JP5028626B2 - Fluorescent material - Google Patents

Fluorescent material Download PDF

Info

Publication number
JP5028626B2
JP5028626B2 JP2007528246A JP2007528246A JP5028626B2 JP 5028626 B2 JP5028626 B2 JP 5028626B2 JP 2007528246 A JP2007528246 A JP 2007528246A JP 2007528246 A JP2007528246 A JP 2007528246A JP 5028626 B2 JP5028626 B2 JP 5028626B2
Authority
JP
Japan
Prior art keywords
general formula
polyimide
fluorescence
repeating unit
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007528246A
Other languages
Japanese (ja)
Other versions
JPWO2006120954A1 (en
Inventor
慎治 安藤
裕幸 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2007528246A priority Critical patent/JP5028626B2/en
Publication of JPWO2006120954A1 publication Critical patent/JPWO2006120954A1/en
Application granted granted Critical
Publication of JP5028626B2 publication Critical patent/JP5028626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、蛍光材料に関する。本発明の蛍光材料は、優れた耐熱性を有し可視域の広い波長域にわたる蛍光発光スペクトルを示すものであり、白色又は白色性の高い発光色を示す発光デバイス用材料として使用可能である。   The present invention relates to a fluorescent material. The fluorescent material of the present invention has excellent heat resistance and exhibits a fluorescence emission spectrum over a wide visible wavelength range, and can be used as a material for a light emitting device that exhibits white or high whiteness emission color.

近年、有機エレクトロルミネッセンス(EL)素子や、発光型の空間光変調素子、波長変換素子等に使用される有機発光材料として、種々の低分子化合物や高分子化合物が開発されている。発光デバイス等の製造において、低分子化合物を用いる場合、製造プロセスが真空蒸着方式にほぼ制約されるのに対して、高分子化合物は、溶液状態として製膜又はインクジェットプリント方式等により製造できることから、製造コストを安くすることができるという利点を有している。また、高分子化合物は、微細加工なしに微小な塗り分けができる点、そして厚膜を容易に製膜できる等の優れた特徴を有している。そのため、高効率な蛍光発光を示し、かつ発光波長の制御が容易な高分子系の発光材料の開発が望まれている。   In recent years, various low molecular weight compounds and polymer compounds have been developed as organic light emitting materials used for organic electroluminescence (EL) elements, light emitting spatial light modulation elements, wavelength conversion elements and the like. In the production of light emitting devices and the like, when using a low molecular compound, the production process is almost restricted to the vacuum deposition method, whereas the polymer compound can be produced as a solution state by film formation or an inkjet printing method, The manufacturing cost can be reduced. In addition, the polymer compound has excellent features such as the ability to perform minute coating without fine processing and the ability to easily form a thick film. Therefore, it is desired to develop a high-molecular light-emitting material that exhibits high-efficiency fluorescence and can easily control the emission wavelength.

高分子系発光材料としては、ポリ−p−フェニレンやポリフェニレンビニレン等のπ共役型高分子が知られている。しかし、このようなπ共役型高分子は、耐熱性や耐環境性(化学的安定性)が十分でなく、また、製膜や微細加工が容易ではないという問題があった。一方、代表的な耐熱性高分子であるポリイミドは、優れた耐熱性や電気特性を有しており、前駆体であるポリアミド酸が製膜等の加工性に優れていることから、表示用デバイス材料としての用途が期待されている。例えば、非特許文献1には、主鎖や側鎖に蛍光性のフリル基を導入した、青色の蛍光発光を示すポリイミドが開示されており、また、特許文献1及び特許文献2には、発光機能あるいは電荷輸送機能を有するポリイミドを用いた有機EL素子が開示されている。しかし、上記特許文献及び非特許文献に開示されたポリイミドの蛍光発光は、ポリイミドの主鎖又は側鎖に導入された蛍光性官能基によるものであり、また、その蛍光強度は、ポリイミド分子間の強い相互作用と、それに伴う濃度消失によって、同一の蛍光性官能基を有する低分子化合物の蛍光強度に比べると、その蛍光強度は非常に低いものである。   As polymer light-emitting materials, π-conjugated polymers such as poly-p-phenylene and polyphenylene vinylene are known. However, such a π-conjugated polymer has a problem that heat resistance and environmental resistance (chemical stability) are not sufficient, and film formation and microfabrication are not easy. On the other hand, polyimide, which is a typical heat-resistant polymer, has excellent heat resistance and electrical properties, and the precursor polyamic acid has excellent processability such as film formation. Use as a material is expected. For example, Non-Patent Document 1 discloses a polyimide exhibiting blue fluorescent light emission in which a fluorescent furyl group is introduced into the main chain or side chain, and Patent Document 1 and Patent Document 2 disclose light emission. An organic EL element using a polyimide having a function or a charge transport function is disclosed. However, the fluorescence emission of polyimide disclosed in the above patent document and non-patent document is due to the fluorescent functional group introduced into the main chain or side chain of the polyimide, and the fluorescence intensity is between polyimide molecules. Due to the strong interaction and the accompanying disappearance of concentration, the fluorescence intensity is very low compared to the fluorescence intensity of the low-molecular compound having the same fluorescent functional group.

また、非特許文献2等に開示されているように、ポリイミド自体が紫外線の照射により、可視光の蛍光発光を示すことは、従来から知られていた。この蛍光は、ポリイミドの分子構造中のジアミン部分(電子供与性)と酸無水物部分(電子吸引性)との間で形成される電荷移動錯体(CTC)に起因する蛍光(CT蛍光)である(例えば、非特許文献3参照。)。しかし、芳香族ポリイミドの場合には、CT相互作用が強くなり、無輻射失活過程が増加するため、その蛍光強度は弱くなる。代表的な全芳香族ポリイミドフィルムであるピロメリット酸無水物と4,4’−ジアミノジフェニルエーテルから合成されるポリイミド(PMDA/ODA)においては、通常の蛍光分光計では観測が困難なほどの弱い蛍光しか観測されない。また、非特許文献4には、全芳香族ポリイミドでも、ビフェニルテトラカルボン酸無水物とパラフェニレンジアミンから合成されるポリイミド(BPDA/PDA)は相対的に強い蛍光を示すことが報告されている。しかし、既存の蛍光性化合物に比べると、その蛍光強度は非常に弱く、量子収率は1%以下であると考えられる。   In addition, as disclosed in Non-Patent Document 2 and the like, it has been conventionally known that polyimide itself exhibits visible fluorescence by irradiation with ultraviolet rays. This fluorescence is fluorescence (CT fluorescence) resulting from a charge transfer complex (CTC) formed between a diamine portion (electron donating property) and an acid anhydride portion (electron attracting property) in the molecular structure of polyimide. (For example, refer nonpatent literature 3.). However, in the case of aromatic polyimide, the CT interaction becomes strong and the non-radiation deactivation process increases, so the fluorescence intensity becomes weak. In a polyimide (PMDA / ODA) synthesized from pyromellitic anhydride, which is a typical wholly aromatic polyimide film, and 4,4′-diaminodiphenyl ether, weak fluorescence that is difficult to observe with a normal fluorescence spectrometer Only observed. Further, Non-Patent Document 4 reports that polyimide (BPDA / PDA) synthesized from biphenyltetracarboxylic anhydride and paraphenylenediamine exhibits relatively strong fluorescence even in wholly aromatic polyimide. However, compared to existing fluorescent compounds, the fluorescence intensity is very weak and the quantum yield is considered to be 1% or less.

また、特許文献3には、三次元的な構造を有し、芳香環に直接フッ素が結合した芳香族酸二無水物と脂環式構造を有するジアミンとからなる構造単位を有するポリイミドを用いることで、優れた蛍光発光特性(蛍光強度の強さ、緑色から赤色領域における蛍光波長の制御性、蛍光強度の長期安定性)を有するとともに、耐熱性、化学的安定性、製膜性に優れた蛍光性ポリイミドが得られることが開示されている。また、非特許文献5には、三次元的な構造を有し、電子受容性の低い酸二無水物と脂環式構造を有するジアミンとからなる構造単位を有するポリイミドを用いることで、優れた青色蛍光発光特性を有し、耐熱性、化学的安定性、製膜性に優れた蛍光性ポリイミドが得られることが開示されている。上記特許文献3及び非特許文献5に開示された蛍光性ポリイミドは、蛍光強度が強いものであるが、基本的には単色発光性のものである。   Patent Document 3 uses a polyimide having a three-dimensional structure and having a structural unit composed of an aromatic dianhydride having fluorine directly bonded to an aromatic ring and a diamine having an alicyclic structure. In addition to excellent fluorescence emission characteristics (intensity of fluorescence intensity, controllability of fluorescence wavelength in the green to red range, long-term stability of fluorescence intensity), it also has excellent heat resistance, chemical stability, and film formability It is disclosed that a fluorescent polyimide is obtained. In addition, Non-Patent Document 5 is superior in that it has a three-dimensional structure and uses a polyimide having a structural unit composed of an acid dianhydride having a low electron accepting property and a diamine having an alicyclic structure. It is disclosed that a fluorescent polyimide having blue fluorescent emission characteristics and excellent in heat resistance, chemical stability, and film forming property can be obtained. The fluorescent polyimides disclosed in Patent Document 3 and Non-Patent Document 5 have strong fluorescence intensity, but are basically monochromatic.

S. M. Pyo et al., Polymer, 40, 125-130 (1999)S. M. Pyo et al., Polymer, 40, 125-130 (1999) 特開平03−274693号公報Japanese Patent Laid-Open No. 03-274663 特開平04−93389号公報Japanese Patent Laid-Open No. 04-93389 E. D. Wachsman and C. W. Frank Polymer, 29, 1191-1197 (1988)E. D. Wachsman and C. W. Frank Polymer, 29, 1191-1197 (1988) M. Hasegawa and K. Horie, Progress in Polymer Science, 26, 259-335 (2001)M. Hasegawa and K. Horie, Progress in Polymer Science, 26, 259-335 (2001) M. Hasegawa et al., Journal of Polymer Science Part C: Polymer Letters, 27, 263-269(1998)M. Hasegawa et al., Journal of Polymer Science Part C: Polymer Letters, 27, 263-269 (1998) 特開2004−307857号公報JP 2004-307857 A H. Sekino et al., 高分子学会予稿集, 53, 1543 (2004).H. Sekino et al., Proceedings of the Society of Polymer Science, 53, 1543 (2004).

照明用途やディスプレイのバックライト等には白色性が必要とされ、このような白色性は、光の3原色(青、緑、赤)に相当するそれぞれの蛍光発光を組み合わせることにより得ることができる。しかし、異なる種類の蛍光性ポリイミドは必ずしも相溶ではないため、容易に組み合わせることができず、また3層を重ねて製膜することは工程が煩雑となる。結果として、白色性の発光を得るためには、単一層のポリイミドで白色性の高い蛍光を高い量子収率で発することが期待される。
従って、本発明の目的は、白色性の高い優れた蛍光発光特性(蛍光強度の強さ、蛍光強度の長期安定性)を有するとともに、耐熱性、化学的安定性、製膜性に優れた白色蛍光材料を提供することにある。
Whiteness is required for lighting applications, display backlights, and the like, and such whiteness can be obtained by combining fluorescent emission corresponding to the three primary colors of light (blue, green, red). . However, since different types of fluorescent polyimides are not necessarily compatible with each other, they cannot be easily combined, and forming a film by stacking three layers makes the process complicated. As a result, in order to obtain white light emission, it is expected that single layer polyimide emits white fluorescent light with a high quantum yield.
Therefore, the object of the present invention is a white having excellent fluorescence emission characteristics (fluorescence intensity, long-term stability of fluorescence intensity) with high whiteness, and excellent heat resistance, chemical stability, and film-forming property. It is to provide a fluorescent material.

本発明者らは、上記目的を達成するため、鋭意検討を重ねた結果、特定の繰り返し単位からなるポリイミドが上記目的を達成し得るという知見を得、その知見を基に鋭意検討を重ねた結果、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have obtained the knowledge that a polyimide composed of a specific repeating unit can achieve the above object, and the results of intensive investigation based on the knowledge The present invention has been completed.

本発明は、上記知見に基づいてなされたものであり、下記一般式(1)で表わされる繰り返し単位であって、該繰り返し単位からなるポリイミドが380〜520nmに蛍光ピークを有する繰り返し単位と、下記一般式(2)で表わされる繰り返し単位であって、該繰り返し単位からなるポリイミドが560〜760nmに蛍光ピークを有する繰り返し単位とを有するポリイミドを含有する蛍光材料を提供するものである。   The present invention has been made on the basis of the above knowledge, and is a repeating unit represented by the following general formula (1), wherein the repeating unit has a repeating unit having a fluorescence peak at 380 to 520 nm. The present invention provides a fluorescent material containing a polyimide having a repeating unit represented by the general formula (2), wherein the polyimide comprising the repeating unit has a repeating unit having a fluorescence peak at 560 to 760 nm.

Figure 0005028626
Figure 0005028626

(式中、Rは、下記一般式(3)又は下記一般式(4)で表わされる4価の芳香族基を示し、Rは脂環式構造を含む2価の有機基を示す。)(In the formula, R 1 represents a tetravalent aromatic group represented by the following general formula (3) or the following general formula (4), and R 2 represents a divalent organic group containing an alicyclic structure. )

Figure 0005028626
Figure 0005028626

(式中、Rは脂環式構造を含む2価の有機基を示し、Rは、下記一般式(5)で表される4価の芳香族基を示す。)(In the formula, R 2 represents a divalent organic group containing an alicyclic structure, and R 3 represents a tetravalent aromatic group represented by the following general formula (5).)

Figure 0005028626
Figure 0005028626

(式中、Rはハロゲンで置換されていてもよい脂肪族基、酸素原子、1つ以上の2価元素を介した芳香族基のいずれかであるか、又はそれらの組み合わせによって構成される2価の置換基、又は単結合を示す。)(In the formula, R 4 is an aliphatic group optionally substituted with halogen, an oxygen atom, an aromatic group via one or more divalent elements, or a combination thereof. (It represents a divalent substituent or a single bond.)

Figure 0005028626
Figure 0005028626

(式中、R及びRは、同一であっても異なっていてもよく、ハロゲンで置換されていてもよい脂肪族基、酸素原子、1つ以上の2価元素を介した芳香族基のいずれかであるか、又はそれらの組み合わせによって構成される2価の置換基、又は単結合を示す。)(In the formula, R 4 and R 5 may be the same or different, and may be an aliphatic group optionally substituted with halogen, an oxygen atom, or an aromatic group via one or more divalent elements. Or a single bond formed by a combination thereof.)

Figure 0005028626
Figure 0005028626

(式中、X及びYは、同一であっても異なっていてもよく、ハロゲンで置換されていてもよい脂肪族基、1つ以上の2価元素を介した芳香族基、ハロゲンのいずれかであるか、またはそれらの組み合わせによって構成される2価の置換基を示す。)   (In the formula, X and Y may be the same or different, and are either an aliphatic group which may be substituted with halogen, an aromatic group via one or more divalent elements, or halogen. Or a divalent substituent constituted by a combination thereof.

本発明の蛍光材料に含有されるポリイミドを構成する繰り返し単位の好適な例としては、上記一般式(1)におけるRが、下記式(6)〜(14)からなる群から選択される芳香族基であるものが挙げられる。As a suitable example of the repeating unit constituting the polyimide contained in the fluorescent material of the present invention, R 1 in the general formula (1) is an fragrance selected from the group consisting of the following formulas (6) to (14). The group which is a group is mentioned.

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

また、本発明の蛍光材料に含有されるポリイミドを構成する繰り返し単位としては、上記一般式(1)及び(2)におけるRが、脂環式アルキル基であるものが挙げられる。
また、本発明の蛍光材料に含有されるポリイミドを構成する繰り返し単位としては、上記一般式(1)及び(2)におけるRが、下記式(15)〜(18)からなる群から選択されるものが挙げられる。
As the repeating units constituting the polyimide contained in the fluorescent material of the present invention, R 2 in the general formula (1) and (2) may be mentioned those which are alicyclic alkyl group.
As the repeating units constituting the polyimide contained in the fluorescent material of the present invention, R 2 in the general formula (1) and (2) is selected from the group consisting of the following formulas (15) - (18) Can be mentioned.

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

また、本発明の蛍光材料に含有されるポリイミドを構成する繰り返し単位としては、上記一般式(2)におけるRが、下記式(19)であるものが挙げられる。As the repeating units constituting the polyimide contained in the fluorescent material of the present invention, R 3 in the general formula (2) may be mentioned those that are formula (19).

Figure 0005028626
Figure 0005028626

また、本発明は、上記蛍光材料を用いて製造された有機発光デバイスを提供するものである。有機発光デバイスとしては、有機EL素子、有機レーザー及び空間光変調素子が挙げられる。   Moreover, this invention provides the organic light emitting device manufactured using the said fluorescent material. Examples of the organic light emitting device include an organic EL element, an organic laser, and a spatial light modulation element.

本発明によれば、白色性の高い優れた蛍光発光特性を有し、耐熱性、製膜性に優れ、低吸水性の白色蛍光材料が提供される。   According to the present invention, a white fluorescent material having a high whiteness and excellent fluorescent emission characteristics, excellent heat resistance and film forming property, and low water absorption is provided.

以下に、本発明の蛍光材料を詳細に説明する。
本発明の蛍光材料は、下記一般式(1)で表わされる繰り返し単位であって、該繰り返し単位からなるポリイミドが380〜520nmに蛍光ピークを有する繰り返し単位と、下記一般式(2)で表わされる繰り返し単位であって、該繰り返し単位からなるポリイミドが500〜720nmに蛍光ピークを有する繰り返し単位とを有するポリイミドを含有する。
なお、本明細書において、一般式(1)で表わされる繰り返し単位であって、繰り返し単位からなるポリイミドが380〜520nmに蛍光ピークを有するとは、一般式(1)で表わされる繰り返し単位のみでポリイミドを製造した際に、上記範囲に蛍光ピークを有することを意味する。
Hereinafter, the fluorescent material of the present invention will be described in detail.
The fluorescent material of the present invention is a repeating unit represented by the following general formula (1), and the polyimide comprising the repeating unit is represented by a repeating unit having a fluorescence peak at 380 to 520 nm and the following general formula (2). It is a repeating unit, The polyimide which consists of this repeating unit contains the polyimide which has a repeating unit which has a fluorescence peak in 500-720 nm.
In addition, in this specification, it is a repeating unit represented by General formula (1), Comprising: The polyimide which consists of a repeating unit has a fluorescence peak in 380-520 nm only in the repeating unit represented by General formula (1). When a polyimide is manufactured, it means having a fluorescent peak in the above range.

Figure 0005028626
Figure 0005028626

式(1)中、Rは、下記一般式(3)又は下記一般式(4)で表わされる4価の芳香族基であり、Rは脂環式構造を含む2価の有機基である。In the formula (1), R 1 is a tetravalent aromatic group represented by the following general formula (3) or the following general formula (4), and R 2 is a divalent organic group containing an alicyclic structure. is there.

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

式(3)中、Rは炭素−炭素の一重結合、酸素原子、スルホニル基、ハロゲンで置換されていてもよい脂肪族基、1つ以上の2価元素を介した芳香族基のいずれかであるか、又はそれらの組み合わせによって構成される2価の置換基、又は単結合である。
脂肪族基としては、例えばメチレン基、エチレン基、イソプロピリデン基、ヘキサメチレン基等の長鎖アルキル基等が挙げられる。これらの脂肪族基は、フッ素、塩素、臭素、ヨウ素等のハロゲンで置換されていてもよい。また、1つ以上の2価元素を介した芳香族基とは、例えば酸素原子(-O-)を介して結合した芳香族基やスルホニル基(-SO-)を介して結合した芳香族基を意味するものとし、この芳香族基はフッ素、塩素、臭素、ヨウ素等のハロゲンで置換されていてもよい。
In formula (3), R 4 is any one of a carbon-carbon single bond, an oxygen atom, a sulfonyl group, an aliphatic group optionally substituted with halogen, and an aromatic group via one or more divalent elements. Or a divalent substituent constituted by a combination thereof, or a single bond.
Examples of the aliphatic group include a long chain alkyl group such as a methylene group, an ethylene group, an isopropylidene group, and a hexamethylene group. These aliphatic groups may be substituted with halogens such as fluorine, chlorine, bromine and iodine. The aromatic group via one or more divalent elements is, for example, an aromatic group bonded via an oxygen atom (—O—) or an aromatic group bonded via a sulfonyl group (—SO 2 —). This aromatic group may be substituted with a halogen such as fluorine, chlorine, bromine or iodine.

Figure 0005028626
Figure 0005028626

式(4)中、Rは及びRは、同一であっても異なっていてもよく、炭素−炭素の一重結合、酸素原子、スルホニル基、ハロゲンで置換されていてもよい脂肪族基、1つ以上の2価元素を介した芳香族基のいずれかであるか、又はそれらの組み合わせによって構成される2価の置換基、又は単結合である。
脂肪族基としては、例えばメチレン基、エチレン基、イソプロピリデン基、ヘキサメチレン基等の長鎖アルキル基等が挙げられる。これらの脂肪族基は、フッ素、塩素、臭素、ヨウ素等のハロゲンで置換されていてもよい。また、1つ以上の2価元素を介した芳香族基とは、例えば酸素原子を介して結合した芳香族基や、スルホニル基を介して結合した芳香族基を意味するものとし、この芳香族基はフッ素、塩素、臭素、ヨウ素等のハロゲンで置換されていてもよい。
In the formula (4), R 4 and R 5 may be the same or different, and a carbon-carbon single bond, an oxygen atom, a sulfonyl group, an aliphatic group optionally substituted with a halogen, It is a divalent substituent or a single bond which is either an aromatic group via one or more divalent elements, or a combination thereof.
Examples of the aliphatic group include a long chain alkyl group such as a methylene group, an ethylene group, an isopropylidene group, and a hexamethylene group. These aliphatic groups may be substituted with halogens such as fluorine, chlorine, bromine and iodine. The aromatic group via one or more divalent elements means, for example, an aromatic group bonded via an oxygen atom or an aromatic group bonded via a sulfonyl group. The group may be substituted with a halogen such as fluorine, chlorine, bromine or iodine.

一般式(2)中、Rは、下記一般式(5)で表される4価の芳香族基を示す。In General Formula (2), R 3 represents a tetravalent aromatic group represented by the following General Formula (5).

Figure 0005028626
Figure 0005028626

式(5)中、X及びYは、同一であっても異なっていてもよく、ハロゲンで置換されていてもよい脂肪族基、1つ以上の2価元素を介した芳香族基、ハロゲンのいずれかであるか、またはそれらの組み合わせによって構成される2価の置換基である。
脂肪族基としては、例えばメチレン基、エチレン基、イソプロピリデン基、ヘキサメチレン基等の長鎖アルキル基等が挙げられる。これらの脂肪族基は、塩素、臭素、ヨウ素等のハロゲンで置換されていてもよい。また、1つ以上の2価元素を介した芳香族基とは、例えば酸素原子を介して結合した芳香族基を意味するものとし、この芳香族基は塩素、臭素、ヨウ素等のハロゲンで置換されていてもよい。
In formula (5), X and Y may be the same or different, an aliphatic group optionally substituted with halogen, an aromatic group via one or more divalent elements, a halogen of It is a divalent substituent that is either or a combination thereof.
Examples of the aliphatic group include a long chain alkyl group such as a methylene group, an ethylene group, an isopropylidene group, and a hexamethylene group. These aliphatic groups may be substituted with halogens such as chlorine, bromine and iodine. The aromatic group via one or more divalent elements means, for example, an aromatic group bonded through an oxygen atom, and the aromatic group is substituted with a halogen such as chlorine, bromine, or iodine. May be.

上記一般式(1)におけるRとしては、酸二無水物を形成できる構造を有しているもの、例えば、下記式(6)〜(14)で表わされるものが挙げられる。Examples of R 1 in the general formula (1) include those having a structure capable of forming an acid dianhydride, for example, those represented by the following formulas (6) to (14).

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

上記一般式(1)及び(2)中、Rは脂環式構造を含む2価の有機基であり、該有機基はハロゲン原子を含んでいてもよく、例えば、下記式(15)及び(16)で表わされるものが挙げられる。In the general formulas (1) and (2), R 2 is a divalent organic group including an alicyclic structure, and the organic group may include a halogen atom. For example, the following formula (15) and What is represented by (16) is mentioned.

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

また、一般式(2)におけるRとしては、トリフルオロメチル基やヘキサフルオロイソプロピリデン基等のペルフルオロアルキル基を有する有機基であってもよく、そのようなものとしては、例えば、下記式(17)及び(18)で表わされるものが挙げられる。In addition, R 2 in the general formula (2) may be an organic group having a perfluoroalkyl group such as a trifluoromethyl group or a hexafluoroisopropylidene group. Examples of such a group include the following formula ( 17) and (18).

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

上記一般式(2)中、Rは脂環式構造を含む2価の有機基であり、Rは、下記一般式(5)で表される4価の芳香族基である。In the general formula (2), R 2 is a divalent organic group including an alicyclic structure, and R 3 is a tetravalent aromatic group represented by the following general formula (5).

Figure 0005028626
Figure 0005028626

上記一般式(5)において、X及びYは、同一であっても異なっていてもよく、ハロゲンで置換されていてもよい脂肪族基、1つ以上の2価元素を介した芳香族基、ハロゲンのいずれかであるか、またはそれらの組み合わせによって構成される2価の置換基を示す。
上記一般式(5)で表わされる4価の芳香族基としては、例えば、下記式(19)で表わされるものが挙げられる。
In the general formula (5), X and Y may be the same or different, an aliphatic group which may be substituted with a halogen, an aromatic group via one or more divalent elements, A divalent substituent which is any of halogen or a combination thereof is shown.
Examples of the tetravalent aromatic group represented by the general formula (5) include those represented by the following formula (19).

Figure 0005028626
Figure 0005028626

本発明の蛍光材料は、上記一般式(1)で表わされる繰り返し単位、及び上記一般式(2)で表わされる繰り返し単位を有するポリイミド共重合体を含み、一般式(1)中のRが4価の芳香族基であり、吸水性が低く、蛍光性の光学用デバイスとして用いるのに好適である。また、一般式(1)及び一般式(2)中のRに脂環式構造を有するので、ポリイミド分子内及び分子間の電荷移動相互作用が抑制される。従って、本発明の蛍光材料は高い蛍光強度を発現できる。上記一般式(1)で表わされる繰り返し単位を有するポリイミドは紫外長波長域から可視短波長〜中波長域にかけての蛍光発光、すなわち紫〜青〜緑色の蛍光発光(蛍光ピーク波長380〜520nm、好ましくは380〜500nm、更に好ましくは400〜450nm)を示す。一方、上記一般式(2)で表わされる繰り返し単位を有するポリイミドは、赤色の鮮やかな蛍光発光(蛍光ピーク波長560〜760nm、好ましくは600〜720nmm、更に好ましくは650〜700nm)を示す。The fluorescent material of the present invention includes a polyimide copolymer having a repeating unit represented by the above general formula (1) and a repeating unit represented by the above general formula (2), wherein R 1 in the general formula (1) is It is a tetravalent aromatic group, has low water absorption, and is suitable for use as a fluorescent optical device. Further, since the R 2 of the general formulas (1) and (2) having an alicyclic structure, charge transfer interactions between polyimide intramolecular and are suppressed. Therefore, the fluorescent material of the present invention can exhibit high fluorescence intensity. The polyimide having the repeating unit represented by the general formula (1) is fluorescent emission from the ultraviolet long wavelength region to the visible short wavelength to medium wavelength region, that is, purple to blue to green fluorescent emission (fluorescence peak wavelength of 380 to 520 nm, preferably 380-500 nm, more preferably 400-450 nm). On the other hand, the polyimide having the repeating unit represented by the general formula (2) exhibits bright red fluorescence (fluorescence peak wavelength of 560 to 760 nm, preferably 600 to 720 nm, more preferably 650 to 700 nm).

これらの共重合体の発光機構を図1a及びbに示す。これらの共重合体が白色性の高い蛍光発光を示すのは、構成成分である一般式(1)で表わされる繰り返し単位、及び一般式(2)で表わされる繰り返し単位の蛍光発光機構が独立のものとして残っているだけではなく、前者の蛍光スペクトルが後者の励起スペクトル(蛍光発光を引き起こすための光吸収能のスペクトル)と重畳しているために、前者の光照射によって獲得されたエネルギーが後者へ移動し、結果として長波長域(赤色域)での蛍光発光も惹起することに由来する。この発光機構を図1aに示す。また、本発明者らは、一般式(2)で表わされる繰り返し単位のRが1,4-ジフルオロベンゼンである場合、すなわち一般式(19)で表わされる場合(ポリイミドの原料は1,4-ジフルオロピロメリット酸である)、図1bに示すような特異な発光機構が存在することを明らかにしている。
すなわち、構成成分である一般式(1)で表わされる繰り返し単位を、波長280〜370nmの紫外光で照射すると、1,4-ジフルオロピロメリット酸部分に存在する電子が、まず励起状態1に励起され、その励起状態からの直接的な発光緩和として波長380〜480nmの蛍光を示す。しかし、そのエネルギーのほとんどは、励起状態での分子間あるいは分子内でのエネルギー移動機構を通じて一般式(2)で表わされる繰り返し単位に移動し、この励起状態2からの発光緩和として波長480〜600nmの蛍光を示す。この励起状態2は、一般式(2)で表わされる繰り返し単位を紫外光あるいは可視短波長光で照射した場合の垂直励起状態に相当し、この励起によっても電荷分布がそれほど変化しないため局所励起状態(Locally Excited State)と呼ばれる。一方、一般式(2)で表わされる繰り返し単位は、同一分子内あるいは隣接する他の繰り返し単位との間で電荷が大きく移動した励起状態3(Charge Transferred Excited State)を形成することが可能であり、その励起状態3のエネルギー順位は第一励起状態や第二励起状態よりも顕著に低い。分子間あるいは分子内でのエネルギー移動機構を通じて、励起状態2から励起状態3へのエネルギー移動が引き続いて惹起され、この励起状態3からの蛍光発光は波長600〜720nmに観測される。結果として、非占軌道にある電子を励起状態1のみに励起することで、励起状態1から励起状態2、次いで励起状態3への連続的なエネルギー移動が起こり、それぞれの励起状態からの蛍光発光が合算されて観測されるため、蛍光スペクトルが可視域全体に広がって白色性の高い蛍光発光を示す。従って、一般式(1)で表わされる繰り返し単位の蛍光と一般式(2)で表わされる繰り返し単位の蛍光の成分比が、共重合体の蛍光スペクトル形状を決定する最も重要な要素であり、したがって白色度の高い蛍光発光を得るためには、2成分の構造式の組み合わせに応じてその共重合比が精密に制御される必要がある。また、白色の蛍光を高効率的で発光させるための最適の励起波長は、一般式(1)で表わされる繰り返し単位単独での励起波長にほぼ等しくなるので、白色蛍光ポリイミドの励起波長を制御するためには、一般式(1)で表わされる繰り返し単位の構造を、所望の励起波長を有するものとする必要がある。
The light emission mechanism of these copolymers is shown in FIGS. 1a and b. These copolymers exhibit fluorescence with high whiteness because the fluorescent light emission mechanism of the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2) is independent. Not only remains, but because the former fluorescence spectrum is superimposed on the latter excitation spectrum (the spectrum of light absorption ability to cause fluorescence emission), the energy acquired by the former light irradiation is the latter. As a result, the fluorescence emission in the long wavelength region (red region) is also induced. This light emission mechanism is shown in FIG. In addition, the inventors of the present invention have a case where R 3 of the repeating unit represented by the general formula (2) is 1,4-difluorobenzene, that is, a case where it is represented by the general formula (19) (polyimide raw material is 1,4 -Difluoropyromellitic acid), revealing the existence of a unique luminescence mechanism as shown in FIG. 1b.
That is, when the repeating unit represented by the general formula (1) as a constituent component is irradiated with ultraviolet light having a wavelength of 280 to 370 nm, the electrons present in the 1,4-difluoropyromellitic acid moiety are first excited to the excited state 1. As a direct emission relaxation from the excited state, fluorescence having a wavelength of 380 to 480 nm is shown. However, most of the energy is transferred to the repeating unit represented by the general formula (2) through an energy transfer mechanism between molecules in the excited state or within the molecule, and the wavelength is 480 to 600 nm as emission relaxation from the excited state 2. The fluorescence of is shown. This excited state 2 corresponds to a vertical excited state in the case where the repeating unit represented by the general formula (2) is irradiated with ultraviolet light or visible short wavelength light. (Locally Excited State). On the other hand, the repeating unit represented by the general formula (2) is capable of forming an excited state 3 (Charge Transferred Excited State) in which the charge is greatly transferred between the same molecule or other adjacent repeating units. The energy ranking of the excited state 3 is significantly lower than that of the first excited state and the second excited state. The energy transfer from the excited state 2 to the excited state 3 is subsequently induced through the intermolecular or intramolecular energy transfer mechanism, and the fluorescence emission from the excited state 3 is observed at a wavelength of 600 to 720 nm. As a result, continuous excitation of energy from the excited state 1 to the excited state 2 and then the excited state 3 occurs by exciting the electrons in the unoccupied orbital state only to the excited state 1, and fluorescence emission from each excited state. Are added together and observed, so that the fluorescence spectrum spreads over the entire visible range and exhibits high whiteness fluorescence. Therefore, the component ratio of the fluorescence of the repeating unit represented by the general formula (1) and the fluorescence of the repeating unit represented by the general formula (2) is the most important factor determining the fluorescence spectrum shape of the copolymer. In order to obtain fluorescence with high whiteness, the copolymerization ratio needs to be precisely controlled according to the combination of the structural formulas of the two components. In addition, the optimum excitation wavelength for emitting white fluorescence with high efficiency is substantially equal to the excitation wavelength of the repeating unit represented by the general formula (1) alone, so the excitation wavelength of the white fluorescent polyimide is controlled. For this purpose, the structure of the repeating unit represented by the general formula (1) needs to have a desired excitation wavelength.

上記一般式(1)で表わされる繰り返し単位と、上記一般式(2)で表わされる繰り返し単位との共重合比は、上記一般式(1)で表わされる繰り返し単位:上記一般式(2)で表わされる繰り返し単位が、好ましくは75:25〜99:1(モル比)であり、更に好ましくは90:10〜99:1(モル比)である。共重合比を上記範囲とするには、ポリイミドを合成する際に、上記一般式(1)で表わされる繰り返し単位を得るための酸二無水物、上記一般式(2)で表わされる繰り返し単位を得るための酸二無水物の使用量を調整することによって達成することができる。
上記一般式(1)で表わされる繰り返し単位と、上記一般式(2)で表わされる繰り返し単位との共重合比は、ポリイミドを製造するために用いられる、一般式(1)で表わされる繰り返し単位を得るための酸二無水物と、一般式(2)で表わされる繰り返し単位を得るための酸二無水物との使用量から算定することができる。
The copolymerization ratio of the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2) is the repeating unit represented by the general formula (1): the general formula (2). The represented repeating unit is preferably 75:25 to 99: 1 (molar ratio), more preferably 90:10 to 99: 1 (molar ratio). In order to make the copolymerization ratio within the above range, when synthesizing polyimide, an acid dianhydride for obtaining a repeating unit represented by the above general formula (1), a repeating unit represented by the above general formula (2) It can be achieved by adjusting the amount of acid dianhydride used to obtain.
The copolymerization ratio of the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2) is a repeating unit represented by the general formula (1) used for producing polyimide. It can be calculated from the amount of acid dianhydride for obtaining the acid dianhydride for obtaining the repeating unit represented by the general formula (2).

本発明の蛍光材料に含有されるポリイミドとしては、例えば、下記式(20)〜(31)で表わされる繰り返し単位のいずれかと、下記式(32)〜(34)のいずれかで表わされる繰り返し単位とを含有するポリイミドが挙げられる。   As a polyimide contained in the fluorescent material of the present invention, for example, any of the repeating units represented by the following formulas (20) to (31) and the repeating unit represented by any of the following formulas (32) to (34) And polyimide containing.

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

本発明の蛍光材料に含有されるポリイミドの分子量は、その蛍光特性が発揮される範囲であれば特に限定されないが、その前駆体(ポリアミド酸あるいはポリアミド酸エステル)の分子量として対数粘度換算で0.05〜5.0(dl/g)(温度30℃の有機溶媒中、濃度0.5g/dl)の範囲であることが好ましい。   The molecular weight of the polyimide contained in the fluorescent material of the present invention is not particularly limited as long as the fluorescence characteristics are exhibited, but the molecular weight of the precursor (polyamic acid or polyamic acid ester) is 0. It is preferably in the range of 05 to 5.0 (dl / g) (concentration 0.5 g / dl in an organic solvent at a temperature of 30 ° C.).

本発明の蛍光材料に含有されるポリイミドの製造方法に特に制限はないが、例えば、前記の2種類の酸二無水物からなる混合物と前記のジアミン化合物とを重縮合して得られるポリアミド酸を、加熱閉環することによって製造することができる。加熱閉環する方法に特に制限はなく、従来公知の方法が用いられる。   Although there is no restriction | limiting in particular in the manufacturing method of the polyimide contained in the fluorescent material of this invention, For example, the polyamic acid obtained by polycondensing the mixture which consists of said 2 types of acid dianhydrides, and said diamine compound is used. It can be manufactured by heating and ring closure. There is no restriction | limiting in particular in the method of carrying out a heat ring closure, A conventionally well-known method is used.

酸二無水物としては、例えば、ピロメリット酸二無水物、1,4−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、3,3',4,4'ーオキシビスフタル酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,2ービス(3,4ージカルボキシ)プロパン二無水物、ビス(3,4ージカルボキシ)メタン二無水物等が挙げられる。なお、これらと同じ基本骨格を有するテトラカルボン酸やその酸塩化物、エステル化物等も、本発明の蛍光材料に含有されるポリイミド共重合体を製造するための原料として用いることができる。
用いられる酸二無水物は、下記一般式(1)で表わされる繰り返し単位を得るためには下記一般式式(35)、(36)で表わされるものが、下記一般式(2)で表わされる繰り返し単位を得るためには下記一般式式(37)で表されるものが挙げられる。
Examples of the acid dianhydride include pyromellitic dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 3,3 ′, 4,4′-oxybisphthalic acid Anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxy) propane And dianhydrides and bis (3,4-dicarboxy) methane dianhydrides. Tetracarboxylic acids having the same basic skeleton as those, acid chlorides and esterified products thereof can also be used as raw materials for producing the polyimide copolymer contained in the fluorescent material of the present invention.
In order to obtain a repeating unit represented by the following general formula (1), the acid dianhydride used is represented by the following general formula (35) or (36), but is represented by the following general formula (2). In order to obtain a repeating unit, what is represented by the following general formula (37) is mentioned.

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

Figure 0005028626
Figure 0005028626

上記一般式(35)及び(36)においては、R、Rは炭素−炭素の一重結合又はフッ素以外のハロゲン原子(塩素、臭素、ヨウ素)を含んでいてもよく、2,2−ビス(3,4−ジカルボキシトリフルオロフェノキシ)プロパン二無水物や1,4−ビス(3,4−ジカルボキシトリフルオロフェノキシ)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシトリフルオロフェノキシ)テトラクロロベンゼン二無水物、2,2’,5,5’,6,6’−ヘキサフルオロ−3,3’,4,4’,−ビフェニルテトラカルボン酸二無水物等が挙げられる。また、上記一般式(37)において、X、Yは同一であっても異なっていてもよく、ハロゲンで置換されていてもよく、ジフルオロピロメリット酸二無水物、ジクロロピロメリット酸二無水物等も用いることができる。In the general formulas (35) and (36), R 4 and R 5 may contain a carbon-carbon single bond or a halogen atom other than fluorine (chlorine, bromine, iodine), and 2,2-bis (3,4-dicarboxytrifluorophenoxy) propane dianhydride, 1,4-bis (3,4-dicarboxytrifluorophenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxytri Fluorophenoxy) tetrachlorobenzene dianhydride, 2,2 ′, 5,5 ′, 6,6′-hexafluoro-3,3 ′, 4,4 ′,-biphenyltetracarboxylic dianhydride and the like. In the general formula (37), X and Y may be the same or different and may be substituted with halogen, such as difluoropyromellitic dianhydride, dichloropyromellitic dianhydride, etc. Can also be used.

ジアミン化合物としては、例えば、1,4−ジアミノシクロヘキサン、4,4’−ジアミノジシクロヘキシルメタン、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビシクロヘキサン、2,2’−ビス(4−アミノシクロヘキシル)−ヘキサフルオロプロパン、等やこれらの構造異性体が挙げられる。   Examples of the diamine compound include 1,4-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 2,2′-bis (trifluoromethyl) -4,4′-diaminobicyclohexane, 2,2′-bis. (4-aminocyclohexyl) -hexafluoropropane and the like and structural isomers thereof.

以下に、本発明の蛍光材料を用いた、フィルムの製造方法の一例を示す。
まず、極性有機溶媒中で、1,4−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物とジフルオロピロメリット酸二無水物の任意のモル比の混合物を4,4’−ジアミノジシクロヘキシルメタンとを重縮合し、ポリアミド酸溶液を得る。この時、N,O-ビス(トリメチルシリル)アセトアミドやN,O-ビス(トリメチルシリル)トリフルオロアセトアミドのようなシリルエステル化物を混合すると、原料の会合体や生成物の不溶化(ゲル化)が起こりにくくなる。用いられる極性有機溶媒としては、例えば、N−メチル−4−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等が挙げられる。重合溶液中の原料化合物の濃度は、好ましくは5〜40重量%であり、更に好ましくは10〜25重量%である。この反応を下記式に示す。
Below, an example of the manufacturing method of a film using the fluorescent material of this invention is shown.
First, in a polar organic solvent, a mixture of 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride and difluoropyromellitic dianhydride in an arbitrary molar ratio is converted to 4,4′-diaminodicyclohexylmethane. Are polycondensed to obtain a polyamic acid solution. At this time, when a silyl esterified product such as N, O-bis (trimethylsilyl) acetamide or N, O-bis (trimethylsilyl) trifluoroacetamide is mixed, insolubilization (gelation) of the raw material aggregates and products hardly occurs. Become. Examples of the polar organic solvent used include N-methyl-4-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like. The concentration of the raw material compound in the polymerization solution is preferably 5 to 40% by weight, more preferably 10 to 25% by weight. This reaction is shown in the following formula.

Figure 0005028626
Figure 0005028626

上述のようにして得られたポリアミド酸溶液を、溶融石英板上に回転塗布し、窒素雰囲気下で、例えば70℃程度の温度と300℃程度の温度の2段階で加熱し、イミド化する。この反応を下記式に示す。加熱の例としては、例えば、70℃で1時間、300℃で1時間30分のように行ってもよい。イミド化後、空気中あるいは水中で石英板から剥離することによりポリイミドフィルムを得る。石英板からの剥離が困難な場合は、ポリアミド酸溶液をアルミ板上に回転塗布し、熱イミド化後、基板ごと10%塩酸に浸しアルミ板を溶解することにより、ポリイミドフィルムを得る。   The polyamic acid solution obtained as described above is spin-coated on a fused quartz plate, and heated in two stages, for example, at a temperature of about 70 ° C. and a temperature of about 300 ° C. in a nitrogen atmosphere, and imidized. This reaction is shown in the following formula. For example, the heating may be performed at 70 ° C. for 1 hour and at 300 ° C. for 1 hour 30 minutes. After imidation, a polyimide film is obtained by peeling from the quartz plate in air or water. When peeling from the quartz plate is difficult, a polyimide film is obtained by spin-coating a polyamic acid solution on the aluminum plate, thermal imidization, and then immersing the substrate together with 10% hydrochloric acid to dissolve the aluminum plate.

Figure 0005028626
Figure 0005028626

ポリアミド酸の合成方法としては、上記のように極性有機溶媒を用いて合成する方法の他、原料である酸二無水物とジアミン化合物の昇華性を利用して、真空蒸着重合法により基板上で合成する方法が挙げられる。この場合のポリイミドフィルムの合成方法としては、具体的には、酸二無水物モノマーとジアミンモノマーを、真空槽内でそれぞれの蒸着源を加熱して蒸発させ、基板上でポリアミド酸を合成し、さらにこれを不活性気体中で加熱して、脱水閉環することによりポリイミド薄膜を得ることができる。また、必要に応じてピリジン/無水酢酸などの閉環触媒と脱水剤の組み合わせによる化学処理を行ってイミド化してもよい。   As a method for synthesizing the polyamic acid, in addition to the method of synthesizing using a polar organic solvent as described above, the sublimation property of the acid dianhydride and the diamine compound as raw materials is used to form a polyamic acid on the substrate by vacuum deposition polymerization. The method of synthesizing is mentioned. As a method for synthesizing the polyimide film in this case, specifically, an acid dianhydride monomer and a diamine monomer are evaporated by heating respective vapor deposition sources in a vacuum chamber, and a polyamic acid is synthesized on the substrate. Furthermore, a polyimide thin film can be obtained by heating this in inert gas and carrying out dehydration ring closure. Further, if necessary, imidization may be performed by chemical treatment with a combination of a ring-closing catalyst such as pyridine / acetic anhydride and a dehydrating agent.

本発明の蛍光材料は、有機EL素子、有機レーザー、空間光変調素子等の有機発光デバイスの材料として用いることができる。例えば、本発明の蛍光材料のフィルムを発光層/受光層として用いて、透明基板/透明電極/電荷輸送層/発光層/受光層/電極の積層体を形成することにより有機EL素子にすることができる。
その他、通信用の光導波路や光源、光ファイバー増幅器、蛍光増白剤、塗料、インク、蛍光コレクタ、シンチレータ、植物育成用フィルム等に利用することができる。
The fluorescent material of the present invention can be used as a material for organic light-emitting devices such as organic EL elements, organic lasers, and spatial light modulation elements. For example, using the fluorescent material film of the present invention as a light emitting layer / light receiving layer, an organic EL device is formed by forming a laminate of transparent substrate / transparent electrode / charge transport layer / light emitting layer / light receiving layer / electrode. Can do.
In addition, it can be used for optical waveguides and light sources for communication, optical fiber amplifiers, optical brighteners, paints, inks, fluorescent collectors, scintillators, plant growth films, and the like.

以下に、実施例を示して本発明を具体的に説明するが、これらにより本発明は何ら制限を受けるものではない。
実施例1
三角フラスコに、1,4−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物(HQDEA)0.422g(1.05mmol)、ジフルオロピロメリット酸二無水物(P2FDA)0.0141g(0.0553mmol)、及び4,4’−ジアミノジシクロヘキシルメタン(DCHM)0.232g(1.11mmol)を加え、溶液の原材料の濃度が12.5重量%になるようにN,N−ジメチルアセトアミド(DMAc)4.69gを加えた。三角フラスコ中の溶液を窒素雰囲気中、室温で24時間攪拌し、ポリアミド酸のDMAc溶液を得た。得られたポリアミド酸のDMAc溶液を直径75mmの石英板上に回転塗布し、窒素雰囲気下、70℃で1時間、300℃で1時間30分、2段階で昇温して加熱イミド化を行った。加熱イミド化によって形成された層を石英板から剥離して蛍光材料である、ポリイミドを含むポリイミド薄膜を得た。得られたポリイミド薄膜に含まれるポリイミドにおける、上記一般式(21)で表わされる繰り返し単位と、上記一般式(32)で表わされる繰り返し単位との共重合比は、上記一般式(21)で表わされる繰り返し単位:上記一般式(32)で表わされる繰り返し単位が、95:5(モル比)である。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.
Example 1
To an Erlenmeyer flask, 0.422 g (1.05 mmol) of 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride (HQDEA), 0.0141 g of difluoropyromellitic dianhydride (P2FDA) (0. 0,535 mmol), and 4,32′-diaminodicyclohexylmethane (DCHM) 0.232 g (1.11 mmol), and N, N-dimethylacetamide (DMAc) so that the raw material concentration of the solution is 12.5 wt%. 4.69 g was added. The solution in the Erlenmeyer flask was stirred in a nitrogen atmosphere at room temperature for 24 hours to obtain a DMAc solution of polyamic acid. The obtained DMAc solution of polyamic acid was spin-coated on a quartz plate having a diameter of 75 mm, and heated in a nitrogen atmosphere at 70 ° C. for 1 hour, at 300 ° C. for 1 hour 30 minutes, and heated for imidization. It was. The layer formed by heating imidation was peeled from the quartz plate to obtain a polyimide thin film containing polyimide, which is a fluorescent material. The copolymer ratio of the repeating unit represented by the general formula (21) and the repeating unit represented by the general formula (32) in the polyimide contained in the obtained polyimide thin film is represented by the general formula (21). Repeating unit: The repeating unit represented by the general formula (32) is 95: 5 (molar ratio).

得られたポリイミド薄膜の赤外吸収スペクトルを減衰全反射(ATR)法により測定したところ、1777cm−1及び1719cm−1にイミド基のカルボニルに特有の吸収が観察され、またポリアミド酸において観測される1677cm−1、1637cm−1のアミド結合特有の吸収が消失しており、イミド化が完全に進行したことが確認できた。得られた薄膜の膜厚を蝕針式膜厚計で測定したところ、3.2μmであった。得られたポリイミド薄膜に、波長320nmの紫外光を照射して励起し、その蛍光観測波長(蛍光波長)を300〜800nmで測定したところ、350〜700nmにおいて強い蛍光が観測された。結果を図2に示した。図2において縦軸は蛍光強度(対数表示)、横軸は波長(nm)を示している。図2に示すように、実施例1で得られた蛍光材料は、蛍光波長が可視域全体に広がっており、明るい白色の蛍光を示していた。そこで、得られたポリイミド(白色発光ポリイミド)の蛍光量子収率を、Y. Gen, A Trajkovska, et al. J. Am. Chem. Soc., 124, 8337 (2002)に記載の方法に従って測定した。すなわち、高透明性かつ無蛍光であるポリメチルメタクリレート樹脂中にアントラセンを1×10-2mol/l の濃度で溶解させたフィルム状試料を調製し、この蛍光強度を測定するとともに、アントラセンの蛍光量子収率を0.28として校正して、上記で得られた白色蛍光材料の蛍光量子収率を見積もった。得られたポリイミドの蛍光量子収率は0.044であった。
また、ポリイミド薄膜を水中に3日間浸漬し、重量の増加により吸水率を求めたところ、1.0%であった。
The infrared absorption spectrum of the obtained polyimide thin film was measured by attenuated total reflection (ATR) method, the absorption specific to carbonyl of the imide group to 1777cm -1 and 1719 cm -1 was observed, also observed in the polyamic acid Absorption peculiar to the amide bond at 1677 cm −1 and 1637 cm −1 disappeared, and it was confirmed that imidization proceeded completely. It was 3.2 micrometers when the film thickness of the obtained thin film was measured with the stylus type film thickness meter. When the obtained polyimide thin film was excited by irradiation with ultraviolet light having a wavelength of 320 nm and the fluorescence observation wavelength (fluorescence wavelength) was measured at 300 to 800 nm, strong fluorescence was observed at 350 to 700 nm. The results are shown in FIG. In FIG. 2, the vertical axis represents fluorescence intensity (logarithmic display), and the horizontal axis represents wavelength (nm). As shown in FIG. 2, the fluorescent material obtained in Example 1 had bright white fluorescence with the fluorescence wavelength extending over the entire visible range. Therefore, the fluorescence quantum yield of the obtained polyimide (white light emitting polyimide) was measured according to the method described in Y. Gen, A Trajkovska, et al. J. Am. Chem. Soc., 124, 8337 (2002). . That is, a film sample prepared by dissolving anthracene at a concentration of 1 × 10 −2 mol / l in a highly transparent and non-fluorescent polymethylmethacrylate resin was prepared, and the fluorescence intensity was measured and the anthracene fluorescence was measured. The quantum yield was calibrated as 0.28, and the fluorescence quantum yield of the white fluorescent material obtained above was estimated. The fluorescence quantum yield of the obtained polyimide was 0.044.
Moreover, when the polyimide thin film was immersed in water for 3 days and the water absorption was calculated | required by the increase in weight, it was 1.0%.

実施例2
三角フラスコに、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物(HQDEA)0.429g(1.07mmol)、ジフルオロピロメリット酸二無水物(P2FDA)0.00839g(0.0330mmol)、及び4,4’-ジアミノジシクロヘキシルメタン(DCHM)0.231g(1.10mmol)を加え、溶液の原材料の濃度が12.5重量%になるようにN,N-ジメチルアセトアミド(DMAc)4.69gを加えた。三角フラスコ中の溶液を窒素雰囲気中、室温で24時間攪拌し、ポリアミド酸のDMAc溶液を得た。得られたポリアミド酸のDMAc溶液を直径75mmの石英板上に回転塗布し、窒素雰囲気下、70℃で1時間、300℃で1時間30分、2段階で昇温して加熱イミド化を行った。加熱イミド化によって形成された層を石英板から剥離して蛍光材料である、ポリイミドを含むポリイミド薄膜を得た。得られたポリイミド薄膜に含まれるポリイミドにおける、上記一般式(21)で表わされる繰り返し単位と、上記一般式(32)で表わされる繰り返し単位との共重合比は、上記一般式(21)で表わされる繰り返し単位:上記一般式(32)で表わされる繰り返し単位が、97:3(モル比)である。
Example 2
Into an Erlenmeyer flask, 0.429 g (1.07 mmol) of 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride (HQDEA), 0.00839 g of difluoropyromellitic dianhydride (P2FDA) (0. 0,330 mmol), and 4,4′-diaminodicyclohexylmethane (DCHM) 0.231 g (1.10 mmol), and N, N-dimethylacetamide (DMAc) so that the concentration of the raw material of the solution is 12.5 wt% 4.69 g was added. The solution in the Erlenmeyer flask was stirred in a nitrogen atmosphere at room temperature for 24 hours to obtain a DMAc solution of polyamic acid. The obtained DMAc solution of polyamic acid was spin-coated on a quartz plate having a diameter of 75 mm, and heated in a nitrogen atmosphere at 70 ° C. for 1 hour, at 300 ° C. for 1 hour 30 minutes, and heated for imidization. It was. The layer formed by heating imidation was peeled from the quartz plate to obtain a polyimide thin film containing polyimide, which is a fluorescent material. The copolymer ratio of the repeating unit represented by the general formula (21) and the repeating unit represented by the general formula (32) in the polyimide contained in the obtained polyimide thin film is represented by the general formula (21). Repeating unit: The repeating unit represented by the general formula (32) is 97: 3 (molar ratio).

得られたポリイミド薄膜の赤外吸収スペクトルを減衰全反射(ATR)法により測定したところ、1777cm-1及び1719cm-1にイミド基のカルボニルに特有の吸収が観察され、またポリアミド酸において観測される1677cm-1、1637cm-1のアミド結合特有の吸収が消失しており、イミド化が完全に進行したことが確認できた。得られた薄膜の膜厚を触針式膜厚計で測定したところ、3.0μmであった。得られたポリイミド薄膜に、波長320nmの紫外光を照射して励起し、その蛍光観測波長(蛍光波長)を300〜800nmで測定したところ、波長350〜700nmにおいて強い蛍光が観測された。結果を図2に示した。図2において縦軸は蛍光強度(対数表示)、横軸は波長(nm)を示す。図2に示すように、実施例2で得られた蛍光材料は、蛍光波長が可視域全体に広がっており、明るい白色の蛍光を示していた。実施例1と同様の方法で、この蛍光材料の蛍光量子収率を見積もったところ0.091であった。
また、ポリイミド薄膜を水中に3日間浸漬し、重量の増加により吸水率を求めたところ、
1.0%であった。
The infrared absorption spectrum of the obtained polyimide thin film was measured by attenuated total reflection (ATR) method, the absorption specific to carbonyl of the imide group to 1777cm -1 and 1719 cm -1 was observed, also observed in the polyamic acid Absorption peculiar to the amide bond at 1677 cm −1 and 1637 cm −1 disappeared, and it was confirmed that imidization proceeded completely. It was 3.0 micrometers when the film thickness of the obtained thin film was measured with the stylus type film thickness meter. When the obtained polyimide thin film was excited by irradiation with ultraviolet light having a wavelength of 320 nm and the fluorescence observation wavelength (fluorescence wavelength) was measured at 300 to 800 nm, strong fluorescence was observed at a wavelength of 350 to 700 nm. The results are shown in FIG. In FIG. 2, the vertical axis represents fluorescence intensity (logarithmic display), and the horizontal axis represents wavelength (nm). As shown in FIG. 2, the fluorescent material obtained in Example 2 showed a bright white fluorescence with the fluorescence wavelength extending over the entire visible range. When the fluorescence quantum yield of this fluorescent material was estimated by the same method as in Example 1, it was 0.091.
Moreover, when the polyimide thin film was immersed in water for 3 days and the water absorption was determined by weight increase,
1.0%.

実施例3
三角フラスコに、3,4,3’,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)0.277g(0.942mmol)、ジフルオロピロメリット酸二無水物(P2FDA)0.00998g(0.0393mmol)、及び4,4’-ジアミノジシクロヘキシルメタン(DCHM)0.206g(0.981mmol)を加え、溶液の原材料の濃度が7.0重量%になるようにN,N-ジメチルアセトアミド(DMAc)6.56gを加えた。三角フラスコ中の溶液を窒素雰囲気中、室温で24時間攪拌し、ポリアミド酸のDMAc溶液を得た。得られたポリアミド酸のDMAc溶液を直径75mmの石英板上に回転塗布し、窒素雰囲気下、70℃で1時間、300℃で1時間30分、2段階で昇温して加熱イミド化を行った。加熱イミド化によって形成された層を石英板から剥離して蛍光材料であるを含むポリイミド薄膜を得た。得られたポリイミド薄膜に含まれるポリイミドにおける、上記一般式(23)で表わされる繰り返し単位と、上記一般式(32)で表わされる繰り返し単位との共重合比は、上記一般式(23)で表わされる繰り返し単位:上記一般式(32)で表わされる繰り返し単位が、96:4(モル比)である。
Example 3
Into an Erlenmeyer flask, 0.277 g (0.942 mmol) of 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (s-BPDA), 0.00998 g of difluoropyromellitic dianhydride (P2FDA) (0 0,393 mmol), and 0.206 g (0.981 mmol) of 4,4′-diaminodicyclohexylmethane (DCHM) and N, N-dimethylacetamide (DMAc) so that the concentration of the raw materials in the solution is 7.0 wt%. ) 6.56 g was added. The solution in the Erlenmeyer flask was stirred in a nitrogen atmosphere at room temperature for 24 hours to obtain a DMAc solution of polyamic acid. The obtained DMAc solution of polyamic acid was spin-coated on a quartz plate having a diameter of 75 mm, and heated in a nitrogen atmosphere at 70 ° C. for 1 hour, at 300 ° C. for 1 hour 30 minutes, and heated for imidization. It was. The layer formed by heating imidization was peeled from the quartz plate to obtain a polyimide thin film containing a fluorescent material. The copolymer ratio of the repeating unit represented by the general formula (23) and the repeating unit represented by the general formula (32) in the polyimide contained in the obtained polyimide thin film is represented by the general formula (23). Repeating unit: The repeating unit represented by the general formula (32) is 96: 4 (molar ratio).

得られたポリイミド薄膜の赤外吸収スペクトルを減衰全反射(ATR)法により測定したところ、1777cm-1及び1719cm-1にイミド基のカルボニルに特有の吸収が観察され、またポリアミド酸において観測される1677cm-1、1637cm-1のアミド結合特有の吸収が消失しており、イミド化が完全に進行したことが確認できた。得られた薄膜の膜厚を触針式膜厚計で測定したところ、2.0μmであった。得られたポリイミド薄膜に、波長364nmの紫外光を照射して励起し、その蛍光観測波長(蛍光波長)を300〜800nmで測定したところ、波長350〜700nmにおいて強い蛍光が観測された。結果を図2に示した。図2に示すように、実施例3で得られた蛍光材料は、蛍光波長が可視域全体に広がっており、明るい白色の蛍光を示していた。実施例1と同様の方法で、この蛍光材料の蛍光量子収率を見積もったところ0.042であった。
また、ポリイミド薄膜を水中に3日間浸漬し、重量の増加により吸水率を求めたところ、0.9%であった。
The infrared absorption spectrum of the obtained polyimide thin film was measured by attenuated total reflection (ATR) method, the absorption specific to carbonyl of the imide group to 1777cm -1 and 1719 cm -1 was observed, also observed in the polyamic acid Absorption peculiar to the amide bond at 1677 cm −1 and 1637 cm −1 disappeared, and it was confirmed that imidization proceeded completely. It was 2.0 micrometers when the film thickness of the obtained thin film was measured with the stylus type film thickness meter. When the obtained polyimide thin film was excited by irradiation with ultraviolet light having a wavelength of 364 nm and the fluorescence observation wavelength (fluorescence wavelength) was measured at 300 to 800 nm, strong fluorescence was observed at a wavelength of 350 to 700 nm. The results are shown in FIG. As shown in FIG. 2, the fluorescent material obtained in Example 3 showed bright white fluorescence with the fluorescence wavelength extending over the entire visible range. When the fluorescence quantum yield of this fluorescent material was estimated by the same method as in Example 1, it was 0.042.
Moreover, when the polyimide thin film was immersed in water for 3 days and the water absorption was calculated | required by the increase in weight, it was 0.9%.

実施例4
三角フラスコに、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物(ODPA)0.776g(2.50mmol)、ジフルオロピロメリット酸二無水物(P2FDA)0.0197g(0.0776mmol)、及び4,4’-ジアミノジシクロヘキシルメタン(DCHM)0.543g(2.59mmol)を加え、溶液の原材料の濃度が12.5重量%になるようにN,N-ジメチルアセトアミド(DMAc)9.37gを加えた。三角フラスコ中の溶液を窒素雰囲気中、室温で24時間攪拌し、ポリアミド酸のDMAc溶液を得た。得られたポリアミド酸のDMAc溶液を直径75mmの石英板上に回転塗布し、窒素雰囲気下、70℃で1時間、300℃で1時間30分、2段階で昇温して加熱イミド化を行った。加熱イミド化によって形成された層を石英板から剥離して蛍光材料であるを含むポリイミド薄膜を得た。得られたポリイミド薄膜に含まれるポリイミドにおける、上記一般式(20)で表わされる繰り返し単位と、上記一般式(32)で表わされる繰り返し単位との共重合比は、上記一般式(20)で表わされる繰り返し単位:上記一般式(32)で表わされる繰り返し単位が、97:3(モル比)である。
Example 4
Into an Erlenmeyer flask, 0.776 g (2.50 mmol) of 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride (ODPA), 0.0197 g of difluoropyromellitic dianhydride (P2FDA) (0. 0,766 mmol), and 4,43′-diaminodicyclohexylmethane (DCHM) 0.543 g (2.59 mmol), and N, N-dimethylacetamide (DMAc) so that the concentration of the raw material of the solution is 12.5 wt% 9.37 g was added. The solution in the Erlenmeyer flask was stirred in a nitrogen atmosphere at room temperature for 24 hours to obtain a DMAc solution of polyamic acid. The obtained DMAc solution of polyamic acid was spin-coated on a quartz plate having a diameter of 75 mm, and heated in a nitrogen atmosphere at 70 ° C. for 1 hour, at 300 ° C. for 1 hour 30 minutes, and heated for imidization. It was. The layer formed by heating imidization was peeled from the quartz plate to obtain a polyimide thin film containing a fluorescent material. The copolymer ratio of the repeating unit represented by the general formula (20) and the repeating unit represented by the general formula (32) in the polyimide contained in the obtained polyimide thin film is represented by the general formula (20). Repeating unit: The repeating unit represented by the general formula (32) is 97: 3 (molar ratio).

得られたポリイミド薄膜の赤外吸収スペクトルを減衰全反射(ATR)法により測定したところ、1777cm-1及び1719cm-1にイミド基のカルボニルに特有の吸収が観察され、またポリアミド酸において観測される1677cm-1、1637cm-1のアミド結合特有の吸収が消失しており、イミド化が完全に進行したことが確認できた。得られた薄膜の膜厚を触針式膜厚計で測定したところ、2.5μmであった。得られたポリイミド薄膜に、波長347nmの紫外光を照射して励起し、その蛍光観測波長(蛍光波長)を300〜800nmで測定したところ、波長350〜700nmにおいて強い蛍光が観測された。結果を図2に示した。図2に示すように、実施例4で得られた蛍光材料は、蛍光波長が可視域全体に広がっており、明るい白色の蛍光を示していた。実施例1と同様の方法で、この蛍光材料の蛍光量子収率を見積もったところ0.019であった。
また、ポリイミド薄膜を水中に3日間浸漬し、重量の増加により吸水率を求めたところ、0.9%であった。
The infrared absorption spectrum of the obtained polyimide thin film was measured by attenuated total reflection (ATR) method, the absorption specific to carbonyl of the imide group to 1777cm -1 and 1719 cm -1 was observed, also observed in the polyamic acid Absorption peculiar to the amide bond at 1677 cm −1 and 1637 cm −1 disappeared, and it was confirmed that imidization proceeded completely. It was 2.5 micrometers when the film thickness of the obtained thin film was measured with the stylus type film thickness meter. When the obtained polyimide thin film was excited by irradiation with ultraviolet light having a wavelength of 347 nm, and its fluorescence observation wavelength (fluorescence wavelength) was measured at 300 to 800 nm, strong fluorescence was observed at a wavelength of 350 to 700 nm. The results are shown in FIG. As shown in FIG. 2, the fluorescent material obtained in Example 4 showed a bright white fluorescence with the fluorescence wavelength extending over the entire visible range. The fluorescence quantum yield of this fluorescent material was estimated by the same method as in Example 1 to be 0.019.
Moreover, when the polyimide thin film was immersed in water for 3 days and the water absorption was calculated | required by the increase in weight, it was 0.9%.

上述したように、実施例1〜4で得られた蛍光材料を波長300〜365nmの紫外光を照射して励起したところ、その発光波長は、図2に示すように350〜700nmと可視域に広く存在し、しかもその発光強度は目視で容易に確認できるほど高効率であった。このことより、実施例1〜4で得られた、ポリイミドを含有する蛍光材料が白色の発光デバイス用材料として好適であることが確認された。更に、これらのポリイミドを含有する蛍光材料は、熱分解開始温度が415℃以上であり、従来の高分子系蛍光材料に比して格段に高いことから、耐熱性に優れ、また、水分吸収率も低いことから、光電デバイス材料として好適であることが確認された。   As described above, when the fluorescent materials obtained in Examples 1 to 4 were excited by irradiation with ultraviolet light having a wavelength of 300 to 365 nm, the emission wavelength was in the visible range of 350 to 700 nm as shown in FIG. It was widely available, and its emission intensity was so high that it could be easily confirmed visually. From this, it was confirmed that the fluorescent material containing polyimide obtained in Examples 1 to 4 is suitable as a white light emitting device material. Furthermore, these polyimide-containing fluorescent materials have a thermal decomposition starting temperature of 415 ° C. or higher, and are much higher than conventional polymer fluorescent materials, so they have excellent heat resistance and moisture absorption rate. Therefore, it was confirmed that it is suitable as a photoelectric device material.

比較例1
三角フラスコに、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物(HQDEA)1.55g(5.0mmol)と4,4’-ジアミノジシクロヘキシルメタン(DCHM)1.05g(5.0mmol)を加え、溶液の原材料の濃度が15重量%になるようにN,N-ジメチルアセトアミド(DMAc)14.7gを加えた。三角フラスコ中の溶液を窒素雰囲気中、室温で24時間攪拌し、ポリアミド酸のDMAc溶液を得た。得られたポリアミド酸のDMAc溶液を直径75mmの石英板上に回転塗布し、窒素雰囲気下、70℃で2時間、160℃で1時間、250℃で30分、300℃で2時間、段階的に昇温して加熱イミド化を行った。加熱イミド化によって形成された層を石英板から剥離して蛍光材料であるポリイミドを含有する蛍光材料を含むポリイミド薄膜を得た。
Comparative Example 1
Into an Erlenmeyer flask, 1.55-g (5.0 mmol) of 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride (HQDEA) and 1.05 g of 4,4′-diaminodicyclohexylmethane (DCHM) (5 0.0 mmol), and 14.7 g of N, N-dimethylacetamide (DMAc) was added so that the concentration of the raw material in the solution was 15% by weight. The solution in the Erlenmeyer flask was stirred in a nitrogen atmosphere at room temperature for 24 hours to obtain a DMAc solution of polyamic acid. The obtained polyamic acid DMAc solution was spin-coated on a quartz plate having a diameter of 75 mm, and stepwise in a nitrogen atmosphere at 70 ° C. for 2 hours, 160 ° C. for 1 hour, 250 ° C. for 30 minutes, and 300 ° C. for 2 hours. The solution was heated to imidation by heating. A layer formed by heating imidation was peeled off from the quartz plate to obtain a polyimide thin film containing a fluorescent material containing polyimide as a fluorescent material.

得られたポリイミド薄膜の赤外吸収スペクトルを減衰全反射(ATR)法により測定したところ、1777cm-1及び1719cm-1にイミド基のカルボニルに特有の吸収が観察され、またポリアミド酸において観測される1677cm-1、1637cm-1のアミド結合特有の吸収が消失しており、イミド化が完全に進行したことが確認できた。このポリイミド薄膜の蛍光発光スペクトルを励起波長345nmで測定したところ、中心波長415nmに蛍光が観測され、青紫色であった。結果を図3に示す。図3に示すように、比較例1で得られた蛍光材料は、蛍光波長が可視域全体に広がっていなかった。このポリイミド薄膜の吸収端を測定したところ、波長354nmの紫外域であった。The infrared absorption spectrum of the obtained polyimide thin film was measured by attenuated total reflection (ATR) method, the absorption specific to carbonyl of the imide group to 1777cm -1 and 1719 cm -1 was observed, also observed in the polyamic acid Absorption peculiar to the amide bond at 1677 cm −1 and 1637 cm −1 disappeared, and it was confirmed that imidization proceeded completely. When the fluorescence emission spectrum of this polyimide thin film was measured at an excitation wavelength of 345 nm, fluorescence was observed at a central wavelength of 415 nm, and it was blue-violet. The results are shown in FIG. As shown in FIG. 3, in the fluorescent material obtained in Comparative Example 1, the fluorescence wavelength did not spread over the entire visible range. When the absorption edge of this polyimide thin film was measured, it was an ultraviolet region with a wavelength of 354 nm.

比較例2
比較例1におけるHQDEAに代えて、ジフルオロピロメリット酸二無水物(P2FDA)1.27g(5.0mmol)を用いて、実施例1と同様の方法でポリアミド酸のDMAc溶液(10重量%)を調製し、ポリイミド薄膜を作製した。得られた薄膜の膜厚は14.0μm、5%重量減少温度は394℃であった。このポリイミド薄膜の蛍光発光スペクトルを励起波長543nmで測定したところ、中心波長590nm及び706nmに蛍光が観測され、赤橙色であった。結果を図3に示す。図3に示すように、比較例1で得られた蛍光材料は、蛍光波長が可視域全体に広がっていなかった。
Comparative Example 2
Instead of HQDEA in Comparative Example 1, 1.27 g (5.0 mmol) of difluoropyromellitic dianhydride (P2FDA) was used to prepare a DMAc solution (10 wt%) of polyamic acid in the same manner as in Example 1. The polyimide thin film was prepared. The thickness of the obtained thin film was 14.0 μm, and the 5% weight loss temperature was 394 ° C. When the fluorescence emission spectrum of the polyimide thin film was measured at an excitation wavelength of 543 nm, fluorescence was observed at center wavelengths of 590 nm and 706 nm, and the color was reddish orange. The results are shown in FIG. As shown in FIG. 3, in the fluorescent material obtained in Comparative Example 1, the fluorescence wavelength did not spread over the entire visible range.

比較例3
比較例1におけるHQDEAに代えて、3,4,3’,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)1.47g(5.0mmol)を用いて、実施例1と同様の方法でポリアミド酸のDMAc溶液(10重量%)を調製し、ポリイミド薄膜を作製した。このポリイミド薄膜の蛍光発光スペクトルを励起波長365nmで測定したところ、中心波長398nmに蛍光が観測され、青紫色であった。結果を図3に示す。図3に示すように、比較例3で得られた蛍光材料は、蛍光波長が可視域全体に広がっていなかった。
Comparative Example 3
The same method as in Example 1 except that 1.47 g (5.0 mmol) of 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (s-BPDA) was used instead of HQDEA in Comparative Example 1. A DMAc solution (10% by weight) of polyamic acid was prepared to prepare a polyimide thin film. When the fluorescence emission spectrum of this polyimide thin film was measured at an excitation wavelength of 365 nm, fluorescence was observed at a central wavelength of 398 nm, and it was blue-violet. The results are shown in FIG. As shown in FIG. 3, in the fluorescent material obtained in Comparative Example 3, the fluorescence wavelength did not spread over the entire visible range.

比較例4
比較例1におけるHQDEAに代えて、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物(ODPA)1.55g(5.0mmol)を用いて、実施例1と同様の方法でポリアミド酸のDMAc溶液(10重量%)を調製し、ポリイミド薄膜を作製した。このポリイミド薄膜の蛍光発光スペクトルを励起波長347nmで測定したところ、中心波長399nmに蛍光が観測され、青紫色であった。結果を図3に示す。図3に示すように、比較例4で得られた蛍光材料は、蛍光波長が可視域全体に広がっていなかった。
Comparative Example 4
In place of HQDEA in Comparative Example 1, 1.55 g (5.0 mmol) of 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride (ODPA) was used in the same manner as in Example 1. A polyamic acid DMAc solution (10 wt%) was prepared to prepare a polyimide thin film. When the fluorescence emission spectrum of this polyimide thin film was measured at an excitation wavelength of 347 nm, fluorescence was observed at a central wavelength of 399 nm, and it was blue-violet. The results are shown in FIG. As shown in FIG. 3, in the fluorescent material obtained in Comparative Example 4, the fluorescence wavelength did not spread over the entire visible range.

蛍光発光機構を示した図である。It is the figure which showed the fluorescence light emission mechanism. 蛍光材料の蛍光強度を測定した結果を示すグラフである。It is a graph which shows the result of having measured the fluorescence intensity of the fluorescent material. 蛍光材料の蛍光強度を測定した結果を示すグラフである。It is a graph which shows the result of having measured the fluorescence intensity of the fluorescent material.

Claims (2)

下記一般式(1)で表わされる繰り返し単位であって、該繰り返し単位からなるポリイミドが380〜520nmに蛍光ピークを有する繰り返し単位と、
下記一般式(2)で表わされる繰り返し単位であって、該繰り返し単位からなるポリイミドが560〜760nmに蛍光ピークを有する繰り返し単位とを有するポリイミドを含有する蛍光材料。
Figure 0005028626
(式中、Rは、下記一般式(6)、(7)、(8)、(9)、(10)又は(14)で表わされる芳香族基を示し、Rは、下記一般式(15)、(16)、(17)又は(18)で表わされる脂環式アルキル基を示す。)
Figure 0005028626
(式中、Rは、下記一般式(15)、(16)、(17)又は(18)で表わされる脂環式アルキル基を示し、Rは、下記一般式(5)で表される4価の芳香族基を示す。)
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
(式中X及びYは、同一であっても異なっていてもよく、ハロゲンを示す。)
A repeating unit represented by the following general formula (1), wherein the polyimide composed of the repeating unit has a fluorescence peak at 380 to 520 nm,
The fluorescent material containing the polyimide which is a repeating unit represented by following General formula (2), Comprising: The polyimide which consists of this repeating unit has a repeating unit which has a fluorescence peak in 560-760 nm.
Figure 0005028626
(In the formula, R 1 represents an aromatic group represented by the following general formula (6), (7), (8), (9), (10) or (14)), and R 2 represents the following general formula. (15) Indicates an alicyclic alkyl group represented by (16), (17) or (18) .
Figure 0005028626
Wherein R 2 represents an alicyclic alkyl group represented by the following general formula (15), (16), (17) or (18), and R 3 is represented by the following general formula (5). A tetravalent aromatic group.)
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
Figure 0005028626
(In the formula, X and Y may be the same or different and each represents a halogen .)
上記一般式(2)においてRが、下記一般式(19)で表わされる、請求項1記載の蛍光材料。
Figure 0005028626
The fluorescent material according to claim 1, wherein R 3 in the general formula (2) is represented by the following general formula (19).
Figure 0005028626
JP2007528246A 2005-05-09 2006-05-01 Fluorescent material Active JP5028626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528246A JP5028626B2 (en) 2005-05-09 2006-05-01 Fluorescent material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005135919 2005-05-09
JP2005135919 2005-05-09
JP2007528246A JP5028626B2 (en) 2005-05-09 2006-05-01 Fluorescent material
PCT/JP2006/309076 WO2006120954A1 (en) 2005-05-09 2006-05-01 Fluorescent material

Publications (2)

Publication Number Publication Date
JPWO2006120954A1 JPWO2006120954A1 (en) 2008-12-18
JP5028626B2 true JP5028626B2 (en) 2012-09-19

Family

ID=37396463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007528246A Active JP5028626B2 (en) 2005-05-09 2006-05-01 Fluorescent material

Country Status (2)

Country Link
JP (1) JP5028626B2 (en)
WO (1) WO2006120954A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173758A (en) * 2005-11-24 2007-07-05 Jfe Chemical Corp Blue light-emitting device containing polyimide
JP4947546B2 (en) * 2006-08-31 2012-06-06 国立大学法人東京工業大学 Fluorescent material and optical device using the same
JP5265994B2 (en) * 2007-12-27 2013-08-14 国立大学法人東京工業大学 Fluorescent polymer and optical device using the same
TWI477564B (en) * 2008-07-28 2015-03-21 Sharp Kk A polymer pigment material, a color conversion film thereof, and a multi-color light emitting organic EL device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273055A (en) * 1999-03-25 2000-10-03 Idemitsu Kosan Co Ltd Distyrylarylene derivative and organic electroluminescent element using the same
JP2004307857A (en) * 2003-03-26 2004-11-04 Rikogaku Shinkokai Fluorescent polyimide
JP2004341406A (en) * 2003-05-19 2004-12-02 Nitto Denko Corp Polymer optical waveguide
JP2005320393A (en) * 2004-05-07 2005-11-17 Rikogaku Shinkokai Fluorescent material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101115A (en) * 1981-12-11 1983-06-16 Ube Ind Ltd Color development of polyimide
JPS5936156A (en) * 1982-08-23 1984-02-28 Toray Ind Inc Thermoplastic resin composition
JPH04212206A (en) * 1990-03-27 1992-08-03 Hitachi Ltd Insulating paint, solderable insulated wire, manufacture of the insulated wire, and flyback transformer using the insulated wire
JP2006013419A (en) * 2004-05-21 2006-01-12 Manac Inc Flexible printed circuit board and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273055A (en) * 1999-03-25 2000-10-03 Idemitsu Kosan Co Ltd Distyrylarylene derivative and organic electroluminescent element using the same
JP2004307857A (en) * 2003-03-26 2004-11-04 Rikogaku Shinkokai Fluorescent polyimide
JP2004341406A (en) * 2003-05-19 2004-12-02 Nitto Denko Corp Polymer optical waveguide
JP2005320393A (en) * 2004-05-07 2005-11-17 Rikogaku Shinkokai Fluorescent material

Also Published As

Publication number Publication date
JPWO2006120954A1 (en) 2008-12-18
WO2006120954A1 (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP6225659B2 (en) Diamine containing hexafluoroisopropanol group, polyimide and polyamide using the same, cyclized product thereof, and production method thereof
TWI808096B (en) Low-color polymers for use in electronic devices
JP7505981B2 (en) Polymers for use in electronic devices
JP5748774B2 (en) Polyimide composite, polyamic acid solution, method for producing polyimide composite, and film comprising polyimide composite
JP6706771B2 (en) Organic light emitting material exhibiting room temperature phosphorescence and optical device using the same
Bruma et al. Silicon-containing aromatic polymers
CN109503837B (en) Polyimide with photochromic property and preparation method and application thereof
JP2020528086A (en) Low-color polymer for flexible substrates in electronic devices
JP5028626B2 (en) Fluorescent material
JP2004307857A (en) Fluorescent polyimide
JP4947546B2 (en) Fluorescent material and optical device using the same
JP2021080451A (en) Polymer with tunable refractive index
JP2005320393A (en) Fluorescent material
EP1953845A1 (en) Blue light-emitting device containing polyimide
JP2008297354A (en) Blue light-emitting polyimide
JP2008274165A (en) Fluorescent material
Liang et al. Photoluminescence properties of novel fluorescent polyimide based on excited state intramolecular proton transfer at the end groups
JP5265994B2 (en) Fluorescent polymer and optical device using the same
KR20170062528A (en) Substrate for organic electroluminescence, and organic electroluminescent display using same
JP2021130817A (en) Polymers for use in electronic devices
JP2002322280A (en) Colorless transparent polyimide, method for producing the same and laminated component
KR20050120749A (en) Perdeuterated poliimides, method for the production and use thereof in the form of transparent materials in the range of 2500-3500 cm-1
JP2009269986A (en) Polymeric-inorganic hybrid optical material
JP2018110105A (en) Substrate for organic electroluminescence and organic electroluminescence display using the same
DĂMĂCEANU et al. Polymers Containing 1, 3, 4-Oxadiazole Rings for Advanced Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150