JP6155454B2 - Pulse arc welding method - Google Patents
Pulse arc welding method Download PDFInfo
- Publication number
- JP6155454B2 JP6155454B2 JP2013060872A JP2013060872A JP6155454B2 JP 6155454 B2 JP6155454 B2 JP 6155454B2 JP 2013060872 A JP2013060872 A JP 2013060872A JP 2013060872 A JP2013060872 A JP 2013060872A JP 6155454 B2 JP6155454 B2 JP 6155454B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- pulse arc
- welded
- pulse
- weld
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003466 welding Methods 0.000 title claims description 119
- 238000000034 method Methods 0.000 title claims description 36
- 239000000463 material Substances 0.000 claims description 51
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 29
- 229910052749 magnesium Inorganic materials 0.000 claims description 29
- 239000011777 magnesium Substances 0.000 claims description 29
- 230000003647 oxidation Effects 0.000 claims description 6
- 238000007254 oxidation reaction Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 230000008439 repair process Effects 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 62
- 239000011148 porous material Substances 0.000 description 36
- 230000007547 defect Effects 0.000 description 34
- 229910000861 Mg alloy Inorganic materials 0.000 description 23
- 239000007789 gas Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 9
- 229910000838 Al alloy Inorganic materials 0.000 description 9
- 239000003063 flame retardant Substances 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 230000001603 reducing effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000003449 preventive effect Effects 0.000 description 4
- 239000007769 metal material Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229910000882 Ca alloy Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910009378 Zn Ca Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Description
本発明はパルスアーク溶接方法に関し、より具体的には、マグネシウム溶接部の気孔欠陥低減に資する簡便なパルスアーク溶接方法に関する。 The present invention relates to a pulse arc welding method, and more specifically to a simple pulse arc welding method that contributes to the reduction of pore defects in a magnesium weld.
アーク溶接は、用いる装置が簡易で低コスト等の理由から、現在最も主流な溶接方法の一つであるが、高湿や強風などの厳しい状況下では溶接金属内に水分や空気が混入するため、気孔欠陥が容易に発生する。当該現象はアルミニウム材やマグネシウム材において特に顕著であり、水素をブローホール源とした気孔欠陥の発生が問題となっている。 Arc welding is one of the most popular welding methods because of its simple equipment and low cost. However, moisture and air are mixed into the weld metal under severe conditions such as high humidity and strong wind. Pore defects are easily generated. This phenomenon is particularly noticeable in aluminum and magnesium materials, and the occurrence of pore defects using hydrogen as a blowhole source is a problem.
これに対し、例えば、特許文献1(特開2009−72826号公報)では、溶接ワイヤを送給すると共に、ピーク期間中のピーク電流の通電とベース期間中のベース電流の通電とをパルス周期として繰り返して通電し、溶接電圧値が電圧設定値と略等しくなるようにアーク長の制御を行うパルスアーク溶接制御方法において、切換信号に同期して電圧設定値を周期的に変化させることによってアーク長を周期的に変化させ、かつ、切換信号に同期してピーク期間、ピーク電流又はパルス周期の少なくとも1つ以上のパルスパラメータを変化させ、かつ、切換信号に同期して溶接ワイヤの送給速度を変化させる、パルスアーク溶接制御方法が提案されている。 On the other hand, for example, in Patent Document 1 (Japanese Patent Laid-Open No. 2009-72826), a welding wire is fed and a peak current energization during a peak period and a base current energization during a base period are used as a pulse period. In a pulsed arc welding control method in which energization is repeated and the arc length is controlled so that the welding voltage value is substantially equal to the voltage setting value, the arc length is changed by periodically changing the voltage setting value in synchronization with the switching signal. And at least one pulse parameter of peak period, peak current or pulse period is changed in synchronization with the switching signal, and the welding wire feed speed is adjusted in synchronization with the switching signal. A variable pulse arc welding control method has been proposed.
前記特許文献1に記載されているパルスアーク溶接制御方法においては、切換信号に同期して、電圧設定値、パルスパラメータ及び送給速度を変化させることによって、溶融池へのアーク力が大きく変化し、溶融池を激しく揺動させることができる。その結果、気孔欠陥低減効果を従来技術よりも大きくすることができ、高品質な溶接が可能となるとしている。 In the pulse arc welding control method described in Patent Document 1, the arc force to the molten pool is greatly changed by changing the voltage set value, the pulse parameter, and the feeding speed in synchronization with the switching signal. The molten pool can be swung violently. As a result, it is said that the effect of reducing pore defects can be made larger than that of the prior art, and high-quality welding is possible.
また、特許文献2(特開2008−49351号公報)では、溶接母材を加熱して溶融させ、当該溶融部に対して超音波を非接触で照射し、溶融部を振動させながら凝固させる超音波付加溶接方法が提案されている。 Moreover, in patent document 2 (Unexamined-Japanese-Patent No. 2008-49351), the welding base material is heated and melted, an ultrasonic wave is irradiated to the melted part in a non-contact manner, and the melted part is solidified while vibrating. Sonic welding methods have been proposed.
前記特許文献2に記載されている超音波付加溶接方法においては、超音波による溶融部の攪拌を均一に行うことができるとともに、溶融手段の移動に同期させて超音波振動子を移動させて溶融部の攪拌を行うことができる。その結果、溶融部の凝固が均一となり、残留応力による溶接割れの発生を抑制することができるとしている。 In the ultrasonic addition welding method described in Patent Document 2, the melted portion can be uniformly stirred by ultrasonic waves, and the ultrasonic vibrator is moved in synchronization with the movement of the melting means for melting. Part can be stirred. As a result, the solidification of the molten part becomes uniform, and the occurrence of weld cracking due to residual stress can be suppressed.
しかしながら、上記特許文献1に開示されているパルスアーク溶接制御方法では、各被溶接材の気孔欠陥低減に資する最適なアーク長変化の周期や被溶接材等については言及されていない。 However, the pulse arc welding control method disclosed in Patent Document 1 does not mention an optimum arc length change period, a material to be welded, and the like that contribute to reduction of pore defects of each material to be welded.
また、上記特許文献2に開示されている超音波付加溶接方法においては、溶接部の気孔欠陥低減効果については全く説明されていない。加えて、溶接機の他に、超音波振を印加するための装置が必要であり、溶接プロセスが極めて複雑となる。 Further, in the ultrasonic additive welding method disclosed in Patent Document 2, the pore defect reducing effect of the weld is not described at all. In addition to the welder, an apparatus for applying ultrasonic vibration is required, and the welding process becomes extremely complicated.
以上のような従来技術における問題点に鑑み、本発明の目的は、パルスアーク溶接方法を提供し、より具体的には、マグネシウム溶接部の気孔欠陥低減に資する簡便なパルスアーク溶接方法を提供することにある。 In view of the above-described problems in the prior art, an object of the present invention is to provide a pulse arc welding method, and more specifically, to provide a simple pulse arc welding method that contributes to reduction of pore defects in a magnesium weld. There is.
本発明者は上記目的を達成すべく、パルスアーク溶接方法について鋭意研究を重ねた結果、アークのパルス周波数を最適化し、被溶接材をマグネシウム材とすることで、溶接部の気孔欠陥を効果的に低減できることを見出し、本発明に到達した。 In order to achieve the above object, the present inventor has conducted extensive research on the pulse arc welding method. As a result, the arc pulse frequency is optimized, and the welded material is made of a magnesium material. The present invention has been found.
即ち、本発明は、
被溶接材と電極との間にアークを発生させて被溶接材を溶接又は補修するパルスアーク溶接方法において、
前記被溶接材と前記電極との間に流す電流の周波数を略超音波域とし、
前記被溶接材がマグネシウム材を含むこと、
を特徴とするパルスアーク溶接方法を提供する。
なお、ここでいう「溶接又は補修」とは、2枚の被溶接材を突合せ接合する基本的な場合から、複数枚の被溶接材を種々の形態で接合する場合、更には単に被溶接材を溶かす場合も含む概念である。
That is, the present invention
In the pulse arc welding method of welding or repairing the workpiece by generating an arc between the workpiece and the electrode,
The frequency of the current that flows between the material to be welded and the electrode is a substantially ultrasonic range,
The welded material includes a magnesium material;
A pulse arc welding method is provided.
Note that “welding or repair” here refers to the basic case of butt-joining two welded materials to the case of joining a plurality of welded materials in various forms, or even simply the welded material. It is a concept that includes the case of melting.
上記本発明のパルスアーク溶接方法においては、パルス周波数を25kHz以上とすることが好ましく、溶接時に溶融池が被溶接材を貫通する、所謂「貫通溶接」とすることが好ましい。 In the pulse arc welding method of the present invention, the pulse frequency is preferably 25 kHz or more, and so-called “penetration welding” in which the molten pool penetrates the workpiece to be welded during welding is preferable.
また、上記本発明のパルスアーク溶接方法においては、溶接又は補修の予備処理として被溶接材の裏面(アークが発生している面とは逆の面)に酸化防止用の油性被膜を形成させ、溶接中におけるマグネシウム材の酸化を防止することが好ましい。 Moreover, in the pulse arc welding method of the present invention, as a pretreatment for welding or repair, an oil-based film for preventing oxidation is formed on the back surface of the material to be welded (the surface opposite to the surface where the arc is generated), It is preferable to prevent oxidation of the magnesium material during welding.
また、上記本発明のパルスアーク溶接方法においては、横向き溶接とすることが好ましい。 Further, in the pulse arc welding method of the present invention described above, it is preferable to perform lateral welding.
本発明によれば、マグネシウム溶接部の気孔欠陥低減に資する簡便なパルスアーク溶接方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the simple pulse arc welding method which contributes to the reduction | decrease of the pore defect of a magnesium welding part can be provided.
以下、図面を参照しながら本発明のパルスアーク溶接方法の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Hereinafter, typical embodiments of the pulse arc welding method of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions and ratios of the components shown may be different from the actual ones.
(A)溶接装置
本発明の溶接装置に用いることができる、パルス溶接電源に関する電気回路概略図の一例を図1に示す。交流電源より供給された交流電圧は4つのダイオードからなる整流器で全波整流された後、コンデンサーで平滑化され、直流電圧に変換される。この直流電圧がパルス幅変調回路の制御信号に従って絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)で高速スイッチングされ、パルス電圧を発生させる。
(A) Welding apparatus FIG. 1 shows an example of a schematic electric circuit relating to a pulse welding power source that can be used in the welding apparatus of the present invention. The AC voltage supplied from the AC power source is full-wave rectified by a rectifier composed of four diodes, smoothed by a capacitor, and converted into a DC voltage. This DC voltage is switched at high speed by an insulated gate bipolar transistor (IGBT) in accordance with a control signal of the pulse width modulation circuit to generate a pulse voltage.
当該パルス電圧は高電圧低電流であるため、高周波トランスで降圧することで低電圧高電流のパルス電圧を得ることができる。なお、パルスアークの周波数は超音波域(16kHz以上)を含む10〜40kHzの範囲で、1kHz毎に細かく設定することができる。 Since the pulse voltage is a high voltage and low current, a low voltage and high current pulse voltage can be obtained by stepping down with a high-frequency transformer. The frequency of the pulse arc can be set finely every 1 kHz in the range of 10 to 40 kHz including the ultrasonic region (16 kHz or more).
上記パルス溶接電源を用いて得られる、溶接中に流れる1次側の貫通電流を、Agilent Technologies製のオシロスコープで観察した結果を図2に示す。なお、溶接電流は90Aとし、電力周波数は20kHzに設定した。 FIG. 2 shows the result of observing the primary side through current flowing during welding, obtained by using the pulse welding power source, with an oscilloscope made by Agilent Technologies. The welding current was 90 A and the power frequency was set to 20 kHz.
図2より、電流、電圧ともに約25μsの非常に短い期間での極性の切り替わりが確認できる。当該結果より、上記パルス溶接電源を用いて約20kHzの電力周波数が実現されていることがわかる。 From FIG. 2, it can be confirmed that the polarity is switched in a very short period of about 25 μs for both current and voltage. From the result, it can be seen that a power frequency of about 20 kHz is realized using the pulse welding power source.
(B)溶接方法
本発明のパルスアーク溶接方法に用いることのできる溶接機の駆動装置の一例に関し、横向き溶接を行う場合の配置を図3に示す。本発明においては、被接合材と溶接トーチ(電極)との間に、種々の周波数を有するパルスアークを発生させ、被接合材又は溶接トーチを移動させることで、溶接を達成することができる。
(B) Welding method FIG. 3 shows an arrangement in the case of performing transverse welding with respect to an example of a driving device for a welding machine that can be used in the pulse arc welding method of the present invention. In the present invention, welding can be achieved by generating a pulse arc having various frequencies between the material to be joined and the welding torch (electrode) and moving the material to be joined or the welding torch.
ここで、パルスアークの周波数は略超音波域とすることが好ましく、25kHz以上とすることがより好ましい。パルスアークの周波数を略超音波域とすることで、溶融池に超音波振動を印加することができ、溶融池中に導入された気体の逸脱が当該振動によって促進されるためである。加えて、パルスアークの周波数を可聴域外である略超音波域とすることで、溶接作業を極めて静かに行うことができる。なお、一般的に16kHz以上の周波数を有する波が超音波と称呼される。 Here, the frequency of the pulse arc is preferably in an approximately ultrasonic range, and more preferably 25 kHz or more. This is because by setting the frequency of the pulse arc to a substantially ultrasonic range, ultrasonic vibration can be applied to the molten pool, and the deviation of the gas introduced into the molten pool is promoted by the vibration. In addition, the welding operation can be performed very quietly by setting the frequency of the pulse arc to a substantially ultrasonic range outside the audible range. In general, a wave having a frequency of 16 kHz or higher is referred to as an ultrasonic wave.
また、溶融池が被溶接材を貫通した状態で溶接する貫通溶接とすることが好ましい。溶接部の気孔欠陥を低減するためには、溶接中に溶融池に導入された気体を除去する必要があるが、貫通溶接とすることで、被溶接材の表面及び裏面の両面から気体を排出することができる。 Moreover, it is preferable to set it as the through-welding which welds in a state in which the molten pool penetrates the workpiece. In order to reduce pore defects in the weld zone, it is necessary to remove the gas introduced into the molten pool during welding. By using through welding, gas is discharged from both the front and back surfaces of the welded material. can do.
貫通溶接とする場合、被溶接材の裏面(アークが発生している面とは逆の面)における酸化の進行が問題となる。よって、被溶接材の裏面を不活性ガスでシールドすることが好ましく、溶接の予備処理として、酸化防止用の油性被膜を形成させておくことがより好ましい。 In the case of through welding, the progress of oxidation on the back surface of the material to be welded (the surface opposite to the surface where the arc is generated) becomes a problem. Therefore, it is preferable to shield the back surface of the material to be welded with an inert gas, and it is more preferable to form an anti-oxidation oil film as a pretreatment for welding.
酸化防止用の油性被膜としては、溶接中において被溶接材の裏面を大気中の酸素から保護できるものであれば特に限定されず、例えば、市販の防錆スプレー等を使用することができる。 The oil-based coating for preventing oxidation is not particularly limited as long as it can protect the back surface of the material to be welded from oxygen in the atmosphere during welding. For example, a commercially available rust preventive spray can be used.
気孔欠陥を効果的に低減する観点から、溶接姿勢は横向きとすることが好ましい。溶接姿勢を下向きとした場合、溶融池の表面に印加されるアーク圧により、溶融池に発生した気泡の逸脱が阻害されるからである。これに対し、横向き溶接では気泡が容易に溶融池外へと逸脱することができる。 From the viewpoint of effectively reducing pore defects, it is preferable that the welding posture be in the horizontal direction. This is because, when the welding posture is downward, the arc pressure applied to the surface of the molten pool inhibits escape of bubbles generated in the molten pool. On the other hand, in the horizontal welding, the bubbles can easily deviate from the molten pool.
その他、溶接電流、アーク長、溶接速度、シールドガス、および溶接姿勢等の各種溶接条件については、従来使用されている一般的なアーク溶接と同様に、適宜設定することができる。 In addition, various welding conditions such as a welding current, an arc length, a welding speed, a shielding gas, and a welding posture can be set as appropriate as in general arc welding that has been conventionally used.
(C)気孔欠陥低減のメカニズム
上記の本発明のパルスアーク溶接方法においては、パルスアークの周波数を略超音波域とすることで、溶融池中に超音波キャビテーション(液体中に超音波振動を印加した際に、気泡が発生する現象)を発生させることができる。
(C) Mechanism of pore defect reduction In the above-described pulse arc welding method of the present invention, the frequency of the pulse arc is set to a substantially ultrasonic range, so that ultrasonic cavitation (applying ultrasonic vibration in the liquid) is applied to the molten pool. When this occurs, a phenomenon that bubbles are generated) can be generated.
超音波は加圧と負圧を繰り返す疎密な縦波で構成されている。よって、液体中に超音波を印加すると、圧力の高い加圧状態と圧力の低い負圧状態とが発生する。ここで、負圧状態での圧力が液体中の圧力よりも大きくなった場合、液体中に真空又は減圧状態の空洞が発生する。このように発生した空洞は不安定であるため、液体自身の蒸気や液体中に溶解している気体を容易に取り込むことができ、気泡が形成される。 Ultrasound is composed of dense longitudinal waves that repeat pressurization and negative pressure. Therefore, when an ultrasonic wave is applied to the liquid, a pressurized state with a high pressure and a negative pressure state with a low pressure are generated. Here, when the pressure in the negative pressure state becomes larger than the pressure in the liquid, a vacuum or reduced pressure cavity is generated in the liquid. Since the generated cavity is unstable, the vapor of the liquid itself or the gas dissolved in the liquid can be easily taken in, and bubbles are formed.
溶融金属においては、温度の低下に伴い気体の溶解度が低下し、融点付近で急激に減少する。温度低下に伴って溶融金属中に溶解できなくなった気体は、特に溶融金属が凝固する直前に多く放出されることになるため、接合部に気孔欠陥が発生する。よって、接合部の気孔欠陥を低減するためには、溶融金属の凝固以前に気体を排出することが必要となる。 In molten metal, the solubility of gas decreases with a decrease in temperature, and rapidly decreases near the melting point. A large amount of the gas that can no longer be dissolved in the molten metal as the temperature decreases is released immediately before the molten metal solidifies, so that pore defects occur at the joint. Therefore, in order to reduce pore defects at the joint, it is necessary to discharge the gas before the molten metal is solidified.
ここで、パルスアークの周波数を略超音波域とし、溶融池中に超音波を印加した場合、上述の通り溶融池中に超音波キャビテーションが発生し、溶融池の温度低下前の溶融初期段階から気泡が強制的に形成される。発生した気泡は溶融池に溶解している気体を吸収した後、気泡自身の浮力や溶融部の対流により、溶融池外へと逸脱することが可能となる。 Here, when the frequency of the pulse arc is set to a substantially ultrasonic range, and ultrasonic waves are applied to the molten pool, ultrasonic cavitation occurs in the molten pool as described above, and from the initial melting stage before the temperature of the molten pool decreases. Bubbles are forcibly formed. After the generated bubbles absorb the gas dissolved in the molten pool, it is possible to escape to the outside of the molten pool by the buoyancy of the bubbles themselves or the convection of the molten portion.
超音波キャビテーションによって早期に形成された気泡ほど、溶融池が凝固するまでに溶融池外に逸脱する時間が長くなり、溶接部の気孔欠陥が低減される。 Bubbles formed earlier by ultrasonic cavitation have a longer time to deviate from the molten pool until the molten pool solidifies, and pore defects in the welded portion are reduced.
(D)被溶接材
本発明のパルスアーク溶接方法は種々の金属材に適用することができるが、どのような溶接態様であっても、マグネシウム材を含んでいることが好ましい。
(D) Material to be welded The pulse arc welding method of the present invention can be applied to various metal materials, but it is preferable to include a magnesium material in any welding mode.
溶融マグネシウムは760℃で約41cc/100gの水素を溶解することができるが、溶融マグネシウムが凝固して固体になると、マグネシウムの水素貯蔵量は15〜20cc/100gとなることが知られている。よって、溶融池の温度低下に伴う水素の溶解度減少により、少なくとも約20cc/100gの水素が放出され、溶接部における気孔欠陥の原因となる。 Although molten magnesium can dissolve about 41 cc / 100 g of hydrogen at 760 ° C., it is known that when the molten magnesium is solidified into a solid, the hydrogen storage amount of magnesium is 15 to 20 cc / 100 g. Therefore, at least about 20 cc / 100 g of hydrogen is released due to a decrease in hydrogen solubility accompanying a decrease in the temperature of the molten pool, causing pore defects in the weld.
マグネシウム溶融池の温度低下に伴う水素の放出量は、他の金属材の場合と比較して多く、溶接部における気孔欠陥が深刻な問題となる。一方で、発明者らが鋭意実験を行った結果、パルスアークの周波数を略超音波域としたパルスアーク溶接の気孔低減効果が、マグネシウム材に対しては他の金属材と比較して顕著に大きいことが確認された(実施例を参照)。 The amount of hydrogen released due to the temperature drop in the magnesium molten pool is larger than that of other metal materials, and pore defects in the weld are a serious problem. On the other hand, as a result of the inventors' diligent experiments, the pore reduction effect of pulse arc welding with the frequency of the pulse arc being substantially in the ultrasonic range is significantly higher than that of other metal materials for magnesium materials. It was confirmed to be large (see Examples).
本発明のパルスアーク溶接方法を好適に用いることができるマグネシウム材は特に限定されず、純マグネシウム及び各種マグネシウム合金を用いることができる。マグネシウム合金としては、例えば、展伸材(AZ10A、AZ31B、AZ31C、AZ61A、AZ80A、HK31A、HM21A、HM31A、M1A、WE43A、WE54A、ZC71A、ZK21A、ZK40A、ZK60A)、鋳造材(AM100A、AZ63A、AZ81A、AZ91C、AZ91E、AZ92A、EQ21A、EZ33A、HK31A、HZ32A、K1A、QE22A、WE43A、WE54A、ZC63A、ZE41A、ZE63A、ZH62A、ZK51A、ZK61A)、ダイカスト材(AM60A、AM60B、AS41A、AS41B、AZ91A、AZ91B、AZ91D)等を用いることができる。また、Mg−Al−Mn−Ca合金(AMX材)やMg−Al−Zn−Ca合金(AZX材)等の、カルシウムを添加した難燃性マグネシウム合金に対しても好適に用いることができる。 The magnesium material which can suitably use the pulse arc welding method of the present invention is not particularly limited, and pure magnesium and various magnesium alloys can be used. Examples of magnesium alloys include wrought materials (AZ10A, AZ31B, AZ31C, AZ61A, AZ80A, HK31A, HM21A, HM31A, M1A, WE43A, WE54A, ZC71A, ZK21A, ZK40A, ZK60A), and casting materials (AM100A, AZ63, , AZ91C, AZ91E, AZ92A, EQ21A, EZ33A, HK31A, HZ32A, K1A, QE22A, WE43A, WE54A, ZC63A, ZE41A, ZE63A, ZH62A, ZK51A, ZK61A), Die-casting material (AM60A, A, B, A91A, A, B) AZ91D) and the like can be used. Moreover, it can use suitably also for the flame-retardant magnesium alloy which added calcium, such as a Mg-Al-Mn-Ca alloy (AMX material) and a Mg-Al-Zn-Ca alloy (AZX material).
以上、本発明のパルスアーク溶接方法の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。また、本発明のパルスアーク溶接方法はマグネシウム材の溶接のみならず、気孔等の欠陥を有するマグネシウム材の補修としても用いることができる。 As mentioned above, although typical embodiment of the pulse arc welding method of the present invention was described, the present invention is not limited only to these, and various design changes are possible, and these design changes are all of the present invention. Included in the technical scope. The pulse arc welding method of the present invention can be used not only for welding magnesium materials but also for repairing magnesium materials having defects such as pores.
≪実施例1≫
パルスアークの周波数を10〜40kHzの範囲に設定することができる溶接機を用い、直径1.6mmの2%セリウムを含んだタングステン電極を使用して板厚5mmのAZ31Bマグネシウム合金板に対して貫通溶接を行い、実施溶接部1を得た。用いたAZ31Bマグネシウム合金板の組成を表1に示す。
Example 1
Using a welding machine that can set the frequency of the pulse arc to a range of 10 to 40 kHz, a tungsten electrode containing 2% cerium with a diameter of 1.6 mm is used to penetrate a AZ31B magnesium alloy plate with a thickness of 5 mm. Welding was performed to obtain an implementation weld 1. Table 1 shows the composition of the AZ31B magnesium alloy plate used.
なお、パルスアーク周波数、アーク長、溶接電流、溶接速度はそれぞれ15kHz、2mm、70A、2mm/minとし、気孔欠陥の発生を意図的に促進させるために、アルゴン−0.3%水素混合ガスをシールドガスとして使用した。また、溶接姿勢は気孔欠陥が溶接部上部に凝集しやすい横向きとし、溶接の予備処理としてAZ31Bマグネシウム合金板の裏面に市販の防錆油を塗布した。 The pulse arc frequency, arc length, welding current, and welding speed are 15 kHz, 2 mm, 70 A, and 2 mm / min, respectively. In order to intentionally promote the generation of pore defects, an argon-0.3% hydrogen mixed gas was used. Used as shielding gas. Moreover, the welding posture was set to a horizontal direction in which pore defects tend to aggregate at the upper part of the welded portion, and a commercially available rust preventive oil was applied to the back surface of the AZ31B magnesium alloy plate as a pretreatment for welding.
≪実施例2≫
パルスアーク周波数を30kHzとした以外は実施例1と同様にして、実施溶接部2を得た。
<< Example 2 >>
An implementation weld 2 was obtained in the same manner as in Example 1 except that the pulse arc frequency was 30 kHz.
≪実施例3≫
パルスアーク周波数を35kHzとした以外は実施例1と同様にして、実施溶接部3を得た。
Example 3
An implementation weld 3 was obtained in the same manner as in Example 1 except that the pulse arc frequency was set to 35 kHz.
≪実施例4≫
パルスアーク周波数を40kHzとした以外は実施例1と同様にして、実施溶接部4を得た。
Example 4
An implementation weld 4 was obtained in the same manner as in Example 1 except that the pulse arc frequency was 40 kHz.
≪実施例5≫
被溶接材を純マグネシウム板とし、パルスアーク周波数を25kHzとした以外は実施例1と同様にして、実施溶接部5を得た。用いた純マグネシウム板の組成を表2に示す。
Example 5
An implementation weld 5 was obtained in the same manner as in Example 1 except that the material to be welded was a pure magnesium plate and the pulse arc frequency was 25 kHz. Table 2 shows the composition of the pure magnesium plate used.
≪実施例6≫
パルスアーク周波数を30kHzとした以外は実施例5と同様にして、実施溶接部6を得た。
Example 6
An implementation weld 6 was obtained in the same manner as in Example 5 except that the pulse arc frequency was 30 kHz.
≪実施例7≫
パルスアーク周波数を35kHzとした以外は実施例5と同様にして、実施溶接部7を得た。
Example 7
An implementation weld 7 was obtained in the same manner as in Example 5 except that the pulse arc frequency was set to 35 kHz.
≪実施例8≫
パルスアーク周波数を40kHzとした以外は実施例5と同様にして、実施溶接部8を得た。
Example 8
An implementation weld 8 was obtained in the same manner as in Example 5 except that the pulse arc frequency was 40 kHz.
≪実施例9≫
被溶接材をAZ91マグネシウム合金板とし、パルスアーク周波数を25kHzとした以外は実施例1と同様にして、実施溶接部9を得た。用いたAZ91マグネシウム合金板の組成を表3に示す。
Example 9
An implementation weld 9 was obtained in the same manner as in Example 1 except that the material to be welded was an AZ91 magnesium alloy plate and the pulse arc frequency was 25 kHz. Table 3 shows the composition of the AZ91 magnesium alloy plate used.
≪実施例10≫
パルスアーク周波数を30kHzとした以外は実施例9と同様にして、実施溶接部10を得た。
Example 10
An implementation weld 10 was obtained in the same manner as in Example 9 except that the pulse arc frequency was 30 kHz.
≪実施例11≫
パルスアーク周波数を35kHzとした以外は実施例9と同様にして、実施溶接部11を得た。
Example 11
An implementation weld 11 was obtained in the same manner as in Example 9 except that the pulse arc frequency was set to 35 kHz.
≪実施例12≫
パルスアーク周波数を40kHzとした以外は実施例9と同様にして、実施溶接部12を得た。
Example 12
An implementation weld 12 was obtained in the same manner as in Example 9 except that the pulse arc frequency was 40 kHz.
≪実施例13≫
被溶接材をAMX601難燃性マグネシウム合金板とし、パルスアーク周波数を30kHzとした以外は実施例1と同様にして、実施溶接部13を得た。用いたAMX601難燃性マグネシウム合金板の組成を表4に示す。
Example 13
An implementation weld 13 was obtained in the same manner as in Example 1 except that the material to be welded was an AMX601 flame-retardant magnesium alloy plate and the pulse arc frequency was 30 kHz. Table 4 shows the composition of the AMX601 flame-retardant magnesium alloy plate used.
≪実施例14≫
被溶接材をAZX611難燃性マグネシウム合金板とし、パルスアーク周波数を30kHzとした以外は実施例1と同様にして、実施溶接部14を得た。用いたAZX611難燃性マグネシウム合金板の組成を表5に示す。
<< Example 14 >>
The welded part 14 was obtained in the same manner as in Example 1 except that the welded material was an AZX611 flame-retardant magnesium alloy plate and the pulse arc frequency was 30 kHz. Table 5 shows the composition of the AZX611 flame-retardant magnesium alloy plate used.
≪比較例1≫
市販の交直流用ティグ溶接機Mini Elecon200P(株式会社ダイヘン製)を用い、アーク周波数を60Hzとした以外は実施例1と同様にして、比較溶接部1を得た。
≪Comparative example 1≫
A comparative weld 1 was obtained in the same manner as in Example 1 except that a commercially available AC / DC TIG welder Mini Elecon 200P (manufactured by Daihen Co., Ltd.) was used and the arc frequency was 60 Hz.
≪比較例2≫
パルスアーク周波数を10kHzとした以外は実施例1と同様にして、比較溶接部2を得た。
≪Comparative example 2≫
A comparative weld 2 was obtained in the same manner as in Example 1 except that the pulse arc frequency was 10 kHz.
≪比較例3≫
溶接中に溶融池が被接合材を貫通しない片側溶接とした以外は実施例1と同様にして、比較溶接部3を得た。
«Comparative Example 3»
A comparative weld 3 was obtained in the same manner as in Example 1 except that the weld pool did not pass through the material to be joined during welding.
≪比較例4≫
パルスアーク周波数を30kHzとした以外は比較例3と同様にして、比較溶接部4を得た。
<< Comparative Example 4 >>
A comparative weld 4 was obtained in the same manner as in Comparative Example 3 except that the pulse arc frequency was 30 kHz.
≪比較例5≫
パルスアーク周波数を35kHzとした以外は比較例3と同様にして、比較溶接部5を得た。
<< Comparative Example 5 >>
A comparative welded portion 5 was obtained in the same manner as in Comparative Example 3 except that the pulse arc frequency was set to 35 kHz.
≪比較例6≫
パルスアーク周波数を40kHzとした以外は比較例3と同様にして、比較溶接部6を得た。
<< Comparative Example 6 >>
A comparative weld 6 was obtained in the same manner as in Comparative Example 3 except that the pulse arc frequency was 40 kHz.
≪比較例7≫
パルスアーク周波数を20kHzとした以外は実施例5と同様にして、比較溶接部7を得た。
<< Comparative Example 7 >>
A comparative weld 7 was obtained in the same manner as in Example 5 except that the pulse arc frequency was 20 kHz.
≪比較例8≫
市販の交直流用ティグ溶接機Mini Elecon200P(株式会社ダイヘン製)を用い、アーク周波数を60Hzとした以外は実施例5と同様にして、比較溶接部8を得た。
«Comparative Example 8»
A comparative weld 8 was obtained in the same manner as in Example 5 except that a commercially available AC / DC TIG welder Mini Elecon 200P (manufactured by Daihen Co., Ltd.) was used and the arc frequency was 60 Hz.
≪比較例9≫
パルスアーク周波数を20kHzとした以外は実施例9と同様にして、比較溶接部9を得た。
<< Comparative Example 9 >>
A comparative weld 9 was obtained in the same manner as in Example 9 except that the pulse arc frequency was 20 kHz.
≪比較例10≫
市販の交直流用ティグ溶接機Mini Elecon200P(株式会社ダイヘン製)を用い、アーク周波数を60Hzとした以外は実施例9と同様にして、比較溶接部10を得た。
<< Comparative Example 10 >>
A comparative welded portion 10 was obtained in the same manner as in Example 9 except that a commercially available AC / DC TIG welder Mini Elecon 200P (manufactured by Daihen Co., Ltd.) was used and the arc frequency was 60 Hz.
≪比較例11≫
被溶接材をA5083アルミニウム合金板とした以外は実施例1と同様にして、比較溶接部11を得た。用いたA5083アルミニウム合金板の組成を表6に示す。
<< Comparative Example 11 >>
A comparative weld 11 was obtained in the same manner as in Example 1 except that the material to be welded was an A5083 aluminum alloy plate. Table 6 shows the composition of the A5083 aluminum alloy plate used.
≪比較例12≫
市販の交直流用ティグ溶接機Mini Elecon200P(株式会社ダイヘン製)を用い、アーク周波数を60Hzとした以外は比較例11と同様にして、比較溶接部12を得た。
<< Comparative Example 12 >>
A comparative welded portion 12 was obtained in the same manner as in Comparative Example 11 except that a commercial AC / DC TIG welder Mini Elecon 200P (manufactured by Daihen Co., Ltd.) was used and the arc frequency was 60 Hz.
≪比較例13≫
被溶接材をA6061アルミニウム合金板とした以外は実施例1と同様にして、比較溶接部13を得た。用いたA6061アルミニウム合金板の組成を表7に示す。
<< Comparative Example 13 >>
A comparative weld 13 was obtained in the same manner as in Example 1 except that the material to be welded was an A6061 aluminum alloy plate. Table 7 shows the composition of the A6061 aluminum alloy plate used.
≪比較例14≫
市販の交直流用ティグ溶接機Mini Elecon200P(株式会社ダイヘン製)を用い、アーク周波数を60Hzとした以外は比較例13と同様にして、比較溶接部14を得た。
«Comparative example 14»
A comparative welded portion 14 was obtained in the same manner as in Comparative Example 13 except that a commercially available AC / DC TIG welder Mini Elecon 200P (manufactured by Daihen Co., Ltd.) was used and the arc frequency was set to 60 Hz.
≪比較例15≫
被溶接材をA1050アルミニウム板とした以外は実施例1と同様にして、比較溶接部15を得た。用いたA1050アルミニウム板の組成を表8に示す。
<< Comparative Example 15 >>
A comparative welded portion 15 was obtained in the same manner as in Example 1 except that the material to be welded was an A1050 aluminum plate. Table 8 shows the composition of the A1050 aluminum plate used.
≪比較例16≫
市販の交直流用ティグ溶接機Mini Elecon200P(株式会社ダイヘン製)を用い、アーク周波数を60Hzとした以外は比較例15と同様にして、比較溶接部16を得た。
<< Comparative Example 16 >>
A comparative welded portion 16 was obtained in the same manner as in Comparative Example 15 except that a commercially available AC / DC TIG welder Mini Elecon 200P (manufactured by Daihen Co., Ltd.) was used and the arc frequency was 60 Hz.
≪比較例17≫
被溶接材をA7075アルミニウム合金板とした以外は実施例1と同様にして、比較溶接部17を得た。用いたA7075アルミニウム合金板の組成を表9に示す。
<< Comparative Example 17 >>
A comparative welded portion 17 was obtained in the same manner as in Example 1 except that the material to be welded was an A7075 aluminum alloy plate. Table 9 shows the composition of the A7075 aluminum alloy plate used.
≪比較例18≫
市販の交直流用ティグ溶接機Mini Elecon200P(株式会社ダイヘン製)を用い、アーク周波数を60Hzとした以外は比較例17と同様にして、比較溶接部18を得た。
<< Comparative Example 18 >>
A comparative welded portion 18 was obtained in the same manner as in Comparative Example 17 except that a commercially available AC / DC TIG welder Mini Elecon 200P (manufactured by Daihen Co., Ltd.) was used and the arc frequency was set to 60 Hz.
≪比較例19≫
被溶接材をA2017アルミニウム合金板とした以外は実施例1と同様にして、比較溶接部19を得た。用いたA2017アルミニウム合金板の組成を表10に示す。
≪Comparative example 19≫
A comparative weld 19 was obtained in the same manner as in Example 1 except that the material to be welded was an A2017 aluminum alloy plate. Table 10 shows the composition of the A2017 aluminum alloy plate used.
≪比較例20≫
市販の交直流用ティグ溶接機Mini Elecon200P(株式会社ダイヘン製)を用い、アーク周波数を60Hzとした以外は比較例19と同様にして、比較溶接部20を得た。
<< Comparative Example 20 >>
A comparative weld 20 was obtained in the same manner as in Comparative Example 19 except that a commercially available AC / DC TIG welder Mini Elecon 200P (manufactured by Daihen Co., Ltd.) was used and the arc frequency was 60 Hz.
≪比較例21≫
被溶接材をニッケル板とした以外は実施例1と同様にして、比較溶接部21を得た。用いたニッケル板の組成を表11に示す。
<< Comparative Example 21 >>
A comparative weld 21 was obtained in the same manner as in Example 1 except that the material to be welded was a nickel plate. Table 11 shows the composition of the nickel plate used.
≪比較例22≫
市販の交直流用ティグ溶接機Mini Elecon200P(株式会社ダイヘン製)を用い、アーク周波数を60Hzとした以外は比較例21と同様にして、比較溶接部22を得た。
<< Comparative Example 22 >>
A comparative welded portion 22 was obtained in the same manner as in Comparative Example 21, except that a commercially available AC / DC TIG welding machine Mini Elecon 200P (manufactured by Daihen Co., Ltd.) was used and the arc frequency was set to 60 Hz.
≪比較例23≫
溶接の予備処理としてAZ31Bマグネシウム合金板の裏面に市販の防錆油を塗布しなかったこと以外は実施例1と同様にして、比較溶接部23を得た。
<< Comparative Example 23 >>
A comparative weld 23 was obtained in the same manner as in Example 1 except that the commercially available rust preventive oil was not applied to the back surface of the AZ31B magnesium alloy plate as a pretreatment for welding.
[評価]
AZ31Bマグネシウム合金に関する実施溶接部1〜実施溶接部4及び、比較溶接部1及び2の断面写真及び気孔率を、図4及び図5にそれぞれ示す。断面形状が変形しているのは重力の影響であり、溶接は写真における試料の右側から行われている。通常のティグ溶接(60Hz)及びパルスアーク周波数が10kHzの場合、溶接部における顕著な気孔欠陥が観察されるが、パルスアーク周波数が15kHz〜40kHzの場合には完全に気孔欠陥が消失していることが確認できる。
[Evaluation]
Sectional photographs and porosity of the welded portion 1 to the welded portion 4 and the comparative welded portions 1 and 2 regarding the AZ31B magnesium alloy are shown in FIGS. 4 and 5, respectively. The cross-sectional shape is deformed due to the influence of gravity, and welding is performed from the right side of the sample in the photograph. When normal TIG welding (60 Hz) and the pulse arc frequency are 10 kHz, significant pore defects are observed in the weld, but when the pulse arc frequency is 15 kHz to 40 kHz, the pore defects are completely lost. Can be confirmed.
AZ31Bマグネシウム合金の片側溶接に関する比較溶接部3〜比較溶接部6の断面写真を図6に示す。AZ31Bマグネシウム合金の貫通溶接に関する結果を示した図4と比較すると、片側溶接では溶接部に気孔欠陥が残存していることが分かる。当該結果より、超音波キャビテーションを利用した溶接部の気孔欠陥低減には、貫通溶接が効果的であることが分かる。 A cross-sectional photograph of comparative welded portion 3 to comparative welded portion 6 relating to one-side welding of AZ31B magnesium alloy is shown in FIG. Compared with FIG. 4 which showed the result regarding the penetration welding of AZ31B magnesium alloy, it turns out that a pore defect remains in a welding part by one-side welding. From this result, it can be seen that through welding is effective in reducing pore defects in welds using ultrasonic cavitation.
純マグネシウムに関する実施溶接部5〜実施溶接部8及び、比較溶接部7及び8の断面写真及び気孔率を、図7及び図8にそれぞれ示す。通常のティグ溶接(60Hz)及びパルスアーク周波数が20kHzの場合、溶接部における顕著な気孔欠陥が観察されるが、パルスアーク周波数が25kHz〜40kHzの場合には気孔欠陥の形成が抑制されていることが確認できる。 Sectional photographs and porosity of the welded parts 5 to 8 and the welded parts 7 and 8 for pure magnesium are shown in FIGS. 7 and 8, respectively. When normal TIG welding (60 Hz) and the pulse arc frequency are 20 kHz, significant pore defects are observed in the weld, but when the pulse arc frequency is 25 kHz to 40 kHz, the formation of pore defects is suppressed. Can be confirmed.
AZ91Bマグネシウム合金に関する実施溶接部9〜実施溶接部12及び、比較溶接部9及び10の断面写真及び気孔率を、図9及び図10にそれぞれ示す。通常のティグ溶接(60Hz)の場合、溶接部における顕著な気孔欠陥が観察されるが、パルスアーク周波数が20kHz〜40kHzの場合には気孔欠陥の形成が抑制されていることが確認できる。特に、30kHzにおいて気孔欠陥の低減効果が顕著である。 Cross-sectional photographs and porosity of the welds 9 to 12 and the comparative welds 9 and 10 regarding the AZ91B magnesium alloy are shown in FIGS. 9 and 10, respectively. In the case of normal TIG welding (60 Hz), remarkable pore defects are observed in the welded portion, but it can be confirmed that the formation of pore defects is suppressed when the pulse arc frequency is 20 kHz to 40 kHz. In particular, the effect of reducing pore defects is significant at 30 kHz.
難燃性マグネシウムAMX601に関する実施溶接部13及び難燃性マグネシウムAZX611に関する実施溶接部14の断面写真を図11及び図12にそれぞれ示す。溶接部には気孔欠陥が全く観察されず、本発明のパルスアーク溶接方法が効果的に作用していることが確認できる。 Sectional photographs of the welded portion 13 related to the flame-retardant magnesium AMX601 and the welded portion 14 related to the flame-retardant magnesium AZX611 are shown in FIGS. 11 and 12, respectively. No pore defects are observed in the welded portion, and it can be confirmed that the pulse arc welding method of the present invention is effectively acting.
本発明のパルスアーク溶接方法の気孔欠陥低減効果に及ぼす被溶接材質の影響を図13に示す(マグネシウム合金の結果(実施溶接部1及び比較溶接部1)とその他の金属材の結果(比較溶接部11〜比較溶接部22)との比較)。本発明のパルスアーク溶接方法によって、マグネシウム合金溶接部の気孔欠陥はほぼ完全に消失しているのに対し、その他の金属に関しては気孔欠陥低減効果がある程度認められるものと全く認められないものが存在する。加えて、マグネシウム合金に関する気孔低減効果は、気孔欠陥低減効果がある程度認められる純アルミニウム及びアルミニウム合金の結果と比較しても、明らかに顕著である。 The influence of the material to be welded on the pore defect reduction effect of the pulse arc welding method of the present invention is shown in FIG. 13 (magnesium alloy results (implemented weld 1 and comparative weld 1) and other metal results (comparative welding). Comparison with part 11-comparative welding part 22)). By the pulse arc welding method of the present invention, the pore defects in the magnesium alloy weld are almost completely eliminated, but there are some other metals that have a pore defect reduction effect that is recognized to some extent. To do. In addition, the pore reducing effect on the magnesium alloy is clearly remarkable even when compared with the results of pure aluminum and aluminum alloy in which the pore defect reducing effect is recognized to some extent.
裏面に防錆油を塗布せずにパルスアーク溶接を施して得られた比較溶接部23の裏面外観写真を図14に示す。顕著な酸化が観察され、良好な継手が得られていないことが分かる。 The back surface external appearance photograph of the comparative welding part 23 obtained by performing pulse arc welding without apply | coating rust prevention oil to a back surface is shown in FIG. It can be seen that remarkable oxidation is observed and a good joint is not obtained.
Claims (3)
前記被溶接材と前記電極との間に流す電流の周波数を25kHz以上とし、
溶接時に溶融池が前記被溶接材を貫通し、
前記被溶接材がマグネシウム材を含むこと、
を特徴とするパルスアーク溶接方法。 In a pulse arc welding method of using a pulse welding power source for generating a welding current of 70A to 90A, welding or repairing the welding material by generating an arc between the welding material and the electrode,
The frequency of the current flowing between the material to be welded and the electrode is 25 kHz or more,
During welding, the molten pool penetrates the material to be welded,
The welded material includes a magnesium material;
A pulse arc welding method characterized by the above.
The pulse arc welding method according to claim 1, wherein the welding is horizontal welding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013060872A JP6155454B2 (en) | 2013-03-22 | 2013-03-22 | Pulse arc welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013060872A JP6155454B2 (en) | 2013-03-22 | 2013-03-22 | Pulse arc welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014184466A JP2014184466A (en) | 2014-10-02 |
JP6155454B2 true JP6155454B2 (en) | 2017-07-05 |
Family
ID=51832550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013060872A Expired - Fee Related JP6155454B2 (en) | 2013-03-22 | 2013-03-22 | Pulse arc welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6155454B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6602697B2 (en) * | 2016-03-11 | 2019-11-06 | 公益財団法人鉄道総合技術研究所 | Flame retardant magnesium alloy welding material and method for manufacturing the same, railway vehicle structure and transportation transportation structure |
CN113557313A (en) * | 2019-03-22 | 2021-10-26 | 株式会社Uacj | Method and apparatus for producing aluminum material |
CN115194295B (en) * | 2022-06-30 | 2024-05-31 | 中国人民解放军陆军装甲兵学院 | Arc fuse forming process of MoNbTaW high-temperature-resistant high-entropy alloy and application thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59212169A (en) * | 1983-05-18 | 1984-12-01 | Ishihara Yakuhin Kk | Backing method for one-side welding |
JPH01210172A (en) * | 1988-02-18 | 1989-08-23 | Nkk Corp | Fusion welding method for resin laminated metal plates |
JP5187712B2 (en) * | 2006-03-09 | 2013-04-24 | 大陽日酸株式会社 | Joining method |
WO2011114679A1 (en) * | 2010-03-18 | 2011-09-22 | パナソニック株式会社 | Arc welding apparatus |
-
2013
- 2013-03-22 JP JP2013060872A patent/JP6155454B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014184466A (en) | 2014-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5187712B2 (en) | Joining method | |
KR102102024B1 (en) | Method and system to use ac welding waveform and enhanced consumable to improve welding of galvanized workpiece | |
US10155276B2 (en) | Method of welding surface-treated members using a welding wire | |
Zhang et al. | Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy | |
JP5884209B1 (en) | Vertical narrow groove gas shielded arc welding method | |
CN111673283B (en) | Multilayer laser-TIG (tungsten inert gas) hybrid welding device and method for aluminum alloy thick plate | |
JP2004223548A (en) | Method for joining aluminum and steel | |
JP6155454B2 (en) | Pulse arc welding method | |
CN105710511A (en) | Manufacturing method for alloy welded splice | |
US10710187B2 (en) | Welding method and arc welding device | |
US11161191B2 (en) | Process and apparatus for welding workpiece having heat sensitive material | |
JP2003211270A (en) | Method for joining aluminum and steel | |
AU2017362454A1 (en) | Method of cleaning a workpiece after a thermal joining process with cathodic cleaning; cleaning device and processing gas | |
JPWO2018037754A1 (en) | Vertical narrow groove gas shielded arc welding method | |
JP6119948B1 (en) | Vertical narrow groove gas shielded arc welding method | |
WO2017033978A1 (en) | Welding method and arc welding device | |
Balamurugan et al. | Cold metal transfer (CMT) technology-a review | |
JP6715682B2 (en) | Submerged arc welding method | |
JP6098771B1 (en) | Multi-electrode submerged arc welding method and welded joint manufacturing method | |
JP2016163900A (en) | Gas shield arc welding method | |
JP5099775B2 (en) | AC plasma welding method | |
JP2019147181A (en) | Pulse ark welding method | |
JP5600652B2 (en) | Dissimilar metal joining method | |
JP6581438B2 (en) | Welding method | |
JP2573055B2 (en) | Aluminum or aluminum alloy overlay welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6155454 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |