JP2008057038A - VAPOR DEPOSITION MATERIAL FOR SURFACE TREATMENT, MgO PROTECTIVE FILM USING THE VAPOR DEPOSITION MATERIAL, AND METHOD FOR PRODUCING THE MgO PROTECTIVE FILM - Google Patents

VAPOR DEPOSITION MATERIAL FOR SURFACE TREATMENT, MgO PROTECTIVE FILM USING THE VAPOR DEPOSITION MATERIAL, AND METHOD FOR PRODUCING THE MgO PROTECTIVE FILM Download PDF

Info

Publication number
JP2008057038A
JP2008057038A JP2007192747A JP2007192747A JP2008057038A JP 2008057038 A JP2008057038 A JP 2008057038A JP 2007192747 A JP2007192747 A JP 2007192747A JP 2007192747 A JP2007192747 A JP 2007192747A JP 2008057038 A JP2008057038 A JP 2008057038A
Authority
JP
Japan
Prior art keywords
protective film
mgo protective
vapor deposition
deposition material
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007192747A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Mayuzumi
良享 黛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007192747A priority Critical patent/JP2008057038A/en
Publication of JP2008057038A publication Critical patent/JP2008057038A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the discharge response properties and luminous efficiency of an FPD (Flat Panel Display) using an MgO protective film without deteriorating the durability of the MgO protective film. <P>SOLUTION: In the vapor deposition material 11 for surface treatment in which each cavity 13a is formed on the surface of an MgO protective film 13 for an FPD, and further, each particle 13b is stuck thereto, MgO is comprised as the main component, and the average particle diameter is 0.5 μm to 1 mm. By splashing the vapor deposition material 11 for surface treatment to the surface of the MgO protective film 13, each cavity 13a with the average hole diameter of 50 to 10,000 nm is formed, and also, each particle 13b with the average particle diameter of 50 to 10,000 nm is stuck thereto. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、PDP(Plasma Display Panel:プラズマディスプレイパネル)、PALC(Plasma Addressed Liquid Crystal display)等のFPD(Flat Panel Display)用のMgO保護膜の表面を処理するための蒸着材と、この蒸着材を用いて表面が処理されたMgO保護膜と、この表面が処理されたMgO保護膜を作製する方法に関するものである。   The present invention relates to an evaporation material for treating the surface of an MgO protective film for FPD (Flat Panel Display) such as PDP (Plasma Display Panel), PALC (Plasma Addressed Liquid Crystal Display), and the like. The present invention relates to a MgO protective film whose surface has been treated using, and a method for producing a MgO protective film whose surface has been treated.

従来、放電空間を介して対向する前面基板及び背面基板と、この前面基板と背面基板の間に複数の行電極対及びこの行電極対に対して交差する方向に延びて行電極対との各交差部分の放電空間にそれぞれ単位発光領域を形成する複数の列電極が設けられたプラズマディスプレイパネルが開示されている(例えば、特許文献1参照。)。このプラズマディスプレイパネルでは、前面基板と背面基板の間の単位発光領域に対向する部分に、電子線によって励起されて波長域200〜300nm内にピークを有するカソード・ルミネッセンス発光を行う酸化マグネシウム結晶体を含む酸化マグネシウム層が設けられる。また酸化マグネシウム結晶体が気相酸化法によって生成され、その粒径が2000Å(200nm)以上である。更に上記酸化マグネシウム層は、酸化マグネシウム結晶体を含むペーストをスクリーン印刷法、オフセット印刷法、ディスペンサ法、インクジェット法、ロールコート法などにより誘電体層の表面に塗布して形成されるか、或いは酸化マグネシウム結晶体の粉末をスプレー法又は静電塗布法などによって誘電体層の表面に付着された粉末層によって構成される。
このように構成されたプラズマディスプレイパネルでは、酸化マグネシウム層に含まれる酸化マグネシウム結晶体が、放電セル内に面する位置に電子線により励起されて、波長域200〜300nm内にピークを有するカソード・ルミネッセンス発光を行うので、放電セル内で発生される放電を高速化できる、例えばリセット放電によるプライミング効果が長く持続してアドレス放電を高速化できる。この結果、プラズマディスプレイパネルにおける放電確率や放電遅れなどの放電特性が改善されて、良好な放電特性が得られるようになっている。
国際公開第2005/031782号公報(請求項1、2及び4、段落[0009]、段落[0084]〜段落[0086]、第19図、第20図)
Conventionally, each of a front substrate and a rear substrate facing each other through a discharge space, a plurality of row electrode pairs between the front substrate and the rear substrate, and a row electrode pair extending in a direction intersecting the row electrode pair There has been disclosed a plasma display panel provided with a plurality of column electrodes each forming a unit light emitting region in a discharge space at an intersection (see, for example, Patent Document 1). In this plasma display panel, a magnesium oxide crystal that emits cathode luminescence having a peak in a wavelength range of 200 to 300 nm when excited by an electron beam is formed on a portion facing a unit light emitting region between a front substrate and a back substrate. A magnesium oxide layer is provided. Further, the magnesium oxide crystal is generated by a gas phase oxidation method, and the particle size thereof is 2000 mm (200 nm) or more. Further, the magnesium oxide layer is formed by applying a paste containing a magnesium oxide crystal to the surface of the dielectric layer by a screen printing method, an offset printing method, a dispenser method, an ink jet method, a roll coating method, or the like. The powder is formed by adhering magnesium crystal powder to the surface of the dielectric layer by spraying or electrostatic coating.
In the plasma display panel thus configured, the magnesium oxide crystal contained in the magnesium oxide layer is excited by an electron beam at a position facing the discharge cell, and has a peak in the wavelength range of 200 to 300 nm. Since the luminescence emission is performed, the discharge generated in the discharge cell can be speeded up. For example, the priming effect by the reset discharge can be maintained for a long time, and the address discharge can be speeded up. As a result, discharge characteristics such as the discharge probability and discharge delay in the plasma display panel are improved, and good discharge characteristics can be obtained.
International Publication No. 2005/031782 (Claims 1, 2 and 4, Paragraph [0009], Paragraph [0084] to Paragraph [0086], FIGS. 19 and 20)

しかし、上記従来の特許文献1に示されたプラズマディスプレイパネルでは、酸化マグネシウム結晶体を含む酸化マグネシウム層を誘電体層の表面に形成するときに、溶媒を使用したり、或いは大気に開放されるため、不純物が混入する不具合があった。
また、上記従来の特許文献1に示されたプラズマディスプレイパネルでは、酸化マグネシウム結晶体を含む酸化マグネシウム層の誘電体層に対する接着強度が低いため、長期間の使用により性能が劣化する問題点もあった。
本発明の目的は、MgO保護膜として耐久性を損うことなく、しかも放電応答特性及び発光効率を向上できる、表面処理用蒸着材を提供することにある。
本発明の別の目的は、耐久性を損うことなく、しかも放電応答特性及び発光効率を向上できる、MgO保護膜並びにこのMgO保護膜の作製方法を提供することにある。
However, in the conventional plasma display panel disclosed in Patent Document 1, when a magnesium oxide layer containing magnesium oxide crystals is formed on the surface of the dielectric layer, a solvent is used or the magnesium oxide layer is opened to the atmosphere. Therefore, there is a problem that impurities are mixed.
In addition, the conventional plasma display panel disclosed in Patent Document 1 has a problem that the performance deteriorates due to long-term use because the adhesion strength of the magnesium oxide layer containing the magnesium oxide crystal to the dielectric layer is low. It was.
An object of the present invention is to provide a deposition material for surface treatment that can improve the discharge response characteristics and the light emission efficiency without impairing the durability as an MgO protective film.
Another object of the present invention is to provide a MgO protective film and a method for producing this MgO protective film that can improve discharge response characteristics and luminous efficiency without impairing durability.

請求項1に係る発明は、図1〜図3に示すように、FPD30用のMgO保護膜13の表面に窪み13aを形成するとともに粒子13bを付着させる表面処理用蒸着材11であって、MgOを主成分とし平均粒径が0.5μm〜1mmであることを特徴とする表面処理用蒸着材である。
この請求項1に記載された表面処理用蒸着では、この蒸着材11の平均粒径が0.5μm〜1mmと比較的小さいので、蒸着時に蒸着材11が割れたり或いは剥離して細かな粒子となり、この粒子が蒸気流等により浮いてMgO保護膜13の表面に接触し、MgO保護膜13の表面に窪み13aが形成されたり、粒子13bがそのまま付着する。このようにMgO保護膜13の表面に窪み13aや粒子13bが存在することにより、MgO保護膜13の表面積が増大して、窪み13aの周縁や粒子13bの表面に電子が滞留し易くなるとともに、窪み13aや粒子13bの存在により尖鋭部が増大しこの尖鋭部への電子の密度が高くなって、窪み13aの周縁や粒子13bの表面から電子を放出し易くなる。
As shown in FIGS. 1 to 3, the invention according to claim 1 is a surface treatment vapor deposition material 11 for forming a depression 13 a on the surface of an MgO protective film 13 for FPD 30 and attaching particles 13 b, and includes MgO Is a vapor deposition material for surface treatment, characterized by having an average particle size of 0.5 μm to 1 mm.
In the vapor deposition for surface treatment described in claim 1, since the average particle diameter of the vapor deposition material 11 is relatively small, 0.5 μm to 1 mm, the vapor deposition material 11 is cracked or peeled during the vapor deposition to become fine particles. These particles float due to a vapor flow or the like and come into contact with the surface of the MgO protective film 13, and a recess 13 a is formed on the surface of the MgO protective film 13, or the particles 13 b adhere as they are. Thus, the presence of the depression 13a and the particle 13b on the surface of the MgO protective film 13 increases the surface area of the MgO protective film 13, and the electrons easily stay on the periphery of the depression 13a and the surface of the particle 13b. Due to the presence of the depression 13a and the particle 13b, the sharp portion is increased, and the density of electrons to the sharp portion is increased, and electrons are easily emitted from the periphery of the depression 13a and the surface of the particle 13b.

請求項2に係る発明は、図1及び図2に示すように、請求項1に記載の表面処理用蒸着材11を表面にスプラッシュさせることにより、平均穴径50nm〜10000nmの窪み13aが形成され、かつ平均粒径50nm〜10000nmの粒子13bが付着されたMgO保護膜である。
この請求項2に記載されたMgO保護膜では、このMgO保護膜13の表面に所定の大きさの窪み13aや粒子13bが存在するので、MgO保護膜13の表面積が増大して、窪み13aの周縁や粒子13bの表面に電子が滞留し易くなるとともに、窪み13aや粒子13bの存在により尖鋭部が増大しこの尖鋭部への電子の密度が高くなって、窪み13aの周縁や粒子13bの表面から電子を放出し易くなる。
In the invention according to claim 2, as shown in FIGS. 1 and 2, the surface treatment vapor deposition material 11 according to claim 1 is splashed on the surface to form a recess 13a having an average hole diameter of 50 nm to 10000 nm. And an MgO protective film to which particles 13b having an average particle diameter of 50 nm to 10000 nm are attached.
In the MgO protective film according to the second aspect, since the depressions 13a and particles 13b having a predetermined size are present on the surface of the MgO protective film 13, the surface area of the MgO protective film 13 is increased, and the depressions 13a Electrons are likely to stay on the periphery and the surface of the particle 13b, and the presence of the depression 13a and the particle 13b increases the sharp portion, and the density of electrons to the sharp portion increases, and the periphery of the depression 13a and the surface of the particle 13b. It becomes easy to emit electrons from.

請求項3に係る発明は、図1〜図3に示すように、所定の真空度に保持したチャンバ23内でFPD30用の基板12表面に平均粒径5〜30mmのMgOを主成分とする積層用蒸着材11を用いて真空蒸着法によりMgO保護膜13を形成する工程と、チャンバ23内を引続き所定の真空度に保持した状態でMgO保護膜23の表面に請求項1に記載の表面処理用蒸着材11を真空蒸着法でスプラッシュさせることによりMgO保護膜13の表面に平均穴径50nm〜10000nmの窪み13aを形成するとともに平均粒径50nm〜10000nmの粒子13bを付着させる工程とを含むMgO保護膜の作製方法である。
この請求項3に記載されたMgO保護膜の作製方法では、所定の真空度に保持したチャンバ23内で平均粒径5〜30mmのMgO蒸着材14を用いてMgO保護膜13を形成した後に、チャンバ23内を引続き所定の真空度に保持した状態でMgO保護膜13の表面に平均粒径0.5μm〜1mmの表面処理用蒸着材11をスプラッシュさせて所定の窪み13aを形成するとともに所定の粒子13bを付着させたので、従来のように溶媒を用いたり或いは大気に開放することがなく、MgO保護膜13に不純物が混入しない。
As shown in FIGS. 1 to 3, the invention according to claim 3 is a laminate mainly composed of MgO having an average particle diameter of 5 to 30 mm on the surface of the substrate 12 for FPD 30 in a chamber 23 maintained at a predetermined degree of vacuum. The surface treatment according to claim 1, wherein the surface of the MgO protective film 23 is formed on the surface of the MgO protective film 13 while the inside of the chamber 23 is continuously maintained at a predetermined degree of vacuum. A step of forming a recess 13a having an average hole diameter of 50 nm to 10000 nm and adhering particles 13b having an average particle diameter of 50 nm to 10000 nm to the surface of the MgO protective film 13 by causing the evaporation material 11 to be splashed by a vacuum evaporation method. This is a method for manufacturing a protective film.
In the manufacturing method of the MgO protective film described in claim 3, after forming the MgO protective film 13 using the MgO vapor deposition material 14 having an average particle diameter of 5 to 30 mm in the chamber 23 maintained at a predetermined degree of vacuum, In a state where the inside of the chamber 23 is continuously maintained at a predetermined degree of vacuum, the surface treatment vapor deposition material 11 having an average particle size of 0.5 μm to 1 mm is splashed on the surface of the MgO protective film 13 to form a predetermined recess 13a and a predetermined value. Since the particles 13b are attached, a solvent is not used or opened to the atmosphere as in the conventional case, and impurities are not mixed into the MgO protective film 13.

本発明によれば、表面処理用蒸着材がMgOを主成分とし平均粒径が0.5μm〜1mmであるので、蒸着時に蒸着材が割れたり或いは剥離して細かな粒子となり、この粒子が蒸気流等により浮いてMgO保護膜の表面に接触し、MgO保護膜の表面に窪みが形成されたり粒子がそのまま付着する。このようにMgO保護膜の表面に窪みや粒子が存在することにより、MgO保護膜の表面積が増大して、窪みの周縁や粒子の表面に電子が滞留し易くなるとともに、窪みや粒子の存在により尖鋭部が増大しこの尖鋭部への電子の密度が高くなって、窪みの周縁や粒子の表面から電子を放出し易くなる。この結果、このMgO保護膜を用いたFPDの放電応答特性及び発光効率を向上できる。
また上記表面処理用蒸着材を表面にスプラッシュさせることにより、平均穴径50nm〜10000nmの窪みをMgO保護膜に形成し、かつ平均粒径50nm〜10000nmの粒子をMgO保護膜の表面に付着させれば、MgO保護膜の表面への窪みや粒子の存在により、MgO保護膜の表面積が増大して、窪みの周縁や粒子の表面に電子が滞留し易くなるとともに、窪みや粒子の存在により尖鋭部が増大しこの尖鋭部への電子の密度が高くなって、窪みの周縁や粒子の表面から電子を放出し易くなる。この結果、上記と同様に、このMgO保護膜を用いたFPDの放電応答特性及び発光効率を向上できる。
更に所定の真空度に保持したチャンバ内で基板表面に平均粒径5〜30mmのMgOを主成分とする積層用蒸着材を用いて真空蒸着法によりMgO保護膜を形成し、チャンバ内を引続き所定の真空度に保持した状態でMgO保護膜の表面に平均粒径0.5μm〜1mmの表面処理用蒸着材を真空蒸着法でスプラッシュさせることによりMgO保護膜の表面に所定の窪みを形成するとともに所定の粒子を付着させれば、従来のように溶媒を用いたり或いは大気に開放することがないため、MgO保護膜に不純物が混入しない。この結果、MgO保護膜の耐久性を損うことはない。
According to the present invention, since the deposition material for surface treatment has MgO as a main component and the average particle size is 0.5 μm to 1 mm, the deposition material is cracked or peeled during deposition to form fine particles. It floats by a flow or the like and comes into contact with the surface of the MgO protective film, so that depressions are formed on the surface of the MgO protective film or particles adhere as they are. Thus, the presence of depressions and particles on the surface of the MgO protective film increases the surface area of the MgO protective film, making it easier for electrons to stay on the periphery of the depressions and the surface of the particles, and the presence of depressions and particles. The sharp portion increases, the electron density to the sharp portion increases, and it becomes easier to emit electrons from the periphery of the depression and the surface of the particle. As a result, it is possible to improve the discharge response characteristic and the light emission efficiency of the FPD using this MgO protective film.
In addition, the surface treatment vapor deposition material is splashed on the surface, so that depressions with an average hole diameter of 50 nm to 10000 nm can be formed in the MgO protective film, and particles with an average particle diameter of 50 nm to 10000 nm can be attached to the surface of the MgO protective film. For example, the presence of depressions and particles on the surface of the MgO protective film increases the surface area of the MgO protective film, making it easier for electrons to stay on the periphery of the depressions and the surface of the particles, and the presence of depressions and particles to sharpen the edges. And the density of electrons at the pointed portion increases, and electrons are easily emitted from the periphery of the depression and the surface of the particles. As a result, similarly to the above, the discharge response characteristic and the light emission efficiency of the FPD using this MgO protective film can be improved.
Further, an MgO protective film is formed on the substrate surface in a chamber maintained at a predetermined degree of vacuum by a vacuum evaporation method using a deposition material mainly composed of MgO having an average particle diameter of 5 to 30 mm, and the chamber is continuously subjected to a predetermined level. A predetermined depression is formed on the surface of the MgO protective film by spraying a surface treatment vapor deposition material having an average particle size of 0.5 μm to 1 mm on the surface of the MgO protective film with a vacuum degree while maintaining the degree of vacuum. If predetermined particles are attached, no solvent is used or the air is not opened to the atmosphere as in the conventional case, so that impurities are not mixed in the MgO protective film. As a result, the durability of the MgO protective film is not impaired.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
図1に示すように、表面処理用蒸着材11は、プラズマディスプレイパネル(以下、PDPという)用のフロントガラス基板12のMgO保護膜13の表面に窪み13aを形成するとともに粒子13bを付着させてMgO保護膜13の表面処理を行うために用いられる。この蒸着材11はMgOを主成分とする。具体的には、蒸着材11のMgO純度は98%以上、好ましくは99.0〜99.9%であり、極めて微量のY、La、Ce等が含まれる。また上記蒸着材11の平均粒径は0.5μm〜1mm、好ましくは5μm〜0.1mmであり、蒸着材11の相対密度は70〜90%、好ましくは80〜90%である。ここで、蒸着材11の純度を98%以上に限定したのは、98%未満では放電応答時間が長くなり更に放電応答時間のデータの再現性に劣るからである。また極めて微量のY、La、Ce等を含有したのは、上記表面処理がなされたMgO保護膜13を有するPDPが広い温度範囲にわたって良好な放電応答性を得るためである。また上記蒸着材11の平均粒径を0.5μm〜1mmの範囲に限定したのは、0.5μm未満では細かすぎて取扱いが困難となり、1mmを越えるとMgO保護膜13の表面処理時にスプラッシュが発生し難くなるからである。更に蒸着材11の相対密度を70〜90%の範囲に限定したのは、MgO保護膜13の表面処理時に所定量のスプラッシュを効率良く発生させるためである。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
As shown in FIG. 1, the deposition material 11 for surface treatment forms a recess 13a on the surface of the MgO protective film 13 of the windshield substrate 12 for a plasma display panel (hereinafter referred to as PDP) and attaches particles 13b. It is used for surface treatment of the MgO protective film 13. This vapor deposition material 11 has MgO as a main component. Specifically, the MgO purity of the vapor deposition material 11 is 98% or more, preferably 99.0 to 99.9%, and contains extremely small amounts of Y, La, Ce, and the like. The average particle size of the vapor deposition material 11 is 0.5 μm to 1 mm, preferably 5 μm to 0.1 mm, and the relative density of the vapor deposition material 11 is 70 to 90%, preferably 80 to 90%. Here, the reason why the purity of the vapor deposition material 11 is limited to 98% or more is that if it is less than 98%, the discharge response time becomes long and the reproducibility of the data of the discharge response time is inferior. The reason why a very small amount of Y, La, Ce, and the like is contained is that the PDP having the MgO protective film 13 that has been subjected to the above surface treatment obtains good discharge responsiveness over a wide temperature range. Further, the average particle size of the vapor deposition material 11 is limited to the range of 0.5 μm to 1 mm because if it is less than 0.5 μm, it is too fine and difficult to handle, and if it exceeds 1 mm, splash may occur during the surface treatment of the MgO protective film 13. It is because it becomes difficult to generate. Furthermore, the reason why the relative density of the vapor deposition material 11 is limited to a range of 70 to 90% is to efficiently generate a predetermined amount of splash during the surface treatment of the MgO protective film 13.

一方、フロントガラス基板12の表面にMgO保護膜13を形成するための積層用蒸着材14(図2(a))の成分は上記表面処理用蒸着材11と同一に構成されることが好ましい。但し、積層用蒸着材14の平均粒径は5mm〜30mm、好ましくは5mm〜15mmであり、積層用蒸着材14の相対密度は90%以上、好ましくは95%以上である。ここで、積層用蒸着材14の平均粒径を5mm〜30mmの範囲に限定したのは、5mm未満ではMgO保護膜13の成膜時に小さ過ぎてスプラッシュが発生し易くなり、緻密で表面が比較的平坦なMgO保護膜13が得られず、30mmを越えると実際の製造工程において取扱い難くなるからである。また積層用蒸着材14の相対密度を90%以上に限定したのは、90%未満ではMgO保護膜13の成膜時にスプラッシュが増大して、緻密で表面が比較的平坦なMgO保護膜13が得られないからである。なお、図1及び図2に示すように、フロントガラス基板12表面には、サステイン電極やスキャン電極等の電極16が形成されるとともに、これらの電極16を被覆するように誘電体ガラス層17が形成される。これによりMgO保護膜13は誘電体ガラス層17表面に形成される。   On the other hand, it is preferable that the components of the stacking vapor deposition material 14 (FIG. 2A) for forming the MgO protective film 13 on the surface of the front glass substrate 12 are configured in the same manner as the surface treatment vapor deposition material 11. However, the average particle diameter of the vapor deposition material 14 for lamination is 5 mm to 30 mm, preferably 5 mm to 15 mm, and the relative density of the vapor deposition material 14 for lamination is 90% or more, preferably 95% or more. Here, the average particle diameter of the vapor deposition material 14 for laminating was limited to the range of 5 mm to 30 mm. If the thickness was less than 5 mm, the MgO protective film 13 was too small during the film formation, and splash was likely to occur. This is because a flat MgO protective film 13 cannot be obtained, and if it exceeds 30 mm, it becomes difficult to handle in the actual manufacturing process. Further, the relative density of the vapor deposition material 14 is limited to 90% or more. When the deposition density is less than 90%, the splash increases when the MgO protective film 13 is formed, and the MgO protective film 13 having a dense and relatively flat surface is formed. It is because it cannot be obtained. As shown in FIGS. 1 and 2, electrodes 16 such as a sustain electrode and a scan electrode are formed on the surface of the front glass substrate 12, and a dielectric glass layer 17 is formed so as to cover these electrodes 16. It is formed. Thereby, the MgO protective film 13 is formed on the surface of the dielectric glass layer 17.

上記MgO保護膜13の形成方法及び表面処理方法を説明する。
先ず図2(a)に示すように、所定の真空度に保持したチャンバ23内でフロントガラス基板12の表面に上記積層用蒸着材14を用いて真空蒸着法によりMgO保護膜13を形成する。ここで、真空蒸着法としては、電子ビーム蒸着法やイオンプレーティング法などが挙げられる。電子ビーム蒸着法は、積層用蒸着材14に電子ビームを照射して加熱することにより、MgO粒子を蒸発させて飛び出させ、このMgO粒子を誘電体ガラス層17表面に堆積させる方法である。またイオンプレーティング法は、フロントガラス基板12を陰極としグロー放電を起こさせ、積層用蒸着材14から蒸発して飛び出したMgO粒子をイオン化又は励起させて加速した後に誘電体ガラス層17に激突させて堆積させる方法である。具体的なMgO保護膜13の形成方法としては、先ず表面に電極16及び誘電体ガラス層17が形成されたフロントガラス基板12を真空蒸着装置20の保持手段24により保持するとともに、第1ハース21に積層用蒸着材14を入れる。次にチャンバ23内を所定の真空度、即ち5×10-5〜1×10-3Pa、好ましくは5×10-5〜5×10-4Paに保持した状態で、第1ハース21内の積層用蒸着材14を電子ビームやグロー放電により蒸発させて誘電体ガラス層17表面に堆積させる。これにより誘電体ガラス層17表面に緻密で表面が比較的平坦なMgO保護膜13が形成される(図2(a))。ここで、チャンバ23内の真空度を5×10-5〜1×10-3Paの範囲に限定したのは、5×10-5Pa未満では必要以上にチャンバ23内を気密にしたり或いは真空ポンプの動力を要するからであり、1×10-3Paを越えると誘電体ガラス層17表面に形成されるMgO保護膜13の質が低下するからである。またチャンバ23内の酸素分圧は5×10-3〜5×10-1Pa、好ましくは0.7×10-3〜2×10-2Paに設定される。ここで、チャンバ23内の酸素分圧を5×10-3〜5×10-1Paの範囲に限定したのは、5×10-3Pa未満では酸素欠損の過剰により放電応答性が遅延化するからであり、5×10-1Paを越えると酸素過剰により放電要求電圧が高くなるからである。
A method for forming the MgO protective film 13 and a surface treatment method will be described.
First, as shown in FIG. 2A, the MgO protective film 13 is formed on the surface of the front glass substrate 12 by the vacuum deposition method on the surface of the front glass substrate 12 in the chamber 23 maintained at a predetermined degree of vacuum. Here, examples of the vacuum evaporation method include an electron beam evaporation method and an ion plating method. The electron beam evaporation method is a method in which the stacking vapor deposition material 14 is irradiated with an electron beam and heated to evaporate and eject MgO particles and deposit the MgO particles on the surface of the dielectric glass layer 17. In the ion plating method, the front glass substrate 12 is used as a cathode, glow discharge is caused, and MgO particles evaporated and ejected from the deposition material 14 are accelerated by being ionized or excited and then collided with the dielectric glass layer 17. This is a method of depositing. As a specific method for forming the MgO protective film 13, first, the front glass substrate 12 on which the electrode 16 and the dielectric glass layer 17 are formed is held by the holding means 24 of the vacuum vapor deposition apparatus 20, and the first hearth 21. The vapor deposition material 14 for laminating is put in. Next, the chamber 23 is maintained at a predetermined degree of vacuum, that is, 5 × 10 −5 to 1 × 10 −3 Pa, preferably 5 × 10 −5 to 5 × 10 −4 Pa. The stacking vapor deposition material 14 is evaporated by an electron beam or glow discharge and deposited on the surface of the dielectric glass layer 17. As a result, a dense MgO protective film 13 having a relatively flat surface is formed on the surface of the dielectric glass layer 17 (FIG. 2A). Here, the reason why the degree of vacuum in the chamber 23 is limited to the range of 5 × 10 −5 to 1 × 10 −3 Pa is that if it is less than 5 × 10 −5 Pa, the inside of the chamber 23 is made more airtight than necessary. This is because the power of the pump is required, and when it exceeds 1 × 10 −3 Pa, the quality of the MgO protective film 13 formed on the surface of the dielectric glass layer 17 is deteriorated. The oxygen partial pressure in the chamber 23 is set to 5 × 10 −3 to 5 × 10 −1 Pa, preferably 0.7 × 10 −3 to 2 × 10 −2 Pa. Here, the oxygen partial pressure in the chamber 23 is limited to the range of 5 × 10 −3 to 5 × 10 −1 Pa. When the oxygen partial pressure is less than 5 × 10 −3 Pa, the discharge responsiveness is delayed due to excessive oxygen deficiency. This is because, if it exceeds 5 × 10 −1 Pa, the required discharge voltage increases due to excess oxygen.

次に図2(b)に示すように、チャンバ23内を引続き所定の真空度に保持した状態で、上記MgO保護膜13の表面に上記表面処理用蒸着材11を真空蒸着法でスプラッシュさせることにより、所定の窪み13aを形成するとともに所定の粒子13bを付着させる。具体的には、チャンバ23内を引続き所定の真空度、即ち5×10-5〜1×10-3Pa、好ましくは5×10-5〜5×10-4Paに保持した状態で、MgO保護膜13の表面に第2ハース22内の表面処理用蒸着材11を電子ビーム又はグロー放電によりスプラッシュさせて、MgO保護膜13の表面に、平均穴径50nm〜10000nm、好ましくは100nm〜500nmの窪み13aを形成し、かつ平均粒径50nm〜10000nm、好ましくは100nm〜500nmの粒子13bを付着させる(図2(b))。ここで、窪み13aの平均穴径を50nm〜10000nmの範囲に限定したのは、50nm未満では積層用蒸着材11を用いてMgO保護膜13aを形成するときに発生する窪みより小さくなって放電応答特性及び発光効率の向上という効果が発現せず、10000nmを越えると放電速度のばらつきが大きくなるからである。また付着粒子13bの平均粒径を50nm〜10000nmの範囲に限定したのは、50nm未満では十分な放電を行うことができず、10000nmを越えると電子放出の高速化が妨げられてしまうからである。上記表面処理用蒸着材11に電子ビームを照射したり、表面処理用蒸着材11にグロー放電を発生させると、平均粒径が比較的小さい表面処理用蒸着材11が割れたり或いは剥離して細かな粒子となり、この粒子がチャンバ23内の蒸気流等により浮いてMgO保護膜13の表面に接触する。そしてこの接触した粒子がMgO保護膜13から剥がれると、MgO保護膜13の表面に窪み13aが形成され、上記接触した粒子がMgO保護膜13から剥がれないと、粒子がそのままMgO保護膜13の表面に付着して付着粒子123bとなる。 Next, as shown in FIG. 2B, the surface treatment vapor deposition material 11 is splashed on the surface of the MgO protective film 13 by a vacuum vapor deposition method while the chamber 23 is kept at a predetermined degree of vacuum. Thus, the predetermined depression 13a is formed and the predetermined particles 13b are attached. Specifically, the chamber 23 is kept at a predetermined degree of vacuum, that is, 5 × 10 −5 to 1 × 10 −3 Pa, preferably 5 × 10 −5 to 5 × 10 −4 Pa. The surface treatment vapor deposition material 11 in the second hearth 22 is splashed on the surface of the protective film 13 by electron beam or glow discharge, and the average hole diameter of 50 nm to 10000 nm, preferably 100 nm to 500 nm is formed on the surface of the MgO protective film 13. The depression 13a is formed, and particles 13b having an average particle diameter of 50 nm to 10000 nm, preferably 100 nm to 500 nm are attached (FIG. 2B). Here, the reason why the average hole diameter of the recess 13a is limited to the range of 50 nm to 10000 nm is that when it is less than 50 nm, it becomes smaller than the recess generated when the MgO protective film 13a is formed by using the deposition material 11 for stacking, and the discharge response. This is because the effect of improving the characteristics and light emission efficiency is not manifested, and when the thickness exceeds 10,000 nm, the variation in the discharge rate increases. Moreover, the reason why the average particle size of the adhering particles 13b is limited to the range of 50 nm to 10000 nm is that sufficient discharge cannot be performed if the particle diameter is less than 50 nm, and speeding up of electron emission is hindered if the particle diameter exceeds 10,000 nm. . When the surface treatment vapor deposition material 11 is irradiated with an electron beam or a glow discharge is generated in the surface treatment vapor deposition material 11, the surface treatment vapor deposition material 11 having a relatively small average particle size is cracked or peeled off and becomes fine. These particles float by the vapor flow in the chamber 23 and come into contact with the surface of the MgO protective film 13. When the contacted particles are peeled off from the MgO protective film 13, a recess 13 a is formed on the surface of the MgO protective film 13. When the contacted particles are not peeled off from the MgO protective film 13, the particles are left as they are on the surface of the MgO protective film 13. To attach particles 123b.

このようにMgO保護膜13の表面に窪み13aや粒子13bが存在することにより、MgO保護膜13の表面積が増大して、窪み13aの周縁や付着粒子13bの表面に電子が滞留し易くなるとともに、窪み13aや付着粒子13bの存在により尖鋭部が増大しこの尖鋭部への電子の密度が高くなって、窪み13aの周縁や付着粒子13bの表面から電子を放出し易くなる。この結果、このMgO保護膜13を用いたPDPの放電応答特性及び発光効率を向上できる。また誘電体ガラス層17表面にMgO保護膜13を形成する工程と、MgO保護膜13表面に窪み13aを形成し粒子13bを付着させる工程との間に、フロントガラス基板12を大気に開放せず、また誘電体ガラス層17表面にMgO保護膜13を形成する工程と、MgO保護膜13表面に窪み13aを形成し粒子13bを付着させる工程とが、同一の真空蒸着装置20と同一の成分の蒸着材を用いて行われるため、MgO保護膜13に不純物が混入することがなく、しかもMgO保護膜13と付着粒子13bとの接着力を強固にすることができる。この結果、このMgO保護膜13を用いたPDPを長期間使用しても、MgO保護膜13は殆ど劣化しない。   Thus, the presence of the depression 13a and the particles 13b on the surface of the MgO protective film 13 increases the surface area of the MgO protective film 13, and the electrons easily stay on the periphery of the depression 13a and the surface of the attached particles 13b. The sharp portion increases due to the presence of the depression 13a and the adhering particles 13b, and the density of electrons to the sharp portion increases, and electrons are easily emitted from the periphery of the depression 13a and the surface of the adhering particles 13b. As a result, it is possible to improve the discharge response characteristics and light emission efficiency of the PDP using the MgO protective film 13. Further, the front glass substrate 12 is not opened to the atmosphere between the step of forming the MgO protective film 13 on the surface of the dielectric glass layer 17 and the step of forming the depression 13a on the surface of the MgO protective film 13 and attaching the particles 13b. In addition, the step of forming the MgO protective film 13 on the surface of the dielectric glass layer 17 and the step of forming the depression 13a on the surface of the MgO protective film 13 and attaching the particles 13b have the same components as the same vacuum vapor deposition apparatus 20. Since the vapor deposition material is used, impurities are not mixed into the MgO protective film 13, and the adhesive force between the MgO protective film 13 and the attached particles 13b can be strengthened. As a result, the MgO protective film 13 hardly deteriorates even when the PDP using the MgO protective film 13 is used for a long period of time.

このように形成されかつ表面処理されたMgO保護膜13を使用したPDP30の内部構造を図3に示す。
面放電形式のAC型PDP30では、通常、フロントガラス基板12の画面横方向にサステイン電極31とスキャン電極32が対をなして平行に配置される。またリアガラス基板33の画面縦方向には、アドレス電極34が配置される。このサステイン電極31とスキャン電極32の間隙は放電ギャップと呼ばれており、この間隙は約80μmに選定される。またフロントガラス基板12とリアガラス基板33は100〜150μm程度の高さの隔壁36によって隔てられ、この隔壁36の壁面及び底部には蛍光体粉末が塗布される。カラー表示の場合には、ライン方向に並ぶ3つの放電空間37を形成する隔壁36の背面及び底部に3色(R、G、B)の蛍光体38G,38B,38Rがそれぞれ塗布されて3つのサブピクセル(単位発光領域)を形成し、これらを1ピクセルとする。フロントガラス基板12、リアガラス基板33及び隔壁36で形成された放電空間37には、ガスが封入される。この封入ガスには、Ne(ネオン)やXe(キセノン)等の不活性ガスの混合ガスが使用される。
サステイン電極31及びスキャン電極32を被覆する誘電体ガラス層17の表面には、放電時の放電ガスによるイオン衝撃を低減するため、耐スパッタ性の高い保護膜13が設けられる。PDP30では保護膜13の材質、膜質及び形状が放電特性に大きな影響を与えるため、この保護膜13は放電電極として作用する。この保護膜13としては、耐スパッタ性に優れかつ二次電子放出係数の高い絶縁物である本発明のMgO保護膜を用いる。
FIG. 3 shows the internal structure of the PDP 30 using the MgO protective film 13 thus formed and surface-treated.
In the surface discharge AC type PDP 30, the sustain electrode 31 and the scan electrode 32 are usually arranged in parallel in a horizontal direction of the screen of the windshield substrate 12. An address electrode 34 is arranged in the vertical direction of the screen of the rear glass substrate 33. The gap between the sustain electrode 31 and the scan electrode 32 is called a discharge gap, and this gap is selected to be about 80 μm. The front glass substrate 12 and the rear glass substrate 33 are separated by a partition wall 36 having a height of about 100 to 150 μm, and phosphor powder is applied to the wall surface and the bottom of the partition wall 36. In the case of color display, three colors (R, G, B) of phosphors 38G, 38B, and 38R are respectively applied to the back and bottom of the barrier rib 36 that forms three discharge spaces 37 arranged in the line direction. Sub-pixels (unit light-emitting regions) are formed, and these are defined as one pixel. Gas is sealed in the discharge space 37 formed by the front glass substrate 12, the rear glass substrate 33, and the barrier ribs 36. As this sealed gas, a mixed gas of an inert gas such as Ne (neon) or Xe (xenon) is used.
A protective film 13 having high sputtering resistance is provided on the surface of the dielectric glass layer 17 covering the sustain electrode 31 and the scan electrode 32 in order to reduce ion bombardment caused by the discharge gas during discharge. In the PDP 30, since the material, film quality and shape of the protective film 13 have a great influence on the discharge characteristics, the protective film 13 acts as a discharge electrode. As this protective film 13, the MgO protective film of the present invention, which is an insulator having excellent sputtering resistance and a high secondary electron emission coefficient, is used.

このように構成されたマトリクス表示形式のAC型PDP30では、フロントガラス基板12とリアガラス基板33との間に設けられた放電空間37内で対向するサステイン電極31及びスキャン電極32とアドレス電極34との間にプラズマ放電を生じさせ、この放電空間37内に封入されているガスから発生する紫外線を放電空間37内に設けた蛍光体38G,38B,38Rに当てることにより表示を行う。表示素子であるセルの点灯状態の維持(サステイン)にはメモリ効果が利用される。表示に際しては、先ず、ある画像のサステインの終了から次の画像のアドレッシング(書込み)までの間に画面全体の壁電荷の消去(リセット)を行う。次に点灯(発光)すべきセルのみに壁電荷を蓄積させるライン順次のアドレッシング(書込み)を行う。その後に全てのセルに対して一斉に交番極性の放電開始電圧より低い電圧(サステイン電圧)を印加する。壁電荷の存在するセルでは、壁電圧がサステイン電圧に重畳するので、セルに加わる実効電圧が放電開始電圧を越えて放電が生じる。サステイン電圧の印加周波数を高くすることで、見かけ上連続的な点灯状態が得られる。   In the matrix type AC type PDP 30 configured as described above, the sustain electrode 31, the scan electrode 32, and the address electrode 34 facing each other in the discharge space 37 provided between the front glass substrate 12 and the rear glass substrate 33 are arranged. Plasma display is generated in the meantime, and display is performed by applying ultraviolet rays generated from the gas sealed in the discharge space 37 to the phosphors 38G, 38B, and 38R provided in the discharge space 37. A memory effect is used for maintaining (sustaining) the lighting state of a cell as a display element. When displaying, first, the wall charge of the entire screen is erased (reset) from the end of sustain of one image to the addressing (writing) of the next image. Next, line-sequential addressing (writing) for accumulating wall charges only in the cells to be lit (emitted) is performed. Thereafter, a voltage (sustain voltage) lower than the discharge start voltage having an alternating polarity is applied to all the cells simultaneously. In a cell in which wall charges exist, the wall voltage is superimposed on the sustain voltage, so that the effective voltage applied to the cell exceeds the discharge start voltage and discharge occurs. By increasing the application frequency of the sustain voltage, an apparently continuous lighting state can be obtained.

上記アドレッシング(書込み)では、リアガラス基板のアドレス電極とフロントガラス基板のスキャン電極間で書込み放電を行うことにより壁電荷の蓄積が行われる。例えば、従来より用いられている解像度がVGA(Visual Graphics Array)クラスで256階調表現(8サブフィールド)のPDPでは、書込み放電が3μsで行われた場合、480ラインを順次書込む必要があるため、駆動時間の約10%が壁電荷の消去に、約70%が画像データの書込みに費やされ、実際に画像を表示する時間は残りの約20%程度しか存在しないことになる。PDPの場合、パネルの輝度はこの画像表示時間が長いほど明るく認識される。パネル輝度を改善するためにはアドレス電極を駆動するアドレスIC数を2倍にして、画像の上下部を別々に書込む(デュアルスキャン)ことで書込み時間を短縮し画像表示時間を延ばすことができる。しかしこの方法を用いると、回路コストが増加する問題がある。   In the addressing (writing), wall charges are accumulated by performing address discharge between the address electrode of the rear glass substrate and the scan electrode of the front glass substrate. For example, in a conventional PDP with a resolution of VGA (Visual Graphics Array) and 256 gradations (8 subfields), if address discharge is performed at 3 μs, it is necessary to sequentially write 480 lines. Therefore, about 10% of the driving time is consumed for erasing the wall charges and about 70% is written for writing the image data, and the time for actually displaying the image is only about the remaining 20%. In the case of PDP, the brightness of the panel is recognized brighter as the image display time is longer. In order to improve panel brightness, the number of address ICs that drive the address electrodes is doubled, and the upper and lower parts of the image are written separately (dual scan), thereby shortening the writing time and extending the image display time. . However, when this method is used, there is a problem that the circuit cost increases.

これに対して、本発明のMgO保護膜13は、窪み13a周縁及び付着粒子13bの表面に電子を高密度に保持することができるので、書込み放電の時間を短縮できる、即ち放電応答時間の短縮を図ることができる。この結果、本発明のMgO保護膜13を用いたPDP30では、高精細で安定した画像を表示することができ、印加電圧を抑制できるとともに、省エネルギ化にも貢献できる。また本発明のMgO保護膜13を用いたPDP30は、画像表示時間を延ばすことができるため、パネル輝度を向上できる。一方、パネル輝度の低下なしに大幅なアドレスIC数の削減も図ることができる。   On the other hand, the MgO protective film 13 of the present invention can hold electrons at a high density on the periphery of the recess 13a and the surface of the adhering particles 13b. Can be achieved. As a result, the PDP 30 using the MgO protective film 13 of the present invention can display a high-definition and stable image, can suppress the applied voltage, and can contribute to energy saving. In addition, since the PDP 30 using the MgO protective film 13 of the present invention can extend the image display time, the panel brightness can be improved. On the other hand, the number of address ICs can be greatly reduced without lowering the panel brightness.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
図2(a)に示すように、積層用蒸着材14として、MgO純度が99.95%であり、相対密度が98%であり、直径及び厚さがそれぞれ5mm及び1.6mmである円板状のペレットを用意し、この蒸着材14を第1ハース21に入れた。また縦、横及び厚さがそれぞれ150mm、150mm及び2.8mmである長方形板状のガラス基板12を用意した。このガラス基板12の表面には、予め厚さ80μmの放電ギャップ用のITO(Indium Tin Oxide)電極16と、このITO電極16を被覆する誘電体ガラス層17とを形成した。このガラス基板12を保持手段24の保持板24aに吸着させた。上記ガラス基板12に形成された誘電体ガラス層17上に、第1ハース21内の積層用蒸着材14を電子ビーム加熱手段により加熱し蒸発させて、膜厚800nmのMgO保護膜13を形成した(図2(a))。このときの成膜条件は到達真空度が1.0×10-4Paであり、酸素分圧が1.0×10-2Paであり、基板温度が200℃であった。次に上記成膜条件と同一の成膜条件で第2ハース22内の平均粒径100μmの表面処理用蒸着材11を電子ビーム加熱手段により加熱し蒸発させて、MgO保護膜13の表面に窪み13aを形成するとともに粒子13bを付着させた(図1及び図2(b))。このMgO保護膜13の表面に窪み13aを形成し粒子13bを付着させたガラス基板12を実施例1とした。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
As shown in FIG. 2A, the stacking vapor deposition material 14 has a MgO purity of 99.95%, a relative density of 98%, and a diameter and thickness of 5 mm and 1.6 mm, respectively. Shaped pellets were prepared, and the vapor deposition material 14 was placed in the first hearth 21. A rectangular plate-shaped glass substrate 12 having a length, width and thickness of 150 mm, 150 mm and 2.8 mm, respectively, was prepared. On the surface of the glass substrate 12, an ITO (Indium Tin Oxide) electrode 16 for a discharge gap having a thickness of 80 μm and a dielectric glass layer 17 covering the ITO electrode 16 were formed in advance. The glass substrate 12 was adsorbed to the holding plate 24a of the holding means 24. On the dielectric glass layer 17 formed on the glass substrate 12, the stacking vapor deposition material 14 in the first hearth 21 was heated and evaporated by an electron beam heating means to form an MgO protective film 13 having a thickness of 800 nm. (FIG. 2 (a)). The film formation conditions at this time were an ultimate vacuum of 1.0 × 10 −4 Pa, an oxygen partial pressure of 1.0 × 10 −2 Pa, and a substrate temperature of 200 ° C. Next, the surface treatment vapor deposition material 11 having an average particle diameter of 100 μm in the second hearth 22 is heated and evaporated by the electron beam heating means under the same film formation conditions as the above film formation conditions, and a depression is formed on the surface of the MgO protective film 13. 13a was formed and particles 13b were attached (FIGS. 1 and 2B). The glass substrate 12 in which the depression 13a was formed on the surface of the MgO protective film 13 and the particles 13b were adhered was taken as Example 1.

<実施例2>
平均粒径0.5μmの表面処理用蒸着材を用いたこと以外は、実施例1と同様にしてガラス基板のMgO保護膜の表面に窪みを形成するとともに粒子を付着させた。このガラス基板を実施例2とした。
<実施例3>
平均粒径2μmの表面処理用蒸着材を用いたこと以外は、実施例1と同様にしてガラス基板のMgO保護膜の表面に窪みを形成するとともに粒子を付着させた。このガラス基板を実施例3とした。
<実施例4>
平均粒径10μmの表面処理用蒸着材を用いたこと以外は、実施例1と同様にしてガラス基板のMgO保護膜の表面に窪みを形成するとともに粒子を付着させた。このガラス基板を実施例4とした。
<実施例5>
平均粒径500μmの表面処理用蒸着材を用いたこと以外は、実施例1と同様にしてガラス基板のMgO保護膜の表面に窪みを形成するとともに粒子を付着させた。このガラス基板を実施例5とした。
<実施例6>
平均粒径1000μmの表面処理用蒸着材を用いたこと以外は、実施例1と同様にしてガラス基板のMgO保護膜の表面に窪みを形成するとともに粒子を付着させた。このガラス基板を実施例6とした。
なお、実施例1〜6の表面処理用蒸着材の平均粒径の測定は、粒度分布測定装置(LEED & NORTHRUP社製:MICROTRAC FRA)にて各蒸着材の粉末の粒子径を測定することにより行った。測定条件としては、溶媒を純水とし、分散剤をヘキサメタリン酸ナトリウム(Na)として、各蒸着材の粉末を3分間分散させた後に、各蒸着材の粉末の粒子径を測定した。
<Example 2>
A depression was formed on the surface of the MgO protective film of the glass substrate and the particles were adhered in the same manner as in Example 1 except that the vapor deposition material for surface treatment having an average particle diameter of 0.5 μm was used. This glass substrate was referred to as Example 2.
<Example 3>
Except that a vapor deposition material for surface treatment having an average particle diameter of 2 μm was used, in the same manner as in Example 1, depressions were formed on the surface of the MgO protective film of the glass substrate and particles were adhered. This glass substrate was referred to as Example 3.
<Example 4>
A depression was formed on the surface of the MgO protective film of the glass substrate and the particles were adhered in the same manner as in Example 1 except that the vapor deposition material for surface treatment having an average particle diameter of 10 μm was used. This glass substrate was referred to as Example 4.
<Example 5>
Except that a vapor deposition material for surface treatment having an average particle diameter of 500 μm was used, a depression was formed on the surface of the MgO protective film of the glass substrate and particles were adhered in the same manner as in Example 1. This glass substrate was referred to as Example 5.
<Example 6>
A recess was formed on the surface of the MgO protective film of the glass substrate and the particles were adhered in the same manner as in Example 1 except that the vapor deposition material for surface treatment having an average particle diameter of 1000 μm was used. This glass substrate was referred to as Example 6.
In addition, the measurement of the average particle diameter of the vapor deposition material for surface treatment of Examples 1-6 is by measuring the particle diameter of the powder of each vapor deposition material with a particle size distribution measuring device (LEED & NORTHRUP company make: MICROTRAC FRA). went. As the measurement conditions, the solvent was pure water, the dispersant was sodium hexametaphosphate (Na), and the powder of each vapor deposition material was dispersed for 3 minutes, and then the particle size of the powder of each vapor deposition material was measured.

<比較例1>
平均粒径5000μmの表面処理用蒸着材を用いたこと以外は、実施例1と同様にしてガラス基板のMgO保護膜の表面に窪みを形成するとともに粒子を付着させた。このガラス基板を比較例1とした。
<比較例2>
表面処理用蒸着材を用いたMgO保護膜の表面への窪みの形成や粒子の付着を行わなかったこと以外は、実施例1と同様にしてガラス基板の表面にITO電極、誘電体ガラス層及びMgO保護膜を形成した。このガラス基板を比較例2とした。
<Comparative Example 1>
A depression was formed on the surface of the MgO protective film of the glass substrate and the particles were adhered in the same manner as in Example 1 except that the vapor deposition material for surface treatment having an average particle diameter of 5000 μm was used. This glass substrate was designated as Comparative Example 1.
<Comparative example 2>
An ITO electrode, a dielectric glass layer, and a dielectric glass layer were formed on the surface of the glass substrate in the same manner as in Example 1 except that no depression was formed on the surface of the MgO protective film using the deposition material for surface treatment and particles were not attached. A MgO protective film was formed. This glass substrate was designated as Comparative Example 2.

<比較試験及び評価>
実施例1〜6と比較例1及び2のMgO保護膜が形成されたガラス基板をフロントガラス基板とした。またリヤガラス基板を用意し、このリヤガラス基板上に高さ150μmの隔壁(リブ)をピッチ360μmで形成した。上記フロントガラス基板とリヤガラス基板を対向するように配置した後、フロントガラス基板、リヤガラス基板及び隔壁により形成された放電空間に、Ne−4%Xe混合ガスを放電ガスとして注入した。これによりテスト基板が得られた。このテスト基板を用い、−20℃、30℃及び90℃の各温度条件で擬似的なアドレス放電試験、即ち2枚のガラス基板間の対向放電試験を行った。試験条件は、放電ガス圧を500Torr、印加電圧を200V、周波数を1kHzとした。このような条件で試験を行い、放電によって放出される近赤外線を光電子倍増管により検知し、電圧を印加してから発光が終了するまでの時間を放電応答時間として評価した。なお、この放電応答時間には統計的な発光ばらつきを含む。その結果を表1に示す。
<Comparison test and evaluation>
The glass substrate on which the MgO protective films of Examples 1 to 6 and Comparative Examples 1 and 2 were formed was used as a front glass substrate. A rear glass substrate was prepared, and partition walls (ribs) having a height of 150 μm were formed on the rear glass substrate at a pitch of 360 μm. After arranging the front glass substrate and the rear glass substrate to face each other, a Ne-4% Xe mixed gas was injected as a discharge gas into a discharge space formed by the front glass substrate, the rear glass substrate, and the barrier ribs. As a result, a test substrate was obtained. Using this test substrate, a pseudo address discharge test, that is, a counter discharge test between two glass substrates, was performed under each temperature condition of −20 ° C., 30 ° C., and 90 ° C. The test conditions were a discharge gas pressure of 500 Torr, an applied voltage of 200 V, and a frequency of 1 kHz. The test was conducted under such conditions, and the near infrared ray emitted by the discharge was detected by a photomultiplier tube, and the time from the application of voltage to the end of light emission was evaluated as the discharge response time. The discharge response time includes statistical emission variations. The results are shown in Table 1.

Figure 2008057038
Figure 2008057038

表1から明らかなように、温度条件が−20℃である場合には、放電応答時間が比較例1及び2では16.4μ秒及び14.7μ秒と長かったのに対し、実施例1〜6では2.0〜13.8μ秒と短くなった。また温度条件が30℃である場合には、放電応答時間が比較例1及び2では3.1μ秒及び2.8μ秒と長かったのに対し、実施例1〜6では1.1〜2.6μ秒と短くなった。更に温度条件が90℃である場合には、放電応答時間が比較例1及び2では1.3μ秒及び1.6μ秒と長かったのに対し、実施例1〜6では0.7〜1.4μ秒と短くなった。   As is apparent from Table 1, when the temperature condition was −20 ° C., the discharge response time was long as 16.4 μsec and 14.7 μsec in Comparative Examples 1 and 2, whereas 6 was as short as 2.0 to 13.8 μsec. When the temperature condition was 30 ° C., the discharge response time was as long as 3.1 μsec and 2.8 μsec in Comparative Examples 1 and 2, whereas in Examples 1-6, 1.1-2. It shortened to 6 μs. Further, when the temperature condition was 90 ° C., the discharge response time was as long as 1.3 μsec and 1.6 μsec in Comparative Examples 1 and 2, whereas in Examples 1-6, 0.7-1. It shortened to 4 μs.

本発明実施形態の表面処理用蒸着材を用いてMgO保護膜の表面に窪みを形成するとともに粒子を付着させている状態を示す要部断面構成図である。It is principal part cross-section block diagram which shows the state which forms the dent on the surface of a MgO protective film using the deposition material for surface treatment of this invention embodiment, and is making the particle adhere. フロントガラス基板の表面にITO電極及び誘電体ガラス層を介してMgO保護膜を形成した後に、このMgO保護膜の表面に窪みを形成するとともに粒子を付着させる工程を示す図である。It is a figure which shows the process of forming a dent on the surface of this MgO protective film, and attaching a particle | grain after forming an MgO protective film on the surface of a front glass board | substrate through an ITO electrode and a dielectric glass layer. そのMgO保護膜を用いたPDPの内部構造を示す要部断面斜視図である。It is a principal part cross-sectional perspective view which shows the internal structure of PDP using the MgO protective film.

符号の説明Explanation of symbols

11 表面処理用蒸着材
12 フロントガラス基板
13 MgO保護膜
13a 窪み
13b 粒子
14 積層用蒸着材
23 チャンバ
30 PDP(FPD)
DESCRIPTION OF SYMBOLS 11 Surface treatment vapor deposition material 12 Front glass substrate 13 MgO protective film 13a Dimple 13b Particle 14 Lamination vapor deposition material 23 Chamber 30 PDP (FPD)

Claims (3)

FPD(30)用のMgO保護膜(13)の表面に窪み(13a)を形成するとともに粒子(13b)を付着させる表面処理用蒸着材(11)であって、
MgOを主成分とし平均粒径が0.5μm〜1mmであることを特徴とする表面処理用蒸着材。
A surface treatment vapor deposition material (11) for forming depressions (13a) on the surface of an MgO protective film (13) for FPD (30) and attaching particles (13b),
A vapor deposition material for surface treatment, comprising MgO as a main component and an average particle diameter of 0.5 μm to 1 mm.
請求項1に記載の表面処理用蒸着材(11)を表面にスプラッシュさせることにより、平均穴径50nm〜10000nmの窪み(13a)が形成され、かつ平均粒径50nm〜10000nmの粒子(13b)が付着されたMgO保護膜。   The surface treatment vapor deposition material (11) according to claim 1 is splashed on the surface to form depressions (13a) having an average hole diameter of 50 nm to 10000 nm, and particles (13b) having an average particle diameter of 50 nm to 10000 nm are formed. Adhered MgO protective film. 所定の真空度に保持したチャンバ(23)内でFPD(30)用の基板(12)表面に平均粒径5〜30mmのMgOを主成分とする積層用蒸着材(14)を用いて真空蒸着法によりMgO保護膜(13)を形成する工程と、
前記チャンバ(23)内を引続き所定の真空度に保持した状態で前記MgO保護膜(13)の表面に請求項1に記載の表面処理用蒸着材(11)を真空蒸着法でスプラッシュさせることにより前記MgO保護膜(13)の表面に平均穴径50nm〜10000nmの窪み(13a)を形成するとともに平均粒径50nm〜10000nmの粒子(13b)を付着させる工程と
を含むMgO保護膜の作製方法。
In a chamber (23) kept at a predetermined degree of vacuum, vacuum deposition is performed on the surface of the substrate (12) for the FPD (30) using a deposition material (14) mainly composed of MgO having an average particle diameter of 5 to 30 mm. Forming a MgO protective film (13) by a method;
The surface treatment vapor deposition material (11) according to claim 1 is splashed by a vacuum vapor deposition method on the surface of the MgO protective film (13) in a state where the inside of the chamber (23) is continuously maintained at a predetermined degree of vacuum. Forming a recess (13a) having an average hole diameter of 50 nm to 10000 nm and adhering particles (13b) having an average particle diameter of 50 nm to 10000 nm on the surface of the MgO protective film (13).
JP2007192747A 2006-08-03 2007-07-25 VAPOR DEPOSITION MATERIAL FOR SURFACE TREATMENT, MgO PROTECTIVE FILM USING THE VAPOR DEPOSITION MATERIAL, AND METHOD FOR PRODUCING THE MgO PROTECTIVE FILM Withdrawn JP2008057038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192747A JP2008057038A (en) 2006-08-03 2007-07-25 VAPOR DEPOSITION MATERIAL FOR SURFACE TREATMENT, MgO PROTECTIVE FILM USING THE VAPOR DEPOSITION MATERIAL, AND METHOD FOR PRODUCING THE MgO PROTECTIVE FILM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006212112 2006-08-03
JP2007192747A JP2008057038A (en) 2006-08-03 2007-07-25 VAPOR DEPOSITION MATERIAL FOR SURFACE TREATMENT, MgO PROTECTIVE FILM USING THE VAPOR DEPOSITION MATERIAL, AND METHOD FOR PRODUCING THE MgO PROTECTIVE FILM

Publications (1)

Publication Number Publication Date
JP2008057038A true JP2008057038A (en) 2008-03-13

Family

ID=39240132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192747A Withdrawn JP2008057038A (en) 2006-08-03 2007-07-25 VAPOR DEPOSITION MATERIAL FOR SURFACE TREATMENT, MgO PROTECTIVE FILM USING THE VAPOR DEPOSITION MATERIAL, AND METHOD FOR PRODUCING THE MgO PROTECTIVE FILM

Country Status (1)

Country Link
JP (1) JP2008057038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008643A (en) * 2011-06-27 2013-01-10 Ulvac Japan Ltd Plasma display panel, and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008643A (en) * 2011-06-27 2013-01-10 Ulvac Japan Ltd Plasma display panel, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4532718B2 (en) Secondary electron amplification structure using carbon nanotube, plasma display panel and backlight using the same
JP4880472B2 (en) Plasma display panel and manufacturing method thereof
JPH10334809A (en) Plasma display panel and plasma display device
US7598664B2 (en) Gas discharge display apparatus
JP4927046B2 (en) MgO protective film having electron emission promoting substance, manufacturing method thereof, and plasma display panel provided with the protective film
US20080157672A1 (en) Plasma display panel and manufacturing method therefor
JP2004119118A (en) Plasma display device and its manufacturing method
WO2011114672A1 (en) Plasma display device
WO2011114647A1 (en) Plasma display device
JP4637941B2 (en) Plasma display panel and plasma display device using the same
JP2010212171A (en) Method of manufacturing plasma display panel
JP2008057038A (en) VAPOR DEPOSITION MATERIAL FOR SURFACE TREATMENT, MgO PROTECTIVE FILM USING THE VAPOR DEPOSITION MATERIAL, AND METHOD FOR PRODUCING THE MgO PROTECTIVE FILM
JP4760505B2 (en) Plasma display panel
JP4476173B2 (en) Gas discharge display panel
US20100181909A1 (en) Plasma display panel
JP2009217940A (en) Plasma display device
JP4788227B2 (en) Plasma display panel
JP2006269258A (en) Gas discharge display panel
JP5113912B2 (en) Plasma display panel and manufacturing method thereof
JP2008004436A (en) Plasma display panel, and its manufacturing method
JP2008001976A (en) Vacuum vapor deposition apparatus, protective film formed by using the appatratus, and method for forming the protective film
JP2007141481A (en) Gas discharge display panel
JP5168422B2 (en) Plasma display panel and plasma display device
JP2009301865A (en) Plasma display panel
KR20090075137A (en) Plasma display panel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005