ部Bに相当するアクチュエータを作製でき、更に図4に示すインクジェットヘッドを作製することができる。   Next, the production of the actuator of the ink jet head will be described with reference to FIG. FIG. 7A shows the configuration of Sample A, 71 is an MgO single crystal substrate, 72 is a Pt film that is a diaphragm and a common electrode, 73 is a PZT epitaxial film that is a ferroelectric film, and 74 is an insulation enhancement film. A low crystal film 75 is a Pt film which is an individual electrode. Next, a desired portion of the MgO substrate is removed by etching to form the structure shown in FIG. For the etching of the MgO substrate, an aqueous phosphoric acid solution heated to 80 ° C. was used. What is necessary is just to apply | coat a resist to the part which wants to leave MgO, and to stop the etching by phosphoric acid. Since the Pt film is not dissolved by phosphoric acid, the MgO etching does not proceed any further when it reaches the Pt film. Further, a part of MgO may be left as a diaphragm. Further, a resist or polyimide is formed as an ink blocking layer 76 on the surface of the MgO substrate. With such a construction method, an actuator corresponding to the actuator portion B of FIG. 5 can be manufactured, and further, the ink jet head shown in FIG. 4 can be manufactured.

以上に説明した本実施の形態では、本発明の強誘電体素子をインクジェット式記録装置のインク吐出に用いられるアクチュエータに適用した場合について説明したが、その焦電性を利用した温度センサや、電気光学効果を利用した光変調デバイス、光弾性効果を利用した光アクチュエータ、SAWデバイスに用いるなど、他の種々の用途に適用することが可能である。   In the present embodiment described above, the case where the ferroelectric element of the present invention is applied to an actuator used for ink ejection of an ink jet recording apparatus has been described. However, a temperature sensor using the pyroelectric property, The present invention can be applied to various other uses such as a light modulation device utilizing an optical effect, an optical actuator utilizing a photoelastic effect, and a SAW device.

また、本実施の形態では、説明の便宜上、個別電極3を第2の電極とし、共通電極11を第1の電極としたが、個別電極3を第1の電極とし、共通電極(振動板11)を第2の電極としてもよい。   In the present embodiment, for convenience of explanation, the individual electrode 3 is the second electrode and the common electrode 11 is the first electrode. However, the individual electrode 3 is the first electrode and the common electrode (the diaphragm 11). ) May be used as the second electrode.

なお、以上説明した強誘電体素子を用いたアクチュエータによれば、安定した変位動作を行うことが可能になり、このようなアクチュエータを用いたインクジェットヘッドによれば、安定したインク吐出を行うことが可能になる。そして、このようなインクジェットヘッドを備えたインクジェット式記録装置によれば、安定したインク吐出により高画質の印字を行うことが可能になる。   In addition, according to the actuator using the ferroelectric element described above, it is possible to perform a stable displacement operation, and according to the ink jet head using such an actuator, it is possible to perform stable ink discharge. It becomes possible. According to the ink jet recording apparatus provided with such an ink jet head, it is possible to perform high quality printing by stable ink ejection.

以上述べてきたように、本発明は、インクジェットヘッドおよび、インクジェットヘッドを搭載したインクジェット式記録装置に好適に応用することができる。   As described above, the present invention can be suitably applied to an ink jet head and an ink jet recording apparatus equipped with the ink jet head.

本発明の一実施の形態である強誘電体素子が用いられたインクジェット式記録装置の全体概略構成を示す斜視図1 is a perspective view showing an overall schematic configuration of an ink jet recording apparatus using a ferroelectric element according to an embodiment of the present invention. 図1のインクジェット式記録装置におけるインクジェットヘッドの全体構成を示す断面図Sectional drawing which shows the whole structure of the inkjet head in the inkjet recording device of FIG. 図2の要部を示す斜視図The perspective view which shows the principal part of FIG. 図2のインクジェットヘッドのアクチュエータ部の構成を示す断面図Sectional drawing which shows the structure of the actuator part of the inkjet head of FIG. 本発明の一実施の形態である強誘電体素子を示す断面図Sectional drawing which shows the ferroelectric element which is one embodiment of this invention 圧電変位を測定するカンチレバーの構成を示す説明図Explanatory drawing showing the configuration of a cantilever that measures piezoelectric displacement アクチュエータの作製方法を示す断面図Sectional view showing the manufacturing method of the actuator

符号の説明Explanation of symbols

3 個別電極(第2の電極)
10 強誘電体機能膜
10a 強誘電体膜
10b 絶縁強化膜
11 振動板(共通電極(第1の電極)を兼ねる)
40 インクジェット式記録装置
41 インクジェットヘッド
3 Individual electrode (second electrode)
DESCRIPTION OF SYMBOLS 10 Ferroelectric functional film 10a Ferroelectric film 10b Insulation reinforcement film 11 Diaphragm (also serves as common electrode (first electrode))
40 Inkjet recording device 41 Inkjet head

Claims (13)

第1の電極と、
前記第1の電極上に形成された強誘電体機能膜と、
前記強誘電体機能膜上に形成された第2の電極とを有し、
前記強誘電体機能膜は、強誘電体膜及びこの強誘電体膜の構成元素の少なくとも一種類の元素を含み、前記強誘電体膜よりも結晶性の低い絶縁強化膜から構成され、
前記強誘電体膜のX線解析法による回折ピークの半値幅をa0、
前記強誘電体機能膜のX線解析法による回折ピークの半値幅をa、
半値幅の増加率をp=(a−a0)/a0とするとき、
1<p≦2.5であることを特徴とする強誘電体素子。
A first electrode;
A ferroelectric functional film formed on the first electrode;
A second electrode formed on the ferroelectric functional film,
The ferroelectric functional film includes a ferroelectric film and at least one element of constituent elements of the ferroelectric film, and is composed of an insulating reinforcing film having lower crystallinity than the ferroelectric film,
The full width at half maximum of the diffraction peak by X-ray analysis of the ferroelectric film is a0,
The full width at half maximum of the diffraction peak by the X-ray analysis method of the ferroelectric functional film is a,
When the increase rate of the half width is p = (a−a0) / a0,
1. A ferroelectric element characterized by satisfying 1 <p ≦ 2.5.
前記強誘電体膜のX線解析法による回折ピークが、(001)配向面に基づくものであることを特徴とする請求項1記載の強誘電体素子。 2. The ferroelectric element according to claim 1, wherein a diffraction peak of the ferroelectric film by an X-ray analysis method is based on a (001) orientation plane. 前記第1の電極または前記第2の電極のX線解析法による回折ピークが、前記強誘電体膜のX線解析法による回折ピークと同一の配向面に基づくものであることを特徴とする請求項1記載の強誘電体素子。 The diffraction peak of the first electrode or the second electrode by an X-ray analysis method is based on the same orientation plane as the diffraction peak of the ferroelectric film by an X-ray analysis method. Item 2. The ferroelectric element according to Item 1. 前記第1の電極または前記第2の電極のX線解析法による回折ピークが、(001)配向面に基づくものであることを特徴とする請求項1記載の強誘電体素子。 2. The ferroelectric element according to claim 1, wherein a diffraction peak of the first electrode or the second electrode by an X-ray analysis method is based on a (001) orientation plane. 前記強誘電体膜が、Pb、La、Zr、Tiの少なくとも一種類の元素を含むペロブスカイト型酸化物であることを特徴とする請求項1記載の強誘電体素子。 2. The ferroelectric element according to claim 1, wherein the ferroelectric film is a perovskite oxide containing at least one element of Pb, La, Zr, and Ti. 前記絶縁強化膜のPb含有量が前記強誘電体膜のPb含有量よりも多いことを特徴とする請求項5記載の強誘電体素子。 6. The ferroelectric element according to claim 5, wherein the Pb content of the insulation enhancement film is greater than the Pb content of the ferroelectric film. 前記絶縁強化膜の酸素含有量が前記強誘電体膜の酸素含有量よりも多いことを特徴とする請求項5または6記載の強誘電体素子。 7. The ferroelectric element according to claim 5, wherein an oxygen content of the insulating reinforcing film is greater than an oxygen content of the ferroelectric film. 前記絶縁強化膜は、パイロクロア型酸化物とペロブスカイト型酸化物の少なくともいずれか一方を含む多結晶膜またはアモルファス膜であることを特徴とする請求項1記載の強誘電体素子。 2. The ferroelectric element according to claim 1, wherein the insulation reinforcing film is a polycrystalline film or an amorphous film containing at least one of a pyrochlore oxide and a perovskite oxide. 請求項1〜8のいずれか1項に記載の強誘電体素子が用いられていることを特徴とするアクチュエータ。 An actuator comprising the ferroelectric element according to claim 1. 請求項9記載のアクチュエータと、
インク液が収容され、前記アクチュエータの変位が作用する複数の圧力室とを備えたことを特徴とするインクジェットヘッド。
An actuator according to claim 9;
An ink-jet head comprising: a plurality of pressure chambers in which ink liquid is stored and the displacement of the actuator acts.
請求項10記載のインクジェットヘッドを備えたことを特徴とするインクジェット記録装置。 An ink jet recording apparatus comprising the ink jet head according to claim 10. 第1の電極を形成する工程と、
この第1の電極上に強誘電体機能膜を形成する工程と、
この強誘電体機能膜上に第2の電極を形成する工程と、
を備える強誘電体素子の製造方法であって、
前記強誘電体機能膜を形成する工程は、強誘電体膜及び絶縁強化膜を形成する工程を含み、
前記絶縁強化膜は、前記強誘電体膜の構成元素の少なくとも一種類の元素を含むアモルファス膜であって、
このアモルファス膜は、前記強誘電体膜を成膜した成膜装置と同一の成膜装置を用いて、少なくとも成膜温度を変化させて形成するようにしたことを特徴とする強誘電体素子の製造方法。
Forming a first electrode;
Forming a ferroelectric functional film on the first electrode;
Forming a second electrode on the ferroelectric functional film;
A method for manufacturing a ferroelectric element comprising:
The step of forming the ferroelectric functional film includes a step of forming a ferroelectric film and an insulation enhancement film,
The insulation enhancement film is an amorphous film containing at least one element of the constituent elements of the ferroelectric film,
The amorphous film is formed by changing the film forming temperature at least by using the same film forming apparatus as that for forming the ferroelectric film. Production method.
前記アモルファス膜を成膜する際の成膜温度を室温としたことを特徴とする請求項12記載の強誘電体素子の製造方法。 13. The method for manufacturing a ferroelectric element according to claim 12, wherein a film forming temperature for forming the amorphous film is set to room temperature.
JP2007273401A 2007-10-22 2007-10-22 Ferroelectric element and actuator using the same, ink jet head, ink jet record device, and method of manufacturing ferroelectric element Pending JP2008060599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273401A JP2008060599A (en) 2007-10-22 2007-10-22 Ferroelectric element and actuator using the same, ink jet head, ink jet record device, and method of manufacturing ferroelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273401A JP2008060599A (en) 2007-10-22 2007-10-22 Ferroelectric element and actuator using the same, ink jet head, ink jet record device, and method of manufacturing ferroelectric element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001328841A Division JP4578744B2 (en) 2001-10-02 2001-10-26 Ferroelectric element, actuator using the same, ink jet head, and ink jet recording apparatus

Publications (1)

Publication Number Publication Date
JP2008060599A true JP2008060599A (en) 2008-03-13

Family

ID=39242904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273401A Pending JP2008060599A (en) 2007-10-22 2007-10-22 Ferroelectric element and actuator using the same, ink jet head, ink jet record device, and method of manufacturing ferroelectric element

Country Status (1)

Country Link
JP (1) JP2008060599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018011A (en) * 2008-07-14 2010-01-28 Seiko Epson Corp Liquid ejecting head, liquid ejecting apparatus, and piezoelectric actuator
JP2010068667A (en) * 2008-09-12 2010-03-25 Toyoda Gosei Co Ltd Dielectric actuator
JP2011181764A (en) * 2010-03-02 2011-09-15 Tdk Corp Piezoelectric-body element and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347391A (en) * 1992-06-16 1993-12-27 Seiko Epson Corp Ferroelectric storage device
JPH11126877A (en) * 1997-07-18 1999-05-11 Ramtron Internatl Corp Multilayered method for optimizing performance of ferroelectric thin film
JP2000086242A (en) * 1998-09-11 2000-03-28 Seiko Epson Corp Thin film and its production
JP2001181089A (en) * 1999-12-28 2001-07-03 Murata Mfg Co Ltd Thin layer laminate, ferroelectric thin layer element and method for producing them
JP2001210888A (en) * 1999-11-18 2001-08-03 Kansai Research Institute Piezoelectric element and its manufacturing method, and ink-jet type printer head using them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347391A (en) * 1992-06-16 1993-12-27 Seiko Epson Corp Ferroelectric storage device
JPH11126877A (en) * 1997-07-18 1999-05-11 Ramtron Internatl Corp Multilayered method for optimizing performance of ferroelectric thin film
JP2000086242A (en) * 1998-09-11 2000-03-28 Seiko Epson Corp Thin film and its production
JP2001210888A (en) * 1999-11-18 2001-08-03 Kansai Research Institute Piezoelectric element and its manufacturing method, and ink-jet type printer head using them
JP2001181089A (en) * 1999-12-28 2001-07-03 Murata Mfg Co Ltd Thin layer laminate, ferroelectric thin layer element and method for producing them

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018011A (en) * 2008-07-14 2010-01-28 Seiko Epson Corp Liquid ejecting head, liquid ejecting apparatus, and piezoelectric actuator
JP2010068667A (en) * 2008-09-12 2010-03-25 Toyoda Gosei Co Ltd Dielectric actuator
US8368284B2 (en) 2008-09-12 2013-02-05 Toyoda Gosei Co., Ltd. Dielectric actuator
JP2011181764A (en) * 2010-03-02 2011-09-15 Tdk Corp Piezoelectric-body element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP6525255B2 (en) Electro-mechanical transducer, method of manufacturing electro-mechanical transducer, droplet discharge head and droplet discharge device
EP2044245B1 (en) Piezoelectric substance, piezoelectric element, and liquid discharge head and liquid discharge apparatus using piezoelectric element
EP0991130B1 (en) Piezoelectric device, ink-jet recording head, method for manufacture, and printer
JP2007335779A (en) Piezoelectric body thin film element, ink-jet head and ink-jet recorder
US20150070444A1 (en) Piezoelectric actuator, fluid discharge head, and image forming device
JP3772977B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP3996594B2 (en) Piezoelectric element, inkjet head, and inkjet recording apparatus
JP4250593B2 (en) Dielectric element, piezoelectric element, ink jet head, and manufacturing method thereof
JP2008041921A (en) Piezoelectric thin film element and its manufacturing method, as well as ink jet head and ink jet-type recorder
JP2011061118A (en) Piezoelectric element, liquid injection head, and liquid injection apparatus
JP5943178B2 (en) Piezoelectric element manufacturing method, liquid ejecting head manufacturing method, liquid ejecting apparatus manufacturing method, ultrasonic device manufacturing method, and sensor manufacturing method
JPH10217458A (en) Piezoelectric element, and actuator and ink jet recording head using the same
EP1401030A2 (en) Piezoelectric element, ink jet recording head and method for manufacturing piezoelectric element
US7193756B2 (en) Piezoelectric element, method for fabricating the same, inkjet head, method for fabricating the same, and inkjet recording apparatus
JP2008060599A (en) Ferroelectric element and actuator using the same, ink jet head, ink jet record device, and method of manufacturing ferroelectric element
US20180351075A1 (en) Piezoelectric element
JP3907628B2 (en) Piezoelectric actuator, manufacturing method thereof, and liquid discharge head
JP2005119166A (en) Piezoelectric element, inkjet head, method of manufacturing the same, and inkjet recorder
US20100225711A1 (en) Liquid ejecting head, liquid ejecting apparatus, and piezoelectric element
JP4578744B2 (en) Ferroelectric element, actuator using the same, ink jet head, and ink jet recording apparatus
US7023036B2 (en) Ferroelectric element and actuator using the same, and ink jet head and ink jet recording device
JP2008028285A (en) Piezoelectric thin film element, inkjet head and inkjet recorder
JP4689482B2 (en) Piezoelectric actuator, method for manufacturing piezoelectric actuator, and liquid discharge head
JP2003118104A (en) Sputtering target for forming ferroelectric film, ferroelectric film using the same, ferroelectric element, actuator using the same, ink jet head and ink jet recorder
JP6221270B2 (en) Electro-mechanical conversion element manufacturing apparatus and electro-mechanical conversion element manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122