JP2008055506A - Two-welding wire feeding arc welding method, multilayer welding method, and narrow groove welding method - Google Patents
Two-welding wire feeding arc welding method, multilayer welding method, and narrow groove welding method Download PDFInfo
- Publication number
- JP2008055506A JP2008055506A JP2006266878A JP2006266878A JP2008055506A JP 2008055506 A JP2008055506 A JP 2008055506A JP 2006266878 A JP2006266878 A JP 2006266878A JP 2006266878 A JP2006266878 A JP 2006266878A JP 2008055506 A JP2008055506 A JP 2008055506A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- welding wire
- wire
- arc
- molten pool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Arc Welding In General (AREA)
Abstract
Description
本発明は、2本の溶接ワイヤを近接して送給して溶接する2溶接ワイヤ送給アーク溶接方法の溶接性能向上に関するものである。 The present invention relates to an improvement in welding performance of a two-weld wire feeding arc welding method in which two welding wires are fed close to each other for welding.
1つ以上の溶接トーチから2本の溶接ワイヤを送給して溶接する2溶接ワイヤ送給アーク溶接方法が従来から種々提案されている。2溶接ワイヤ送給アーク溶接方法は、1本の溶接ワイヤを使用して行う一般的な消耗電極アーク溶接方法に比べて高溶着溶接及び高速溶接が可能である。以下、この2溶接ワイヤ送給アーク溶接方法に関する従来技術について説明する。 2. Description of the Related Art Conventionally, various two-weld wire feed arc welding methods for feeding and welding two welding wires from one or more welding torches have been proposed. The two welding wire feeding arc welding method can perform high welding welding and high-speed welding as compared with a general consumable electrode arc welding method using a single welding wire. Hereinafter, the prior art regarding this 2 welding wire feeding arc welding method is demonstrated.
[従来技術1]
特許文献1に記載する従来技術1は、消耗電極アーク溶接方法において、先行溶接ワイヤと後行溶接ワイヤとのなす角度を最大20度の条件でノズル内に挿入し、先行溶接ワイヤでアークを発生させ、後行溶接ワイヤを溶融池に挿入し、先行溶接ワイヤから母材に流れる溶接電流の一部を分流して後行溶接ワイヤに導いて溶接電源のアース端に合流せしめる溶接方法である。すなわち、先行溶接ワイヤに溶接電流を通電してアークを発生させ溶融池を形成し、後行溶接ワイヤにこの溶接電流の一部を分流して通電し溶融池に挿入する2溶接ワイヤ送給アーク溶接方法が開示されている。
[Prior art 1]
[従来技術2]
特許文献2に記載する従来技術2では、溶接進行方向に消耗電極ワイヤを先行溶接ワイヤ、フィラーワイヤを後行溶接ワイヤとして平行に配置してフィラーワイヤを溶融池に挿入して溶解させ、母材と溶接電源アース端間に流れるアース電流を制御し、溶融池を経由してフィラーワイヤに導出される電流量を変化させて溶接を行う。すなわち、先行溶接ワイヤに溶接電流を通電してアークを発生させ溶融池を形成し、後行溶接ワイヤに発熱させるための電流を制御して通電し溶融池に挿入する2溶接ワイヤ送給アーク溶接方法が開示されている。
[Prior Art 2]
In the
[従来技術3]
特許文献3に記載する従来技術3では、1つの溶接トーチから互いに電気的に絶縁された第1の溶接ワイヤ(先行溶接ワイヤ)及び第2の溶接ワイヤ(後行溶接ワイヤ)をそれぞれ予め設定した送給速度で送給し、第1の溶接ワイヤには予め設定した第1のピーク電流の通電と第1のベース電流の通電とを1周期とする通電を繰り返すと共に、第2の溶接ワイヤには予め設定した第2のピーク電流の通電と第2のベース電流の通電とを1周期とする通電を繰り返し、第1の溶接ワイヤ及び第2の溶接ワイヤと母材との間に2つのアークを発生させて溶接を行う。さらに、従来技術3では、2つのアーク間の干渉によるアーク状態の不安定を抑制するように、第1のベース電流及び第2のベース電流の通電を制御している。
[Prior Art 3]
In the
自動車用高張力鋼の重ね隅肉溶接では、疲労強度確保の観点から、図8(A)に示すような平坦なビード形状が要求される。同時に、図8(B)に示すように、上板部でのアンダーカット及びアンダフィルのない溶接部が要求される。上記の自動車用高張力鋼として、溶融金属の粘性が低い鉄鋼材料(以下、低粘性鉄鋼材料という)がしばしば使用される。この低粘性鉄鋼材料を溶接すると、溶融池の粘性が低いために、大電流の通電による強いアーク力によって深く掘り下げられた溶融池底部への溶融ワイヤの充填が不足し、ハンピング、アンダーカット、アンダーフィル等の溶接欠陥を生じることが多い。 In lap fillet welding of high-strength steel for automobiles, a flat bead shape as shown in FIG. 8A is required from the viewpoint of ensuring fatigue strength. At the same time, as shown in FIG. 8B, a welded portion without undercut and underfill in the upper plate portion is required. As the above-mentioned high-tensile steel for automobiles, a steel material (hereinafter referred to as a low-viscosity steel material) having a low molten metal viscosity is often used. When this low-viscosity steel material is welded, the viscosity of the molten pool is low, so the molten wire does not fill the bottom of the molten pool deeply dug by the strong arc force caused by the large current flow. It often causes weld defects such as fill.
上述した低粘性鉄鋼材料の溶接に対して、上述した従来技術1、2の2溶接ワイヤ送給アーク溶接方法を適用すると、溶融池底部への溶融ワイヤの充填が後行溶接ワイヤ(フィラーワイヤ)の挿入によって促進される。このために、ハンピングは起こりにくくなるので、良好な溶接が可能な溶接速度範囲(高速溶接性)が拡大する。しかし、従来技術1、2では、後行溶接ワイヤが加熱されて溶融池に挿入されるために、溶融池が高温状態になり表面張力は弱くなるので、アンダーカット及びアンダーフィルの発生は改善されない。さらに、先行溶接ワイヤのアークに後行溶接ワイヤを通電する電流によって干渉が生じてアーク状態が不安定になる場合がある。
When the above-described two welding wire feeding arc welding methods of the
また、低粘性鉄鋼材料の溶接に対して、上述した従来技術3の2溶接ワイヤ送給アーク溶接方法を適用すると、溶融池底部への溶融ワイヤの充填が後行溶接ワイヤの挿入によって促進される。このために、ハンピングは起こりにくくなるので、高速溶接性が改善される。しかし、従来技術3では、2つのアークからの入熱によって溶融池が高温状態になり表面張力は弱くなるので、アンダーカット及びアンダーフィルの発生は改善されない。さらに、2つのアーク間の干渉による制約から、両溶接ワイヤ間距離を高速溶接性が最大限に向上する所望距離に設定することができない場合がある。
Moreover, when the 2 welding wire feeding arc welding method of the
そこで、本発明では、低粘性鉄鋼材料の溶接において、ハンピング、アンダーカット及びアンダーフィルの発生を抑制することができる2溶接ワイヤ送給アーク溶接方法を提供する。 Therefore, the present invention provides a two-weld wire feed arc welding method capable of suppressing the occurrence of humping, undercutting, and underfill in welding of low-viscosity steel materials.
上述した課題を解決するために、第1の発明は、互いに絶縁された第1溶接ワイヤ及び第2溶接ワイヤを近接して送給して溶接する2溶接ワイヤ送給アーク溶接方法において、
前記第1溶接ワイヤを先行溶接ワイヤとし前記第2溶接ワイヤを後行溶接ワイヤとし、
前記先行溶接ワイヤには溶接電流を通電してアークを発生させて溶融池を形成し、
前記後行溶接ワイヤは溶接電流を通電しないで、前記溶融池の冷却を促進する位置に挿入され、前記溶融池の冷却及び溶融金属の補填を行う、ことを特徴とする2溶接ワイヤ送給アーク溶接方法である。
In order to solve the above-described problems, a first invention is a two-weld wire feeding arc welding method in which a first welding wire and a second welding wire that are insulated from each other are closely fed and welded.
The first welding wire is a preceding welding wire and the second welding wire is a trailing welding wire;
The preceding welding wire is energized with a welding current to generate an arc to form a molten pool,
The second welding wire feeding arc is characterized in that the subsequent welding wire is inserted at a position that promotes cooling of the molten pool without passing a welding current, and cools the molten pool and compensates the molten metal. It is a welding method.
また、第2の発明は、前記溶融池の冷却を促進する位置が、前記先行溶接ワイヤの前記アークからの圧力によって前記溶融池が掘り下げられた後に盛り上がってくる位置である、ことを特徴とする第1の発明記載の2溶接ワイヤ送給アーク溶接方法である。 Moreover, 2nd invention is a position where the position which accelerates | stimulates cooling of the said molten pool is a position which rises after the said molten pool is dug down by the pressure from the said arc of the said prior welding wire, It is characterized by the above-mentioned. It is the 2 welding wire feeding arc welding method of 1st invention description.
また、第3の発明は、第1又は第2の発明記載の2溶接ワイヤ送給アーク溶接方法を用いた多層盛り溶接方法において、
前記第1溶接ワイヤ及び前記第2溶接ワイヤを往復させて各層を溶接し、
往路方向の溶接時は前記第1溶接ワイヤを前記先行溶接ワイヤとし前記第2溶接ワイヤを前記後行溶接ワイヤとし、
復路方向の溶接時は前記第2溶接ワイヤを前記先行溶接ワイヤとし前記第1溶接ワイヤを前記後行溶接ワイヤとする、ことを特徴とする多層盛り溶接方法である。
Further, a third invention is a multilayer pile welding method using the two-welding wire feed arc welding method according to the first or second invention,
Each layer is welded by reciprocating the first welding wire and the second welding wire;
At the time of welding in the forward direction, the first welding wire is the preceding welding wire and the second welding wire is the following welding wire,
In the multi-pass welding method, the second welding wire is used as the preceding welding wire and the first welding wire is used as the subsequent welding wire during welding in the backward direction.
また、第4の発明は、第1又は第2の発明記載の2溶接ワイヤ送給アーク溶接方法を用いて厚板の狭開先を溶接する狭開先溶接方法である。 Moreover, 4th invention is a narrow groove welding method which welds the narrow groove of a thick plate using the 2 welding wire feeding arc welding method of 1st or 2nd invention description.
本発明によれば、低粘性鉄鋼材料の溶接において、溶融池の冷却を促進する位置に後行溶接ワイヤを挿入することによって、溶融金属を充填して良好な余盛りを形成することができるので、ハンピングの発生を抑制することができる。さらに、本発明によれば、後行溶接ワイヤを加熱しないで冷却状態のままで溶融池の盛り上がってくる部分に挿入することによって、溶融池の温度を低くすることができるので、溶融池の表面張力を強めてアンダーカット及びアンダーフィルの発生を抑制することができる。さらに、本発明では、後行溶接ワイヤには電流を通電しないので、先行溶接ワイヤのアークへの干渉は発生しない。 According to the present invention, in welding of low-viscosity steel material, by inserting a subsequent welding wire at a position that promotes cooling of the molten pool, it is possible to fill the molten metal and form a good surplus. The occurrence of humping can be suppressed. Furthermore, according to the present invention, the temperature of the molten pool can be lowered by inserting it into the rising portion of the molten pool without cooling the subsequent welding wire, so that the surface of the molten pool can be reduced. It is possible to suppress the occurrence of undercut and underfill by increasing the tension. Furthermore, in the present invention, no current is passed through the subsequent welding wire, so that interference of the preceding welding wire with the arc does not occur.
上記第3の発明によれば、溶融金属の粘性が低くなる材料を使用した多層盛り溶接方法において、アンダーカット及びアンダーフィルの発生を抑制して健全な溶接ビードを形成することができると共に、高溶着溶接を可能にする。さらに、溶接方向を反転させるだけで効率よく往復溶接することができるので、溶接施工時間を短縮することができる。 According to the third aspect of the present invention, in the multi-layer welding method using a material that reduces the viscosity of the molten metal, it is possible to form a sound weld bead by suppressing the occurrence of undercut and underfill, Enables weld welding. Furthermore, since the reciprocal welding can be efficiently performed only by reversing the welding direction, the welding operation time can be shortened.
上記第4の発明によれば、溶融金属の粘性が低くなる材料を使用した狭開先溶接に2溶接ワイヤ送給アーク溶接方法を用いることによって、アンダーカット及びアンダーフィルの発生を抑制することができる。さらに、溶接部の凝固割れを抑制することができる。さらに、2つの溶接ワイヤを使用するので、高溶着溶接が可能となり、溶接施工時間が短縮される。 According to the fourth invention, the occurrence of undercut and underfill can be suppressed by using the two-weld wire feed arc welding method for narrow groove welding using a material with low viscosity of the molten metal. it can. Furthermore, solidification cracks in the welded portion can be suppressed. Furthermore, since two welding wires are used, high welding welding is possible, and the welding time is shortened.
[実施の形態1]
以下、図面を参照して本発明の実施の形態1について説明する。
[Embodiment 1]
図1は、本発明の実施の形態1に係る2溶接ワイヤ送給アーク溶接装置の構成図である。同図は、第1溶接ワイヤ11を先行溶接ワイヤとし、第2溶接ワイヤ12を後行溶接ワイヤとした場合である。以下、同図を参照して説明する。
FIG. 1 is a configuration diagram of a two-welding wire feed arc welding apparatus according to
溶接電源PSは、第1溶接ワイヤ11(先行溶接ワイヤ)にアーク3を発生させるために給電チップ4・母材2間に溶接電圧Vwを出力し溶接電流Iwを出力すると共に、第1送給モータM1の回転を制御する第1送給制御信号Fc1及び第2送給モータM2の回転を制御する第2送給制御信号Fc2を出力する。
The welding power source PS outputs a welding voltage Vw between the
第1送給モータM1は、第1送給ロール71を回転駆動し、第1加圧ロール81で加圧して第1溶接ワイヤ11を送給する。第1送給機WF1は、これら第1送給モータM1、第1送給ロール71、第1加圧ロール81等から成る。第1溶接ワイヤ11は、溶接トーチ内の給電チップ4から給電されて、母材2との間にアーク3を発生させて溶融池21を形成する。このアーク3を発生させる溶接法には、CO2溶接、MAG溶接、パルスMAG溶接等を使用する。
The first feed motor M <b> 1 rotates the first feed roll 71, pressurizes it with the first pressure roll 81, and feeds the
第2送給モータM2は、第2送給ロール72を回転駆動し、第2加圧ロール82で加圧して第2溶接ワイヤ12(後行溶接ワイヤ)を送給する。第2送給機WF2は、これら第2送給モータM2、第2送給ロール72、第2加圧ロール82等から成る。第2溶接ワイヤ12は、溶接トーチ内のガイド部材5内を先行溶接ワイヤ11とは絶縁されて送給され、溶融池21の冷却を促進する位置に挿入される。第2溶接ワイヤ12には、電流は通電せず、冷却状態のままで挿入する。
The second feed motor M2 rotates and drives the second feed roll 72, pressurizes the second feed roll 72, and feeds the second welding wire 12 (following welding wire). The second feeder WF2 includes the second feeding motor M2, the second feeding roll 72, the second pressure roll 82, and the like. The
同図に示すように、第1溶接ワイヤ11は溶接方向に対して先行して配置され、第2溶接ワイヤ12は後行して配置されて、両溶接ワイヤ11、12共にノズル6内を送給される。上述したように、両溶接ワイヤ11、12は互いに電気的に絶縁されている。同図では、両溶接ワイヤ11、12は1つの溶接トーチ内を送給される例であるが、2つの溶接トーチを近接させてそれぞれの溶接トーチ内を送給しても良い。
As shown in the figure, the
図2は、本発明におけるアーク発生部の模式図である。同図は、第1溶接ワイヤ11を先行溶接ワイヤとし、第2溶接ワイヤ12を後行溶接ワイヤとした場合である。先行溶接ワイヤと母材2との間に、溶接電流Iが通電するアーク3が発生し、溶融池21が形成される。アーク3下部の溶融池21はアーク3からの圧力(アーク力)を受けて掘り下げられる。掘り下げられた最下層が底部となる。溶融池21はここから遠ざかるにつれてアーク力の影響が弱まるために、次第に上昇して盛り上がってくる。そして、その後方は凝固して余盛りを形成する。低粘性鉄鋼材料の溶接時であるので、溶融金属の粘性が低いと掘り下げは深くなる。掘り下げが深くなると底部の非溶融部まで至りハンピング現象を引き起こす。
FIG. 2 is a schematic diagram of an arc generating portion in the present invention. The figure shows a case where the
ハンピングの発生を防止するために、アーク力で掘り下げられた溶融池21に後行溶接ワイヤを挿入する。この後行溶接ワイヤには電流は通電せず冷却状態(コールドワイヤ状態)のままで挿入する。後行溶接ワイヤを挿入すると、この後行溶接ワイヤが溶融金属となり補填されるので、盛り上がりが不足することなく健全な余盛りが形成される。この結果、ハンピングの発生を防止することができる。
In order to prevent the occurrence of humping, a subsequent welding wire is inserted into the
さらに、冷却状態で後行溶接ワイヤを溶融池21に挿入するので、溶融池21の温度が下がり表面張力が強くなる。この結果、溶融池21の粘性が低くても表面張力が強まることによって、アンダーカット及びアンダーフィルの発生を抑制して健全なビード形状を得ることができる。後行溶接ワイヤ12を溶融池21のどの位置に挿入するかによって冷却効果が異なるので、後述するように、後行溶接ワイヤ12は溶融池の冷却が促進する位置に挿入する。
Furthermore, since the subsequent welding wire is inserted into the
後行溶接ワイヤの挿入位置が盛り上がってくる部分よりもアーク3に近い位置になるほど、後行溶接ワイヤ12の先端部がアーク3に触れることが多くなり溶滴となって溶融池21に落下する。このときに、大粒のスパッタが飛散してビード外観が悪くなる。さらに、溶滴は高温で溶融池21に落下するので、上述した溶融池21の冷却効果が次第に低くなり、アンダーカット及びアンダーフィルの発生を抑制する効果も低くなる。したがって、挿入位置が盛り上がってくる部分よりも手前でアーク3によって後行溶接ワイヤ先端が溶滴とならない位置であれば、溶融池の冷却は促進される。
As the insertion position of the succeeding welding wire is closer to the
後行溶接ワイヤ12の挿入位置が盛り上がってくる部分よりも後方になるほど、盛り上がってくる部分の溶融金属が不足した状態で余盛りが略形成された後に後行溶接ワイヤが挿入されることになる。このために、ハンピング抑制効果が低くなる。さらに、アーク3から遠いので溶融池21の温度が低くなり後行溶接ワイヤが十分に溶融しないで融合不良を引き起こすことにもなる。したがって、後行溶接ワイヤの挿入位置が適正であることが特に重要である。
As the insertion position of the succeeding
上述したように、後行溶接ワイヤの溶融池21への挿入位置は、溶融池が盛り上がってくる部分よりも前後に少し広い範囲であり、この範囲に挿入すれば溶融池の冷却が促進される。より高い冷却効果を要求されるときは、溶融池の盛り上がってくる部分に挿入すれば良い。
As described above, the position where the subsequent welding wire is inserted into the
図3は、上述した後行溶接ワイヤの適正挿入位置の一例を示す図である。同図は、低粘性鉄鋼材料の重ね隅肉継手を1.5m/minで溶接を行った場合である。アークはパルスMAG溶接法によって発生させている。同図の横軸は溶融池の溶接方向長さ(溶融池の長径)を示し、縦軸は先行溶接ワイヤと後行溶接ワイヤとの距離(ワイヤ間距離)を示す。溶融池の長径の最小値はアーク状態の安定性から4mm程度である。 FIG. 3 is a diagram illustrating an example of an appropriate insertion position of the above-described subsequent welding wire. This figure shows a case where a lap fillet joint made of a low-viscosity steel material is welded at 1.5 m / min. The arc is generated by a pulse MAG welding method. The horizontal axis of the figure indicates the weld pool length in the weld pool (longitudinal diameter of the weld pool), and the vertical axis indicates the distance (inter-wire distance) between the preceding welding wire and the subsequent welding wire. The minimum value of the major axis of the weld pool is about 4 mm from the stability of the arc state.
同図に示すように、良好なビードが形成される範囲は、ワイヤ間距離が略3〜7mmの範囲である。但し、溶融池の長径が7mm以下のときは、ワイヤ間距離の適正上限値は溶融池の長径と略等しくなる。ワイヤ間距離が適正下限値未満になると、後行溶接ワイヤの挿入位置が溶融池の盛り上がってくる部分よりもアークに近くなり、上述したように、溶融池の冷却効果が低下してアンダーカット及びアンダーフィルが発生しやすくなる。ワイヤ間距離が適正上限値を超えると、後行溶接ワイヤの挿入位置が溶融池の盛り上がってくる部分よりも後方位置になり、上述したように、余盛りの形成が不良となるのでハンピングが発生しやすくなる。 As shown in the figure, the range in which a good bead is formed is a range in which the distance between wires is approximately 3 to 7 mm. However, when the major axis of the molten pool is 7 mm or less, the appropriate upper limit value of the distance between wires is substantially equal to the major axis of the molten pool. When the distance between the wires becomes less than the appropriate lower limit, the insertion position of the subsequent welding wire becomes closer to the arc than the portion where the molten pool swells, and as described above, the cooling effect of the molten pool decreases and undercut and Underfill is likely to occur. If the distance between wires exceeds the appropriate upper limit value, the insertion position of the subsequent welding wire will be behind the part where the weld pool swells, and as described above, the formation of surplus will be poor and humping will occur. It becomes easy to do.
上述した実施の形態1によれば、低粘性鉄鋼材料の溶接において、溶融池の冷却を促進する位置に後行溶接ワイヤを挿入することによって、溶融金属を充填して良好な余盛りを形成することができるので、ハンピングの発生を抑制することができる。さらに、実施の形態1によれば、後行溶接ワイヤを加熱しないで冷却状態のままで溶融池の盛り上がってくる部分に挿入することによって、溶融池の温度を低くすることができるので、溶融池の表面張力を強めてアンダーカット及びアンダーフィルの発生を抑制することができる。さらに、本発明では、後行溶接ワイヤには電流を通電しないので、先行溶接ワイヤのアークへの干渉は発生しない。 According to the first embodiment described above, in welding of a low-viscosity steel material, by inserting a subsequent welding wire at a position that promotes cooling of the molten pool, the molten metal is filled to form a good surplus. Therefore, the occurrence of humping can be suppressed. Furthermore, according to the first embodiment, the temperature of the molten pool can be lowered by inserting the trailing welding wire into the rising portion of the molten pool without being heated, so that the molten pool can be lowered. It is possible to suppress the occurrence of undercut and underfill by increasing the surface tension. Furthermore, in the present invention, no current is passed through the subsequent welding wire, so that interference of the preceding welding wire with the arc does not occur.
上記では低粘性鉄鋼材料を母材とした場合であるが、母材に低粘性鉄鋼材料を使用しないときでも溶融池の粘性が低くなる場合がある。先行溶接ワイヤにパルスMAG溶接用ワイヤを使用すると、このパルスMAG溶接用ワイヤはパルスによる溶滴移行を円滑にする目的で低粘性材料から生成されている。このために、この溶接ワイヤが溶融金属になると粘性が低い溶融池を形成することになる。この場合でも、本発明は有効である。以下の説明においては、上記の低粘性鉄鋼材料及び上記のような溶接ワイヤをまとめて溶融金属の粘性を低くする材料と記載する。 In the above description, the low-viscosity steel material is used as a base material, but the viscosity of the molten pool may be low even when the low-viscosity steel material is not used as the base material. When a pulse MAG welding wire is used as the preceding welding wire, the pulse MAG welding wire is made of a low-viscosity material for the purpose of facilitating droplet transfer by the pulse. For this reason, when this welding wire becomes molten metal, a molten pool having low viscosity is formed. Even in this case, the present invention is effective. In the following description, the low-viscosity steel material and the welding wire as described above are collectively described as materials that lower the viscosity of the molten metal.
[実施の形態2]
図4は、本発明の実施の形態2に係る上述した2溶接ワイヤ送給アーク溶接方法を用いた多層盛り溶接方法を示す図である。1つの溶接トーチ6から第1溶接ワイヤ11及び第2溶接ワイヤ12が送給され、溶接トーチ6を往復させて各層の溶接を行う。同図(A)は往路方向に溶接トーチ6を移動させて溶接するときを示し、同図(B)は復路方向に溶接トーチ6を移動させて溶接するときを示す。以下、同図を参照して説明する。
[Embodiment 2]
FIG. 4 is a diagram showing a multilayer pile welding method using the above-described two welding wire feed arc welding method according to the second embodiment of the present invention. The
同図(A)に示すように、往路方向溶接時は、第1溶接ワイヤ11を先行溶接ワイヤとし、第2溶接ワイヤ12を後行溶接ワイヤとする。したがって、先行溶接ワイヤである第1溶接ワイヤ11と母材2との間にアーク3が発生して消耗電極アーク溶接が行われ、後行溶接ワイヤである第2溶接ワイヤ12は電流は通電せずに溶融池に挿入される。このようにして、上述した2溶接ワイヤ送給アーク溶接が行われる。
As shown in FIG. 5A, during the forward direction welding, the
同図(B)に示すように、復路方向溶接時は、第2溶接ワイヤ12を先行溶接ワイヤとし、第1溶接ワイヤ11を後行溶接ワイヤとする。したがって、先行溶接ワイヤである第2溶接ワイヤ12と母材2との間にアーク3が発生して消耗電極アーク溶接が行われ、後行溶接ワイヤである第1溶接ワイヤ11は電流は通電せずに溶融池に挿入される。このようにして、上述した2溶接ワイヤ送給アーク溶接が行われる。
As shown in FIG. 5B, at the time of backward welding, the
図5は、2溶接ワイヤ送給アーク溶接方法による多層盛り溶接方法を実施するための溶接装置の構成図である。同図において上述した図1と同一の構成物には同一符号を付してそれらの説明は省略する。以下、異なる構成物について説明する。 FIG. 5 is a configuration diagram of a welding apparatus for carrying out a multi-layer welding method using a two-weld wire feed arc welding method. In the figure, the same components as those in FIG. 1 described above are denoted by the same reference numerals and description thereof is omitted. Hereinafter, different components will be described.
第2溶接電源PS2は、第1溶接ワイヤ11が先行溶接ワイヤであるときはプラス出力端子P1から溶接電圧Vw及び溶接電流Iwを出力し、第2溶接ワイヤ12が先行溶接ワイヤであるときはプラス出力端子P2から溶接電圧Vw及び溶接電流Iwを出力する。また、第2溶接電源PS2は、第1送給モータM1の回転を制御する第1送給制御信号Fc1及び第2送給モータM2の回転を制御する第2送給制御信号Fc2を出力する。
The second welding power source PS2 outputs the welding voltage Vw and the welding current Iw from the positive output terminal P1 when the
P1から出力された溶接電圧Vwは第1給電チップ41と母材2との間に印加されてアーク3を発生する。他方、P2から出力された溶接電圧Vwは第2給電チップ42と母材2との間に印加されてアークを発生する。
The welding voltage Vw output from P1 is applied between the first power feed tip 41 and the
上記においては、1台の溶接電源PS2が2つのプラス出力端子P1、P2を有する場合であるが、2台の溶接電源を使用してそれぞれがP1、P2を有するようにしても良い。 In the above, one welding power source PS2 has two plus output terminals P1 and P2, but two welding power sources may be used so that each has P1 and P2.
上述した実施の形態2によれば、溶融金属の粘性が低くなる材料を使用した多層盛り溶接方法において、アンダーカット及びアンダーフィルの発生を抑制して健全な溶接ビードを形成することができると共に、高溶着溶接を可能にする。さらに、溶接方向を反転させるだけで効率よく往復溶接することができるので、溶接施工時間を短縮することができる。 According to the above-described second embodiment, in the multi-layer welding method using a material that lowers the viscosity of the molten metal, it is possible to suppress the occurrence of undercut and underfill and form a sound weld bead, Enables high welding welding. Furthermore, since the reciprocal welding can be efficiently performed only by reversing the welding direction, the welding operation time can be shortened.
[実施の形態3]
建設機械、鉄骨・橋梁等は厚板の溶接構造物であるために、溶接部の溶着金属量が多く必要であり、溶接施工に長時間を要する。このために、最近では開先幅が狭く、開先深さが深い狭開先の溶接継手によって溶接施工されることがある。このような狭開先溶接において、上述したように母材又は溶接ワイヤに溶融金属の粘性を低くする材料を使用した場合、アンダーカット及びアンダーフィルが発生しやすい。
[Embodiment 3]
Since construction machines, steel frames, bridges, and the like are thick plate welded structures, a large amount of weld metal is required at the welded portion, and a long time is required for welding. For this reason, welding is recently performed with a narrow groove weld joint having a narrow groove width and a large groove depth. In such narrow gap welding, when a material that lowers the viscosity of the molten metal is used for the base material or the welding wire as described above, undercut and underfill are likely to occur.
図6は、狭開先溶接部の断面図である。同図に示すように、狭開先溶接継手で形成される溶接部は、柱状晶と呼ばれる結晶粒が溶接金属の中央部で会合する。そして、溶け込み深さに対するビード幅が狭いために、溶接熱収縮によって結晶粒が会合する中央部では、溶融金属が充填できずにしばしば引け巣状の凝固割れが生じる。 FIG. 6 is a cross-sectional view of a narrow groove weld. As shown in the figure, in a weld formed by a narrow groove weld joint, crystal grains called columnar crystals meet at the center of the weld metal. And since the bead width with respect to the penetration depth is narrow, the molten metal cannot be filled in the central part where the crystal grains meet due to welding heat shrinkage, and a shrinkage-like solidification crack often occurs.
図7は、狭開先溶接継手を上述した2溶接ワイヤ送給アーク溶接方法を用いて溶接した場合のビード形成過程を示す図である。同図は上述した図6と対応している。同図は、溶融金属の粘性が低くなる材料を使用した場合である。 FIG. 7 is a diagram showing a bead formation process when a narrow groove welded joint is welded using the above-described two-weld wire feed arc welding method. This figure corresponds to FIG. 6 described above. The figure shows the case where a material that makes the molten metal less viscous is used.
柱状晶の成長方向は、溶接による熱流の方向である。本実施の形態では、同図(A)に示すように、熱流は板幅方向に加えて後行溶接ワイヤを送給して溶融池を冷却する板厚上部へも向かう。このために、本実施の形態では、同図(B)に示すように、柱状晶が溶接部の中央部で会合することなく歪みの集中を受けることが少ないので、溶接熱収縮が発生しても凝固割れが発生しにくい。 The growth direction of the columnar crystals is the direction of heat flow by welding. In the present embodiment, as shown in FIG. 5A, the heat flow is directed not only to the plate width direction but also to the upper plate thickness where the subsequent welding wire is fed to cool the molten pool. For this reason, in this embodiment, as shown in FIG. 5B, the columnar crystals are less likely to receive strain concentration without meeting at the center of the welded portion, so that welding heat shrinkage occurs. However, solidification cracking is unlikely to occur.
上述した実施の形態3によれば、溶融金属の粘性が低くなる材料を使用した狭開先溶接に対して2溶接ワイヤ送給アーク溶接方法を用いることによって、アンダーカット及びアンダーフィルの発生を抑制することができる。さらに、溶接部の凝固割れを抑制することができる。さらに、2つの溶接ワイヤを使用するので、高溶着溶接が可能となり、溶接施工時間が短縮される。 According to the above-described third embodiment, the occurrence of undercut and underfill is suppressed by using the two-weld wire feed arc welding method for narrow groove welding using a material with low viscosity of the molten metal. can do. Furthermore, solidification cracks in the welded portion can be suppressed. Furthermore, since two welding wires are used, high welding welding is possible, and the welding time is shortened.
2 母材
3 アーク
4 給電チップ
5 ガイド部材
6 ノズル
9 溶接ビード
11 第1溶接ワイヤ
12 第2溶接ワイヤ
21 溶融池
41 第1給電チップ
42 第2給電チップ
71 第1送給ロール
72 第2送給ロール
81 第1加圧ロール
82 第2加圧ロール
Fc1 第1送給制御信号
Fc2 第2送給制御信号
Iw 溶接電流
M1 第1送給モータ
M2 第2送給モータ
PS 溶接電源
P1 第1プラス出力端子
P2 第2プラス出力端子
Vw 溶接電圧
WF1 第1送給機
WF2 第2送給機
2
Claims (4)
前記第1溶接ワイヤを先行溶接ワイヤとし前記第2溶接ワイヤを後行溶接ワイヤとし、
前記先行溶接ワイヤには溶接電流を通電してアークを発生させて溶融池を形成し、
前記後行溶接ワイヤは溶接電流を通電しないで、前記溶融池の冷却を促進する位置に挿入され、前記溶融池の冷却及び溶融金属の補填を行う、ことを特徴とする2溶接ワイヤ送給アーク溶接方法。 In a two-weld wire feed arc welding method in which a first welding wire and a second welding wire that are insulated from each other are fed in close proximity and welded,
The first welding wire is a preceding welding wire and the second welding wire is a trailing welding wire;
The preceding welding wire is energized with a welding current to generate an arc to form a molten pool,
The second welding wire feeding arc is characterized in that the subsequent welding wire is inserted at a position that promotes cooling of the molten pool without passing a welding current, and cools the molten pool and compensates the molten metal. Welding method.
前記第1溶接ワイヤ及び前記第2溶接ワイヤを往復させて各層を溶接し、
往路方向の溶接時は前記第1溶接ワイヤを前記先行溶接ワイヤとし前記第2溶接ワイヤを前記後行溶接ワイヤとし、
復路方向の溶接時は前記第2溶接ワイヤを前記先行溶接ワイヤとし前記第1溶接ワイヤを前記後行溶接ワイヤとする、ことを特徴とする多層盛り溶接方法。 In the multilayer pile welding method using the 2 welding wire feeding arc welding method according to claim 1 or 2,
Each layer is welded by reciprocating the first welding wire and the second welding wire;
At the time of welding in the forward direction, the first welding wire is the preceding welding wire and the second welding wire is the following welding wire,
A multilayer prime welding method, wherein during welding in the backward direction, the second welding wire is used as the preceding welding wire, and the first welding wire is used as the subsequent welding wire.
A narrow groove welding method for welding a narrow groove of a thick plate using the two-welding wire feed arc welding method according to claim 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006266878A JP2008055506A (en) | 2006-07-31 | 2006-09-29 | Two-welding wire feeding arc welding method, multilayer welding method, and narrow groove welding method |
CN200710137317XA CN101116925B (en) | 2006-07-31 | 2007-07-20 | Double-wire feeding arc welding method and multi-layer surfacing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006207504 | 2006-07-31 | ||
JP2006266878A JP2008055506A (en) | 2006-07-31 | 2006-09-29 | Two-welding wire feeding arc welding method, multilayer welding method, and narrow groove welding method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008055506A true JP2008055506A (en) | 2008-03-13 |
Family
ID=39238863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006266878A Pending JP2008055506A (en) | 2006-07-31 | 2006-09-29 | Two-welding wire feeding arc welding method, multilayer welding method, and narrow groove welding method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008055506A (en) |
CN (1) | CN101116925B (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010069494A (en) * | 2008-09-17 | 2010-04-02 | Daihen Corp | Two-wire welding method |
EP2380691A2 (en) | 2010-04-26 | 2011-10-26 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method of and system for pulsed consumable-electrode gas-shield arc welding |
JP2012166247A (en) * | 2011-02-16 | 2012-09-06 | Daihen Corp | Two-wire welding control method |
JP2013075303A (en) * | 2011-09-30 | 2013-04-25 | Daihen Corp | Method for controlling crater of two-wire welding |
WO2014006998A1 (en) * | 2012-07-05 | 2014-01-09 | 日野自動車株式会社 | Welding method |
WO2014017158A1 (en) * | 2012-07-26 | 2014-01-30 | 日野自動車株式会社 | Method for manufacturing rear axle, and rear axle |
WO2014034225A1 (en) * | 2012-08-31 | 2014-03-06 | 日野自動車株式会社 | Method for manufacturing propeller shaft, and propeller shaft |
JP2015057297A (en) * | 2014-11-28 | 2015-03-26 | エーエスアーベー アーベー | Weldment head and weldment head assembly for arc-welding system |
US9555493B2 (en) | 2008-07-09 | 2017-01-31 | Lincoln Global, Inc. | Apparatus for welding with curtain electrodes and strip electrodes |
JP2017132471A (en) * | 2017-05-16 | 2017-08-03 | 日野自動車株式会社 | Method of manufacturing rear axle |
JP2017132467A (en) * | 2017-04-04 | 2017-08-03 | 日野自動車株式会社 | Method for manufacturing propeller shaft |
CN107081508A (en) * | 2017-06-08 | 2017-08-22 | 武汉钢铁有限公司 | Thickness connects method in the double wire hidden arc welding of the 15 20mm ultrafast cold X70 steel of high-performance |
US9839970B2 (en) | 2010-12-21 | 2017-12-12 | Lincoln Global, Inc. | Dual wire welding system and method |
US9937581B2 (en) | 2009-04-01 | 2018-04-10 | Esab Ab | Welding head and welding head assembly for an arc-welding system |
US10532418B2 (en) | 2017-08-08 | 2020-01-14 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing contact tip and diffuser |
US10773335B2 (en) | 2017-08-08 | 2020-09-15 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system and method |
US10792752B2 (en) | 2017-08-08 | 2020-10-06 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system and method |
US11285557B2 (en) | 2019-02-05 | 2022-03-29 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system |
US11440121B2 (en) | 2017-08-08 | 2022-09-13 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system and method |
US11498146B2 (en) | 2019-09-27 | 2022-11-15 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system and method |
US11504788B2 (en) | 2017-08-08 | 2022-11-22 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system and method |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5260469B2 (en) * | 2009-10-26 | 2013-08-14 | 株式会社神戸製鋼所 | Gas shield arc welding method |
JP5489274B2 (en) * | 2010-02-22 | 2014-05-14 | 株式会社神戸製鋼所 | Arc start method for multi-electrode single-side welding apparatus and multi-electrode single-side welding apparatus |
CN101972883A (en) * | 2010-11-22 | 2011-02-16 | 马国红 | Full-penetration welding device of metal sheet |
JP5785812B2 (en) * | 2011-08-08 | 2015-09-30 | 株式会社ダイヘン | 2-wire welding control method |
JP5898444B2 (en) * | 2011-09-30 | 2016-04-06 | 株式会社ダイヘン | Welding start method of 2-wire welding |
CN102909458A (en) * | 2012-10-29 | 2013-02-06 | 海门市威菱焊材制造有限公司 | Single-arc double-wire swing surfacing process |
US10486256B2 (en) | 2012-12-28 | 2019-11-26 | Esab Ab | Arc welding method and arc welding arrangement with first and second electrodes |
CN104117757B (en) * | 2014-08-06 | 2017-01-18 | 山东大学 | Efficient low heat input and double-wire surfacing method |
CN106238876B (en) * | 2016-08-25 | 2019-02-26 | 西南交通大学 | Non-close thin-walled workpiece GTAW double synchronous silk filling increasing material manufacturing method |
CN107931781B (en) * | 2017-12-20 | 2019-11-29 | 西安航空学院 | Double metallic composite material electric arc increasing material manufacturing device and its manufacturing method |
EP4223444A1 (en) * | 2022-02-04 | 2023-08-09 | Linde GmbH | Multi wire feed gmaw |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5245555A (en) * | 1975-10-08 | 1977-04-11 | Nippon Steel Corp | Reciprocating multiilayer welding process |
JPH0663754A (en) * | 1992-08-20 | 1994-03-08 | Hitachi Zosen Corp | Gas shielded arc welding method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5577975A (en) * | 1978-12-08 | 1980-06-12 | Hitachi Ltd | Method and apparatus for multiple electrode welding |
JP3275280B2 (en) * | 1994-10-07 | 2002-04-15 | 株式会社サタケ | Raw material supply device for granular material color sorter |
JP4342689B2 (en) * | 2000-03-31 | 2009-10-14 | 株式会社ダイヘン | Multi-electrode pulse arc welding control method and welding apparatus |
AT500898B8 (en) * | 2003-12-15 | 2007-02-15 | Fronius Int Gmbh | WELDING SYSTEM |
-
2006
- 2006-09-29 JP JP2006266878A patent/JP2008055506A/en active Pending
-
2007
- 2007-07-20 CN CN200710137317XA patent/CN101116925B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5245555A (en) * | 1975-10-08 | 1977-04-11 | Nippon Steel Corp | Reciprocating multiilayer welding process |
JPH0663754A (en) * | 1992-08-20 | 1994-03-08 | Hitachi Zosen Corp | Gas shielded arc welding method |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9555493B2 (en) | 2008-07-09 | 2017-01-31 | Lincoln Global, Inc. | Apparatus for welding with curtain electrodes and strip electrodes |
JP2010069494A (en) * | 2008-09-17 | 2010-04-02 | Daihen Corp | Two-wire welding method |
US9937581B2 (en) | 2009-04-01 | 2018-04-10 | Esab Ab | Welding head and welding head assembly for an arc-welding system |
US12090584B2 (en) | 2009-04-01 | 2024-09-17 | Esab Ab | Welding head and welding head assembly for an arc-welding system |
US9018563B2 (en) | 2010-04-26 | 2015-04-28 | Kobe Steel, Ltd. | Consumable-electrode gas-shield arc welding method and consumable-electrode gas-shield arc welding system |
EP2380691A2 (en) | 2010-04-26 | 2011-10-26 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method of and system for pulsed consumable-electrode gas-shield arc welding |
US9839970B2 (en) | 2010-12-21 | 2017-12-12 | Lincoln Global, Inc. | Dual wire welding system and method |
JP2012166247A (en) * | 2011-02-16 | 2012-09-06 | Daihen Corp | Two-wire welding control method |
JP2013075303A (en) * | 2011-09-30 | 2013-04-25 | Daihen Corp | Method for controlling crater of two-wire welding |
WO2014006998A1 (en) * | 2012-07-05 | 2014-01-09 | 日野自動車株式会社 | Welding method |
JP2014014823A (en) * | 2012-07-05 | 2014-01-30 | Hino Motors Ltd | Welding method |
JP2014024443A (en) * | 2012-07-26 | 2014-02-06 | Hino Motors Ltd | Method of manufacturing rear axle and rear axle |
WO2014017158A1 (en) * | 2012-07-26 | 2014-01-30 | 日野自動車株式会社 | Method for manufacturing rear axle, and rear axle |
US10118442B2 (en) | 2012-07-26 | 2018-11-06 | Hino Motors, Ltd. | Method for manufacturing rear axle, and rear axle |
JP2014046828A (en) * | 2012-08-31 | 2014-03-17 | Hino Motors Ltd | Method for manufacturing propeller shaft and propeller shaft |
WO2014034225A1 (en) * | 2012-08-31 | 2014-03-06 | 日野自動車株式会社 | Method for manufacturing propeller shaft, and propeller shaft |
EP2891571B1 (en) * | 2012-08-31 | 2019-05-01 | Hino Motors, Ltd. | Method for manufacturing propeller shaft, and propeller shaft |
US10132361B2 (en) | 2012-08-31 | 2018-11-20 | Hino Motors, Ltd. | Method for manufacturing propeller shaft |
JP2015057297A (en) * | 2014-11-28 | 2015-03-26 | エーエスアーベー アーベー | Weldment head and weldment head assembly for arc-welding system |
JP2017132467A (en) * | 2017-04-04 | 2017-08-03 | 日野自動車株式会社 | Method for manufacturing propeller shaft |
JP2017132471A (en) * | 2017-05-16 | 2017-08-03 | 日野自動車株式会社 | Method of manufacturing rear axle |
CN107081508A (en) * | 2017-06-08 | 2017-08-22 | 武汉钢铁有限公司 | Thickness connects method in the double wire hidden arc welding of the 15 20mm ultrafast cold X70 steel of high-performance |
US10532418B2 (en) | 2017-08-08 | 2020-01-14 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing contact tip and diffuser |
US10773335B2 (en) | 2017-08-08 | 2020-09-15 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system and method |
US10792752B2 (en) | 2017-08-08 | 2020-10-06 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system and method |
US11440121B2 (en) | 2017-08-08 | 2022-09-13 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system and method |
US11484960B2 (en) | 2017-08-08 | 2022-11-01 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing contact tip and diffuser |
US11504788B2 (en) | 2017-08-08 | 2022-11-22 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system and method |
US11964346B2 (en) | 2017-08-08 | 2024-04-23 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system and method |
US11285557B2 (en) | 2019-02-05 | 2022-03-29 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system |
US11498146B2 (en) | 2019-09-27 | 2022-11-15 | Lincoln Global, Inc. | Dual wire welding or additive manufacturing system and method |
Also Published As
Publication number | Publication date |
---|---|
CN101116925B (en) | 2011-12-28 |
CN101116925A (en) | 2008-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008055506A (en) | Two-welding wire feeding arc welding method, multilayer welding method, and narrow groove welding method | |
CN109475980B (en) | Laser welding, cladding and/or additive manufacturing system and method of laser welding, cladding and/or additive manufacturing | |
JP5278426B2 (en) | Composite welding method and composite welding apparatus | |
JP5869972B2 (en) | Laser-arc combined welding method | |
CN107530810B (en) | Horizontal fillet welding method, horizontal fillet welding system and storage medium | |
JP2015501727A (en) | DC electrode minus rotary arc welding method and system | |
KR200418345Y1 (en) | Electro gas welding machine | |
CN114012266B (en) | Method and device for combining laser arc and double-sided synchronous transverse welding of thick plate | |
KR20150037981A (en) | Method of and system for using moving consumable wire with weld puddle | |
JP2006075904A (en) | Hybrid laser/mig welding method with high wire speed | |
JP2015523217A (en) | Adjustable rotary arc welding method and system | |
KR20140064764A (en) | Metal cored welding method and system using rotating electrode | |
CN111673283A (en) | Multilayer laser-TIG (tungsten inert gas) hybrid welding device and method for aluminum alloy thick plate | |
JP2012223799A (en) | Method of manufacturing welded joint | |
JP2010046671A (en) | Welding method of lap joint | |
KR101906370B1 (en) | Wide gap butt welding method | |
JP6155454B2 (en) | Pulse arc welding method | |
JP4375787B2 (en) | Consumable electrode arc welding method | |
JP6715682B2 (en) | Submerged arc welding method | |
CA2568798C (en) | Gas metal buried arc welding of lap-penetration joints | |
JP2010064095A (en) | Composite welding method | |
JP2007069256A (en) | Welding apparatus | |
JP6581438B2 (en) | Welding method | |
JP6571450B2 (en) | Welding method | |
JP2023162631A (en) | Plasma arc hybrid welding device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20090826 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20110616 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20110802 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110921 |
|
A02 | Decision of refusal |
Effective date: 20120228 Free format text: JAPANESE INTERMEDIATE CODE: A02 |