JP2008051587A - センサーモジュール - Google Patents

センサーモジュール Download PDF

Info

Publication number
JP2008051587A
JP2008051587A JP2006226293A JP2006226293A JP2008051587A JP 2008051587 A JP2008051587 A JP 2008051587A JP 2006226293 A JP2006226293 A JP 2006226293A JP 2006226293 A JP2006226293 A JP 2006226293A JP 2008051587 A JP2008051587 A JP 2008051587A
Authority
JP
Japan
Prior art keywords
sensor
sampling period
magnetic
sensor module
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006226293A
Other languages
English (en)
Inventor
Akihiro Fuse
晃広 布施
太好 ▲高▼
Hiroyoshi Ko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006226293A priority Critical patent/JP2008051587A/ja
Publication of JP2008051587A publication Critical patent/JP2008051587A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】性能を維持しつつも、少ないエネルギーで駆動することができるセンサーモジュールを提供する。
【解決手段】演算処理装置13は、加速度センサー12による検出加速度の変化を求め、判定装置14は、この加速度の変化の大きさをメモリ15に記憶されているデータと比較する。この結果、加速度の変化が大きいと判断したときは、電源供給装置15を制御して磁気センサー11のサンプリング周期を小さくする。また、加速度の変化が小さいと判断したときは、電源供給装置15を制御して磁気センサー11のサンプリング周期を大きくする。
【選択図】図1

Description

本発明は、磁気センサーやモーションセンサーなどの複数のセンサーを有するセンサーモジュールに関する。
磁気センサーを用いて磁気を検知する場合に、電源供給の手段に特徴をもたせて少ないエネルギーにより磁気の検知を行う技術、あるいは、磁気センサーと加速度センサーの出力信号を活用して相互の信号処理を行なうことができる技術を提案している従来技術としては、以下のものが知られている。
特許文献1は、磁気センサーと、所定周期で検出電圧をサンプリングするサンプリング手段からなり、サンプリングする時のみ磁気センサーに電源電圧を供給する電源電圧供給手段を有することを特徴とするものである。
特許文献2は、磁気抵抗素子と、磁気抵抗素子の出力を増幅する増幅回路を備えた磁気センサーの駆動回路において、磁気抵抗素子へは電力供給が間欠通電により行なわれ、増幅回路への電力供給が連続通電で行なわれることを特徴とする磁気センサーの駆動回路を提案するものである。
特許文献3は、磁気センサーと、信号処理回路と、信号処理回路に対して間欠的に通電を行なう電力供給回路、およびノイズ低減回路を有する磁気センサーに関する技術である。
また、特許文献4は、磁気センサーそのものに、原理上低消費電力であるTMR素子、GMR素子を用いたことを特徴としたものである。すなわち、磁気センサーの高感度化、省エネルギー化を目的としたものであり、磁気センサーをTMR素子又はGMR素子を用いて形成するものであり、素子の一面に配されて抗磁力が磁性層の抗磁力よりも低く、かつ、その異方性軸が磁性層の異方性軸とは独立して設定された磁界感知補用軟磁性膜を備えることを特徴とするものである。
実開平6−2115号公報 特開2000−56530号公報 特開2001−4408号公報 特開2002−207071号公報
近年、携帯端末の高機能化、高性能化が進展し、地図情報に基づいて所望の位置に誘導するいわゆるナビゲーション機能を搭載した携帯電話も急速に普及しつつある。これらの携帯電話の多くは、弱磁界である地磁気を検知する地磁気センサーと、加速度センサーやジャイロセンサーといったモーションセンサーの2種類のセンサーを搭載している場合が多い。
このような携帯端末では、電源供給源であるバッテリー容量に限度があるために、搭載されている各部品の省エネルギー化が強く望まれている。この要望は、携帯端末の高機能化、高性能化の進展に伴い、ますます強いものとなってきている。
この場合に、携帯端末各部の性能を低下させながらの省エネルギー化では本末転倒であるために、各部の機能を維持しながら如何に省エネルギーを進めるか、というのが大きな課題になってきている。
これに対して、特許文献1では、磁気センサーと、所定周期で検出電圧をサンプリングするサンプリング手段からなり、サンプリングする時のみ磁気センサーに電源電圧を供給する電源電圧供給手段を有することを特徴とする技術が提案されている。
しかしながら、電源電圧を供給するタイミングが予め設定された所定周期であるために、本来必要なタイミングであるにもかかわらず電源供給がなされず、十分な検知情報が得られない、または、必要なタイミングでない場合でも電源供給がなされる場合も当然あるので、エネルギーの無駄遣いになるといった問題がある。
また、特許文献2においては、磁気抵抗素子と、磁気抵抗素子の出力を増幅する増幅回路を備えた磁気センサーの駆動回路において、磁気抵抗素子へは電力供給が間欠通電により行なわれ、増幅回路への電力供給が連続通電で行なわれることを特徴とする磁気センサーの駆動回路が提案されているが、この技術も前述の技術と同様に、必ずしも効率的に、且つ無駄のないように電力供給がなされないといった問題がある。
さらに、特許文献3においては、磁気センサーと、信号処理回路と、信号処理回路に対して間欠的に通電を行なう電力供給回路、およびノイズ低減回路を有する磁気センサーに関する技術が提案されているが、特許文献1,2と同様の問題を抱えているものである。
そこで、本発明の目的は、性能を維持しつつも、少ないエネルギーで駆動することができるセンサーモジュールを提供することである。
請求項1に記載の発明は、外部磁界の大きさに応じて電気的信号を出力する磁気センサーと、動きに応じた電気的信号を出力するモーションセンサーと、前記両センサーのうちの一方の出力信号の変化の大きさを判定する判定手段と、 この判定結果に応じて他方の前記センサーについてサンプリング周期を可変するサンプリング周期可変手段と、を備えているセンサーモジュールである。
請求項2に記載の発明は、請求項1に記載のセンサーモジュールにおいて、前記サンプリング周期可変手段は、前記判定手段で前記モーションセンサーにより検出した動きの変化が予め設定された基準値より大きいと判定したときは、前記磁気センサーのサンプリング周期を短くするものである。
請求項3に記載の発明は、請求項1に記載のセンサーモジュールにおいて、前記サンプリング周期可変手段は、前記判定手段で前記モーションセンサーにより検出した動きの変化が予め設定された基準値より小さいと判定したときは、前記磁気センサーのサンプリング周期を長くするものである。
請求項4に記載の発明は、請求項1に記載のセンサーモジュールにおいて、前記サンプリング周期可変手段は、前記判定手段で前記磁気センサーにより検出した磁気の変化が予め設定された基準値より大きいと判定したときは、前記モーションセンサーのサンプリング周期を短くするものである。
請求項5に記載の発明は、請求項1に記載のセンサーモジュールにおいて、前記サンプリング周期可変手段は、前記判定手段で前記磁気センサーにより検出した磁気の変化が予め設定された基準値より小さいと判定したときは、前記モーションセンサーのサンプリング周期を長くするものである。
請求項6に記載の発明は、請求項1〜5のいずれかの1項に記載のセンサーモジュールにおいて、前記磁気センサーは、磁気抵抗素子である。
請求項7に記載の発明は、請求項6に記載のセンサーモジュールにおいて、前記磁気抵抗素子は、TMR(Tunneling Magneto Resistance)素子である。
請求項8に記載の発明は、請求項6又は7に記載のセンサーモジュールにおいて、前記磁気抵抗素子は、2軸以上の方向の磁気を検知するように3次元配置されている。
請求項9に記載の発明は、請求項8に記載のセンサーモジュールにおいて、前記磁気抵抗素子は、傾斜面に形成されている。
請求項10に記載の発明は、請求項1〜9のいずれかの1項に記載のセンサーモジュールにおいて、前記モーションセンサーは、加速度センサー及び、又はジャイロセンサーである。
請求項1記載の発明によれば、それぞれの利用状況に最適な信号処理を行なうことが可能となり、省エネルギーを図って、非常に効率的に的確な情報を得ることが可能となる。
請求項2記載の発明によれば、必要十分なサンプリングタイムをリアルタイムで設定することができ、省エネルギーを図りつつも、無駄の無いプロセスで高精度な磁気情報を容易に得ることが可能となる。
請求項3記載の発明によれば、外乱に左右されること無く必要にして十分な信号処理により高精度な磁気情報を得ることが可能となる。
請求項4記載の発明によれば、必要十分なサンプリングタイムをリアルタイムで設定することができ、省エネルギーを図りつつ、無駄の無いプロセスで高精度な磁気情報を容易に得ることが可能となる。
請求項5記載の発明によれば、外乱に左右されること無く必要にして十分な信号処理により高精度な磁気情報を得ることが可能となる。
請求項6記載の発明によれば、本質的に少ないエネルギーで駆動することができるセンサーモジュールでありながら、高精度の磁気情報を確実に得ることが可能となる。
請求項7記載の発明によれば、本質的に高感度、高精度の磁気情報をさらに少ない消費電力で確実に得ることが可能となる。
請求項8記載の発明によれば、電力供給回路配線を短くすることができ、エネルギー損失が小さく、小型、軽量で必要な方向すべての磁気情報を得ることができるセンサーモジュールを実現することができる。
請求項9記載の発明によれば、比較的単純な製造プロセスにより実現することが可能となり、低コストで信頼性の高いセンサーモジュールを実現することができる。
請求項10記載の発明によれば、少ない消費エネルギーで確実に動きに関わる情報を得ることができる。
以下、本発明の一実施の形態について説明する。
本発明の構成、及び動作について図を用いて以下に説明する。第1図は本発明における電気信号の処理機能を示すブロック図である。
図1は、本発明の一実施形態であるセンサーモジュール装置の電気的な接続のブロック図である。このセンサーモジュール1は、例えば携帯端末などに搭載される。センサーモジュール1は、検出部として外部磁界の大きさに従って電気的信号を出力する磁気センサー部11と、モーションセンサー、この例では、移動速度、移動方向を検知して電気的信号を出力する加速度センサー部12(ジャイロセンサーを用いても良いし、加速度センサーとジャイロセンサーを併用しても良い)と、各センサー部11,12から出力される電気的信号に基づいて所定の演算を行う演算処理装置13と、その演算結果をメモリ15に記録されているデータと比較して、次ステップとしてどのような演算処理を行なうべきか判定する判定装置14と、その判定結果を受けて設定されたサンプリングタイムで電源電圧を供給する電源供給装置15と、さらに演算処理装置13において判定装置14の判定結果に従った再演算を行なって最終的な出力情報を表示する表示部16とを備えている。
このようなセンサーモジュール1においては、磁気センサー11からの出力信号と加速度センサー12からの出力信号の変化に応じて、磁気センサー11からの出力信号に基づいて加速度センサー12の演算内容を決定する処理と、逆に加速度センサー12からの出力信号に基づいて磁気センサー11の演算内容を決定する処理とを行う。
次に、具体的な処理内容について図2を参照して説明する。まず、磁気センサー11、加速度センサー12のそれぞれの出力電気信号が所定の積算回数に従って演算処理装置13により演算処理される。その結果を判定装置14で判定し、加速度センサー12の検出信号の信号変化の度合いがメモリ15に格納されている予め設定された値よりも大きいと判定された場合は、磁気センサー11からの電気信号処理のステップで、そのサンプリング周期を短くして再演算処理を行う。このとき、磁気センサー11は通常どおりの演算処理が継続して行なってよい。
このような処理によって、加速度センサー11からの信号変化の度合いが大きい場合、すなわち利用者の環境変化が大きいと想定される場合であっても、その変化に追随した高精度の磁気情報を必要最低限のエネルギー消費で得ることができる。
これとは逆の場合を説明するのが図3である。すなわち、図3の例では、磁気センサー11、加速度センサー12のそれぞれの出力電気信号が所定の積算回数に従って演算処理され、その結果を判定装置14で判定し、加速度センサー12からの信号変化の度合いが予め設定された値よりも小さいと判定された場合を示している。この場合は、磁気センサー11からの電気信号処理のステップで、サンプリング周期を長くして再演算を行なう。
これにより、非常に少ない消費電力で効率的に高精度の磁気情報を得ることができる。
これまでは、加速度センサー11の出力信号に基づいて磁気センサー12の出力信号の再演算内容を決定する処理方法について説明したが、これとは逆に、磁気センサー12の出力信号に基づいて加速度センサー11の出力信号の再演算内容を決定するような処理を行っても良い。
磁気センサー11としては、従来は磁気抵抗変化素子(MR素子)、磁気インピーダンス素子(MI素子)、フラックスゲートセンサーなどが一般的に用いられてきたが、本実施形態においては磁気センサー11としてTMR(Tunneling Magneto Resistance)素子を利用している。
TMR素子は、薄い絶縁層を二つの磁性体層で挟み込んだ構造を有するもので、一方の磁性体層の磁界の向きを固定し、もう一方の磁性体層の磁界を外部の磁界に従って変化する構造としている。このとき、二つの磁性体層の磁界の向きが、互いに平行であるか、反平行であるかによって、膜厚方向に電流を流した場合の抵抗が大きく変化する現象を利用して磁界強度を高感度に検出できるものである。
TMR素子は、電子のトンネリング現象により電流が流れる構造であるために、電気抵抗が高く、微小な電流でも大きな電圧が得られるために、基本的に省エネルギーで動作、検知が可能なセンサーとなる。
本実施形態においては、TMR素子などに代表される地磁気センサーを2軸以上の地磁気に対応するように3次元配置されているために(図1に示すように、X,Y,Z軸用にそれぞれは位置されている)、水平方向のみならず全方位の磁気情報を得ることができる。
またさらに、これらの磁気センサーを傾斜面に形成することにより、モノリシック化が容易である。この点は各素子と演算処理装置13やその他の回路装置との電気的接続を行なう際の配線長さを短くすることができ、結果的に損失の少ない回路構成を実現できるので、個別の素子を実装技術により3次元化する方法と比べてはるかに省エネルギーで且つ小型化が容易で、信頼性の高いセンサーモジュールを実現することができる。
次に、図2、図3を参照して説明した本実施形態の処理の内容について詳細に説明する。
図4は、本実施例の信号処理について説明するフローチャートである。本実施形態においては、磁気センサー(地磁気センサー)11と加速度センサー12とを組み合わせた例で説明する。最初に、地磁気センサー11及び加速度センサー12それぞれの出力結果を得る(ステップS1、S2)。そして、得られた出力結果を判定装置14で、予め記録されているメモリ15内のデータと比較した結果(ステップS3)、通常よりも加速度の変化量が大きいと判断されたときは(ステップS4)、これを受けて演算処理装置13において、地磁気センサー11のサンプリング周期を通常の1/2とする条件で、地磁気センサー11の出力の再演算を行ない(ステップS5)、平均化処理を行なった(ステップS6)後で同様に平均化処理した地磁気の出力信号とともに表示装置16に表示する(ステップS7)。
このように、加速度の変化量が大きい条件でも、地磁気センサー11のサンプリング周期を短くすることで、大きな使用条件の変化に追随して高精度の検知が少ないエネルギーで実現できる。
この場合に、ステップS1〜S4で演算処理を行なう基準の信号を地磁気センサー11の出力信号としても良い。すなわち、地磁気センサー11及び加速度センサー12それぞれの検出手段を機能させて、それぞれの出力結果を得る。このとき、地磁気センサー11からの出力信号の変化が通常の状態よりも大きいと判定された場合は、周囲の磁気環境が大きく変化していることを意味しているので、加速度センサー12の演算処理の内容、つまりサンプリング周期を短くして再演算することで、激しい動きに追随した高精度な加速度情報を得ることができる。
図5は、本実施例の信号処理について説明するフローチャートである。本例においても、地磁気センサー11と加速度センサー12とを組み合わせた例を用いて説明する。最初に、地磁気センサー11及び加速度センサー12それぞれの出力結果を得る(ステップS11,S12)。得られた出力結果を判定装置14で、予め記録されているメモリ15内のデータと比較した結果(ステップS13)、通常よりも加速度の変化量が小さいと判断された場合は(ステップS14)、これを受けて演算処理装置13において、地磁気センサー11のサンプリング周期を通常の2倍とする条件で、地磁気センサー11の出力に基づく再演算を行ない(ステップS15)、平均化処理を行なった(ステップS16)後で同様に平均化処理した地磁気の出力信号とともに表示装置16に表示する(ステップS17)。
このように加速度の変化量が小さい条件の場合は、積算回数を減少させても必要十分な精度で地磁気の検知が実現できる。
この場合に、ステップS11〜S14で演算処理を行なう基準の信号を地磁気センサー11の出力信号としても良い。すなわち、地磁気センサー11及び加速度センサー12それぞれの検出手段を機能させて、それぞれの出力結果を得る。このとき、地磁気センサー11からの出力信号の変化が通常の状態よりも小さいと判定された場合は、周囲の磁気環境がそれほど大きく変化していないことを意味しているので、加速度センサー12の演算処理、つまりサンプリング周期を長くして再演算させても高精度な加速度情報を得ることができる。
本発明の一実施の形態であるセンサーモジュールの電気的な接続のブロック図である。 センサーモジュールの動作を説明する説明図である。 センサーモジュールの動作を説明する説明図である。 センサーモジュールの動作を説明するフローチャートである。 センサーモジュールの動作を説明するフローチャートである。
符号の説明
1 センサーモジュール
11 磁気センサー
12 加速度センサー
14 判定手段
15 サンプリング周期可変手段

Claims (10)

  1. 外部磁界の大きさに応じて電気的信号を出力する磁気センサーと、
    動きに応じた電気的信号を出力するモーションセンサーと、
    前記両センサーのうち、一方の出力信号の変化の大きさを判定する判定手段と、
    この判定結果に応じて他方の前記センサーについてサンプリング周期を可変するサンプリング周期可変手段と、
    を備えていることを特徴とするセンサーモジュール。
  2. 前記サンプリング周期可変手段は、前記判定手段で前記モーションセンサーにより検出した動きの変化が予め設定された基準値より大きいと判定したときは、前記磁気センサーのサンプリング周期を短くすることを特徴とする請求項1に記載のセンサーモジュール。
  3. 前記サンプリング周期可変手段は、前記判定手段で前記モーションセンサーにより検出した動きの変化が予め設定された基準値より小さいと判定したときは、前記磁気センサーのサンプリング周期を長くすることを特徴とする請求項1に記載のセンサーモジュール。
  4. 前記サンプリング周期可変手段は、前記判定手段で前記磁気センサーにより検出した磁気の変化が予め設定された基準値より大きいと判定したときは、前記モーションセンサーのサンプリング周期を短くすることを特徴とする請求項1に記載のセンサーモジュール。
  5. 前記サンプリング周期可変手段は、前記判定手段で前記磁気センサーにより検出した磁気の変化が予め設定された基準値より小さいと判定したときは、前記モーションセンサーのサンプリング周期を長くすることを特徴とする請求項1に記載のセンサーモジュール。
  6. 前記磁気センサーは、磁気抵抗素子であることを特徴とする請求項1〜5のいずれかの1項に記載のセンサーモジュール。
  7. 前記磁気抵抗素子は、TMR(Tunneling Magneto Resistance)素子であることを特徴とする請求項6に記載のセンサーモジュール。
  8. 前記磁気抵抗素子は、2軸以上の方向の磁気を検知するように3次元配置されていることを特徴とする請求項6又は7に記載のセンサーモジュール。
  9. 前記磁気抵抗素子は、傾斜面に形成されていることを特徴とする請求項8に記載のセンサーモジュール。
  10. 前記モーションセンサーは、加速度センサー及び、又はジャイロセンサーであることを特徴とする請求項1〜9のいずれかの1項に記載のセンサーモジュール。
JP2006226293A 2006-08-23 2006-08-23 センサーモジュール Pending JP2008051587A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006226293A JP2008051587A (ja) 2006-08-23 2006-08-23 センサーモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006226293A JP2008051587A (ja) 2006-08-23 2006-08-23 センサーモジュール

Publications (1)

Publication Number Publication Date
JP2008051587A true JP2008051587A (ja) 2008-03-06

Family

ID=39235794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006226293A Pending JP2008051587A (ja) 2006-08-23 2006-08-23 センサーモジュール

Country Status (1)

Country Link
JP (1) JP2008051587A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026825A (ja) * 2010-07-22 2012-02-09 Seiko Epson Corp センシング装置、電子機器
US9071176B2 (en) 2012-12-03 2015-06-30 Samsung Electro-Mechanics Co., Ltd. Apparatus and method for controlling motor
US9176164B2 (en) 2010-07-22 2015-11-03 Seiko Epson Corporation Sensing device and electronic apparatus
JP2016503494A (ja) * 2012-11-06 2016-02-04 クゥアルコム・インコーポレイテッドQualcomm Incorporated 測位のための配向センサーのマップベース適応的サンプリング
EP2983066A1 (en) 2014-08-06 2016-02-10 Fujitsu Limited Electronic device and movement judgment method
JP2016037795A (ja) * 2014-08-08 2016-03-22 株式会社東海理化電機製作所 電子キー及び電子キーシステム
JP2019079521A (ja) * 2017-10-20 2019-05-23 イマージョン コーポレーションImmersion Corporation 内蔵加速度計を用いる触覚プロファイルの確定
JP2020008568A (ja) * 2018-07-02 2020-01-16 旭化成エレクトロニクス株式会社 磁場測定装置、磁場測定方法、および磁場測定プログラム
US11391792B2 (en) 2018-07-02 2022-07-19 Asahi Kasei Microdevices Corporation Magnetic field measuring device, magnetic field measurement method, and recording medium having recorded thereon magnetic field measurement program

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026825A (ja) * 2010-07-22 2012-02-09 Seiko Epson Corp センシング装置、電子機器
CN103399174A (zh) * 2010-07-22 2013-11-20 精工爱普生株式会社 感测装置以及电子设备
US8903678B2 (en) 2010-07-22 2014-12-02 Seiko Epson Corporation Sensing device and electronic apparatus
US9176164B2 (en) 2010-07-22 2015-11-03 Seiko Epson Corporation Sensing device and electronic apparatus
JP2016503494A (ja) * 2012-11-06 2016-02-04 クゥアルコム・インコーポレイテッドQualcomm Incorporated 測位のための配向センサーのマップベース適応的サンプリング
US9071176B2 (en) 2012-12-03 2015-06-30 Samsung Electro-Mechanics Co., Ltd. Apparatus and method for controlling motor
EP2983066A1 (en) 2014-08-06 2016-02-10 Fujitsu Limited Electronic device and movement judgment method
JP2016037795A (ja) * 2014-08-08 2016-03-22 株式会社東海理化電機製作所 電子キー及び電子キーシステム
JP2019079521A (ja) * 2017-10-20 2019-05-23 イマージョン コーポレーションImmersion Corporation 内蔵加速度計を用いる触覚プロファイルの確定
JP2020008568A (ja) * 2018-07-02 2020-01-16 旭化成エレクトロニクス株式会社 磁場測定装置、磁場測定方法、および磁場測定プログラム
JP7082590B2 (ja) 2018-07-02 2022-06-08 旭化成エレクトロニクス株式会社 磁場測定装置、磁場測定方法、および磁場測定プログラム
US11391792B2 (en) 2018-07-02 2022-07-19 Asahi Kasei Microdevices Corporation Magnetic field measuring device, magnetic field measurement method, and recording medium having recorded thereon magnetic field measurement program

Similar Documents

Publication Publication Date Title
JP2008051587A (ja) センサーモジュール
US9970997B2 (en) Magnetic field sensing apparatus and magnetic field sensing module
JP5023073B2 (ja) モーションセンシングプログラム及びそれを備えた電子コンパス
JP5584918B2 (ja) 電流センサ
JP2007113993A (ja) 磁気コンパス
US20090012733A1 (en) Offset correction program and electronic compass
CN106154189A (zh) 用于磁场感测的穿隧磁阻装置
CN110987032B (zh) 磁编码器、绝对电角度检测方法、系统及可读存储介质
JP6474128B2 (ja) 地磁気センサと加速度センサを搭載した電子機器
EP3623757A1 (en) Spintronic gyroscopic sensor device
JP4928875B2 (ja) センサーモジュール
JP2008281473A (ja) 磁性微粒子を検出するためにホール効果を用いる磁気センサ
JP6361769B1 (ja) 位置予測装置及び位置検出装置
JP4084036B2 (ja) 磁気センサ及びこの磁気センサを用いた方位検知システム
JP2007303864A (ja) 磁界センサおよび磁界センシングの方法
JP2004184150A (ja) 磁気検知装置、方位検知システム及び携帯通信端末
JP5240657B2 (ja) センシング素子、センシング装置、方位検出装置及び情報機器
JPH06174471A (ja) 電子式方位計
US20230320233A1 (en) Spin-orbit-torque based magnetic sensor and a magnetic field measurement method using a magnetic sensor
JP4122834B2 (ja) 方位測定機能を有する携帯型電子装置
JP5302099B2 (ja) 車載用電子コンパス
KR100370015B1 (ko) 이동 단말기의 지향 방위 측정 장치
JP2005043103A (ja) 磁気コンパス
JP5498196B2 (ja) 磁界検知装置
US20070024470A1 (en) Wireless communication device capable of indicating directions