JP2008051608A - Optical cell for concentration measurement - Google Patents

Optical cell for concentration measurement Download PDF

Info

Publication number
JP2008051608A
JP2008051608A JP2006227210A JP2006227210A JP2008051608A JP 2008051608 A JP2008051608 A JP 2008051608A JP 2006227210 A JP2006227210 A JP 2006227210A JP 2006227210 A JP2006227210 A JP 2006227210A JP 2008051608 A JP2008051608 A JP 2008051608A
Authority
JP
Japan
Prior art keywords
light
measurement
optical cell
flow path
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006227210A
Other languages
Japanese (ja)
Inventor
Kazuhiro Miyamura
和宏 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2006227210A priority Critical patent/JP2008051608A/en
Publication of JP2008051608A publication Critical patent/JP2008051608A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simplify and low price optical cell securing measuring precision and measuring range capable of easily forming a structure corresponding to a small amount of flow and not causing stagnation and an analyzer using it. <P>SOLUTION: This cell arranged between a light source 31 and a photodiode 32 receiving an emitted measuring light 2 from the light source 2 comprises a light introduction mouth 121 introducing the measuring light 2, a light derivation mouth 131 deriving the measuring light and one channel 11 to flow the fluid of the measuring object crossing a plurality of times the measuring light 2 which passes from the light introduction mouth 121 to the light derivation mouth 131. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヘモグロビン等の濃度を測定するための測定装置及びそれに用いられる光学セルに関するものである。   The present invention relates to a measuring apparatus for measuring the concentration of hemoglobin or the like and an optical cell used therefor.

従来、特許文献1に示すように、透明セルにヘモグロビン等を含んだ測定対象流体を流し、その光透過率から、その濃度等を測定するような測定装置が開発されている。このような測定装置に用いられる光学セルの代表的なものとしては、図5に示すように、測定対象流体が細い流体流入路から太い柱状のセル本体の一端部に導入され、その他端部に接続された流体流出路から導出される構造のものがある。   Conventionally, as shown in Patent Document 1, a measuring apparatus has been developed in which a measurement target fluid containing hemoglobin or the like is allowed to flow through a transparent cell, and its concentration or the like is measured from its light transmittance. As a typical optical cell used in such a measuring apparatus, as shown in FIG. 5, the fluid to be measured is introduced from one thin fluid inflow path to one end of a thick columnar cell body, and to the other end. Some are derived from connected fluid outlets.

このようなものでは、十分な光路長を確保して測定精度や測定レンジを確保するために、セル本体の流れの方向に沿って、つまりセル本体の一端部から他端部に向かって光を透過させ、その透過度によって測定対象流体の濃度を測定するようにしている。   In such a case, in order to ensure a sufficient optical path length and ensure measurement accuracy and measurement range, light is emitted along the flow direction of the cell body, that is, from one end of the cell body to the other end. The concentration of the fluid to be measured is measured based on the permeability.

しかしながら、図5から明らかなように、この光学セルにおいてセル本体は流体流入路と流体流出路よりも太く形成されていて、接続部分で流路径が大きく変化するため、流体の流れが大きく変化する。さらにこのことに加えて、セル本体の形状が角張っていることもあり、セル本体と流体流入路、流体流出路の接続部分やセル本体の角部でよどみが生じやすくなる。このよどみには気泡や過去の測定対象流体がたまりやすいので、それらが測定に悪影響を及ぼすという問題点を潜在的に有している。特に測定対象流体の流量が微小であるときは、よどみによる影響が大きく、重大な誤差の原因となる。   However, as apparent from FIG. 5, in this optical cell, the cell body is formed thicker than the fluid inflow path and the fluid outflow path, and the flow path diameter greatly changes at the connection portion, so the fluid flow changes greatly. . In addition to this, the shape of the cell body may be angular, and stagnation is likely to occur at the connection between the cell body and the fluid inflow path, the fluid outflow path, and the corner of the cell body. In this stagnation, bubbles and fluids to be measured in the past tend to accumulate, which potentially has the problem of adversely affecting the measurement. In particular, when the flow rate of the fluid to be measured is very small, the influence of stagnation is large, which causes a serious error.

これを解決するために、たとえばセルの角部をなくして、流体流入路をセル本体と同径に太くしてよどみが生じない構造にすればよいと考えられるが、これではセルの体積が大きくなりすぎて、ヘモグロビンなどの微少流量の流体を測定することが難しくなる。逆に、セル本体を流体流入路と同径に細くすると、角部がないため曲面を有する細いセル本体内部に、その長手方向に沿って光を透過させることになり、構造的に無理が生じやすく、実用性が乏しくなる。   In order to solve this problem, for example, the corner of the cell may be eliminated, and the fluid inflow path may be thickened to the same diameter as the cell main body so that stagnation does not occur. However, this increases the volume of the cell. Therefore, it becomes difficult to measure a fluid having a small flow rate such as hemoglobin. On the other hand, if the cell body is thinned to the same diameter as the fluid inflow path, light is transmitted along the longitudinal direction inside the thin cell body having a curved surface because there are no corners, resulting in structural difficulties. It is easy and practicality is poor.

要は、従来のものは流体の流れに沿って光を透過させるようにしているために上記不具合が生じるのである。   The point is that the above-mentioned problem occurs because the conventional one transmits light along the flow of fluid.

かといって、単純に、流体の流れに直交するように光を透過させると、十分な光路長を確保できなくなり測定精度や測定レンジを確保できなくなる。
特開2004−257768
However, if light is simply transmitted so as to be orthogonal to the fluid flow, a sufficient optical path length cannot be ensured and measurement accuracy and measurement range cannot be ensured.
JP 2004-257768 A

本発明は上記問題点を解決するためになされたものであり、十分な光路長を確保して測定精度や測定レンジを確保できるうえに、小流量に対応する構造にも容易にできる、簡単で低コストな光学セルおよびそれを用いた測定装置を提供することを主たる目的にしている。   The present invention has been made in order to solve the above-mentioned problems. In addition to ensuring a sufficient optical path length to ensure measurement accuracy and a measurement range, it can be easily applied to a structure corresponding to a small flow rate. The main object is to provide a low-cost optical cell and a measuring apparatus using the same.

すなわち本発明に係る光学セルは、光源とその光源から出た測定光を受光する受光系の間に介在するものであって、前記測定光を導入する光導入口と、前記測定光を導出する光導出口と、前記光導入口から前記光導出口へ通過する測定光を複数回横切る、測定対象の流体を流すための一本の流路を有することを特徴としている。   That is, the optical cell according to the present invention is interposed between a light source and a light receiving system for receiving measurement light emitted from the light source, and guides the measurement light and an optical entrance for introducing the measurement light. It has a light path and a single flow path for flowing the measurement target fluid that crosses the measurement light passing from the light entrance to the light exit a plurality of times.

ここで測定光とは、光源から出て受光系(検出器)に到達する光であり、光学セルへ最初に入射してから光学セルから最後に出射するまでの間に屈折して進行方向を変えていても、反射して進行方向を変えていない光である。またここで一本の流路と言う場合は、分岐があっても分岐した流路が測定光と交わらない場合も含む。   Here, the measurement light is light that exits from the light source and reaches the light receiving system (detector), and is refracted between the time when it first enters the optical cell and the time when it finally exits from the optical cell. Even if it is changed, it is light that has been reflected and has not changed its traveling direction. The term “one channel” includes a case where the branched channel does not intersect with the measurement light even if there is a branch.

このような光学セルであれば、細い流路であってもその流路を測定光と必要な回数交わらせ、測定光が測定対象流体を通過する距離である光路長を、検出器で精度よく検出できる程度にまで長くすることができるので、測定精度、測定レンジを確保することができる。しかも、上述のように流路を細くすることができるので流路の体積が大きくならず、測定対象の流体が微量であっても測定ができる。   With such an optical cell, even if it is a narrow flow path, the flow path intersects the measurement light as many times as necessary, and the optical path length, which is the distance that the measurement light passes through the fluid to be measured, is accurately measured by the detector. Since it can be made long enough to be detected, measurement accuracy and measurement range can be secured. In addition, since the flow path can be narrowed as described above, the volume of the flow path does not increase, and measurement can be performed even when the amount of fluid to be measured is very small.

さらに後述するように、例えば流路断面を同じにし、かつ直線部及び/または滑らかな曲線部のみから流路を形成するといった構造にするだけで、よどみが生じないようにでき、そのよどみに起因する測定誤差を抑制できる。しかもそうして実現された構造は、言わば1本のひも状の流路が部分的に曲がっているだけの極めて単純なものであるため、構造複雑化やそれによるコストアップなどを招くこともない。またこのような構造に限られず、測定対象流体の性質やセル全体の形状等に合わせた種々の態様にすることも容易である。言い換えれば、従来のものに比べて流路にかかる制限が少なく、その設計自由度を大幅に向上させることができるという効果も得られる。   Further, as described later, for example, the stagnation can be prevented from occurring only by adopting a structure in which the flow path cross section is the same and the flow path is formed only from the straight line portion and / or the smooth curved portion. Measurement error can be suppressed. In addition, the structure realized in this way is so simple that only one string-like flow path is partially bent, so that the structure is not complicated and the cost is not increased. . Moreover, it is not restricted to such a structure, It is also easy to set it as the various aspects according to the property of the fluid to be measured, the shape of the whole cell, etc. In other words, the restriction on the flow path is less than that of the conventional one, and the effect that the degree of freedom in design can be greatly improved is also obtained.

測定精度を高くするためには、流路全体でよどみが発生しないような構造にすることがのぞましい。このことにより、流路の光が当たる領域(光照射領域)のよどみからだけでなく、光照射領域以外の流路上のよどみから流路の光照射領域に気泡や過去の測定対象流体が流れ込むことを防止でき、サンプリング測定(バッチ測定)のみならず連続測定における測定誤差をも可及的に減じることができる。   In order to increase the measurement accuracy, it is desirable to have a structure that does not cause stagnation in the entire flow path. As a result, not only from the stagnation of the area where the light in the flow path (light irradiation area) stagnation, but also from the stagnation on the flow path other than the light irradiation area, air bubbles and past measurement target fluids flow into the light irradiation area of the flow path In addition to sampling measurement (batch measurement), measurement errors in continuous measurement can be reduced as much as possible.

そのための構造としては、例えば、流路断面の形状が流路の先端から終端に亘って同じであることが望ましい。流路が等断面であると、製造工程も簡単になる場合もある。ここで、流路断面とは流体の全体としての流れの方向に垂直な、流路の断面である。形状とは形と寸法を含む。   As a structure for that purpose, for example, it is desirable that the cross-sectional shape of the flow path is the same from the front end to the end of the flow path. If the flow path has an equal cross section, the manufacturing process may be simplified. Here, the cross section of the flow path is a cross section of the flow path perpendicular to the flow direction of the fluid as a whole. Shape includes shape and dimensions.

その他の構造としては、流路内壁が例えば流線型を描くように、滑らかに変化するようなものでもよい。   As another structure, the inner wall of the flow path may change smoothly so as to draw a streamline shape, for example.

上述したように流路全体をよどみのない構造にしてもよいが、場合によっては、少なくとも光照射領域を含んだこれよりも上流側でよどみがないような構造にしてもよい、これでも同様の作用効果を奏し得る。   As described above, the entire flow path may be structured without stagnation, but in some cases, it may be structured such that there is no stagnation on the upstream side at least including the light irradiation region. An effect can be produced.

測定精度を高くするためのさらなる工夫としては、前記流路が前記測定光を垂直に横切るように構成すれば良い。このようなものであれば、測定光は、屈折することがないため、測定対象流体の屈折率の違いに関らず、常に同一光路上を、流路を横切って直進する。したがって受光系の同一位置に常に測定光が到達し、到達位置のずれによる測定誤差を回避できる。   What is necessary is just to comprise so that the said flow path may cross the said measurement light perpendicularly as a further device for making a measurement precision high. In such a case, since the measurement light is not refracted, it always goes straight across the flow path on the same optical path regardless of the difference in the refractive index of the fluid to be measured. Therefore, the measurement light always reaches the same position of the light receiving system, and a measurement error due to the deviation of the arrival position can be avoided.

光学セルが板状であれば、板状部材に溝を形成し、蓋をすることで容易に流路を形成することができ、光学セルの製造が容易になる。また光学セルを薄くすることができるので、携帯用の測定装置に有用である。   If the optical cell is plate-shaped, it is possible to easily form a flow path by forming a groove in the plate-shaped member and covering the plate-shaped member, and manufacturing of the optical cell is facilitated. Further, since the optical cell can be made thin, it is useful for a portable measuring apparatus.

ヘモグロビンの濃度を測定する場合、小量の流体しか得られないし、よどみによる影響も受けやすいため、本発明を適用してその効果が特に顕著なものとなる。   When measuring the concentration of hemoglobin, only a small amount of fluid can be obtained, and it is easily affected by stagnation. Therefore, the effect of the present invention is particularly remarkable.

このように本発明によれば、測定精度、測定レンジを確保でき、流路を細くすることもでき、よどみを生じない構造にもでき、設計自由度の高い光学セルおよびこれを利用した測定装置を提供できる。   As described above, according to the present invention, the measurement accuracy and the measurement range can be ensured, the flow path can be narrowed, the structure does not cause stagnation, an optical cell having a high degree of design freedom, and a measurement apparatus using the same. Can provide.

次に、本発明の光学セルおよびこれを利用した測定装置に係る一実施形態について図面を参照して説明する。   Next, an embodiment of an optical cell of the present invention and a measuring apparatus using the same will be described with reference to the drawings.

図1は、本実施形態に係る光学セル1及びこれを含む測定装置3の全体を概略的に示している。この測定装置3は、光源31から出射され光学セル1に収容されたヘモグロビンを含む測定対象流体を通過した測定光2を、受光系を構成する検出器32で検出し、その検出された測定光2の強度からヘモグロビンの濃度を求める測定に用いられるものである。   FIG. 1 schematically shows an entire optical cell 1 and a measuring apparatus 3 including the same according to the present embodiment. The measuring device 3 detects the measuring light 2 emitted from the light source 31 and passed through the fluid to be measured including hemoglobin contained in the optical cell 1 by the detector 32 constituting the light receiving system, and the detected measuring light. It is used for the measurement for obtaining the concentration of hemoglobin from the intensity of 2.

まず本実施形態に係る光学セル1につき、製造方法の一例を述べながらその構造を説明する。   First, the structure of the optical cell 1 according to the present embodiment will be described with an example of a manufacturing method.

図2〜図4に示すように、まず矩形板状の本体部材01の一面011に、エッチングや機械的な手段によって有底の一本の溝03を設ける。この本体部材01は少なくとも測定に用いられる光2を透過させる必要があるので、ここでは例えば光透過性のある透明アクリル樹脂でできている。   As shown in FIGS. 2 to 4, first, a bottomed groove 03 is provided on one surface 011 of the rectangular plate-shaped main body member 01 by etching or mechanical means. Since the main body member 01 is required to transmit at least the light 2 used for the measurement, it is made of, for example, a transparent acrylic resin having a light transmitting property.

次に、前記本体部材01の面011側から、当該本体部材01と同じ平面寸法を有する矩形シート状の蓋部材02を被せ、開口した溝03を塞ぐことで流路11が形成され、平板状の光学セル1ができる。この流路11の先端及び終端の位置で蓋部材03に孔を設けることで流体導入口111と流体導出口112を形成する。この流体導入口111と流体導出口112は光学セル1の同じ面上にあり、さらに同じ側面側に偏らせて形成されている。   Next, from the surface 011 side of the main body member 01, a rectangular sheet-like lid member 02 having the same planar dimensions as the main body member 01 is covered, and the flow path 11 is formed by closing the opened groove 03, thereby forming a flat plate shape. The optical cell 1 can be formed. The fluid inlet 111 and the fluid outlet 112 are formed by providing holes in the lid member 03 at the positions of the front end and the end of the flow path 11. The fluid inlet 111 and the fluid outlet 112 are on the same surface of the optical cell 1 and are formed so as to be biased toward the same side.

前記一本の流路11は、流体導入口111と流体導出口112とそれらに挟まれた中間部113で構成されている。さらに中間部113は互いに平行で長さが同じ複数の直線部1131と直線部1131間を滑らかに接続する半円状の曲部1132を有しており、流路11は折り返して、曲がっている。   The one flow path 11 includes a fluid inlet 111, a fluid outlet 112, and an intermediate portion 113 sandwiched between them. Further, the intermediate portion 113 has a plurality of straight portions 1131 that are parallel to each other and have the same length, and a semicircular curved portion 1132 that smoothly connects the straight portions 1131, and the flow path 11 is folded and bent. .

なお溝の断面は幅1mm、深さ1mmの正方形としており、形成される流路11の直線部1131と曲部1132の断面も正方形である。直線部1131が平行で、その幅が同じであることによって、光路長を容易に計算できる。つまり光路長は流路が測定光2を横切った回数に流路の幅を乗じたものになり、本実施例では5回横切り、幅が1mmであるので、5mmである。また直線部1131の側面は光学セル1の側面と平行である。   The cross section of the groove is a square with a width of 1 mm and a depth of 1 mm, and the cross sections of the straight portion 1131 and the curved portion 1132 of the flow path 11 to be formed are also square. Since the straight line portions 1131 are parallel and have the same width, the optical path length can be easily calculated. In other words, the optical path length is obtained by multiplying the number of times the flow path has crossed the measurement light 2 by the width of the flow path. In this embodiment, the length of the optical path is 5 mm, and the width is 1 mm. Further, the side surface of the straight line portion 1131 is parallel to the side surface of the optical cell 1.

光源31から出た光2の少なくとも一部は光学セル1の一側面12から光学セルに入り、光学セル1の内部で反射することなく、光学セル1の一側面12に対向する他側面13から光学セル1を出て、検出器に届く(測定光2)。この測定光2が光学セル1に入射する部位が光導入口121で、測定光2が出射する部位が光導出口131である。この測定光2は光学セル1を通過し、光導入口121と光導出口131をつなぐ直線が測定光の光軸21である。光学セル1の流路11の直線部1131はこの測定光2の光軸21を垂直に横切る。つまり複数の直線部1131が平行になっているので、一つの直線部1131が光軸21を垂直に横切れば他の直線部1131も光軸21を垂直に横切ることになる。   At least a part of the light 2 emitted from the light source 31 enters the optical cell from one side surface 12 of the optical cell 1, and is reflected from the other side surface 13 facing the one side surface 12 of the optical cell 1 without being reflected inside the optical cell 1. It leaves the optical cell 1 and reaches the detector (measurement light 2). A portion where the measurement light 2 is incident on the optical cell 1 is a light entrance 121, and a portion where the measurement light 2 is emitted is a light exit 131. The measurement light 2 passes through the optical cell 1 and the straight line connecting the light entrance 121 and the light exit 131 is the optical axis 21 of the measurement light. The straight portion 1131 of the flow path 11 of the optical cell 1 crosses the optical axis 21 of the measurement light 2 vertically. That is, since the plurality of straight line portions 1131 are parallel, if one straight line portion 1131 crosses the optical axis 21 vertically, the other straight line portion 1131 also crosses the optical axis 21 vertically.

本実施形態の光学セル1を用いたヘモグロビン濃度装置3を説明する。この測定装置3は、前述の光学セル1と、光学セル1に測定光2を入射させるためのLED(光源)31と、測定光を受ける検出器であるフォトダイオード32と、演算処理部33と、を有している。   A hemoglobin concentration apparatus 3 using the optical cell 1 of this embodiment will be described. The measuring apparatus 3 includes the optical cell 1 described above, an LED (light source) 31 for allowing the measuring light 2 to enter the optical cell 1, a photodiode 32 that is a detector that receives the measuring light, an arithmetic processing unit 33, ,have.

LED31とフォトダイオード32は光学セル1の一側面12に垂直な直線上にあり、LED31は光学セル1の一側面12に望んで配置され、フォトダイオード32は一側面12と対向する他側面13に望んで配置されて、両者で光学セル1を挟んでいる。   The LED 31 and the photodiode 32 are on a straight line perpendicular to the one side surface 12 of the optical cell 1, the LED 31 is disposed on the one side surface 12 of the optical cell 1, and the photodiode 32 is disposed on the other side surface 13 facing the one side surface 12. Arranged as desired, the optical cell 1 is sandwiched between the two.

演算処理部33は、後述する処理を行う。   The arithmetic processing unit 33 performs processing described later.

本実施形態に係る光学セル1を有する測定装置3の動作を説明する。流体供給系34から光学セル1に測定対象流体Sが供給され、光学セル1の流路11に沿って流れ、流体排出系35に排出される。流路11に例えばヘモグロビンを含む測定対象流体Sが流されている状態で測定が行われる。   Operation | movement of the measuring apparatus 3 which has the optical cell 1 which concerns on this embodiment is demonstrated. The measurement target fluid S is supplied from the fluid supply system 34 to the optical cell 1, flows along the flow path 11 of the optical cell 1, and is discharged to the fluid discharge system 35. The measurement is performed in a state where the measurement target fluid S including, for example, hemoglobin is flowing through the flow path 11.

LED31から光が放出されると、前述のように測定光2が光学セル1を通過し、フォトダイオード32に入射する。フォトダイオード32は受光した測定光2の強度を電気信号に変換する。演算処理部33はこの信号を受信する。光学セル1を通過する際、測定対象流体Sが流された流路11の直線部1131は測定光2に垂直に複数回交わり、測定対象流体Sによって測定光2は吸収されるので、流路11に測定光2を吸収しない例えばヘモグロビンを含まない水を流した場合と比べて、フォトダイオード32で検出される測定光2の強度は小さくなる。この差から測定対象流体S中のヘモグロビン濃度を求めることができる。   When light is emitted from the LED 31, the measurement light 2 passes through the optical cell 1 and enters the photodiode 32 as described above. The photodiode 32 converts the intensity of the received measurement light 2 into an electrical signal. The arithmetic processing unit 33 receives this signal. When passing through the optical cell 1, the linear portion 1131 of the flow path 11 in which the measurement target fluid S is flowed intersects the measurement light 2 perpendicularly several times, and the measurement light 2 is absorbed by the measurement target fluid S. The intensity of the measurement light 2 detected by the photodiode 32 is smaller than the case where, for example, water that does not absorb the measurement light 2 is flown into the water 11 and does not contain hemoglobin. From this difference, the hemoglobin concentration in the fluid S to be measured can be obtained.

この第一実施形態の光学セル1は、流路11の直線部1131と曲部1132の断面形状が同じ正方形であり、直線部1131と曲部1132は滑らかに接続されているので、流路11によどみが発生しないため気泡や測定対象流体Sの滞留がなくなり、測定精度が上がる。特に時間変化を測定する場合に有効である。また光学セル1の洗浄が容易になる。さらに流路11の直線部1131の本数を増やすことで、測定光2と測定対象流体Sが通過する流路11を必要な回数交わらせることができるので、光路長(測定光が測定対象流体を通過する長さ)を長くでき、測定対象流体Sの濃度が低くても十分な吸光度が得られ、測定精度、測定レンジを確保することができる。   In the optical cell 1 according to the first embodiment, the straight portion 1131 and the curved portion 1132 of the flow path 11 have the same square cross section, and the straight portion 1131 and the curved portion 1132 are smoothly connected. Since stagnation does not occur, bubbles and measurement target fluid S do not stay and measurement accuracy is improved. This is particularly effective when measuring temporal changes. Moreover, the optical cell 1 can be easily cleaned. Further, by increasing the number of straight portions 1131 of the flow path 11, the flow path 11 through which the measurement light 2 and the measurement target fluid S pass can be crossed as many times as necessary. (Passing length) can be increased, and sufficient absorbance can be obtained even when the concentration of the fluid S to be measured is low, and the measurement accuracy and measurement range can be ensured.

さらに流路11を細くしても、流路11が測定光2を横切る回数を適当な数にすることにより、十分な吸光度が得られ、測定精度、測定レンジを確保することができる。流路11を一つの板状部材01に溝03を掘り、蓋部材02をかぶせることで流路11を形成するのでセルの製造が容易になる。流体導入口111と流体導出口112は光学セル1の同じ側面側に偏らせて形成されているので、例えば光学セル1をカートリッジにし測定装置3に滑り込ませてはめ込むように装着するようにしたとき、光学セル1の装置3への取りつけ取り外しを容易に行うことができる。   Further, even if the flow path 11 is made thinner, by setting the number of times that the flow path 11 crosses the measurement light 2 to an appropriate number, sufficient absorbance can be obtained, and measurement accuracy and measurement range can be ensured. Since the channel 11 is formed by digging the groove 03 in one plate-like member 01 and covering the channel member 11 with the lid member 02, the manufacture of the cell is facilitated. Since the fluid inlet 111 and the fluid outlet 112 are formed so as to be biased toward the same side of the optical cell 1, for example, when the optical cell 1 is mounted in a cartridge so as to slide into the measuring device 3 The optical cell 1 can be easily attached to and detached from the device 3.

前述のように従来の光学セルでは、よどみを避けた上で、光を垂直に入射させることができない。従来の光学セルにおいて、よどみが発生する角部をなくし、よどみが発生しないような曲面とする設計もできる。しかしこの場合、光はよどみではなく、この曲がっている部分に入射することになる。曲がった境界面によって、光は反射や屈折をして、検出部で検出される光の強度が小さくなり測定に必要な光量を確保できなくなり、測定精度が低くなる。本第一実施形態の光学セル1では流路11の直線部1131の対向する側面同士、つまり測定光2が入射、出射する側面同士は互いに平行で、さらに光学セル1の側面とも平行であるので、光2の流路形成部材に対する入射角、出射角、光の流路に対する入射角、出射角が直角であるように測定光が入射できる。ちなみに、ここでは曲部1132の側面同士も平行にしている。このようにすれば曲面に測定光2が入射したことによる屈折や反射により測定光2が散乱されないため、測定光2の強度が小さくなりにくく測定に必要な光量を確保でき、測定精度を高くすることができる。   As described above, in the conventional optical cell, light cannot be incident vertically while avoiding stagnation. In a conventional optical cell, it is possible to design a curved surface that eliminates stagnation and eliminates corners where stagnation occurs. In this case, however, light is not stagnation, but is incident on the bent portion. The light is reflected or refracted by the bent boundary surface, and the intensity of the light detected by the detection unit becomes small, so that the amount of light necessary for measurement cannot be secured, and the measurement accuracy is lowered. In the optical cell 1 of the first embodiment, the opposing side surfaces of the linear portion 1131 of the flow path 11, that is, the side surfaces on which the measurement light 2 enters and exits are parallel to each other and further to the side surface of the optical cell 1. The measurement light can be incident so that the incident angle and the emission angle of the light 2 with respect to the flow path forming member, and the incident angle and the emission angle with respect to the light flow path are perpendicular. Incidentally, the side surfaces of the curved portion 1132 are also parallel here. In this way, since the measurement light 2 is not scattered due to refraction or reflection due to the measurement light 2 entering the curved surface, the intensity of the measurement light 2 is not easily reduced, and the amount of light necessary for measurement can be secured, thereby increasing the measurement accuracy. be able to.

直線部1131の側面が平行であるので、その面内に垂直に入射する測定光2は直進できる。直線部1131の側面が平行であるので、光源が光学セルに対して相対的に位置がずれても、測定光2の光路長は同じになり、濃度測定に影響を及ぼさない。   Since the side surfaces of the straight line portion 1131 are parallel, the measuring light 2 incident perpendicularly into the surface can travel straight. Since the side surfaces of the straight line portion 1131 are parallel, even if the position of the light source is shifted relative to the optical cell, the optical path length of the measurement light 2 is the same and does not affect the density measurement.

なお、本発明は本実施形態に限られるものではない。   Note that the present invention is not limited to the present embodiment.

前記実施形態では、流路11の断面形状をほぼ同じにすることで流路11の全体でよどみが生じない構造にしているが、その他にも流路を徐々に拡縮させるなどして、その内壁面を流線型状つまり流路が角張って曲がることがなく滑らかに湾曲する構造にして流路の全体でよどみが生じないようにしてもよい。また、流路全体でよどみが生じない構造でなくても、図6に示すように、流路が光路を最後に横切った部分より上流によどみが生じる構造でなければよく、例えばその上流で少なくとも横断面形状が同一で、直線状または滑らかに湾曲しているものであればよい。このように構成してもよどみの影響を受けない光学セルを得ることができる。   In the above embodiment, the cross-sectional shape of the flow path 11 is made substantially the same so that the entire flow path 11 does not stagnate, but other than that, the flow path is gradually expanded or contracted. The wall surface may be streamlined, that is, the flow path may be curved smoothly without being bent, so that stagnation does not occur in the entire flow path. Further, even if the structure does not cause stagnation in the entire flow path, as shown in FIG. 6, the flow path may not have a structure in which stagnation occurs upstream from the portion that finally traverses the optical path. Any cross-sectional shape may be used as long as it is the same and is linearly or smoothly curved. Even if it comprises in this way, the optical cell which does not receive to the influence of stagnation can be obtained.

また、図6に示すように、少なくとも流路と測定光が交わる領域によどみが生じない構造にしてもよい。このように構成してもよどみの影響を受けない光学セルを得ることができる。   Further, as shown in FIG. 6, a structure in which stagnation does not occur at least in a region where the flow path and the measurement light intersect may be used. Even if it comprises in this way, the optical cell which does not receive to the influence of stagnation can be obtained.

前記実施形態では一本の流路11は、同じ幅の平行な複数本の直線部1131で測定光2を垂直に複数回横切っているが、幅は異なっていてもよく、図6に示すように直線部は平行でなくてもよく、測定光の横切り方も垂直でなくてもよく、さらに直線部ではなく曲面で測定光を横切ってもよい。測定光を複数回横切るものであればよい。このような光学セルであれば、横切る回数を変えることで光路長を長くでき、測定精度、測定レンジを確保することができる。また流路が細くても、横切る回数を適当な数にすることで低流量にも対応できる。さらに上述のような、よどみが生じないような設計にも容易にできる。また流路は測定光を横切りさえすればよいだけであり、測定光と平行にする必要がないので、流路の自由度が高くなる。   In the above embodiment, the single flow path 11 crosses the measurement light 2 vertically a plurality of times by a plurality of parallel straight portions 1131 having the same width, but the width may be different, as shown in FIG. In addition, the straight part may not be parallel, the measurement light may be crossed not vertically, and the measurement light may be crossed by a curved surface instead of the straight part. What is necessary is just to cross the measurement light a plurality of times. With such an optical cell, the optical path length can be increased by changing the number of times of traversing, and the measurement accuracy and measurement range can be ensured. Even if the flow path is narrow, it is possible to cope with a low flow rate by setting the number of crossings to an appropriate number. Furthermore, the above-described design that does not cause stagnation can be easily performed. Further, the flow path only needs to cross the measurement light and does not need to be parallel to the measurement light, so the degree of freedom of the flow path is increased.

前記実施形態では、光学セル1は一つの部材01に溝03を掘り、シート状部材02で蓋をして2つの部材で流路を形成したが、この製造方法に限られず、複数の溝を設けた部材を組み合わせてなるものにしてもよく、蓋をせずに一つの部材に流路を形成してもよい。また本実施例では光学セルは平板であるが、光学セルの外形はどのようなものでもよい。例えば管状のものでも構わない。   In the above-described embodiment, the optical cell 1 has a groove 03 formed in one member 01 and covered with the sheet-like member 02 to form a flow path with two members. However, the present invention is not limited to this manufacturing method. The provided members may be combined, or the flow path may be formed in one member without a lid. In this embodiment, the optical cell is a flat plate, but the optical cell may have any outer shape. For example, it may be tubular.

前記実施形態では、光源としてLED31を用いている。しかしこれに限定されず、適宜の光源を用いることもできる。また、光源は点光源、面光源を含み、光は平行光、一点から拡散する光でもよい。これらの光のうち少なくとも一部が光学セルに入射し、光学セルを反射することなく通過し、検出器に到達することができればよい。また検出器の代わりに、光ファイバを設けて光を離れた検出器に導くような検出系を設けてもよい。   In the embodiment, the LED 31 is used as the light source. However, the present invention is not limited to this, and an appropriate light source can also be used. The light source includes a point light source and a surface light source, and the light may be parallel light or light diffused from one point. It is sufficient that at least a part of these lights enter the optical cell, pass through the optical cell without reflection, and reach the detector. Further, instead of the detector, a detection system may be provided in which an optical fiber is provided to guide light to a remote detector.

測定対象流体の測定は、流体が流れている状態で行っているが、流れを止めた状態で測定を行っても良い。   Although the measurement target fluid is measured in a state where the fluid is flowing, the measurement may be performed in a state where the flow is stopped.

前記実施形態では、測定対象流体として血液中のヘモグロビンを含む流体について説明したが、ヘモグロビンを含む流体以外の流体を測定するようにしても良く、例えば溶液中の金属イオンを発色剤で発色させ、金属イオンを測定するようにしても良い。また測定対象流体は液体、気体を含む。   In the above-described embodiment, the fluid containing hemoglobin in blood as the measurement target fluid has been described. However, fluid other than the fluid containing hemoglobin may be measured. For example, metal ions in the solution are colored with a color former, Metal ions may be measured. The fluid to be measured includes liquid and gas.

その他、本発明は、前述した実施形態や変形形態の一部又は全部を適宜組み合わせても良いし、その趣旨を逸脱しない範囲で種々の変形が可能である。   In addition, the present invention may be combined with some or all of the above-described embodiments and modifications as appropriate, and various modifications may be made without departing from the spirit of the invention.

本発明の一実施形態に係るヘモグロビン濃度測定装置の概略図Schematic of a hemoglobin concentration measuring apparatus according to an embodiment of the present invention 本発明の第一実施形態の光学セルの平面図The top view of the optical cell of 1st embodiment of this invention 図2におけるA−A’線断面図A-A 'line sectional view in FIG. 図2におけるB−B’線断面図B-B 'line sectional view in FIG. 従来の光学セルの縦断面図Vertical section of a conventional optical cell 本発明の第2実施形態の光学セルの縦断面図Longitudinal sectional view of an optical cell according to a second embodiment of the present invention

符号の説明Explanation of symbols

1 ・・・光学セル
S ・・・測定対象流体
3 ・・・ヘモグロビン濃度測定装置
11 ・・・流路
2 ・・・測定光
DESCRIPTION OF SYMBOLS 1 ... Optical cell S ... Fluid to be measured 3 ... Hemoglobin concentration measuring device 11 ... Channel 2 ... Measurement light

Claims (6)

光源とその光源から出た測定光を受光する受光系の間に介在するものであって、前記測定光を導入する光導入口と、前記測定光を導出する光導出口と、前記光導入口から前記光導出口へ通過する測定光を複数回横切る、測定対象の流体を流すための一本の流路を有することを特徴とする光学セル。 Intervening between a light source and a light receiving system for receiving measurement light emitted from the light source, wherein a light inlet for introducing the measurement light, a light outlet for deriving the measurement light, and a light inlet An optical cell comprising a single flow path for flowing a measurement target fluid that crosses the measurement light passing through the light exit port a plurality of times. 前記流路の断面形状が同じである請求項1に記載の光学セル。 The optical cell according to claim 1, wherein the flow paths have the same cross-sectional shape. 前記流路が前記測定光を垂直に横切ることを特徴とする請求項1または2いずれかに記載の光学セル。 The optical cell according to claim 1, wherein the flow path vertically crosses the measurement light. 前記光学セルは平板状である請求項1乃至3いずれかに記載の光学セル。 The optical cell according to claim 1, wherein the optical cell has a flat plate shape. 請求項1乃至4いずれかに記載の光学セルと、前記光を発生させるための光源と、前記光学セルを通過した光を受光する受光系とを有する測定装置。 5. A measuring apparatus comprising: the optical cell according to claim 1; a light source for generating the light; and a light receiving system that receives the light that has passed through the optical cell. 前記測定対象が血液を希釈した液体である請求項5に記載の測定装置。









The measurement apparatus according to claim 5, wherein the measurement target is a liquid obtained by diluting blood.









JP2006227210A 2006-08-23 2006-08-23 Optical cell for concentration measurement Pending JP2008051608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227210A JP2008051608A (en) 2006-08-23 2006-08-23 Optical cell for concentration measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227210A JP2008051608A (en) 2006-08-23 2006-08-23 Optical cell for concentration measurement

Publications (1)

Publication Number Publication Date
JP2008051608A true JP2008051608A (en) 2008-03-06

Family

ID=39235809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227210A Pending JP2008051608A (en) 2006-08-23 2006-08-23 Optical cell for concentration measurement

Country Status (1)

Country Link
JP (1) JP2008051608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508042A (en) * 2017-12-14 2021-02-25 エッセンリックス コーポレーション Improved light-transmitting sample holders and analytical methods, especially for hemoglobin

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100586A (en) * 1971-07-01 1974-09-24
JPS5597639A (en) * 1979-01-18 1980-07-25 Nec Corp Data selection circuit
JP2002221485A (en) * 2000-11-22 2002-08-09 Minolta Co Ltd Micro chip
JP2003130883A (en) * 2001-04-16 2003-05-08 Tosoh Corp Microchannel structure, method of manufacturing the same, and use of the same
JP2004053345A (en) * 2002-07-18 2004-02-19 Tosoh Quartz Corp Flat flow cell, manufacturing method of the same and measuring method
JP2004526944A (en) * 2000-12-13 2004-09-02 ポリミクロ テクノロジーズ エルエルシー Stretched microchannel array device and analysis method using the same
JP2004257768A (en) * 2003-02-24 2004-09-16 Horiba Ltd Micro blood cell counter
JP2005291949A (en) * 2004-03-31 2005-10-20 Toshiba Corp Analyzing apparatus and analyzing system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100586A (en) * 1971-07-01 1974-09-24
JPS5597639A (en) * 1979-01-18 1980-07-25 Nec Corp Data selection circuit
JP2002221485A (en) * 2000-11-22 2002-08-09 Minolta Co Ltd Micro chip
JP2004526944A (en) * 2000-12-13 2004-09-02 ポリミクロ テクノロジーズ エルエルシー Stretched microchannel array device and analysis method using the same
JP2003130883A (en) * 2001-04-16 2003-05-08 Tosoh Corp Microchannel structure, method of manufacturing the same, and use of the same
JP2004053345A (en) * 2002-07-18 2004-02-19 Tosoh Quartz Corp Flat flow cell, manufacturing method of the same and measuring method
JP2004257768A (en) * 2003-02-24 2004-09-16 Horiba Ltd Micro blood cell counter
JP2005291949A (en) * 2004-03-31 2005-10-20 Toshiba Corp Analyzing apparatus and analyzing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508042A (en) * 2017-12-14 2021-02-25 エッセンリックス コーポレーション Improved light-transmitting sample holders and analytical methods, especially for hemoglobin
JP7349433B2 (en) 2017-12-14 2023-09-22 エッセンリックス コーポレーション Improved light-transmissive sample holder and analysis method, especially for hemoglobin

Similar Documents

Publication Publication Date Title
US9752978B2 (en) Micromachined flow cell with freestanding fluidic tube
TWI651529B (en) Concentration measuring device
JP5078060B2 (en) Flowmeter
US10471404B2 (en) Valve for dosing and mixing fluids and relative Brix degrees optical sensor
JP4974390B2 (en) Flow cell for flow photometric analysis
JP3762677B2 (en) Cell for fluid analysis and analyzer using the same
JP2014044145A (en) Flow cell
ES2939884T3 (en) ultrasonic flowmeter
KR101970689B1 (en) Flow cytometry using optical fiber
JP2008191119A (en) Flow cell for fluid sample
JP6404446B2 (en) Flow velocity measuring device and pipe used for it
JP2008051608A (en) Optical cell for concentration measurement
US20050195392A1 (en) Fluid analyzer
CN102128809A (en) Surface plasma resonance sensor chip assembly and cylindrical prism chip
JP7305720B2 (en) Refractometer with single-use prism and reusable optics
JP2005091093A (en) Microchip for measuring absorbance
US20120127469A1 (en) Flow cell, detector, and liquid chromatograph
JP6644329B2 (en) Light guide path built-in chip, light guide member and light guide method
JP7226561B2 (en) Liquid chromatograph detector
WO2016092679A1 (en) Blood flow sensor
US20140034854A1 (en) Microphotometer
JP2006090775A (en) Absorbance measuring unit
JP2007155674A (en) Microcell
JP2005241522A (en) Fluid analyzer
CN114062269A (en) Flow-through cell for flow photometric analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Effective date: 20101117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A131 Notification of reasons for refusal

Effective date: 20110412

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206