JP2008060198A - Method for manufacturing solid-state imaging device - Google Patents

Method for manufacturing solid-state imaging device Download PDF

Info

Publication number
JP2008060198A
JP2008060198A JP2006233216A JP2006233216A JP2008060198A JP 2008060198 A JP2008060198 A JP 2008060198A JP 2006233216 A JP2006233216 A JP 2006233216A JP 2006233216 A JP2006233216 A JP 2006233216A JP 2008060198 A JP2008060198 A JP 2008060198A
Authority
JP
Japan
Prior art keywords
lens
pixel
imaging device
state imaging
microlens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2006233216A
Other languages
Japanese (ja)
Inventor
Ryoji Suzuki
亮司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006233216A priority Critical patent/JP2008060198A/en
Publication of JP2008060198A publication Critical patent/JP2008060198A/en
Ceased legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily optimize a shape of a condensing lens, improve the light condensing efficiency, and also improve sensitivity without complicating the manufacturing processes and element structures with respect to the displacement between the condensing lens and the photoelectric converter due to unequally spaced arrangement of pixels. <P>SOLUTION: A microlens, having a deep lens surface, can be formed corresponding to a transistor region 112 by forming a V-shape groove 126 in the horizontal direction, along an enlarged part among pixels in which the transistor region 112 is provided on the occasion of forming the microlens 124. That is, each one of the microlenses has a deep lens surface due to the V-shape groove 126 in the side of the transistor region 112 of each photodiode, and also has a normal shallow lens surface in the opposite side. As a result, the center of microlens can be readily aligned with the center of the photodiode, and the effective surface of the lens of the microlens can be expanded. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、CMOSイメージセンサやCCDイメージセンサ等の固体撮像装置の製造方法に関し、詳しくは、例えば画素トランジスタ回路の配置領域を複数の画素で共有したCMOSイメージセンサのように、画素ピッチが不等間隔で形成される場合に、オンチップレンズや層内レンズの集光位置を容易に最適化することが可能な製造方法に関する。   The present invention relates to a method for manufacturing a solid-state imaging device such as a CMOS image sensor or a CCD image sensor. Specifically, for example, the pixel pitch is unequal, such as a CMOS image sensor in which an arrangement region of a pixel transistor circuit is shared by a plurality of pixels. The present invention relates to a manufacturing method capable of easily optimizing the condensing position of an on-chip lens or an in-layer lens when formed at intervals.

一般に、CMOSイメージセンサやCCDイメージセンサ等において、複数の画素毎に微小レンズ面を有するマイクロレンズを搭載した固体撮像装置が提供されている。
例えば、CMOSイメージセンサでは、複数の画素による画素アレイ部が形成された半導体基板上に、各種の配線や層間絶縁膜を積層した多層配線層が設けられ、その上に層内レンズや平坦化膜を介してカラーフィルタやオンチップマイクロレンズが配置されている。
また、各画素には、光電変換部となるフォトダイオードや、フォトダイオードに蓄積された信号電荷をFD(フローティングデフュージョン)部に転送する転送トランジスタ、FD部の電位変動を画素信号に変換する増幅トランジスタ、FD部の電位をリセットするリセットトランジスタ、画素信号を出力するタイミングを選択する選択トランジスタ等が形成されている。
また、マイクロレンズは、外部からの入射外光を各画素のフォトダイオードの受光面に集光するが、この集光レンズとしては、オンチップマイクロレンズに加えて、層内レンズを設ける場合もある。
In general, in a CMOS image sensor, a CCD image sensor, or the like, a solid-state imaging device is provided in which a microlens having a microlens surface for each of a plurality of pixels is mounted.
For example, in a CMOS image sensor, a multilayer wiring layer obtained by laminating various wirings and interlayer insulating films is provided on a semiconductor substrate on which a pixel array portion including a plurality of pixels is formed, and an intralayer lens or a planarizing film is provided thereon. A color filter and an on-chip microlens are arranged through this.
In addition, each pixel includes a photodiode serving as a photoelectric conversion unit, a transfer transistor that transfers signal charges accumulated in the photodiode to an FD (floating diffusion) unit, and an amplification that converts potential fluctuation in the FD unit into a pixel signal. A transistor, a reset transistor that resets the potential of the FD portion, a selection transistor that selects timing for outputting a pixel signal, and the like are formed.
The microlens collects external incident light from the outside onto the light receiving surface of the photodiode of each pixel. In addition to the on-chip microlens, an in-layer lens may be provided as the condensing lens. .

ところで、このようなCMOSイメージセンサにおいて、画素ピッチを縮小による素子の小型化を図るために、画素トランジスタの配置領域を複数の画素で共有するようにしたものが提供されている。以下、このようなイメージセンサを画素共有型イメージセンサというものとする。
図6はこのような画素共有型イメージセンサにおける領域配置の一例を示す平面図である。
図示の例は、4つの画素10で1つのトランジスタ領域(TR領域)12を共有する構成例を示しており、縦横に2×2の配列で近接して配置されている4つの画素領域の垂直方向の側部に1つのトランジスタ領域12が形成され、4画素分の画素トランジスタが設けられている。
By the way, in such a CMOS image sensor, in order to reduce the size of the element by reducing the pixel pitch, a pixel transistor arrangement region shared by a plurality of pixels is provided. Hereinafter, such an image sensor is referred to as a pixel sharing type image sensor.
FIG. 6 is a plan view showing an example of a region arrangement in such a pixel sharing type image sensor.
The illustrated example shows a configuration example in which one transistor region (TR region) 12 is shared by four pixels 10, and the vertical of four pixel regions arranged adjacently in a 2 × 2 arrangement vertically and horizontally. One transistor region 12 is formed on the side in the direction, and pixel transistors for four pixels are provided.

しかし、上記のような画素共有型イメージセンサでは、隣接する画素(フォトダイオード)のピッチが、水平方向には等間隔であるが、垂直方向には、トランジスタ領域12を設けた部分で拡大し、各フォトダイオードが等間隔で配列されないことになる。
図7はこの状態を示している。図示のように、シリコン基板14の上層部に、各画素のフォトダイオード10Aと、トランジスタ領域12が形成されており、そのシリコン基板14上に、配線や絶縁膜による積層膜16を介してオンチップマイクロレンズ18が形成されている。
そして、フォトダイオード10Aが2つ1組で形成され、その垂直方向に隣接してトランジスタ領域12が形成されているため、トランジスタ領域12の有無によってフォトダイオード10Aが等間隔に並ばなくなる。
この結果、図7から分かるように、オンチップマイクロレンズ18の集光中心からフォトダイオード10Aの中心がずれて、集光効率の低下から感度の低下を招いてしまう問題があった。
However, in the pixel sharing type image sensor as described above, the pitch of adjacent pixels (photodiodes) is equally spaced in the horizontal direction, but is expanded in the vertical direction at the portion where the transistor region 12 is provided, The photodiodes are not arranged at equal intervals.
FIG. 7 shows this state. As shown in the figure, a photodiode 10A of each pixel and a transistor region 12 are formed in an upper layer portion of a silicon substrate 14, and the on-chip is formed on the silicon substrate 14 through a laminated film 16 made of wiring or an insulating film. A microlens 18 is formed.
Since the photodiodes 10A are formed in pairs and the transistor regions 12 are formed adjacent to each other in the vertical direction, the photodiodes 10A are not arranged at equal intervals depending on the presence or absence of the transistor regions 12.
As a result, as can be seen from FIG. 7, there is a problem that the center of the photodiode 10A is shifted from the condensing center of the on-chip microlens 18 and the sensitivity is lowered due to the reduction of the condensing efficiency.

そこで、このようなオンチップマイクロレンズ18とフォトダイオード10Aとの位置ずれに伴う集光特性の劣化を修正する手段として、従来は、マイクロレンズからの入射光の方向を変えてフォトダイオードに入射させる手段を設けるようにしていた(例えば特許文献1参照)。
この場合はプリズムや2倍ピッチでレンズを形成し、集光の方向を曲げて非等間隔で配置されたフォトダイオードに集光している。
特開2005−244947号公報
Therefore, as a means for correcting the deterioration of the condensing characteristic due to the positional deviation between the on-chip microlens 18 and the photodiode 10A, conventionally, the direction of the incident light from the microlens is changed and incident on the photodiode. Means are provided (see, for example, Patent Document 1).
In this case, lenses are formed with prisms or double pitches, and the light is condensed on photodiodes arranged at non-uniform intervals by bending the direction of light collection.
JP 2005-244947 A

しかしながら、上記従来技術では、マイクロレンズ等の集光レンズと別に集光の方向を曲げる手段をもつために、製造工程が複雑化し、かつ、構成が複雑化するという問題があった。
なお、単にマイクロレンズ等の集光レンズをフォトダイオードの位置に合わせて非等間隔に形成することも考えられるが、その場合、レンズ効果を持たない無効領域が広がることになり、集光効率が落ちて感度が低下するという問題があった。
However, the conventional technology has a problem that the manufacturing process is complicated and the configuration is complicated because the light collecting direction is bent separately from the light collecting lens such as a microlens.
Note that it may be possible to simply form a condensing lens such as a microlens at non-equal intervals in accordance with the position of the photodiode, but in this case, an ineffective area having no lens effect is widened, and the condensing efficiency is increased. There was a problem that the sensitivity dropped due to the drop.

そこで本発明は、上述のような画素の非等間隔配置による集光レンズと光電変換部との位置ずれに対し、製造工程や素子構造を複雑化することなく、集光レンズの形状を容易に最適化でき、集光効率を改善し、感度の向上を達成できる固体撮像装置の製造方法を提供することを目的とする。   Therefore, the present invention facilitates the shape of the condensing lens without complicating the manufacturing process and the element structure against the positional shift between the condensing lens and the photoelectric conversion unit due to the non-equal spacing of the pixels as described above. It is an object of the present invention to provide a method of manufacturing a solid-state imaging device that can be optimized, improve light collection efficiency, and achieve improved sensitivity.

上述の目的を達成するため、本発明の固体撮像装置の製造方法は、それぞれ光電変換部を含む複数の画素が2次元方向に配置され、画素列または画素行の間隔が他の領域より拡大した領域を有する画素アレイ部と、前記画素アレイ部上に積層膜を介して配置され、前記複数の画素に対応する微小レンズより構成されるレンズアレイとを有する固体撮像装置の製造方法であって、前記レンズアレイの形成時に、前記微小レンズを形成する前のレンズ材上面に前記画素列または画素行の間隔が拡大した領域に沿って溝部を形成し、その後、微小レンズを形成することを特徴とする。   In order to achieve the above-described object, according to the method for manufacturing a solid-state imaging device of the present invention, a plurality of pixels each including a photoelectric conversion unit are arranged in a two-dimensional direction, and the interval between pixel columns or pixel rows is larger than other regions. A method for manufacturing a solid-state imaging device, comprising: a pixel array unit having a region; and a lens array that is arranged on the pixel array unit via a laminated film and includes microlenses corresponding to the plurality of pixels, When forming the lens array, a groove is formed on the upper surface of the lens material before forming the microlens along a region where the interval between the pixel columns or pixel rows is enlarged, and then the microlens is formed. To do.

本発明の固体撮像装置の製造方法によれば、レンズアレイの形成時に、微小レンズを形成する前のレンズ材上面に画素列または画素行の間隔が拡大した領域に沿って溝部を形成し、その後、微小レンズを形成するようにしたことから、画素の間隔が拡大した領域では、溝部の内側面によって微小レンズのレンズ面が拡張され、入射光を有効に光電変換部に導くことが可能となる。
その結果、製造工程や素子構造を複雑化することなく、微小レンズと光電変換部との位置ずれを修正でき、レンズ形状を容易に最適化できるとともに、有効レンズ領域の拡張によって集光効率を改善し、感度の向上を達成できる効果がある。
According to the method for manufacturing a solid-state imaging device of the present invention, when forming the lens array, the groove is formed on the upper surface of the lens material before forming the microlens along the region where the interval between the pixel columns or the pixel rows is increased, and thereafter Since the minute lens is formed, the lens surface of the minute lens is expanded by the inner surface of the groove portion in the region where the pixel interval is enlarged, and the incident light can be effectively guided to the photoelectric conversion unit. .
As a result, it is possible to correct the misalignment between the microlens and the photoelectric conversion unit without complicating the manufacturing process and element structure, easily optimize the lens shape, and improve the light collection efficiency by expanding the effective lens area. In addition, the sensitivity can be improved.

図1は本発明の実施の形態による固体撮像装置の製造方法を示す断面図であり、本発明を画素共有型のCMOSイメージセンサに適用した例を示している。
また、図2〜図5は図1に示す製造方法で作製する画素共有型CMOSイメージセンサの例を示す図であり、図2は素子全体の概要を示すブロック図、図3は画素構成を示す回路図、図4はトランジスタ領域の共有構造を示す平面図、図5はフォトダイオードとマイクロレンズとの対向構造を示す断面図である。
FIG. 1 is a cross-sectional view showing a method of manufacturing a solid-state imaging device according to an embodiment of the present invention, and shows an example in which the present invention is applied to a pixel sharing type CMOS image sensor.
2 to 5 are diagrams showing an example of a pixel sharing type CMOS image sensor manufactured by the manufacturing method shown in FIG. 1, FIG. 2 is a block diagram showing an outline of the whole element, and FIG. 3 shows a pixel configuration. FIG. 4 is a circuit diagram, FIG. 4 is a plan view showing a shared structure of transistor regions, and FIG. 5 is a cross-sectional view showing an opposing structure of a photodiode and a microlens.

まず、図2〜図5を用いて本実施の形態で採用する画素共有型CMOSイメージセンサについて説明する。
図2に示すように、CMOSイメージセンサは、同一チップ上に、フォトダイオード(光電変換部)を含む複数の画素110を2次元方向に配置して画素アレイ部を構成した撮像領域100と、この撮像領域100の外部に形成された周辺回路領域200とを設けたものである。
そして、周辺回路領域200には、画素アレイ部に各種の制御パルスを供給して画素列毎に画素信号の読み出しを行う垂直選択駆動回路210と、画素アレイ部から読み出された列信号に対してノイズ処理等の信号処理を行う列信号処理部220と、この列信号処理部220で処理した画素信号を水平方向に転送する水平走査回路230と、水平走査回路230から転送される画素信号を映像信号に変換して出力する出力処理部240と、各部にタイミング信号を供給するタイミングジェネレータ250等が設けられている。
First, a pixel sharing type CMOS image sensor employed in the present embodiment will be described with reference to FIGS.
As shown in FIG. 2, the CMOS image sensor includes an imaging region 100 in which a plurality of pixels 110 including photodiodes (photoelectric conversion units) are arranged in a two-dimensional direction on the same chip to form a pixel array unit, A peripheral circuit region 200 formed outside the imaging region 100 is provided.
In the peripheral circuit region 200, a vertical selection drive circuit 210 that supplies various control pulses to the pixel array unit to read out pixel signals for each pixel column, and column signals read from the pixel array unit. A column signal processing unit 220 that performs signal processing such as noise processing, a horizontal scanning circuit 230 that transfers the pixel signal processed by the column signal processing unit 220 in the horizontal direction, and a pixel signal that is transferred from the horizontal scanning circuit 230 An output processing unit 240 that converts the video signal to output and a timing generator 250 that supplies a timing signal to each unit are provided.

また、図3に示すように、撮像領域100の各画素110には、受光量に応じた信号電荷を生成するフォトダイオード111と、このフォトダイオード111の信号電荷をFD(フローティングデフュージョン)に読み出す読み出しトランジスタ(転送ゲート)112、FDの電位に応じた画素信号を生成する増幅トランジスタ113、画素信号の出力タイミングを選択する選択トランジスタ114、FDをリセットするリセットトランジスタ115等の画素トランジスタが設けられ、さらに、このような画素アレイ部と周辺回路領域との間で各種の信号や電源をやり取りするための配線やその他の素子が設けられている。   As shown in FIG. 3, each pixel 110 in the imaging region 100 generates a photodiode 111 that generates a signal charge corresponding to the amount of received light, and reads the signal charge of the photodiode 111 into an FD (floating diffusion). Pixel transistors such as a read transistor (transfer gate) 112, an amplification transistor 113 that generates a pixel signal corresponding to the potential of the FD, a selection transistor 114 that selects the output timing of the pixel signal, and a reset transistor 115 that resets the FD are provided. Further, wiring and other elements for exchanging various signals and power between the pixel array section and the peripheral circuit area are provided.

また、図4及び図5に示すように、シリコン基板120の上層部に、各画素のフォトダイオード111と、トランジスタ領域112が形成されており、そのシリコン基板120上に、配線や絶縁膜による積層膜122を介してオンチップマイクロレンズ124が形成されている。
そして、図4に示すように、本例は4つの画素110で1つのトランジスタ領域112を共有する構成例を示しており、縦横に2×2の配列で近接して配置されている4つの画素領域の垂直方向に隣接して1つのトランジスタ領域112が形成され、4画素分の画素トランジスタが設けられている。したがって、このイメージセンサでは、隣接する画素(フォトダイオード111)のピッチが、水平方向には等間隔であるが、垂直方向には、トランジスタ領域112を設けた部分で拡大し、各フォトダイオード111が等間隔で配列されないことになる。
As shown in FIGS. 4 and 5, the photodiode 111 and the transistor region 112 of each pixel are formed in the upper layer portion of the silicon substrate 120, and the silicon substrate 120 is laminated with wiring and an insulating film. An on-chip microlens 124 is formed through the film 122.
As shown in FIG. 4, this example shows a configuration example in which one pixel region 112 is shared by four pixels 110, and four pixels arranged adjacently in a 2 × 2 arrangement vertically and horizontally. One transistor region 112 is formed adjacent to the vertical direction of the region, and pixel transistors for four pixels are provided. Therefore, in this image sensor, the pitch of adjacent pixels (photodiodes 111) is equal in the horizontal direction, but is enlarged in the vertical direction at the portion where the transistor region 112 is provided. It will not be arranged at equal intervals.

そこで、本例では、マイクロレンズ124の形成時に、トランジスタ領域112が設けられる画素間の拡大部に沿って例えばV字断面を有する水平方向の溝部(以下、V字溝という)126を形成することにより、図5に示すように、トランジスタ領域112に対応して深いレンズ面を有するマイクロレンズを形成する。
すなわち、マイクロレンズの各レンズは、各フォトダイオードのトランジスタ領域112側ではV字溝126による深いレンズ面を有し、反対側では通常の浅いレンズ面を有することになり、結果的に図5に破線で示すように、マイクロレンズの中心とフォトダイオードの中心とを容易に一致させることができ、かつ、マイクロレンズの有効レンズ面を拡大できる。
Therefore, in this example, when the microlens 124 is formed, a horizontal groove portion (hereinafter referred to as a V-shaped groove) 126 having, for example, a V-shaped cross section is formed along the enlarged portion between the pixels in which the transistor region 112 is provided. Thus, as shown in FIG. 5, a microlens having a deep lens surface corresponding to the transistor region 112 is formed.
That is, each lens of the microlens has a deep lens surface due to the V-shaped groove 126 on the transistor region 112 side of each photodiode, and has a normal shallow lens surface on the opposite side, resulting in FIG. As indicated by the broken line, the center of the microlens and the center of the photodiode can be easily matched, and the effective lens surface of the microlens can be enlarged.

次に図1を用いて本例の固体撮像装置の製造方法について説明する。
まず、図1(A)において、図示しない下地層(平坦化面)の上に透明樹脂等のレンズ材よりなるレンズ基層130を形成した状態で、フォトリソグラフィ工程により、V字溝126を形成するための感光性樹脂等によるレジスト膜132をパターニングする。このパターンは、V字溝126の形成位置に沿って真直ぐな間隙132Aを有するパターンである。
次に、図1(B)において、等方性エッチングを行い、レンズ基層130にV字溝126Aを形成する。この後、レジスト膜132を除去する。なお、この時点でのV字溝126Aは、後のリフロー処理等によって変形し、最終的にレンズ面と一体化したV字溝126となる。
Next, the manufacturing method of the solid-state imaging device of this example will be described with reference to FIG.
First, in FIG. 1A, a V-shaped groove 126 is formed by a photolithography process in a state where a lens base layer 130 made of a lens material such as a transparent resin is formed on an unillustrated base layer (flattened surface). The resist film 132 is patterned with a photosensitive resin or the like. This pattern is a pattern having a straight gap 132A along the position where the V-shaped groove 126 is formed.
Next, in FIG. 1B, isotropic etching is performed to form a V-shaped groove 126 </ b> A in the lens base layer 130. Thereafter, the resist film 132 is removed. Note that the V-shaped groove 126A at this time is deformed by a subsequent reflow process or the like, and finally becomes the V-shaped groove 126 integrated with the lens surface.

次に、図1(C)において、フォトリソグラフィ工程により、マイクロレンズ形成用の熱溶融性感光性樹脂等によるレジスト膜134をパターニングする。そして、図1(D)において、レジスト膜134を熱溶融リフロー処理し、表面張力によってレンズ形状を形成する。
この後、図1(E)において、エッチバックを行い、レジスト膜134のレンズ形状をレンズ基層130に転写する。なお、レジスト材にレンズ材(透明樹脂等)を選択することにより、エッチバックを行わず、図1(D)の段階で完成することも可能である。
Next, in FIG. 1C, a resist film 134 made of a heat-meltable photosensitive resin for forming a microlens is patterned by a photolithography process. Then, in FIG. 1D, the resist film 134 is subjected to a hot melt reflow process to form a lens shape by surface tension.
Thereafter, in FIG. 1E, etch back is performed to transfer the lens shape of the resist film 134 to the lens base layer 130. Note that by selecting a lens material (transparent resin or the like) as the resist material, it is possible to complete at the stage of FIG. 1D without performing etch back.

この結果、図4に示したマイクロレンズと同様のマイクロレンズ124を形成できる。本例では、エッチング条件等の選択によって、図示のように、V字溝126Aの内側面は、マイクロレンズ124のレンズ面と連続して形成され、レンズの一部を構成しており、レンズ面の拡張する役割をもっている。
なお、図1(E)において、マイクロレンズ124の下層には、カラーフィルタ123が形成され、その下には、多層配線の積層膜122が形成されているが、本発明には直接関係しないので、詳細は省略する。
As a result, a microlens 124 similar to the microlens shown in FIG. 4 can be formed. In this example, the inner surface of the V-shaped groove 126A is formed continuously with the lens surface of the microlens 124 and forms a part of the lens by selecting the etching conditions and the like as shown in the figure. Has an expanding role.
In FIG. 1E, a color filter 123 is formed in the lower layer of the microlens 124, and a laminated film 122 of multilayer wiring is formed thereunder, but this is not directly related to the present invention. Details are omitted.

なお、以上は本発明をCMOSイメージセンサについて適用した場合を説明したが、本発明は必ずしもCMOSイメージセンサに限定されず、非等間隔の画素配列を有する他の固体撮像装置の製造方法にも適用できるものである。
また、上述のようなオンチップレンズでなく、層内レンズについても同様の製造方法を適用して作製することが可能であり、オンチップレンズと層内レンズを有する場合には、その両方、または一方に本発明の製造方法を適用することが可能である。
また、上述の例では、レンズ形状を補正する溝としてV字溝を用いたが、同様の作用が得られるものであれば、他の断面形状の溝であってもかまわない。また、溝部の方向や大きさは適宜選択できるものである。
また、固体撮像装置は1チップ上にCCDイメージセンサやCMOSイメージセンサを構成したものに限らず、撮像部と信号処理部や光学系がまとめてパッケージ化されたモジュールであってもよい。また、撮像対象として、指紋検出等を行うものも含むものとする。
また、このようなイメージセンサ(固体撮像装置)単体で構成される装置の他に、イメージセンサとその他のモジュール(例えば操作部や通信、表示等の機能部)と組み合わせた撮像装置(例えばデジタルカメラ装置や携帯電話装置等)について、本発明の製造方法を適用することにより、感度の良い撮像機能を有する装置を提供できる効果がある。
In the above, the case where the present invention is applied to a CMOS image sensor has been described. However, the present invention is not necessarily limited to a CMOS image sensor, and may be applied to a method for manufacturing other solid-state imaging devices having non-uniformly spaced pixel arrays. It can be done.
In addition, the same manufacturing method can be applied to the in-layer lens instead of the on-chip lens as described above, and when the on-chip lens and the in-layer lens are provided, both or On the other hand, the manufacturing method of the present invention can be applied.
In the above-described example, the V-shaped groove is used as the groove for correcting the lens shape. However, a groove having another cross-sectional shape may be used as long as the same action can be obtained. The direction and size of the groove can be selected as appropriate.
The solid-state imaging device is not limited to a CCD image sensor or CMOS image sensor configured on one chip, and may be a module in which an imaging unit, a signal processing unit, and an optical system are packaged together. In addition, the imaging target includes one that performs fingerprint detection and the like.
In addition to such an image sensor (solid-state imaging device) alone, an imaging device (for example, a digital camera) combined with an image sensor and other modules (for example, a function unit such as an operation unit, communication, or display) By applying the manufacturing method of the present invention to a device, a mobile phone device, etc., there is an effect that a device having an imaging function with high sensitivity can be provided.

本発明の実施の形態による固体撮像装置(CMOSイメージセンサ)の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solid-state imaging device (CMOS image sensor) by embodiment of this invention. 図1に示す製造方法で作製する画素共有型CMOSイメージセンサの素子全体の概要を示すブロック図である。It is a block diagram which shows the outline | summary of the whole element of a pixel sharing type CMOS image sensor produced with the manufacturing method shown in FIG. 図2に示す画素共有型CMOSイメージセンサの画素構成を示す回路図である。FIG. 3 is a circuit diagram showing a pixel configuration of the pixel sharing type CMOS image sensor shown in FIG. 2. 図2に示す画素共有型CMOSイメージセンサのトランジスタ領域の共有構造を示す平面図である。FIG. 3 is a plan view showing a shared structure of transistor regions of the pixel sharing type CMOS image sensor shown in FIG. 2. 図2に示す画素共有型CMOSイメージセンサのフォトダイオードとマイクロレンズとの対向構造を示す断面図である。It is sectional drawing which shows the opposing structure of the photodiode and micro lens of the pixel sharing type CMOS image sensor shown in FIG. 従来の画素共有型CMOSイメージセンサのトランジスタ領域の共有構造を示す平面図である。It is a top view which shows the shared structure of the transistor area | region of the conventional pixel sharing type CMOS image sensor. 図6に示す画素共有型CMOSイメージセンサのフォトダイオードとマイクロレンズとの対向構造を示す断面図である。It is sectional drawing which shows the opposing structure of the photodiode and micro lens of the pixel sharing type CMOS image sensor shown in FIG.

符号の説明Explanation of symbols

122……積層膜、123……カラーフィルタ、124……マイクロレンズ、126、126A……V字溝、130……レンズ基層、132、134……レジスト膜。
122... Laminated film, 123... Color filter, 124... Microlens, 126 and 126 A... V-shaped groove, 130 ... Lens base layer, 132 and 134.

Claims (7)

それぞれ光電変換部を含む複数の画素が2次元方向に配置され、画素列または画素行の間隔が他の領域より拡大した領域を有する画素アレイ部と、
前記画素アレイ部上に積層膜を介して配置され、前記複数の画素に対応する微小レンズより構成されるレンズアレイとを有する固体撮像装置の製造方法であって、
前記レンズアレイの形成時に、前記微小レンズを形成する前のレンズ材上面に前記画素列または画素行の間隔が拡大した領域に沿って溝部を形成し、その後、微小レンズを形成する、
ことを特徴とする固体撮像装置の製造方法。
A plurality of pixels each including a photoelectric conversion unit are arranged in a two-dimensional direction, and a pixel array unit having a region in which the interval between pixel columns or pixel rows is larger than other regions;
A method of manufacturing a solid-state imaging device including a lens array that is arranged on the pixel array unit via a laminated film and includes microlenses corresponding to the plurality of pixels,
When forming the lens array, a groove is formed on the upper surface of the lens material before forming the microlens along the region where the interval between the pixel columns or pixel rows is enlarged, and then the microlens is formed.
A method of manufacturing a solid-state imaging device.
前記固体撮像装置は、各画素に光電変換部と前記光電変換部によって生成された信号電荷を読み出すための画素トランジスタ回路とを有し、前記画素列または画素行の間隔が他の領域より拡大した領域は、複数の画素の画素トランジスタ回路をまとめて形成した共有トランジスタ領域であることを特徴とする請求項1記載の固体撮像装置の製造方法。   The solid-state imaging device has a photoelectric conversion unit and a pixel transistor circuit for reading out signal charges generated by the photoelectric conversion unit in each pixel, and an interval between the pixel columns or pixel rows is larger than other regions. 2. The method for manufacturing a solid-state imaging device according to claim 1, wherein the region is a shared transistor region in which pixel transistor circuits of a plurality of pixels are formed together. 前記溝部をV字形段断面に形成することを特徴とする請求項1記載の固体撮像装置の製造方法。   2. The method of manufacturing a solid-state imaging device according to claim 1, wherein the groove is formed in a V-shaped step section. 前記微小レンズのレンズ面を前記溝部の内側面に連続させて形成することを特徴とする請求項1記載の固体撮像装置の製造方法。   The method of manufacturing a solid-state imaging device according to claim 1, wherein a lens surface of the minute lens is formed continuously with an inner surface of the groove portion. 前記レンズアレイは、積層膜上に形成されるオンチップレンズアレイであることを特徴とする請求項1記載の固体撮像装置の製造方法。   The method of manufacturing a solid-state imaging device according to claim 1, wherein the lens array is an on-chip lens array formed on a laminated film. 前記レンズアレイは、積層膜中に形成される層内レンズアレイであることを特徴とする請求項1記載の固体撮像装置の製造方法。   The method for manufacturing a solid-state imaging device according to claim 1, wherein the lens array is an in-layer lens array formed in a laminated film. 下地膜上にレンズ材よりなるレンズ基層を形成する工程と、
前記レンズ基層の上面に前記画素列または画素行の間隔が拡大した領域に沿って溝部を形成する工程と、
前記レンズ基層の上面に微小レンズを形成する工程と、
を有することを特徴とする請求項1記載の固体撮像装置の製造方法。
Forming a lens base layer made of a lens material on the base film;
Forming a groove along a region where an interval between the pixel columns or pixel rows is enlarged on an upper surface of the lens base layer;
Forming a microlens on the upper surface of the lens base layer;
The method of manufacturing a solid-state imaging device according to claim 1, wherein:
JP2006233216A 2006-08-30 2006-08-30 Method for manufacturing solid-state imaging device Ceased JP2008060198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233216A JP2008060198A (en) 2006-08-30 2006-08-30 Method for manufacturing solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233216A JP2008060198A (en) 2006-08-30 2006-08-30 Method for manufacturing solid-state imaging device

Publications (1)

Publication Number Publication Date
JP2008060198A true JP2008060198A (en) 2008-03-13

Family

ID=39242617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233216A Ceased JP2008060198A (en) 2006-08-30 2006-08-30 Method for manufacturing solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2008060198A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239070A (en) * 2010-05-07 2011-11-24 Sony Corp Solid-state image pickup device, manufacturing method for the same and electronic equipment
WO2018173788A1 (en) * 2017-03-22 2018-09-27 ソニーセミコンダクタソリューションズ株式会社 Imaging element and electronic device
WO2021124694A1 (en) * 2019-12-19 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and method for manufacturing same
JP2022075462A (en) * 2020-11-05 2022-05-18 采▲ぎょく▼科技股▲ふん▼有限公司 Image sensor and method forming the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000307090A (en) * 1999-04-16 2000-11-02 Toppan Printing Co Ltd Solid-state image sensing device microlens array, solid- state image sensing device provided with it, and method of manufacturing them
JP2005150492A (en) * 2003-11-18 2005-06-09 Sony Corp Solid-state imaging element
JP2005244947A (en) * 2004-01-26 2005-09-08 Matsushita Electric Ind Co Ltd Solid-state imaging device and camera using the same
JP2006041369A (en) * 2004-07-29 2006-02-09 Sony Corp Solid-state image pickup device, and manufacturing method thereof
JP2006165162A (en) * 2004-12-06 2006-06-22 Nikon Corp Solid-state imaging device
JP2007305866A (en) * 2006-05-12 2007-11-22 Sharp Corp Image sensor and its fabrication process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000307090A (en) * 1999-04-16 2000-11-02 Toppan Printing Co Ltd Solid-state image sensing device microlens array, solid- state image sensing device provided with it, and method of manufacturing them
JP2005150492A (en) * 2003-11-18 2005-06-09 Sony Corp Solid-state imaging element
JP2005244947A (en) * 2004-01-26 2005-09-08 Matsushita Electric Ind Co Ltd Solid-state imaging device and camera using the same
JP2006041369A (en) * 2004-07-29 2006-02-09 Sony Corp Solid-state image pickup device, and manufacturing method thereof
JP2006165162A (en) * 2004-12-06 2006-06-22 Nikon Corp Solid-state imaging device
JP2007305866A (en) * 2006-05-12 2007-11-22 Sharp Corp Image sensor and its fabrication process

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10720458B2 (en) 2010-05-07 2020-07-21 Sony Semiconductor Solutions Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US10177184B2 (en) 2010-05-07 2019-01-08 Sony Semiconductor Solutions Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US9653499B2 (en) 2010-05-07 2017-05-16 Sony Semiconductor Solutions Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US9923005B2 (en) 2010-05-07 2018-03-20 Sony Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
JP2011239070A (en) * 2010-05-07 2011-11-24 Sony Corp Solid-state image pickup device, manufacturing method for the same and electronic equipment
US11671721B2 (en) 2010-05-07 2023-06-06 Sony Semiconductor Solutions Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US9438833B2 (en) 2010-05-07 2016-09-06 Sony Semiconductor Solutions Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US10355037B2 (en) 2010-05-07 2019-07-16 Sony Semiconductor Solutions Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US10050073B2 (en) 2010-05-07 2018-08-14 Sony Semiconductor Solutions Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US10978506B2 (en) 2010-05-07 2021-04-13 Sony Semiconductor Solutions Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US10991753B2 (en) 2017-03-22 2021-04-27 Sony Semiconductor Solutions Corporation Imaging device and electronic device
US11646342B2 (en) 2017-03-22 2023-05-09 Sony Semiconductor Solutions Corporation Imaging device and electronic device
WO2018173788A1 (en) * 2017-03-22 2018-09-27 ソニーセミコンダクタソリューションズ株式会社 Imaging element and electronic device
WO2021124694A1 (en) * 2019-12-19 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and method for manufacturing same
JP2022075462A (en) * 2020-11-05 2022-05-18 采▲ぎょく▼科技股▲ふん▼有限公司 Image sensor and method forming the same
US11569291B2 (en) 2020-11-05 2023-01-31 Visera Technologies Company Limited Image sensor and method forming the same

Similar Documents

Publication Publication Date Title
US9577006B2 (en) Solid-state imaging device and electronic apparatus
KR102437162B1 (en) Image sensor
JP5471174B2 (en) SOLID-STATE IMAGING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP4631723B2 (en) Solid-state imaging device
JP5263279B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
US8390043B2 (en) Solid-state imaging device with stress-relieving silicide blocking layer and electronic apparatus comprising said solid-state device
JP2012199489A (en) Solid state image pickup device, solid state image pickup device manufacturing method and electronic apparatus
JP2007020194A (en) Image sensor including active sensor array
US20110063486A1 (en) Solid-state imaging device and method of manufacturing the same
WO2008065952A1 (en) Solid-state imaging device, its manufacturing method, and electronic information device
JPWO2014141991A1 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP2007317870A (en) Solid-state imaging apparatus, manufacturing method therefor, and camera module
JP2011066241A (en) Solid-state image pickup device and method for manufacturing the same, and electronic apparatus
JP2008060476A (en) Solid state imaging apparatus, and electronic information apparatus
JP2008052004A (en) Lens array and method for manufacturing solid-state image pickup element
JP2010073902A (en) Ion implantation method, method of manufacturing solid-state imaging apparatus, solid-state imaging apparatus, and electronic equipment
JP4682504B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP2008172005A (en) Solid-state image pickup device, electronic module and electronic device
JP2008060198A (en) Method for manufacturing solid-state imaging device
JP2008227357A (en) Solid image pickup device and method for manufacturing the same
JP2007081015A (en) Solid image-capturing element and manufacturing method therefor
JP2021197401A (en) Manufacturing method of solid-state imaging device, solid-state imaging device, and electronic device
JP2010040997A (en) Solid-state imaging element
JP2006344656A (en) Solid state imaging element and its manufacturing method
KR101015527B1 (en) CMOS Image sensor and Method for fabricating of the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130326