JP2008056797A - Fluorescence material and optical device using the same - Google Patents

Fluorescence material and optical device using the same Download PDF

Info

Publication number
JP2008056797A
JP2008056797A JP2006235133A JP2006235133A JP2008056797A JP 2008056797 A JP2008056797 A JP 2008056797A JP 2006235133 A JP2006235133 A JP 2006235133A JP 2006235133 A JP2006235133 A JP 2006235133A JP 2008056797 A JP2008056797 A JP 2008056797A
Authority
JP
Japan
Prior art keywords
polyimide
fluorescence
group
fluorescent material
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006235133A
Other languages
Japanese (ja)
Other versions
JP4947546B2 (en
Inventor
Jiyunji Wakita
潤史 脇田
Shinji Ando
慎治 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manac Inc
Tokyo Institute of Technology NUC
Original Assignee
Manac Inc
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manac Inc, Tokyo Institute of Technology NUC filed Critical Manac Inc
Priority to JP2006235133A priority Critical patent/JP4947546B2/en
Publication of JP2008056797A publication Critical patent/JP2008056797A/en
Application granted granted Critical
Publication of JP4947546B2 publication Critical patent/JP4947546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a green fluorescence material having superior fluorescence properties (intensity of fluorescence intensity, long term stability of the fluorescence intensity), high heat resistance, and superior mechanical properties (high elastic modulus, flexibility and high toughness). <P>SOLUTION: A polyimide material is provided having a repeating unit represented by formula (1) (wherein R<SP>1</SP>is a divalent organic group containing an alicyclic or an aromatic ring). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蛍光材料、及びそれ用いた光デバイスに関する。本発明の蛍光材料は、優れた蛍光特性、高い耐熱性、及び優れた機械特性を有し高効率の緑色蛍光を有するものであり、発光デバイス用材料として使用可能なものである。また、この蛍光材料を用いて作製された光デバイスは、従来にない優れた特性を有する。   The present invention relates to a fluorescent material and an optical device using the same. The fluorescent material of the present invention has excellent fluorescent properties, high heat resistance, excellent mechanical properties, and high-efficiency green fluorescence, and can be used as a material for a light emitting device. In addition, an optical device produced using this fluorescent material has excellent characteristics that have not been obtained in the past.

近年、有機エレクトロルミネッセンス(EL)素子や、発光型の空間光変調素子、波長変換素子等に使用される有機発光材料として、種々の低分子化合物や高分子化合物が開発されている。発光デバイス等の製造において、低分子化合物を用いる場合、製造プロセスが蒸着方式に制約されるのに対して、高分子化合物は、溶液にして製膜、又はインクジェットプリント方式等により製造できることから製造コストを安くできるという利点を有している。また、高分子化合物は、微細加工なしに微細な塗り分けができる点、そして膜厚を容易に製膜できる等の優れた特徴を有している。そのため、高効率な蛍光発光を示し、かつ発光波長の制御が容易な高分子系の発光材料の開発が望まれている。   In recent years, various low molecular weight compounds and polymer compounds have been developed as organic light emitting materials used for organic electroluminescence (EL) elements, light emitting spatial light modulation elements, wavelength conversion elements and the like. In the production of light emitting devices, etc., when using low molecular weight compounds, the production process is limited to the vapor deposition method, whereas the polymer compounds can be produced in solution by film formation or ink jet printing, etc. It has the advantage that can be made cheaper. In addition, the polymer compound has excellent features such that fine coating can be performed without fine processing and the film thickness can be easily formed. Therefore, it is desired to develop a high-molecular light-emitting material that exhibits high-efficiency fluorescence and can easily control the emission wavelength.

高分子発光材料としては、従来よりポリ−p−フェニレンやポリフェニレンビニレン等のπ共役型高分子が知られている。しかし、このようなπ共役型高分子は、耐熱性や耐環境性(蛍光強度及び蛍光スペクトル形状の長期安定性)が十分でなく、また、製膜や微細加工が容易ではないという問題があった。一方、代表的な耐熱性高分子であるポリイミドは、優れた耐熱性や電気特性を有しており、前駆体であるポリアミド酸が製膜等の加工性に優れていることから、表示用デバイス材料としての用途が期待されている。例えば、非特許文献1には、主鎖や側鎖に蛍光性のフリル基を導入して青色の蛍光発光を示すポリイミドが開示されており、また、特許文献1及び特許文献2には、発光機能あるいは電荷輸送機能を有するポリイミドを用いた有機EL素子が開示されている。しかし、上記文献等に開示されたポリイミドの蛍光発光は、ポリイミドの主鎖又は側鎖に導入された蛍光性官能基によるものであり、また、その蛍光強度は、ポリイミド分子間の強い相互作用と、それに伴う濃度消失によって、同一の蛍光性官能基を有する低分子化合物の蛍光強度に比べると、その蛍光強度は非常に低いものである。   As polymer light-emitting materials, π-conjugated polymers such as poly-p-phenylene and polyphenylene vinylene are conventionally known. However, such π-conjugated polymers have problems such as insufficient heat resistance and environmental resistance (long-term stability of fluorescence intensity and fluorescence spectrum shape), and film formation and microfabrication are not easy. It was. On the other hand, polyimide, which is a typical heat-resistant polymer, has excellent heat resistance and electrical properties, and the precursor polyamic acid has excellent processability such as film formation. Use as a material is expected. For example, Non-Patent Document 1 discloses a polyimide that exhibits blue fluorescence by introducing a fluorescent furyl group into a main chain or a side chain, and Patent Document 1 and Patent Document 2 disclose light emission. An organic EL element using a polyimide having a function or a charge transport function is disclosed. However, the fluorescence emission of polyimide disclosed in the above documents is due to the fluorescent functional group introduced into the main chain or side chain of the polyimide, and the fluorescence intensity is based on the strong interaction between polyimide molecules. As a result of the disappearance of the concentration, the fluorescence intensity is very low compared to the fluorescence intensity of the low molecular weight compound having the same fluorescent functional group.

また、非特許文献2等に開示されているように、ポリイミド自体が紫外線の照射により、可視光の蛍光発光を示すことは、従来から知られていた。この蛍光は、ポリイミドの分子構造中のジアミン部分(電子供与性)と酸無水物部分(電子吸引性)との間で形成される電荷移動錯体(CTC)に起因する蛍光(CT蛍光)である(例えば、非特許文献3参照)。しかし、芳香族ポリイミドの場合には、CT相互作用が強く、無輻射失活過程が増加するため、その蛍光強度は弱くなる。代表的な全芳香族ポリイミドフィルムであるピロメリット酸二無水物と4,4’−ジアミノジフェニルエーテルから合成されるポリイミド(PMDA/ODA)においては、通常の蛍光分光計では観測が困難なほどの弱い蛍光しか観測されない。また、非特許文献4には、全芳香族ポリイミドでも、ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンから合成されるポリイミド(BPDA/PDA)は相対的に強い蛍光を示すことが報告されている。しかし、既存の蛍光性高分子化合物に比べると、その蛍光強度は非常に弱く、蛍光の量子収率は1%以下と非常に低いと考えられる。   In addition, as disclosed in Non-Patent Document 2 and the like, it has been conventionally known that polyimide itself exhibits visible fluorescence by irradiation with ultraviolet rays. This fluorescence is fluorescence (CT fluorescence) resulting from a charge transfer complex (CTC) formed between a diamine portion (electron donating property) and an acid anhydride portion (electron attracting property) in the molecular structure of polyimide. (For example, refer nonpatent literature 3). However, in the case of aromatic polyimide, the CT interaction is strong and the non-radiation deactivation process is increased, so that the fluorescence intensity is weak. A typical wholly aromatic polyimide film, pyromellitic dianhydride and polyimide synthesized from 4,4'-diaminodiphenyl ether (PMDA / ODA) is weak enough to be difficult to observe with a normal fluorescence spectrometer. Only fluorescence is observed. Further, Non-Patent Document 4 reports that polyimide (BPDA / PDA) synthesized from biphenyltetracarboxylic dianhydride and paraphenylenediamine exhibits relatively strong fluorescence even in wholly aromatic polyimide. . However, compared to existing fluorescent polymer compounds, the fluorescence intensity is very weak, and the quantum yield of fluorescence is considered to be as low as 1% or less.

また、特許文献3には、三次元的な構造を有し、芳香環に直接フッ素が結合した芳香族酸二無水物と脂環式構造を有するジアミンとからなる構造単位を有するポリイミドを用いることで、優れた蛍光発光特性(蛍光強度の強さ、緑色から赤色領域における蛍光波長の制御性、蛍光強度の長期安定性)を有するとともに、耐熱性、化学安定性、製膜性に優れた単色発光性の蛍光性ポリイミドが得られることが開示されている。また、特許文献4には、三次元的な構造を有し、電子受容性の低い酸二無水物と脂環式構造を有するジアミンとからなる構造単位を有するポリイミドを用いることで、優れた青色蛍光発光特性を有し、耐熱性、化学安定性、製膜製に優れた単色発光性の蛍光性ポリイミドが得られることが開示されている。加えて、非特許文献5には、これらの蛍光性ポリイミドの薄膜を発光層あるいはホール輸送層として用いて有機電界発光(エレクトロルミネッセンス)による発光デバイスを作製した例が報告されている。   Patent Document 3 uses a polyimide having a three-dimensional structure and having a structural unit composed of an aromatic dianhydride having fluorine directly bonded to an aromatic ring and a diamine having an alicyclic structure. In addition, it has excellent fluorescence emission characteristics (intensity of fluorescence intensity, controllability of fluorescence wavelength in the green to red range, long-term stability of fluorescence intensity), and monochromatic color with excellent heat resistance, chemical stability, and film-forming properties It is disclosed that a luminescent fluorescent polyimide can be obtained. Patent Document 4 has an excellent blue color by using a polyimide having a three-dimensional structure and a structural unit composed of an acid dianhydride having a low electron accepting property and a diamine having an alicyclic structure. It is disclosed that a monochromatic luminescent fluorescent polyimide having fluorescence emission characteristics and excellent in heat resistance, chemical stability and film formation can be obtained. In addition, Non-Patent Document 5 reports an example in which a light-emitting device using organic electroluminescence (electroluminescence) was produced using these fluorescent polyimide thin films as a light-emitting layer or a hole transport layer.

上記特許文献3及び4によれば、優れた蛍光特性を有する蛍光性ポリイミドを得られることが開示されている。上記特許文献3及び4に開示された蛍光性ポリイミドは、それぞれ、緑色から赤色領域における蛍光波長の制御性、及び青色蛍光特性を示すものである。
また、一般にポリイミドは、テトラカルボン酸二無水物(以下、酸二無水物)とジアミンとを極性溶媒中で反応させことによりポリアミド酸を得、これを加熱処理あるいは化学的脱水処理によりイミド化することにより得られる。本発明者らの検討により、ポリイミドの蛍光発光波長は、ジアミンに比して酸二無水物の電子構造および立体構造に強く依存することが明らかとなっている。すなわち、電子親和力の弱い非フッ素化酸二無水物から合成されたポリイミド(以下、非フッ素化無水物ポリイミド)は青色蛍光発光を示し、一方、電子親和力が強く、分子間で二量化しやすいフッ素化酸二無水物から合成されたポリイミド(以下、フッ素化無水物ポリイミド)は緑色・赤色発光を呈する。また、非フッ素化酸二無水物に数モル%のフッ素化酸二無水物を添加した混合物を原料として用いて合成したポリイミドは白色の蛍光を示す。しかし、フッ素化酸二無水物は一般に高価であり、またわずかな水分で開環しやすいため保存性に注意を有する。蛍光性ポリイミドの原料の経済性及び操作性を向上させるためには、フッ素化酸二無水物ポリイミドを用いることなく青色以外の蛍光を得ることが求められている。
According to the above Patent Documents 3 and 4, it is disclosed that a fluorescent polyimide having excellent fluorescence characteristics can be obtained. The fluorescent polyimides disclosed in Patent Documents 3 and 4 show the controllability of the fluorescence wavelength in the green to red region and the blue fluorescence characteristics, respectively.
In general, polyimide is obtained by reacting tetracarboxylic dianhydride (hereinafter referred to as acid dianhydride) and diamine in a polar solvent to obtain polyamic acid, which is imidized by heat treatment or chemical dehydration treatment. Can be obtained. As a result of studies by the present inventors, it has been clarified that the fluorescence emission wavelength of polyimide strongly depends on the electronic structure and steric structure of acid dianhydride as compared with diamine. That is, a polyimide synthesized from a non-fluorinated acid dianhydride having a low electron affinity (hereinafter referred to as a non-fluorinated anhydride polyimide) exhibits blue fluorescence, while it has a high electron affinity and is easily dimerized between molecules. Polyimide synthesized from hydrofluoric acid dianhydride (hereinafter referred to as fluorinated anhydride polyimide) exhibits green and red light emission. Moreover, the polyimide synthesize | combined using the mixture which added several mol% fluorinated acid dianhydride to the non-fluorinated acid dianhydride as a raw material shows white fluorescence. However, fluorinated dianhydrides are generally expensive, and are apt to be opened with a slight amount of water, so that attention is paid to storage stability. In order to improve the economical efficiency and operability of the raw material of fluorescent polyimide, it is required to obtain fluorescence other than blue without using fluorinated acid dianhydride polyimide.

S. M. Pyo et al., Polymer, 40, 125-130 (1999)S. M. Pyo et al., Polymer, 40, 125-130 (1999) 特開平03−274693号公報Japanese Patent Laid-Open No. 03-274663 特開平04−93389号公報Japanese Patent Laid-Open No. 04-93389 E. D. Wachsman and C. W. Frank Polymer, 29, 1191-1197 (1988)E. D. Wachsman and C. W. Frank Polymer, 29, 1191-1197 (1988) M. Hasegawa and K. Horie, Progress in Polymer Science, 26, 259-335 (2001)M. Hasegawa and K. Horie, Progress in Polymer Science, 26, 259-335 (2001) M. Hasegawa et al., Journal of Polymer Science Part C: Polymer Letters, 27, 263-269(1998)M. Hasegawa et al., Journal of Polymer Science Part C: Polymer Letters, 27, 263-269 (1998) 特開平04−307857号公報Japanese Patent Laid-Open No. 04-307857 特開平05−320393号公報Japanese Patent Laid-Open No. 05-320393 Sho-ichi MATSUDA, Yuichi URANO, Jin-Woo PARK, Chang-Sik HA, Shinji ANDO*, J. Photopolym. Sci. Technol., 17(2), 241-246 (2004).Sho-ichi MATSUDA, Yuichi URANO, Jin-Woo PARK, Chang-Sik HA, Shinji ANDO *, J. Photopolym. Sci. Technol., 17 (2), 241-246 (2004).

従って、本研究の目的は、優れた蛍光特性(蛍光強度の強さ、蛍光強度の長期安定性)と高い耐熱性(ガラス転移点:200℃以上、熱分解開始温度:350℃以上)に加え、優れた機械的特性(高い弾性率、可撓性、高靱性)を有し、酸二無水物部にフッ素を含有しないポリイミド系の新規の緑色蛍光材料を提供することにある。   Therefore, the purpose of this study is in addition to excellent fluorescence properties (intensity of fluorescence intensity, long-term stability of fluorescence intensity) and high heat resistance (glass transition point: 200 ° C or higher, thermal decomposition start temperature: 350 ° C or higher) Another object of the present invention is to provide a novel green fluorescent material based on polyimide that has excellent mechanical properties (high elastic modulus, flexibility, high toughness) and does not contain fluorine in the acid dianhydride part.

本発明者らは、上記目的を達成するため検討を重ねた結果、特定の酸二無水物構造を有するポリイミドからなる蛍光材料が上記目的を達成し得るという知見を得、その知見を基に鋭意検討を重ねた結果、本発明を完成するに至った。 As a result of repeated studies to achieve the above object, the present inventors have obtained the knowledge that a fluorescent material comprising a polyimide having a specific acid dianhydride structure can achieve the above object, and eagerly based on that knowledge. As a result of repeated studies, the present invention has been completed.

本発明は、上記知見に基づいてなされたものであり、下記一般式(1)で表される繰り返し単位を有するポリイミドを含有する蛍光材料を提供するものである。   This invention is made | formed based on the said knowledge, and provides the fluorescent material containing the polyimide which has a repeating unit represented by following General formula (1).

Figure 2008056797
Figure 2008056797

(式中、R1は、
脂環式構造又は芳香環を含む2価の有機基を示す)
(Wherein R 1 is
A divalent organic group containing an alicyclic structure or an aromatic ring)

上記一般式(1)において、R1としては、例えば、2価の脂環式構造(環状アルキル基)を有する有機基が挙げられる。
具体的には、R1としては、下記式(2)〜(5)で示される有機基が挙げられる。
In the general formula (1), examples of R 1 include an organic group having a divalent alicyclic structure (cyclic alkyl group).
Specifically, examples of R 1 include organic groups represented by the following formulas (2) to (5).

Figure 2008056797
Figure 2008056797

Figure 2008056797
Figure 2008056797

(式中、Rはアルキル基又はフルオロアルキル基を含む2価の有機基である。) (In the formula, R 2 is a divalent organic group containing an alkyl group or a fluoroalkyl group.)

Figure 2008056797
Figure 2008056797

(式中、Rはアルキル基又はフルオロアルキル基を含む1価の有機基である。) (In the formula, R 3 is a monovalent organic group containing an alkyl group or a fluoroalkyl group.)

Figure 2008056797
(式中、Rはフルオロアルキル基を含む1価の有機基である。)
Figure 2008056797
(In the formula, R 4 is a monovalent organic group containing a fluoroalkyl group.)

また、本発明は、上記蛍光材料を用いて製造された有機発光デバイスを提供するものである。有機発光デバイスとしては、有機EL素子や有機レーザーなどの発光素子、波長変換素子及び空間光変調素子などが挙げられる。
また、本発明は、上記蛍光材料を用いて製造された有機光波長変換デバイスを提供するものである。
Moreover, this invention provides the organic light emitting device manufactured using the said fluorescent material. Examples of organic light emitting devices include light emitting elements such as organic EL elements and organic lasers, wavelength conversion elements, and spatial light modulation elements.
Moreover, this invention provides the organic light wavelength conversion device manufactured using the said fluorescent material.

本発明によれば、優れた緑色蛍光発光特性を有すると共に、耐熱性及び機械特性に優れた新規の蛍光材料が提供される。   ADVANTAGE OF THE INVENTION According to this invention, while having the outstanding green fluorescence emission characteristic, the novel fluorescent material excellent in heat resistance and mechanical characteristics is provided.

以下に、本発明を詳細に説明する。
本発明の蛍光材料は、下記一般式(1)で表わされる繰り返し単位を有するポリイミドを含有する。
The present invention is described in detail below.
The fluorescent material of the present invention contains a polyimide having a repeating unit represented by the following general formula (1).

Figure 2008056797
Figure 2008056797

一般式(1)において、Rは、脂環式構造又は芳香族環を含む2価の有機基を示す。
上記脂環式構造としては、例えばシクロアルカン構造、シクロアルケン構造等が挙げられる。脂環式構造を構成する炭素数に特に制限はないが、通常は4〜30個程度、好ましくは5〜20個程度、更に好ましくは5〜15個程度である。炭素数が上記範囲内であると、耐熱性に優れた蛍光材料を得ることができる。また、上記芳香族環としては、ベンゼン環、ナフタレン環等の芳香環を1個以上含むものが挙げられる。Rが芳香環である場合、Rの2個の結合部位は、得られるポリイミドに剛直性を持たせる観点から、芳香環上に直接存在していることが好ましい。
としては、例えば、以下の式(2)〜(5)で示される有機基が挙げられる。
In the general formula (1), R 1 represents a divalent organic group containing an alicyclic structure or an aromatic ring.
Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure. Although there is no restriction | limiting in particular in carbon number which comprises an alicyclic structure, Usually, about 4-30 pieces, Preferably it is about 5-20 pieces, More preferably, it is about 5-15 pieces. When the carbon number is within the above range, a fluorescent material having excellent heat resistance can be obtained. Moreover, as said aromatic ring, what contains 1 or more aromatic rings, such as a benzene ring and a naphthalene ring, is mentioned. When R 1 is an aromatic ring, the two bonding sites of R 1 are preferably directly present on the aromatic ring from the viewpoint of imparting rigidity to the resulting polyimide.
Examples of R 1 include organic groups represented by the following formulas (2) to (5).

Figure 2008056797
Figure 2008056797

Figure 2008056797
Figure 2008056797

式(3)中、Rはアルキル基又はフルオロアルキル基を含む2価の有機基である。上記
アルキル基としては、例えばメチレン基、エチレン基、イソプロピリデン基、ヘキサメチレン基等の長鎖アルキル基等が挙げられる。また、フルオロアルキル基としては、ジフルオロメチレン基、ヘキサフルオロイソプロピリデン基等が挙げられる。
In formula (3), R 2 is a divalent organic group containing an alkyl group or a fluoroalkyl group. Examples of the alkyl group include long-chain alkyl groups such as a methylene group, an ethylene group, an isopropylidene group, and a hexamethylene group. Examples of the fluoroalkyl group include a difluoromethylene group and a hexafluoroisopropylidene group.

Figure 2008056797
Figure 2008056797

式(4)中、Rはアルキル基又はフルオロアルキル基を含む1価の有機基である。
上記アルキル基としては、例えばメチル基、エチル基、イソプロピル基、ヘキサメチル基等の長鎖アルキル基等が挙げられる。また、フルオロアルキル基としてはトリフルオロメチル基、ペンタフルオロエチル基等が挙げられる。また、Rとしては、アルコキシ基、又はフルオロアルコキシ基であってもよい。
In Formula (4), R 3 is a monovalent organic group containing an alkyl group or a fluoroalkyl group.
Examples of the alkyl group include long-chain alkyl groups such as a methyl group, an ethyl group, an isopropyl group, and a hexamethyl group. Examples of the fluoroalkyl group include a trifluoromethyl group and a pentafluoroethyl group. R 3 may be an alkoxy group or a fluoroalkoxy group.

Figure 2008056797
Figure 2008056797

式(5)中、Rはフルオロアルキル基を含む1価有機基である。フルオロアルキル基としてはトリフルオロメチル基、ペンタフルオロエチル基等が挙げられる。 In formula (5), R 4 is a monovalent organic group containing a fluoroalkyl group. Examples of the fluoroalkyl group include a trifluoromethyl group and a pentafluoroethyl group.

より具体的には、式(1)中、Rの2価の有機基としては、例えば、下記式(6)〜(10)で表されるものが挙げられる。 More specifically, in the formula (1), examples of the divalent organic group represented by R 1 include those represented by the following formulas (6) to (10).

Figure 2008056797
Figure 2008056797

Figure 2008056797
Figure 2008056797

Figure 2008056797
Figure 2008056797

Figure 2008056797
Figure 2008056797

Figure 2008056797
Figure 2008056797

上記式(1)で表わされるポリイミドにおいて特筆すべきことは、原料である2,2’,3,3’−ジフェニルエーテルテトラカルボン酸二無水物(i-ODPA)にフッ素を含まないにもかかわらず、波長489〜498nmを中心とした緑色領域に強い蛍光発光を示すことである。前述したように、これまで非フッ素化酸二無水物から合成されたポリイミドにおいては、紫〜青色領域の蛍光発光しか観測されていない。例えばi-ODPAの構造異性体である3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物(s-ODPA)と脂環式ジアミンの組み合わせから合成されたポリイミドの蛍光発光は、ジアミンの化学構造によらず390〜410nmの紫色領域であった。本発明によるポリイミドが緑色領域の蛍光発光を示す理由はまだ明らかでないが、i-ODPAの骨格構造は強く屈曲しており、隣り合う2つのベンゼン環が分子内で近接することがその特異な蛍光波長に関係していると考えられる。   What should be noted in the polyimide represented by the above formula (1) is that the raw material 2,2 ′, 3,3′-diphenyl ether tetracarboxylic dianhydride (i-ODPA) does not contain fluorine. In other words, it exhibits strong fluorescence emission in a green region centered on a wavelength of 489 to 498 nm. As described above, in the polyimides synthesized from non-fluorinated acid dianhydrides, only fluorescence emission in the purple to blue region has been observed so far. For example, the fluorescence emission of polyimide synthesized from a combination of 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride (s-ODPA), which is a structural isomer of i-ODPA, and an alicyclic diamine, Regardless of the chemical structure, the violet region was 390 to 410 nm. The reason why the polyimide according to the present invention exhibits fluorescence emission in the green region is not yet clear, but the skeleton structure of i-ODPA is strongly bent, and the two adjacent benzene rings are close to each other in the molecule. It seems to be related to the wavelength.

加えて、本発明の蛍光材料に含まれる、上記式(1)で表わされるポリイミドは、脂環式構造又は芳香環を含む2価の有機基を有することから耐熱性が高く、しかも低い吸水性及び優れた機械的特性を有することから蛍光性光学デバイス用材料として好適に用いることができる。特に、式(1)中のRが式(2)〜(4)の脂環式構造を有する場合は、ポリイミドの分子内および分子間の電荷移動相互作用が抑制されるため、本発明の蛍光材料は高い蛍光強度(量子収率は最高で38%)を発現できる。これは、特開平04−307857号公報に開示されているフッ素化酸二無水物ポリイミドと同等の蛍光発光能である。また、式(1)中のRが式(5)のフルオロアルキル基を有する芳香環(例えば、ベンゼン環)の場合、フルオロアルキル基の強い電子吸引性効果によりジアミンの電子供与性が低下し、ポリイミド分子内および分子間の電荷移動相互作用が抑制される。このため、蛍光強度の低下が少なく、一般的な全芳香族ポリイミドに比べて蛍光強度が飛躍的に向上する。結果として、全芳香族ポリイミドとしては高蛍光であることが報告されているビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンから合成されるポリイミド(BPDA/PDA)(量子収率1%未満)に比べて高い蛍光強度(量子収率約4%)を示す。さらに、本発明の蛍光材料に含まれるポリイミドは、特開平04−307857号公報に開示されている赤色発光ポリイミドよりも高い蛍光強度を示す。
結果として、上記一般式(1)で表されるポリイミドは、Rの構造が脂環式構造又は芳香を含むか、あるいはフルオロアルキル基を含有する芳香環の場合に、特に強い緑色発光を有する。
In addition, since the polyimide represented by the above formula (1) contained in the fluorescent material of the present invention has a divalent organic group containing an alicyclic structure or an aromatic ring, it has high heat resistance and low water absorption. In addition, since it has excellent mechanical properties, it can be suitably used as a material for fluorescent optical devices. In particular, when R 1 in the formula (1) has the alicyclic structure of the formulas (2) to (4), the charge transfer interaction within and between the molecules of the polyimide is suppressed. Fluorescent materials can exhibit high fluorescence intensity (quantum yield up to 38%). This is a fluorescence emission ability equivalent to that of the fluorinated dianhydride polyimide disclosed in Japanese Patent Laid-Open No. 04-307857. In addition, when R 1 in the formula (1) is an aromatic ring having a fluoroalkyl group of the formula (5) (for example, a benzene ring), the electron donating property of the diamine is reduced due to the strong electron withdrawing effect of the fluoroalkyl group. In addition, the charge transfer interaction within and between the polyimide molecules is suppressed. For this reason, there is little fall of fluorescence intensity and fluorescence intensity improves remarkably compared with a general wholly aromatic polyimide. As a result, compared to polyimide (BPDA / PDA) (quantum yield less than 1%) synthesized from biphenyltetracarboxylic dianhydride and paraphenylenediamine, which are reported to be highly fluorescent as fully aromatic polyimide High fluorescence intensity (quantum yield of about 4%). Furthermore, the polyimide contained in the fluorescent material of the present invention exhibits higher fluorescence intensity than the red light emitting polyimide disclosed in Japanese Patent Application Laid-Open No. 04-307857.
As a result, the polyimide represented by the general formula (1) has particularly strong green light emission when the structure of R 1 includes an alicyclic structure or an aromatic or an aromatic ring containing a fluoroalkyl group. .

なお、上記一般式(1)で表される緑色発光を示すポリイミド構造の繰り返し単位と、一般式(1)の構造異性体である下記一般式(11)で表される青色発光を有するポリイミド構造の繰り返し単位とからなる共重合体を製造することにより、種々の蛍光発光波長を有するポリイミドを得ることができる。すなわち、上記一般式(1)で表される緑色発光を示すポリイミド構造の繰り返し単位と、一般式(11)で表される青色発光を有するポリイミド構造の繰り返し単位からなるポリイミドの共重合体は、その共重合比が100:0〜65:35(モル比)の範囲では緑色発光、20:80〜5:95(モル比)の範囲では蛍光発光のスペクトルが青色から緑色領域に広がるため水色(シアン)発光、0:100(モル比)では青色発光を示した。従って、共重合比を制御することにより、蛍光発光の波長域を青色〜緑色において制御することが可能である。 In addition, the polyimide structure which has the blue light emission represented by the following general formula (11) which is the repeating unit of the polyimide structure which shows the green light emission represented by the said General formula (1), and the structural isomer of General formula (1). Polyimides having various fluorescence emission wavelengths can be obtained by producing a copolymer composed of the above repeating units. That is, a polyimide copolymer comprising a repeating unit of a polyimide structure showing green light emission represented by the general formula (1) and a repeating unit of a polyimide structure having blue light emission represented by the general formula (11), When the copolymerization ratio is in the range of 100: 0 to 65:35 (molar ratio), green light emission, and in the range of 20:80 to 5:95 (molar ratio), the fluorescence emission spectrum spreads from the blue to the green region. Cyan) emission, and 0: 100 (molar ratio) showed blue emission. Therefore, by controlling the copolymerization ratio, it is possible to control the wavelength range of fluorescence emission from blue to green.

Figure 2008056797
Figure 2008056797

本発明の蛍光材料に含有される、一般式(1)で表わされるポリイミドとしては、例えば、下記式(12)、(13)、(14)、(15)及び(16)で表わされる繰り返し単位を有するポリイミドが挙げられる。   Examples of the polyimide represented by the general formula (1) contained in the fluorescent material of the present invention include repeating units represented by the following formulas (12), (13), (14), (15) and (16). The polyimide which has is mentioned.

Figure 2008056797
Figure 2008056797

Figure 2008056797
Figure 2008056797

Figure 2008056797
Figure 2008056797

Figure 2008056797
Figure 2008056797

Figure 2008056797
Figure 2008056797

本発明の蛍光材料に含有されるポリイミドの分子量は、その蛍光特性が発揮される範囲であれば特に限定されないが、その前駆体(ポリアミド酸あるいはポリアミド酸エステル)の分子量として対数粘度換算で0.05〜5.0(dl/g)(温度30℃の有機溶媒中、濃度0.5g/dl)の範囲であることが好ましい。   The molecular weight of the polyimide contained in the fluorescent material of the present invention is not particularly limited as long as the fluorescence characteristics are exhibited, but the molecular weight of the precursor (polyamic acid or polyamic acid ester) is 0. It is preferably in the range of 05 to 5.0 (dl / g) (concentration 0.5 g / dl in an organic solvent at a temperature of 30 ° C.).

本発明の蛍光材料に含有されるポリイミドの製造方法に特に制限はないが、例えば、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物(i−ODPA)と前記R1のジアミン化合物とを重縮合して得られるポリアミド酸を200℃以上の温度で加熱閉環することによって製造することができる。加熱閉環する方法に特に制限はなく、従来公知の方法が用いられる。 There is no particular limitation on the production method of the polyimide contained in the fluorescent material of the present invention, for example, 3,3 ', 4,4'-diphenyl ether tetracarboxylic acid dianhydride (i-ODPA) with a diamine of the R 1 The polyamic acid obtained by polycondensation with a compound can be produced by heat-cycling at a temperature of 200 ° C. or higher. There is no restriction | limiting in particular in the method of carrying out heat ring closure, A conventionally well-known method is used.

用いられるジアミン化合物としては、例えば、1,4−ジアミノシクロヘキサン、4,4’−ジアミノジシクロヘキシルメタン、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビシクロヘキサン、2,2’−ビス(4−アミノシクロヘキシル)−ヘキサフルオロプロパン等やこれらの構造異性体等が挙げられる。   Examples of the diamine compound to be used include 1,4-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 2,2′-bis (trifluoromethyl) -4,4′-diaminobicyclohexane, 2,2 ′. -Bis (4-aminocyclohexyl) -hexafluoropropane and the like, and structural isomers thereof and the like can be mentioned.

以下に、本発明の蛍光材料を用いたフィルムの製造方法の一例を示す。
まず、極性有機溶媒中で、等モル量の2,2’,3,3’−ジフェニルエーテルテトラカルボン酸二無水物と4,4’−ジアミノジシクロヘキシルメタンとを重縮合し、ポリアミド酸溶液を得る。この時、N,O−ビス(トリメチルシリル)アセトアミドやN,O−ビス(トリメチルシリル)トリフルオロアセトアミドのようなシリルエステル化物を混合すると、原料の会合体や生成物の不溶化(ゲル化)が起こりにくくなる。用いる極性有機溶媒としては、例えば、N−メチル−4−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等が挙げられる。重合溶液中の原料化合物の濃度は、好ましくは5〜40重量%であり、更に好ましくは10〜25重量%である。この反応を下記式に示す。
Below, an example of the manufacturing method of the film using the fluorescent material of this invention is shown.
First, an equimolar amount of 2,2 ′, 3,3′-diphenyl ether tetracarboxylic dianhydride and 4,4′-diaminodicyclohexylmethane are polycondensed in a polar organic solvent to obtain a polyamic acid solution. At this time, when a silyl esterified product such as N, O-bis (trimethylsilyl) acetamide or N, O-bis (trimethylsilyl) trifluoroacetamide is mixed, insolubilization (gelation) of the raw material aggregates and products hardly occurs. Become. Examples of the polar organic solvent to be used include N-methyl-4-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like. The concentration of the raw material compound in the polymerization solution is preferably 5 to 40% by weight, more preferably 10 to 25% by weight. This reaction is shown in the following formula.

Figure 2008056797
Figure 2008056797

上述のようにして得られたポリアミド酸の溶液を、溶融石英板等の基板上に回転塗布し、不活性気体(例えば窒素)雰囲気下で、例えば70℃程度の温度から300℃程度の温度まで段階的あるいは連続的に加熱し、脱水閉環(イミド化)する。この反応を下記式に示す。段階的加熱の例としては、例えば、70℃で2時間、160℃で1時間、250℃で30分、300℃で2時間のように行ってもよく、また毎分5℃での連続的な昇温によっても良い。イミド化後、空気中あるいは水中で基板から剥離することによりポリイミドフィルムを得る。基板からの剥離が困難な場合は、ポリアミド酸溶液をアルミ板上に回転塗布し、熱イミド化後、基板ごと10%塩酸に浸しアルミ板を溶解することにより、ポリイミドフィルムを得る。また、基板材料としては溶融石英や単結晶シリコン等の無機系のみならず、ポリイミド成型体等の有機高分子を用いても良い。   The polyamic acid solution obtained as described above is spin-coated on a substrate such as a fused quartz plate, and the temperature is about 70 ° C. to about 300 ° C. in an inert gas (eg, nitrogen) atmosphere. Heating stepwise or continuously to dehydrate ring closure (imidization). This reaction is shown in the following formula. Examples of stepwise heating may be, for example, 70 ° C for 2 hours, 160 ° C for 1 hour, 250 ° C for 30 minutes, 300 ° C for 2 hours, or continuous at 5 ° C per minute. It is also possible to increase the temperature. After imidation, a polyimide film is obtained by peeling from the substrate in air or water. When peeling from the substrate is difficult, the polyimide film is obtained by spin-coating the polyamic acid solution on the aluminum plate, thermal imidization, and then immersing the substrate together with 10% hydrochloric acid to dissolve the aluminum plate. Further, as a substrate material, not only an inorganic material such as fused quartz or single crystal silicon but also an organic polymer such as a polyimide molded body may be used.

Figure 2008056797
Figure 2008056797

ポリアミド酸の合成方法としては、上記のように極性有機溶媒を用いて合成する方法の他、原料である酸二無水物とジアミン化合物の昇華性を利用して、真空蒸着重合法により基板上で合成する方法が挙げられる。この場合のポリイミドフィルムの合成方法としては、具体的には、酸二無水物モノマーとジアミンモノマーを、真空槽内でそれぞれの蒸着源を加熱して蒸発させ、基板上でポリアミド酸を合成し、さらにこれを不活性気体中で加熱して、脱水閉環することによりポリイミド薄膜を得ることができる。また、必要に応じてピリジン/無水酢酸などの閉環触媒と脱水剤の組み合わせによる化学処理を行ってイミド化してもよい。 As a method for synthesizing the polyamic acid, in addition to the method of synthesizing using a polar organic solvent as described above, the sublimation property of the acid dianhydride and the diamine compound as raw materials is used to form a polyamic acid on a substrate by a vacuum deposition polymerization method. The method of synthesizing is mentioned. As a method for synthesizing the polyimide film in this case, specifically, an acid dianhydride monomer and a diamine monomer are evaporated by heating respective vapor deposition sources in a vacuum chamber, and a polyamic acid is synthesized on the substrate. Furthermore, a polyimide thin film can be obtained by heating this in inert gas and carrying out dehydration ring closure. Further, if necessary, imidization may be performed by chemical treatment with a combination of a ring-closing catalyst such as pyridine / acetic anhydride and a dehydrating agent.

次に、本発明の有機発光デバイス、有機光波長変換デバイスについて説明する。本発明の有機発光デバイス、及び有機光波長変換デバイスは、上述した本発明の蛍光材料を用いて製造されたものである。
本発明の蛍光材料は、有機EL素子、有機レーザー、波長変換素子、空間光変調素子等の有機発光デバイス、又は有機光波長変換デバイスの材料として用いることができる。例えば、本発明の蛍光材料のフィルムを発光層/受光層として用いて、透明基板/透明電極/電荷輸送層/発光層/受光層/電極の積層体を形成することにより有機EL素子にすることができる。
その他、通信用の光導波路や光源、光ファイバー増幅器、蛍光増白剤、塗料、インク、蛍光コレクタ、シンチレータ、植物育成用フィルム等に利用することができる。
Next, the organic light emitting device and the organic light wavelength conversion device of the present invention will be described. The organic light emitting device and the organic light wavelength conversion device of the present invention are manufactured using the fluorescent material of the present invention described above.
The fluorescent material of the present invention can be used as a material for organic light-emitting devices such as organic EL elements, organic lasers, wavelength conversion elements, and spatial light modulation elements, or organic light wavelength conversion devices. For example, using the film of the fluorescent material of the present invention as a light emitting layer / light receiving layer, an organic EL device is formed by forming a laminate of transparent substrate / transparent electrode / charge transport layer / light emitting layer / light receiving layer / electrode. Can do.
In addition, it can be used for optical waveguides and light sources for communication, optical fiber amplifiers, optical brighteners, paints, inks, fluorescent collectors, scintillators, plant growth films, and the like.

以下に、実施例を示して本発明を具体的に説明するが、これらにより本発明は何ら制限を受けるものではない。
実施例1
三角フラスコに、2,2’,3,3’−ジフェニルエーテルテトラカルボン酸二無水物(i-ODPA)0.9853g(3.176mmol)と4,4’−ジアミノジシクロヘキシルメタン(DCHM)0.6681g(3.176mmol)を加え、溶液の原材料の濃度が15重量%になるようにN,N−ジメチルアセトアミド(DMAc)9.37gを加えた。三角フラスコ中の溶液を窒素雰囲気中、室温で48時間攪拌し、ポリアミド酸のDMAc溶液を得た。得られたポリアミド酸のDMAc溶液を直径75mmの石英板上に回転塗布し、窒素雰囲気下、70℃で1時間、300℃で1.5時間、2段階で昇温して加熱イミド化を行った。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.
Example 1
Into an Erlenmeyer flask, 0.9853 g (3.176 mmol) of 2,2 ′, 3,3′-diphenyl ether tetracarboxylic dianhydride (i-ODPA) and 0.6681 g of 4,4′-diaminodicyclohexylmethane (DCHM) ( 3.176 mmol) was added, and 9.37 g of N, N-dimethylacetamide (DMAc) was added so that the concentration of the raw material of the solution was 15% by weight. The solution in the Erlenmeyer flask was stirred in a nitrogen atmosphere at room temperature for 48 hours to obtain a DMAc solution of polyamic acid. The obtained DMAc solution of polyamic acid was spin-coated on a quartz plate having a diameter of 75 mm, and heated in a nitrogen atmosphere at 70 ° C. for 1 hour, at 300 ° C. for 1.5 hours, and heated in two steps for imidization. It was.

得られたポリイミド薄膜の赤外吸収スペクトルを減衰全反射(ATR)法により測定したところ、1777cm−1及び1719cm−1にイミド基のカルボニルに特有の吸収が観察され、またポリアミド酸において観測される1677cm−1、1637cm−1のアミド結合特有の吸収が消失しており、イミド化が完全に進行したことが確認できた。得られた薄膜の膜厚を蝕針式膜厚計で測定したところ、1.03μmであった。また、熱重量分析装置(TGA)により熱分解開始温度(5%重量減少温度)を測定したところ、415℃であった。得られたポリイミド薄膜の蛍光発光スペクトルを励起波長414nm、蛍光観測波長330〜800nmで測定したところ、波長489nmを中心に、非常に強い蛍光が観測された。この結果を図1に示した。図1は、蛍光発光強度を測定した結果を示すグラフである。図1には、後述する実施例2、及び比較例1,2のポリイミドにおけるそれぞれの蛍光スペクトルの波長依存性を併せて示す。図1において縦軸は蛍光強度(対数表示)、横軸は波長(nm)を示している。図1に示すように、実施例1で得られた蛍光材料は、後述する比較例1のポリイミドとは蛍光の発光中心波長(ピーク波長)が異なるが、発光中心波長における蛍光強度は比較例1のポリイミドに比して約36倍であった。 The infrared absorption spectrum of the obtained polyimide thin film was measured by attenuated total reflection (ATR) method, the absorption specific to carbonyl of the imide group to 1777cm -1 and 1719 cm -1 was observed, also observed in the polyamic acid Absorption peculiar to the amide bond at 1677 cm −1 and 1637 cm −1 disappeared, and it was confirmed that imidization proceeded completely. It was 1.03 micrometer when the film thickness of the obtained thin film was measured with the stylus type film thickness meter. Moreover, it was 415 degreeC when the thermal decomposition start temperature (5% weight reduction | decrease temperature) was measured with the thermogravimetric analyzer (TGA). When the fluorescence emission spectrum of the obtained polyimide thin film was measured at an excitation wavelength of 414 nm and a fluorescence observation wavelength of 330 to 800 nm, very strong fluorescence was observed centering on the wavelength of 489 nm. The results are shown in FIG. FIG. 1 is a graph showing the results of measuring fluorescence emission intensity. In FIG. 1, the wavelength dependence of each fluorescence spectrum in the polyimide of Example 2 mentioned later and Comparative Examples 1 and 2 is shown collectively. In FIG. 1, the vertical axis represents fluorescence intensity (logarithmic display), and the horizontal axis represents wavelength (nm). As shown in FIG. 1, the fluorescent material obtained in Example 1 is different from the polyimide of Comparative Example 1 described later in the emission center wavelength (peak wavelength) of fluorescence, but the fluorescence intensity at the emission center wavelength is Comparative Example 1. It was about 36 times that of polyimide.

比較例1
実施例1におけるi-ODPAに代えて、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s-BPDA)1.47g(4.996mmol)を、またDCHMに代えて1,4−ジアミノベンゼン(PDA)0.54g(4.994mmol)を用いて、実施例1と同様の方法でポリアミド酸のDMAc溶液(15重量%)を調製し、ポリイミド薄膜を作製した。得られた薄膜の膜厚を蝕針式膜厚計で測定したところ、4.0μmであった。また、5%重量減少温度を測定したところ、480℃であった。この非フッ素化全芳香族ポリイミド薄膜の蛍光発光スペクトルを励起波長363nm、蛍光観測波長330〜800nmで測定したところ、中心波長514nmに蛍光が観測された。結果を図1に示す。このポリイミドはこれまで報告されている全芳香族ポリイミドの中では強い蛍光を出すことから、この試料の蛍光強度を比較のための基準とした。
Comparative Example 1
Instead of i-ODPA in Example 1, 1.47 g (4.996 mmol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and 1, A DMAc solution (15% by weight) of polyamic acid was prepared in the same manner as in Example 1 using 0.54 g (4.994 mmol) of 4-diaminobenzene (PDA) to prepare a polyimide thin film. It was 4.0 micrometers when the film thickness of the obtained thin film was measured with the stylus-type film thickness meter. The 5% weight loss temperature was measured and found to be 480 ° C. When the fluorescence emission spectrum of this non-fluorinated wholly aromatic polyimide thin film was measured at an excitation wavelength of 363 nm and a fluorescence observation wavelength of 330 to 800 nm, fluorescence was observed at a central wavelength of 514 nm. The results are shown in FIG. Since this polyimide emits strong fluorescence among all aromatic polyimides reported so far, the fluorescence intensity of this sample was used as a reference for comparison.

比較例2
実施例1におけるi-ODPAに代えて、1,4−ビス(3,4−ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン二無水物(10FEDA)2.91g(5.0mmol)、DCHM1.05g(5.0mmol)を用いて、実施例1と同様の方法でポリアミド酸のDMAc溶液(10重量%)を調製し、ポリイミド薄膜を作製した。得られた薄膜の膜厚は1.0μm、5%重量減少温度は405℃であった。このポリイミド薄膜の蛍光発光スペクトルを励起波長409nm、蛍光観測波長330〜800nmで測定したところ、中心波長483nmに蛍光が観測された。結果を図1に示した。比較例2で得られた蛍光材料の発光中心波長における蛍光強度は、比較例1のポリイミドに比して約46倍であった。
Comparative Example 2
Instead of i-ODPA in Example 1, 1.91 g (5.0 mmol) of 1,4-bis (3,4-dicarboxytrifluorophenoxy) tetrafluorobenzene dianhydride (10FEDA), 1.05 g of DCHM (5 0.0 mmol), a DMAc solution (10 wt%) of polyamic acid was prepared in the same manner as in Example 1 to prepare a polyimide thin film. The obtained thin film had a thickness of 1.0 μm and a 5% weight loss temperature of 405 ° C. When the fluorescence emission spectrum of the polyimide thin film was measured at an excitation wavelength of 409 nm and a fluorescence observation wavelength of 330 to 800 nm, fluorescence was observed at a central wavelength of 483 nm. The results are shown in FIG. The fluorescence intensity at the emission center wavelength of the fluorescent material obtained in Comparative Example 2 was about 46 times that of the polyimide in Comparative Example 1.

比較例3
実施例1におけるi-ODPAに代えて、1,4−ジフルオロピロメリト酸二無水物(P2FDA)1.27g(5.0mmol)、DCHM1.05g(5.0mmol)を用いて、実施例1と同様の方法でポリアミド酸のDMAc溶液(10重量%)を調製し、ポリイミド薄膜を作製した。得られた薄膜の膜厚は7.7μm、5%重量減少温度は394℃であった。このポリイミド薄膜の蛍光発光スペクトルを励起波長537nmで測定したところ、中心波長588nm及び713nmに蛍光が観測された。結果を図1に示した。比較例3で得られた蛍光材料の発光中心波長における蛍光強度は、比較例1のポリイミドに比して約3倍であった。
Comparative Example 3
Instead of i-ODPA in Example 1, 1.27 g (5.0 mmol) of 1,4-difluoropyromellitic dianhydride (P2FDA) and 1.05 g (5.0 mmol) of DCHM were used. A DMAc solution (10% by weight) of polyamic acid was prepared in the same manner to produce a polyimide thin film. The obtained thin film had a thickness of 7.7 μm and a 5% weight loss temperature of 394 ° C. When the fluorescence emission spectrum of this polyimide thin film was measured at an excitation wavelength of 537 nm, fluorescence was observed at center wavelengths of 588 nm and 713 nm. The results are shown in FIG. The fluorescence intensity at the emission center wavelength of the fluorescent material obtained in Comparative Example 3 was about 3 times that of the polyimide in Comparative Example 1.

実施例2
三角フラスコに、2,2’,3,3’−ジフェニルエーテルテトラカルボン酸二無水物(i-ODPA)0.6971g(2.247mmol)と2,2‘−ビストリフルオロメチル−4,4’−ジアミノビフェニル(TFDB)0.7196g(2.247mmol)を用いて、溶液の原材料の濃度が25重量%になるようにN,N−ジメチルアセトアミド(DMAc)4.25gを加えた。三角フラスコ中の溶液を窒素雰囲気中、室温で48時間攪拌し、ポリアミド酸のDMAc溶液を得た。得られたポリアミド酸のDMAc溶液を直径75mmの石英板上に回転塗布し、窒素雰囲気下、70℃で1時間、350℃で1.5時間、2段階で昇温して加熱イミド化を行った。
Example 2
Into an Erlenmeyer flask, 0.6971 g (2.247 mmol) of 2,2 ′, 3,3′-diphenyl ether tetracarboxylic dianhydride (i-ODPA) and 2,2′-bistrifluoromethyl-4,4′-diamino Using 0.7196 g (2.247 mmol) of biphenyl (TFDB), 4.25 g of N, N-dimethylacetamide (DMAc) was added so that the concentration of the raw material of the solution was 25% by weight. The solution in the Erlenmeyer flask was stirred in a nitrogen atmosphere at room temperature for 48 hours to obtain a DMAc solution of polyamic acid. The obtained DMAc solution of polyamic acid was spin-coated on a quartz plate having a diameter of 75 mm, and heated in a nitrogen atmosphere at 70 ° C. for 1 hour, at 350 ° C. for 1.5 hours, and heated in two steps for imidization. It was.

得られたポリイミド薄膜の赤外吸収スペクトルを減衰全反射(ATR)法により測定したところ、1777cm−1及び1719cm−1にイミド基のカルボニルに特有の吸収が観察され、またポリアミド酸において観測される1677cm−1、1637cm−1のアミド結合特有の吸収が消失しており、イミド化が完全に進行したことが確認できた。得られた薄膜の膜厚を蝕針式膜厚計で測定したところ、8.8μmであった。このポリイミド薄膜の蛍光発光スペクトルを励起波長430nm、蛍光観測波長330〜800nmで測定したところ、中心波長498nmに蛍光が観測された。結果を図1に示した。図1に示すように、実施例2で得られた蛍光材料の発光中心波長における蛍光強度は、比較例1のポリイミドに比して約12倍であった。 The infrared absorption spectrum of the obtained polyimide thin film was measured by attenuated total reflection (ATR) method, the absorption specific to carbonyl of the imide group to 1777cm -1 and 1719 cm -1 was observed, also observed in the polyamic acid Absorption peculiar to the amide bond at 1677 cm −1 and 1637 cm −1 disappeared, and it was confirmed that imidization proceeded completely. It was 8.8 micrometers when the film thickness of the obtained thin film was measured with the stylus type film thickness meter. When the fluorescence emission spectrum of this polyimide thin film was measured at an excitation wavelength of 430 nm and a fluorescence observation wavelength of 330 to 800 nm, fluorescence was observed at a central wavelength of 498 nm. The results are shown in FIG. As shown in FIG. 1, the fluorescence intensity at the emission center wavelength of the fluorescent material obtained in Example 2 was about 12 times that of the polyimide of Comparative Example 1.

実施例3
三角フラスコに、2,2’,3,3’−ジフェニルエーテルテトラカルボン酸二無水物(i-ODPA)0.2365g(0.762mmol)、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物(s-ODPA)0.0591g(0.191mmol)、及び4,4’−ジアミノジシクロヘキシルメタン(DCHM)0.2005g(0.953mmol)を加え、溶液の原材料の濃度が15重量%になるようにN,N−ジメチルアセトアミド(DMAc)2.811gを加えた。三角フラスコ中の溶液を窒素雰囲気中、室温で48時間攪拌し、ポリアミド酸のDMAc溶液を得た。得られたポリアミド酸のDMAc溶液を直径75mmの石英板上に回転塗布し、窒素雰囲気下、70℃で1時間、300℃で1.5時間、2段階で昇温して加熱イミド化を行った。
Example 3
To an Erlenmeyer flask, 0.2365 g (0.762 mmol) of 2,2 ′, 3,3′-diphenyl ether tetracarboxylic dianhydride (i-ODPA), 3,3 ′, 4,4′-diphenyl ether tetracarboxylic acid dicarboxylic acid Add 0.0591 g (0.191 mmol) of anhydride (s-ODPA) and 0.2005 g (0.953 mmol) of 4,4′-diaminodicyclohexylmethane (DCHM) to bring the concentration of the raw materials in the solution to 15% by weight. As such, 2.811 g of N, N-dimethylacetamide (DMAc) was added. The solution in the Erlenmeyer flask was stirred in a nitrogen atmosphere at room temperature for 48 hours to obtain a DMAc solution of polyamic acid. The obtained DMAc solution of polyamic acid was spin-coated on a quartz plate having a diameter of 75 mm, and heated in a nitrogen atmosphere at 70 ° C. for 1 hour, at 300 ° C. for 1.5 hours, and heated in two steps for imidization. It was.

得られたポリイミド薄膜の赤外吸収スペクトルを減衰全反射(ATR)法により測定したところ、1777cm−1及び1719cm−1にイミド基のカルボニルに特有の吸収が観察され、またポリアミド酸において観測される1677cm−1、1637cm−1のアミド結合特有の吸収が消失しており、イミド化が完全に進行したことが確認できた。得られた薄膜の膜厚を蝕針式膜厚計で測定したところ、0.9μmであった。このポリイミド薄膜の蛍光発光スペクトルを励起波長322nm、蛍光観測波長330〜800nmで測定したところ、波長489nmを中心に、強い緑色蛍光が観測された。結果を図2に示した。図2には、後述する実施例4,5及び比較例1,4のポリイミドにおけるそれぞれの蛍光スペクトルの波長依存性を併せて示す。図2において縦軸は蛍光強度(対数表示)、横軸は波長(nm)を示している。実施例3で得られた蛍光材料の発光中心波長における蛍光強度は、比較例1のポリイミドに比して約32倍であった。 The infrared absorption spectrum of the obtained polyimide thin film was measured by attenuated total reflection (ATR) method, the absorption specific to carbonyl of the imide group to 1777cm -1 and 1719 cm -1 was observed, also observed in the polyamic acid Absorption peculiar to the amide bond at 1677 cm −1 and 1637 cm −1 disappeared, and it was confirmed that imidization proceeded completely. It was 0.9 micrometer when the film thickness of the obtained thin film was measured with the stylus type film thickness meter. When the fluorescence emission spectrum of the polyimide thin film was measured at an excitation wavelength of 322 nm and a fluorescence observation wavelength of 330 to 800 nm, strong green fluorescence was observed centering on the wavelength of 489 nm. The results are shown in FIG. In FIG. 2, the wavelength dependence of each fluorescence spectrum in the polyimide of Examples 4 and 5 mentioned later and Comparative Examples 1 and 4 is shown collectively. In FIG. 2, the vertical axis represents fluorescence intensity (logarithmic display), and the horizontal axis represents wavelength (nm). The fluorescence intensity at the emission center wavelength of the fluorescent material obtained in Example 3 was about 32 times that of the polyimide of Comparative Example 1.

実施例4
三角フラスコに、2,2’,3,3’−ジフェニルエーテルテトラカルボン酸二無水物(i-ODPA)0.0296g(0.0953mmol)、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物(s-ODPA)0.2660g(0.858mmol)、及び4,4’−ジアミノジシクロヘキシルメタン(DCHM)0.2005g(0.953mmol)を加え、溶液の原材料の濃度が15重量%になるようにN,N−ジメチルアセトアミド(DMAc)2.811gを加えた。三角フラスコ中の溶液を窒素雰囲気中、室温で48時間攪拌し、ポリアミド酸のDMAc溶液を得た。得られたポリアミド酸のDMAc溶液を直径75mmの石英板上に回転塗布し、窒素雰囲気下、70℃で1時間、300℃で1.5時間、2段階で昇温して加熱イミド化を行った。
Example 4
To an Erlenmeyer flask, 0.0296 g (0.0953 mmol) of 2,2 ′, 3,3′-diphenyl ether tetracarboxylic dianhydride (i-ODPA), 3,3 ′, 4,4′-diphenyl ether tetracarboxylic acid dicarboxylic acid Add 0.2660 g (0.858 mmol) of anhydride (s-ODPA) and 0.2005 g (0.953 mmol) of 4,4′-diaminodicyclohexylmethane (DCHM) to bring the concentration of raw materials in the solution to 15% by weight. As such, 2.811 g of N, N-dimethylacetamide (DMAc) was added. The solution in the Erlenmeyer flask was stirred in a nitrogen atmosphere at room temperature for 48 hours to obtain a DMAc solution of polyamic acid. The obtained DMAc solution of polyamic acid was spin-coated on a quartz plate having a diameter of 75 mm, and heated in a nitrogen atmosphere at 70 ° C. for 1 hour, at 300 ° C. for 1.5 hours, and heated in two steps for imidization. It was.

得られたポリイミド薄膜の赤外吸収スペクトルを減衰全反射(ATR)法により測定したところ、1777cm−1及び1719cm−1にイミド基のカルボニルに特有の吸収が観察され、またポリアミド酸において観測される1677cm−1、1637cm−1のアミド結合特有の吸収が消失しており、イミド化が完全に進行したことが確認できた。得られた薄膜の膜厚を蝕針式膜厚計で測定したところ、3.5μmであった。このポリイミド薄膜の蛍光発光スペクトルを励起波長339nm、蛍光観測波長330〜800nmで測定したところ、350nm〜600nmにおいて強い蛍光が観測された。結果を図2に示した。図2に示すように、実施例4で得られた蛍光材料は、蛍光波長が青色〜緑色領域全体に広がっており、蛍光色は水色を示す。実施例4で得られた蛍光材料の発光中心波長における蛍光強度は、比較例1のポリイミドに比して約17倍であった。 The infrared absorption spectrum of the obtained polyimide thin film was measured by attenuated total reflection (ATR) method, the absorption specific to carbonyl of the imide group to 1777cm -1 and 1719 cm -1 was observed, also observed in the polyamic acid Absorption peculiar to the amide bond at 1677 cm −1 and 1637 cm −1 disappeared, and it was confirmed that imidization proceeded completely. It was 3.5 micrometers when the film thickness of the obtained thin film was measured with the stylus type film thickness meter. When the fluorescence emission spectrum of this polyimide thin film was measured at an excitation wavelength of 339 nm and a fluorescence observation wavelength of 330 to 800 nm, strong fluorescence was observed at 350 nm to 600 nm. The results are shown in FIG. As shown in FIG. 2, the fluorescent material obtained in Example 4 has a fluorescent wavelength that extends over the entire blue to green region, and the fluorescent color is light blue. The fluorescence intensity at the emission center wavelength of the fluorescent material obtained in Example 4 was about 17 times that of the polyimide of Comparative Example 1.

実施例5
三角フラスコに、2,2’,3,3’−ジフェニルエーテルテトラカルボン酸二無水物(i-ODPA)0.0148g(0.0476mmol)、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物(s-ODPA)0.2808g(0.905mmol)、及び4,4’−ジアミノジシクロヘキシルメタン(DCHM)0.2005g(0.953mmol)を加え、溶液の原材料の濃度が15重量%になるようにN,N−ジメチルアセトアミド(DMAc)2.811gを加えた。三角フラスコ中の溶液を窒素雰囲気中、室温で48時間攪拌し、ポリアミド酸のDMAc溶液を得た。得られたポリアミド酸のDMAc溶液を直径75mmの石英板上に回転塗布し、窒素雰囲気下、70℃で1時間、300℃で1.5時間、2段階で昇温して加熱イミド化を行った。
Example 5
To an Erlenmeyer flask, 0.0148 g (0.0476 mmol) of 2,2 ′, 3,3′-diphenyl ether tetracarboxylic dianhydride (i-ODPA), 3,3 ′, 4,4′-diphenyl ether tetracarboxylic acid dicarboxylic acid Anhydrous (s-ODPA) 0.2808 g (0.905 mmol) and 4,4′-diaminodicyclohexylmethane (DCHM) 0.2005 g (0.953 mmol) are added to bring the concentration of the raw materials in the solution to 15% by weight. As such, 2.811 g of N, N-dimethylacetamide (DMAc) was added. The solution in the Erlenmeyer flask was stirred in a nitrogen atmosphere at room temperature for 48 hours to obtain a DMAc solution of polyamic acid. The obtained DMAc solution of polyamic acid was spin-coated on a quartz plate having a diameter of 75 mm, and heated in a nitrogen atmosphere at 70 ° C. for 1 hour, at 300 ° C. for 1.5 hours, and heated in two steps for imidization. It was.

得られたポリイミド薄膜の赤外吸収スペクトルを減衰全反射(ATR)法により測定したところ、1777cm−1及び1719cm−1にイミド基のカルボニルに特有の吸収が観察され、またポリアミド酸において観測される1677cm−1、1637cm−1のアミド結合特有の吸収が消失しており、イミド化が完全に進行したことが確認できた。得られた薄膜の膜厚を蝕針式膜厚計で測定したところ、3.6μmであった。このポリイミド薄膜の蛍光発光スペクトルを励起波長343nm、蛍光観測波長330〜800nmで測定したところ、350nm〜600nmにおいて強い蛍光が観測された。結果を図2に示した。図2に示すように、実施例5で得られた蛍光材料は、蛍光波長が青色〜緑色領域全体に広がっており、蛍光色は水色を示す。実施例5で得られた蛍光材料の発光中心波長における蛍光強度は、比較例1のポリイミドに比して約13倍であった。 The infrared absorption spectrum of the obtained polyimide thin film was measured by attenuated total reflection (ATR) method, the absorption specific to carbonyl of the imide group to 1777cm -1 and 1719 cm -1 was observed, also observed in the polyamic acid Absorption peculiar to the amide bond at 1677 cm −1 and 1637 cm −1 disappeared, and it was confirmed that imidization proceeded completely. It was 3.6 micrometers when the film thickness of the obtained thin film was measured with the stylus type film thickness meter. When the fluorescence emission spectrum of this polyimide thin film was measured at an excitation wavelength of 343 nm and a fluorescence observation wavelength of 330 to 800 nm, strong fluorescence was observed at 350 nm to 600 nm. The results are shown in FIG. As shown in FIG. 2, the fluorescent material obtained in Example 5 has a fluorescent wavelength extending over the entire blue to green region, and the fluorescent color is light blue. The fluorescence intensity at the emission center wavelength of the fluorescent material obtained in Example 5 was about 13 times that of the polyimide of Comparative Example 1.

比較例4
実施例1におけるi-OPDAに代えて、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物(s-ODPA)0.9853g(3.176mmol)と4,4’−ジアミノジシクロヘキシルメタン(DCHM)0.6681g(3.176mmol)を加え、溶液の原材料の濃度が15重量%になるようにN,N−ジメチルアセトアミド(DMAc)9.37gを加えた。三角フラスコ中の溶液を窒素雰囲気中、室温で48時間攪拌し、ポリアミド酸のDMAc溶液を得た。得られたポリアミド酸のDMAc溶液を直径75mmの石英板上に回転塗布し、窒素雰囲気下、70℃で1時間、300℃で1.5時間、2段階で昇温して加熱イミド化を行った。
Comparative Example 4
Instead of i-OPDA in Example 1, 0.9853 g (3.176 mmol) of 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride (s-ODPA) and 4,4′-diaminodicyclohexylmethane 0.6681 g (3.176 mmol) of (DCHM) was added, and 9.37 g of N, N-dimethylacetamide (DMAc) was added so that the concentration of the raw material of the solution was 15% by weight. The solution in the Erlenmeyer flask was stirred in a nitrogen atmosphere at room temperature for 48 hours to obtain a DMAc solution of polyamic acid. The obtained DMAc solution of polyamic acid was spin-coated on a quartz plate having a diameter of 75 mm, and heated in a nitrogen atmosphere at 70 ° C. for 1 hour, at 300 ° C. for 1.5 hours, and heated in two steps for imidization. It was.

得られたポリイミド薄膜の赤外吸収スペクトルを減衰全反射(ATR)法により測定したところ、1777cm−1及び1719cm−1にイミド基のカルボニルに特有の吸収が観察され、またポリアミド酸において観測される1677cm−1、1637cm−1のアミド結合特有の吸収が消失しており、イミド化が完全に進行したことが確認できた。得られた薄膜の膜厚を蝕針式膜厚計で測定したところ、8.9μmであった。このポリイミド薄膜の蛍光発光スペクトルを励起波長347nm、蛍光観測波長330〜800nmで測定したところ、中心波長396nmに強い青色蛍光が観測された。結果を図2に示した。比較例4で得られた蛍光材料の発光中心波長における蛍光強度は、比較例1のポリイミドに比して約27倍であった。 The infrared absorption spectrum of the obtained polyimide thin film was measured by attenuated total reflection (ATR) method, the absorption specific to carbonyl of the imide group to 1777cm -1 and 1719 cm -1 was observed, also observed in the polyamic acid Absorption peculiar to the amide bond at 1677 cm −1 and 1637 cm −1 disappeared, and it was confirmed that imidization proceeded completely. It was 8.9 micrometers when the film thickness of the obtained thin film was measured with the stylus type film thickness meter. When the fluorescence emission spectrum of this polyimide thin film was measured at an excitation wavelength of 347 nm and a fluorescence observation wavelength of 330 to 800 nm, strong blue fluorescence was observed at a central wavelength of 396 nm. The results are shown in FIG. The fluorescence intensity at the emission center wavelength of the fluorescent material obtained in Comparative Example 4 was about 27 times that of the polyimide of Comparative Example 1.

実施例6
酸二無水物とジアミンの合計(固形分)の濃度を35%とし、実施例1と同様の方法でi-ODPAとDCHMからポリアミド酸のDMAc溶液を調製した。この溶液を厚さ1mmの石英板上に塗布し、最高温度300℃で熱イミド化したところ、膜厚18μmのフィルムが得られた。ポリアミド酸溶液の塗布、乾燥、熱イミド化の処理をさらに2度繰り返したところ、膜厚約50μmのポリイミドが得られた。ダイシングソーを用いて基板ごと5×5mmの大きさに切り出し、ポリイミドフィルム側に紫外線シャープカットフィルタ(ガラス基板)をアクリル系光学接着剤により貼り付けた。石英基板の裏面から紫外発光ダイオード(発光波長386nm、電流20mA、光出力70mcd)を照射したところ、ポリイミドの表面から波長490nmを中心とする緑色の明るい蛍光発光が観測された。本発明によるポリイミドが、紫外光→可視光の有機光波長変換デバイスにおける波長変換材料として機能することが明らかとなった。
Example 6
A DMAc solution of polyamic acid was prepared from i-ODPA and DCHM in the same manner as in Example 1, with the total concentration of dianhydride and diamine (solid content) being 35%. When this solution was applied onto a quartz plate having a thickness of 1 mm and thermally imidized at a maximum temperature of 300 ° C., a film having a thickness of 18 μm was obtained. When the polyamic acid solution coating, drying, and thermal imidization were repeated twice, a polyimide film having a thickness of about 50 μm was obtained. The whole substrate was cut into a size of 5 × 5 mm using a dicing saw, and an ultraviolet sharp cut filter (glass substrate) was attached to the polyimide film side with an acrylic optical adhesive. When an ultraviolet light emitting diode (emission wavelength: 386 nm, current: 20 mA, light output: 70 mcd) was irradiated from the back surface of the quartz substrate, bright green fluorescent light centered on a wavelength of 490 nm was observed from the polyimide surface. It has been clarified that the polyimide according to the present invention functions as a wavelength conversion material in an organic light wavelength conversion device of ultraviolet light → visible light.

蛍光材料の蛍光強度を測定した結果を示すグラフである。It is a graph which shows the result of having measured the fluorescence intensity of the fluorescent material. 蛍光材料の蛍光強度を測定した結果を示すグラフである。It is a graph which shows the result of having measured the fluorescence intensity of the fluorescent material.

Claims (5)

下記一般式(1):で表される繰り返し単位を有するポリイミドを含有する蛍光材料。
Figure 2008056797
(式中、R1は脂環式構造又は芳香環を含む2価の有機基を示す)
The fluorescent material containing the polyimide which has a repeating unit represented by following General formula (1) :.
Figure 2008056797
(Wherein R 1 represents an alicyclic structure or a divalent organic group containing an aromatic ring)
上記一般式(1)において、R1が、2価の脂環式構造(環状アルキル基)を有する有機基である、請求項1に記載の蛍光材料。 The fluorescent material according to claim 1, wherein in the general formula (1), R 1 is an organic group having a divalent alicyclic structure (cyclic alkyl group). 上記一般式(1)において、R1が、下記式(2)〜(5)からなる群から選択される有機基である、請求項1に記載の蛍光材料。
Figure 2008056797
Figure 2008056797
(式中、R2はアルキル基又はフルオロアルキル基を含む2価の有機基を示す)
Figure 2008056797
(式中、R3はアルキル基又はフルオロアルキル基を含む1価の有機基を示す)
Figure 2008056797
(式中、R4はフルオロアルキル基を含む1価の有機基を示す)
The fluorescent material according to claim 1, wherein, in the general formula (1), R 1 is an organic group selected from the group consisting of the following formulas (2) to (5).
Figure 2008056797
Figure 2008056797
(Wherein R 2 represents a divalent organic group containing an alkyl group or a fluoroalkyl group)
Figure 2008056797
(Wherein R 3 represents a monovalent organic group containing an alkyl group or a fluoroalkyl group)
Figure 2008056797
(Wherein R 4 represents a monovalent organic group containing a fluoroalkyl group)
請求項1〜3のいずれか1項に記載の蛍光材料を用いて製造された有機発光デバイス。 The organic light-emitting device manufactured using the fluorescent material of any one of Claims 1-3. 請求項1〜3のいずれか1項に記載の蛍光材料を用いて製造された有機光波長変換デバイス。 The organic light wavelength conversion device manufactured using the fluorescent material of any one of Claims 1-3.
JP2006235133A 2006-08-31 2006-08-31 Fluorescent material and optical device using the same Active JP4947546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235133A JP4947546B2 (en) 2006-08-31 2006-08-31 Fluorescent material and optical device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235133A JP4947546B2 (en) 2006-08-31 2006-08-31 Fluorescent material and optical device using the same

Publications (2)

Publication Number Publication Date
JP2008056797A true JP2008056797A (en) 2008-03-13
JP4947546B2 JP4947546B2 (en) 2012-06-06

Family

ID=39239927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235133A Active JP4947546B2 (en) 2006-08-31 2006-08-31 Fluorescent material and optical device using the same

Country Status (1)

Country Link
JP (1) JP4947546B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084587A1 (en) * 2009-01-21 2010-07-29 富士電機ホールディングス株式会社 Color conversion film and multicolor emission organic el device including color conversion film
JP2022500216A (en) * 2018-09-14 2022-01-04 ニューラリンク コーポレーションNeuralink Corp. Computer visual technology
US11925800B2 (en) 2018-09-14 2024-03-12 Neuralink, Inc. Device implantation using a cartridge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161979A (en) * 2002-09-18 2004-06-10 Manac Inc New thermoplastic polyimide and imide oligomer
JP2004307857A (en) * 2003-03-26 2004-11-04 Rikogaku Shinkokai Fluorescent polyimide
JP2005320393A (en) * 2004-05-07 2005-11-17 Rikogaku Shinkokai Fluorescent material
WO2006120954A1 (en) * 2005-05-09 2006-11-16 Tokyo Institute Of Technology Fluorescent material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161979A (en) * 2002-09-18 2004-06-10 Manac Inc New thermoplastic polyimide and imide oligomer
JP2004307857A (en) * 2003-03-26 2004-11-04 Rikogaku Shinkokai Fluorescent polyimide
JP2005320393A (en) * 2004-05-07 2005-11-17 Rikogaku Shinkokai Fluorescent material
WO2006120954A1 (en) * 2005-05-09 2006-11-16 Tokyo Institute Of Technology Fluorescent material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084587A1 (en) * 2009-01-21 2010-07-29 富士電機ホールディングス株式会社 Color conversion film and multicolor emission organic el device including color conversion film
JP5236732B2 (en) * 2009-01-21 2013-07-17 シャープ株式会社 Color conversion film and multicolor light emitting organic EL device including the color conversion film
US8541777B2 (en) 2009-01-21 2013-09-24 Sharp Kabushiki Kaisha Color conversion film and multicolor-emitting, organic electroluminescent device comprising the color conversion film
US8847219B2 (en) 2009-01-21 2014-09-30 Sharp Kabushiki Kaisha Color conversion film and multicolor-emitting, organic electroluminescent device comprising the color conversion film
JP2022500216A (en) * 2018-09-14 2022-01-04 ニューラリンク コーポレーションNeuralink Corp. Computer visual technology
US11925800B2 (en) 2018-09-14 2024-03-12 Neuralink, Inc. Device implantation using a cartridge

Also Published As

Publication number Publication date
JP4947546B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP6721070B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
JP6627510B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
JP6919564B2 (en) Polyimide precursor composition and polyimide composition
JP6225659B2 (en) Diamine containing hexafluoroisopropanol group, polyimide and polyamide using the same, cyclized product thereof, and production method thereof
WO2015053312A1 (en) Polyimide precursor, polyimide, polyimide film, varnish, and substrate
JP7047852B2 (en) Polyimide precursors, polyimides, polyimide films, varnishes, and substrates
JP6706771B2 (en) Organic light emitting material exhibiting room temperature phosphorescence and optical device using the same
TW201231504A (en) Polyimide composite, polyamide solution, method for manufacturing polyimide composite and film comprising polyimide composite
JP6461470B2 (en) Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
JP4947546B2 (en) Fluorescent material and optical device using the same
JP2004307857A (en) Fluorescent polyimide
US6077928A (en) Bis(dialkylmaleimide) derivative and polyetherimide for optical communications formed therefrom
JP5028626B2 (en) Fluorescent material
JP2009114415A (en) Resin for optical-semiconductor-element encapsulation containing polyimide and optical semiconductor device obtained with the same
JP7069478B2 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
US20090267508A1 (en) Blue-light-emitting element comprising polyimide
JP2005320393A (en) Fluorescent material
JP5265994B2 (en) Fluorescent polymer and optical device using the same
KR20130113657A (en) Polyamic acid and heat resistant transparent polyimide prepared by using same
JP2008274165A (en) Fluorescent material
KR20170062528A (en) Substrate for organic electroluminescence, and organic electroluminescent display using same
JP2021033139A (en) Infrared transmission film, quantum dot solar cell using the same, and infrared sensor
JP2009269986A (en) Polymeric-inorganic hybrid optical material
KR20050120749A (en) Perdeuterated poliimides, method for the production and use thereof in the form of transparent materials in the range of 2500-3500 cm-1
JP2737871B2 (en) Perfluoroaromatic compounds for production of perfluorinated polyimides and methods for their production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4947546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250