JP2008051361A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2008051361A
JP2008051361A JP2006226185A JP2006226185A JP2008051361A JP 2008051361 A JP2008051361 A JP 2008051361A JP 2006226185 A JP2006226185 A JP 2006226185A JP 2006226185 A JP2006226185 A JP 2006226185A JP 2008051361 A JP2008051361 A JP 2008051361A
Authority
JP
Japan
Prior art keywords
conditional expression
defrosting operation
evaporator
heat pump
water heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006226185A
Other languages
Japanese (ja)
Inventor
Masayuki Hamada
真佐行 濱田
Yusuke Kono
裕介 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006226185A priority Critical patent/JP2008051361A/en
Publication of JP2008051361A publication Critical patent/JP2008051361A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type water heater capable of preventing degradation of heat-up performance by a defrosting operation. <P>SOLUTION: In this heat pump type water heater comprising an evaporator for exchanging heat between the atmospheric air and a refrigerant, an outside air temperature detecting means for detecting an outside air temperature, and an evaporator temperature detecting means for detecting a temperature of the evaporator, and performing the defrosting operation to remove the frost attached to the evaporator, a first conditional expression and a second conditional expression determined from correlation of the outside air temperature and the evaporator temperature are provided, the start of defrosting operation is judged on the basis of an area defined by the first conditional expression and the second conditional expression, and the first conditional expression and the second conditional expression are corrected by adding correction coefficients to the first conditional expression and the second conditional expression according the last defrosting operation time to correct the judgement area to start the defrosting operation, when the second and following defrosting operations are performed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプ式給湯機の除霜運転に関する。   The present invention relates to a defrosting operation of a heat pump type water heater.

一般的にヒートポンプ式給湯機の蒸発器は、冷媒が大気の熱を吸熱するため、蒸発器温度は低温となる。そのため、外気温度が低い時(例えば、2℃〜5℃以下)には、蒸発器の温度がゼロ以下となり、水分が介在する場合には、霜となり蒸発器に付着してしまう。霜付着後に運転を継続すると、さらに霜が成長してしまい蒸発器での熱交換能力を阻害し、加熱能力を徐々に低下させてしまうために、蒸発器に着霜した霜を融解する除霜運転を行い、霜の成長を防止していた。従来の除霜運転では、水冷媒熱交換器の水循環を停止し、膨張弁の開度を開くことで蒸発器にホットガスを送り、蒸発器の霜を溶かしていた。しかしながら、水の循環を止めて除霜運転を行っているため、加熱能力ゼロで運転していることと等しく、通常沸き上げ運転復帰時においてすぐに高温出水を行うことができない。つまり除霜運転が沸き上げ運転時間の長時間化を一因となっており、除霜運転を効率よく行うことが、沸き上げ運転時間を短縮する重要な課題となる。   Generally, in an evaporator of a heat pump type hot water heater, since the refrigerant absorbs heat from the atmosphere, the evaporator temperature is low. Therefore, when the outside air temperature is low (for example, 2 ° C. to 5 ° C. or less), the temperature of the evaporator becomes zero or less, and when moisture is present, it becomes frost and adheres to the evaporator. If the operation is continued after frost adherence, the frost grows further and the heat exchange capacity in the evaporator is hindered, and the heating capacity is gradually reduced. Operation was performed to prevent frost growth. In the conventional defrosting operation, the water circulation of the water-refrigerant heat exchanger is stopped, and the opening of the expansion valve is opened to send hot gas to the evaporator to melt the evaporator frost. However, since the defrosting operation is performed by stopping the circulation of water, it is equivalent to the operation with zero heating capacity, and high temperature water discharge cannot be performed immediately upon returning to the normal boiling operation. In other words, the defrosting operation contributes to a longer boiling operation time, and efficient defrosting operation is an important issue for shortening the boiling operation time.

つまり、着霜現象が生じる全ての外気温度条件下において、除霜運転開始時に蒸発器の着霜量を一定に制御することが重要であり、このような課題を解決するために、従来の除霜運転は、外気温度Xと蒸発器温度Yとの関係を示す第1の条件式と第2の条件式とを設け、第1の条件式の下領域に蒸発器温度があり、所定の除霜運転開始条件を満たしていれば除霜運転を開始、もしくは蒸発器温度が第2の条件式の下領域にあった場合は除霜運転を開始していた(例えば、特許文献1参照)。   In other words, it is important to control the frosting amount of the evaporator at the start of the defrosting operation under all outside air temperature conditions where frosting occurs, and in order to solve such problems, In the frost operation, a first conditional expression and a second conditional expression that indicate the relationship between the outside air temperature X and the evaporator temperature Y are provided. If the frost operation start condition is satisfied, the defrost operation is started, or if the evaporator temperature is in the lower region of the second conditional expression, the defrost operation is started (for example, see Patent Document 1).

図7は、従来の除霜運転の開始判定を示す概念図である。図7において、第1の条件式:Y(蒸発器温度)=a・X(外気温度)+b、第2の条件式:Y(蒸発器温度)=a・X(外気温度)+c、Ta(除霜運転上限温度)、Tb(除霜運転下限温度)で囲まれた領域A・B・C内の蒸発器温度と外気温度の検出値に応じて、除霜運転を行う/行わないを判定していた。特許文献1においては、領域A:除霜運転を行わない、領域B:条件によっては除霜運転を行う、領域C:無条件に除霜運転を行う、としている。従来の第1の条件式および第2の条件式の定め方について図8を用いて説明する。なお、外気温度が高く、着霜の内状態である蒸発器温度がTa以上の時には除霜運転を行わず、不必要な除霜運転を防ぐことができる。また、蒸発器温度がTb以下の時には、確実に除霜運転を行うこととしており、外気温度検出手段が霜または雪で覆われ適切に外気温度を取得できなくなった場合においても、外気温度を無視して除霜運転を行うので、着霜が進行した状態が続くことを防ぐことができる。   FIG. 7 is a conceptual diagram showing start determination of a conventional defrosting operation. In FIG. 7, the first conditional expression: Y (evaporator temperature) = a · X (outside air temperature) + b, the second conditional expression: Y (evaporator temperature) = a · X (outside air temperature) + c, Ta ( The defrosting operation upper limit temperature) and Tb (defrosting operation lower limit temperature) are determined whether or not to perform the defrosting operation according to the detected values of the evaporator temperature and the outside air temperature in the regions A, B, and C. Was. In Patent Document 1, the region A: the defrosting operation is not performed, the region B: the defrosting operation is performed depending on the conditions, and the region C: the defrosting operation is performed unconditionally. A conventional method for defining the first conditional expression and the second conditional expression will be described with reference to FIG. It should be noted that when the outside air temperature is high and the evaporator temperature, which is the inner state of frost formation, is Ta or higher, the defrosting operation is not performed, and unnecessary defrosting operation can be prevented. In addition, when the evaporator temperature is Tb or less, the defrosting operation is surely performed. Even when the outside temperature detecting means is covered with frost or snow and the outside temperature cannot be acquired properly, the outside temperature is ignored. Then, since the defrosting operation is performed, it is possible to prevent the state where frosting has progressed from continuing.

図8は、給湯加熱能力が最大値から低下した状態での蒸発器温度と外気温度との相関関係を示した相関図である。図8に示すように、給湯加熱能力が最大値から低下した状態(例えば、最大加熱能力の90%)での蒸発器温度と外気温度の間には、略線形的な相関があることが分かる。しかしながら圧縮機の回転数、入水温度、沸き上げ温度、ファン回転数、外湿度などの影響により蒸発器温度と外気温度の略線形的な関係は変動することも分かっているため、単純に略線形的な関係のみを除霜運転を開始させる条件式として用いるだけでは、必ずしも適切なタイミングで除霜運転に入ることができない。そこで、蒸発器温度の上下に余裕を持たせることで略線形的な関係Y=a・Xの上下に平行に移動させたものを第1の条件式、第2の条件式とし、第1の条件式:Y=a・X+b、第2の条件式:Y=a・X+cとした。これらの条件式の中には、圧縮機の回転数によって生じる蒸発器の圧力損失などを考慮した結果を係数に反映させ、除霜運転の精度を高めている。
特開2006−145083号公報
FIG. 8 is a correlation diagram showing the correlation between the evaporator temperature and the outside air temperature when the hot water supply heating capacity is reduced from the maximum value. As shown in FIG. 8, it can be seen that there is a substantially linear correlation between the evaporator temperature and the outside air temperature when the hot water supply heating capacity is reduced from the maximum value (for example, 90% of the maximum heating capacity). . However, since it is known that the linear relationship between the evaporator temperature and the outside air temperature fluctuates due to the effects of the compressor speed, incoming water temperature, boiling temperature, fan speed, external humidity, etc. The defrosting operation cannot always be entered at an appropriate timing simply by using only a general relationship as a conditional expression for starting the defrosting operation. Therefore, the first conditional expression and the second conditional expression are obtained by moving the evaporator temperature parallel to the upper and lower sides of the substantially linear relationship Y = a · X by giving a margin above and below the evaporator temperature. Conditional expression: Y = a · X + b, second conditional expression: Y = a · X + c. In these conditional expressions, the result of taking into account the pressure loss of the evaporator caused by the rotational speed of the compressor is reflected in the coefficient to improve the accuracy of the defrosting operation.
JP 2006-145083 A

しかしながら、従来の除霜運転では、外気温度Xと蒸発器温度Yとの1次式からなる第1の条件式と第2の条件式とをパラメータとして除霜運転を行う/行わないの判断を行っており、設定したパラメータのずれが除霜運転を行うタイミングに影響を与えるので、設定パラメータが適切でなかった場合や環境条件によっては必ずしも適切なタイミングで除霜運転を実行できないという課題を有していた。   However, in the conventional defrosting operation, it is determined whether or not to perform the defrosting operation using the first conditional expression and the second conditional expression that are primary expressions of the outside air temperature X and the evaporator temperature Y as parameters. Because the deviation of the set parameters affects the timing of performing the defrosting operation, there is a problem that the defrosting operation cannot always be executed at an appropriate timing when the set parameters are not appropriate or depending on environmental conditions. Was.

本発明は、前記従来の課題を解決するもので、除霜運転による沸き上げ性能の低下を防止することができるヒートポンプ式給湯機を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the heat pump type water heater which can prevent the fall of the boiling performance by a defrost operation.

前記従来の課題を解決するために、本発明のヒートポンプ式給湯機は、大気と冷媒とを熱交換する蒸発器と、外気温度を検出する外気温度検出手段と、蒸発器温度を検出する蒸発器温度検出手段とを備え、前記蒸発器に付着した霜を取り除く除霜運転を有するヒートポンプ式給湯機において、外気温度と蒸発器温度との相関関係から求めた第1の条件式および第2の条件式を有し、前記第1の条件式および前記第2の条件式が形成する領域によって除霜運転の開始を判断し、2回目以降の除霜運転を行う時には、前回の除霜運転時間に応じて第1の条件式および第2の条件式に補正係数を加えることによって第1の条件式および第2の条件式を補正し、除霜運転の開始の判断領域を補正することにより、前回の除霜運転時間から着霜量が適切かどうかを判断することができ、次回の除霜運転を行うときに前回の除霜運転時間から定まる係数で補正することができるので、適切なタイミングで除霜運転を行わせることができる。また、第2の条件式を設けることで、何らかの影響で着霜判断ができなかった場合においても除霜運転を行うので、着霜の進行を防止することができる。   In order to solve the above-described conventional problems, a heat pump type water heater of the present invention includes an evaporator for exchanging heat between the atmosphere and a refrigerant, an outside air temperature detecting means for detecting the outside air temperature, and an evaporator for detecting the evaporator temperature. A heat pump water heater having a defrosting operation that removes frost adhering to the evaporator, the first conditional expression and the second condition obtained from the correlation between the outside air temperature and the evaporator temperature When the start of the defrosting operation is determined based on the area formed by the first conditional expression and the second conditional expression, and the second and subsequent defrosting operations are performed, the previous defrosting operation time is Accordingly, the first conditional expression and the second conditional expression are corrected by adding a correction coefficient to the first conditional expression and the second conditional expression, and the determination area of the start of the defrosting operation is corrected, thereby correcting the previous condition. The amount of frost formation is appropriate from the defrosting operation time Can determine whether, can be corrected by a factor determined from the previous defrosting operation time when performing the next defrosting operation, it is possible to perform the defrosting operation at an appropriate timing. In addition, by providing the second conditional expression, the defrosting operation is performed even when the frost determination cannot be performed due to some influence, so that the progress of frost formation can be prevented.

本発明のヒートポンプ式給湯機は、除霜運転による沸き上げ性能の低下を防止することができる。   The heat pump type water heater of the present invention can prevent a decrease in boiling performance due to a defrosting operation.

第1の発明のヒートポンプ式給湯機は、大気と冷媒とを熱交換する蒸発器と、外気温度を検出する外気温度検出手段と、蒸発器温度を検出する蒸発器温度検出手段とを備え、前記蒸発器に付着した霜を取り除く除霜運転を有するヒートポンプ式給湯機において、外気温度と蒸発器温度との相関関係から求めた第1の条件式および第2の条件式を有し、前記第1の条件式および前記第2の条件式が形成する領域によって除霜運転の開始を判断し、2回目以降の除霜運転を行う時には、前回の除霜運転時間に応じて第1の条件式および第2の条件式に補正係数を加えることによって第1の条件式および第2の条件式を補正し、除霜運転の開始の判断領域を補正することにより、前回の除霜運転時間から着霜量が適切かどうかを判断することができ、次回の除霜運転を行うときに前回の除霜運転時間から定まる係数で補正することができるので、適切なタイミングで除霜運転を行わせることができる。また、第2の条件式を設けることで、何らかの影響で着霜判断ができなかった場合においても除霜運転を行うので、着霜の進行を防止することができる。   The heat pump type hot water heater of the first invention comprises an evaporator for exchanging heat between the atmosphere and the refrigerant, an outside air temperature detecting means for detecting the outside air temperature, and an evaporator temperature detecting means for detecting the evaporator temperature, In a heat pump type water heater having a defrosting operation for removing frost adhering to an evaporator, the heat pump type water heater has a first conditional expression and a second conditional expression obtained from a correlation between an outside air temperature and an evaporator temperature, When the start of the defrosting operation is determined based on the conditional expression and the region formed by the second conditional expression, and the second and subsequent defrosting operations are performed, the first conditional expression and By adding a correction coefficient to the second conditional expression, the first conditional expression and the second conditional expression are corrected, and the determination area of the start of the defrosting operation is corrected. Can determine if the amount is appropriate Can be corrected by a factor determined from the previous defrosting operation time when performing the next defrosting operation, it is possible to perform the defrosting operation at an appropriate timing. In addition, by providing the second conditional expression, the defrosting operation is performed even when the frost determination cannot be performed due to some influence, so that the progress of frost formation can be prevented.

第2の発明のヒートポンプ式給湯機は、特に第1の発明において、前回の除霜運転時間が所定の時間よりも長かった場合、補正係数は正の定数であることにより、除霜運転時間が所定の時間よりも長いため着霜量が多いと判断し、除霜運転に入りやすくなるように条件式が補正されるので、適切なタイミングで除霜運転を行うことができる。   In the heat pump type hot water heater of the second invention, particularly in the first invention, when the previous defrosting operation time is longer than the predetermined time, the defrosting operation time is determined by the correction coefficient being a positive constant. Since it is determined that the amount of frost formation is large because it is longer than the predetermined time, and the conditional expression is corrected so that the defrosting operation can be easily performed, the defrosting operation can be performed at an appropriate timing.

第3の発明のヒートポンプ式給湯機は、特に第1または第2の発明において、前回の除霜運転時間が所定の時間よりも短かった場合、補正係数は負の定数であることにより、除霜運転時間が所定の時間よりも短いため着霜量が少ないと判断し、除霜運転に入りやすくなるように条件式が補正されるので、適切なタイミングで除霜運転を行うことができる。   In the heat pump type hot water heater of the third invention, particularly in the first or second invention, when the previous defrosting operation time is shorter than the predetermined time, the correction coefficient is a negative constant, Since the operation time is shorter than the predetermined time, it is determined that the amount of frost formation is small, and the conditional expression is corrected so that the defrosting operation can be easily performed. Therefore, the defrosting operation can be performed at an appropriate timing.

第4の発明のヒートポンプ式給湯機は、特に第1〜第3の発明において、除霜運転の上限値および下限値を設け、第1の条件式および上限値よりも下領域、かつ第2の条件式および下限値よりも上領域に外気温度および蒸発器温度が位置する時には、除霜開始条件を満足すれば除霜運転を開始し、第1の条件式および上限値よりも下領域、かつ第2の条件式および下限値よりも下領域に外気温度および蒸発器温度が位置する時には、無条件で除霜運転を開始することにより、上限値よりも上回っていれば除霜運転を行わないので、外気温度が高く、着霜の無い状態での除霜運転を防止することができ、下限値よりも下回っていれば、外気温度検出手段であるサーミスタが霜や雪などで覆われ、適切に外気温度が取得できなくても、外気温度を無視し、蒸発器温度が下限値以下になると除霜運転を行うので、着霜が進行した状態が続くことを防止することができ、適宜除霜運転を行うことができる。   In the heat pump hot water heater of the fourth invention, particularly in the first to third inventions, an upper limit value and a lower limit value of the defrosting operation are provided, a region below the first conditional expression and the upper limit value, and the second When the outside air temperature and the evaporator temperature are located above the conditional expression and the lower limit value, the defrosting operation is started if the defrosting start condition is satisfied, the lower area than the first conditional expression and the upper limit value, and When the outside air temperature and the evaporator temperature are located in a region below the second conditional expression and the lower limit value, the defrosting operation is started unconditionally, and if the temperature exceeds the upper limit value, the defrosting operation is not performed. Therefore, it is possible to prevent the defrosting operation in a state where the outside air temperature is high and there is no frost formation, and if it is below the lower limit value, the thermistor that is the outside air temperature detecting means is covered with frost or snow, Even if the outside temperature cannot be obtained, the outside temperature Vision and, since the defrosting operation and the evaporator temperature is below the lower limit, it is possible to prevent the condition continues because of frost has progressed, it is possible to perform appropriate defrosting operation.

第5の発明のヒートポンプ式給湯機は、特に第1〜4の発明において、除霜運転開始条件は、蒸発器温度の下降時において、所定の変化率以上となることにより、蒸発器が霜によって目詰まりしたかどうかを判断することができるので、より適切な着霜状態を把握することができる。   In the heat pump type hot water heater of the fifth invention, particularly in the first to fourth inventions, the defrosting operation start condition is equal to or higher than a predetermined rate of change when the evaporator temperature is lowered. Since it can be determined whether clogging has occurred, a more appropriate frosting state can be grasped.

第6の発明のヒートポンプ式給湯機は、特に第1〜4の発明において、除霜運転開始条件は、第1の条件式および上限値よりも下領域に所定時間継続して位置することにより、外湿度が低く、蒸発器が目詰まりしたかどうかの判断を蒸発器温度の変化率によって判断できない場合においても、ある程度着霜が進行している第1の条件式の下領域において一定時間経過した後、除霜運転を行うので、着霜が進行した状態が続くことを防止することができ、除霜運転を行うことができる。   In the heat pump hot water heater of the sixth invention, particularly in the first to fourth inventions, the defrosting operation start condition is continuously located for a predetermined time in the region below the first conditional expression and the upper limit value. Even when the outside humidity is low and it is not possible to judge whether the evaporator is clogged by the rate of change of the evaporator temperature, a certain period of time has passed in the lower region of the first conditional expression in which frosting has progressed to some extent. After that, since the defrosting operation is performed, it is possible to prevent the state where the frosting has progressed from continuing, and the defrosting operation can be performed.

第7の発明のヒートポンプ式給湯機は、特に第1〜第6の発明において、高圧側の冷媒圧力が、臨界圧力以上となることにより、水に熱を奪われて冷媒温度が低下しても、凝縮することがないため、水―冷媒熱交換器全域で冷媒と水との間に温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換率を高くできる。   The heat pump type hot water heater of the seventh invention is the first to sixth inventions, in particular, even if the refrigerant pressure on the high pressure side becomes equal to or higher than the critical pressure, the water is deprived of heat and the refrigerant temperature decreases. Since it does not condense, it becomes easy to form a temperature difference between the refrigerant and water in the entire water-refrigerant heat exchanger, so that hot water can be obtained and the heat exchange rate can be increased.

第8の発明のヒートポンプ式給湯機は、特に第7の発明において、使用する冷媒が二酸化炭素であることにより、比較的安価でかつ安定な二酸化炭素を冷媒に使用することにより、製品コストを抑えるとともに、信頼性を向上させることができる。また、二酸化炭素はオゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しい製品を提供できる。   In the heat pump type hot water heater of the eighth invention, in particular, in the seventh invention, since the refrigerant to be used is carbon dioxide, the relatively inexpensive and stable carbon dioxide is used for the refrigerant, thereby suppressing the product cost. At the same time, reliability can be improved. In addition, carbon dioxide has an ozone depletion coefficient of zero and a global warming coefficient of about 1/700 of the alternative refrigerant HFC-407C, which is very small.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本実施の形態におけるヒートポンプ式給湯機の要部構成図である。図1において、本実施の形態におけるヒートポンプ式給湯機のヒートポンプ回路は、蒸発器61、圧縮機62、水冷媒熱交換器65、膨張弁63を冷媒配管で環状に接続して構成される。そして送風機64によって蒸発器61に風が流通され、大気と冷媒とが熱交換される。沸き上げ運転時は、長時間運転されると蒸発器61の温度は低下し、低外気温などの条件によ
り霜が発生・成長する。このとき圧縮機62の運転回転数が高い場合には、蒸発器61の入口/出口間での冷媒の圧力損失が大きく、出口部の冷媒温度が大きく低下し、霜の成長が他の部分よりも早くなる。霜が徐々に成長するに従い、蒸発器61の通風抵抗が大きくなるため熱交換量が少なくなり、給湯加熱能力が低下する。本実施の形態におけるヒートポンプ式給湯機は、サーミスタ(蒸発器温度検出手段)66、サーミスタ(外気温度検出手段)67の検出値によりマイクロコンピュータ(電子制御装置)68で着霜を判断し、除霜運転を開始している。
(Embodiment 1)
FIG. 1 is a configuration diagram of a main part of a heat pump type water heater in the present embodiment. In FIG. 1, the heat pump circuit of the heat pump type hot water heater in the present embodiment is configured by connecting an evaporator 61, a compressor 62, a water-refrigerant heat exchanger 65, and an expansion valve 63 in an annular shape with a refrigerant pipe. Then, air is circulated to the evaporator 61 by the blower 64, and heat exchange is performed between the atmosphere and the refrigerant. During the boiling operation, when the operation is continued for a long time, the temperature of the evaporator 61 decreases, and frost is generated and grows depending on conditions such as a low outside air temperature. At this time, when the operating speed of the compressor 62 is high, the pressure loss of the refrigerant between the inlet / outlet of the evaporator 61 is large, the refrigerant temperature at the outlet portion is greatly reduced, and frost growth is higher than that of other parts. Will also be faster. As the frost grows gradually, the ventilation resistance of the evaporator 61 increases, so the amount of heat exchange decreases and the hot water supply heating capacity decreases. The heat pump type water heater in the present embodiment determines frost formation by a microcomputer (electronic control unit) 68 based on detection values of a thermistor (evaporator temperature detection means) 66 and a thermistor (outside air temperature detection means) 67, and defrosts. Driving has begun.

以上のように構成されたヒートポンプ式給湯機について、以下、その動作及び作用を説明する。なお、初回の除霜運転に関しては、従来の方法と同様であり、詳細な記載は省略する。なお、従来の方法において、最大加熱能力からの能力低下がほとんど無い時に除霜運転を入れる場合、着霜量の少ない状況で除霜運転が頻繁に行われ、沸き上げ運転時間に対して除霜運転時間の割合が大きくなり、沸き上げ時間が短くなるため、累積給湯加熱能力が低下するとともに、除霜運転ごとに蒸発器の温度を上げるためのエネルギーが必要となるので、無駄なエネルギーを消費することになる。一方、最大加熱能力からの能力低下が大きい時に除霜運転を入れる場合、1サイクルあたりの沸き上げ運転時間は長くなるが、着霜による給湯加熱能力の低下が生じ、無駄なエネルギーを消費するだけでなく、霜が成長しているので、除霜運転時間が長くなり、中温水の発生を助長する。よって、バランスを考慮し、最大加熱能力からある一定の能力が落ちた時の蒸発器温度と外気温度との相関関係から条件式を求めなければならない。本実施の形態においては、最大加熱能力の90%時における蒸発器温度と外気温度の相関関係から第1の条件式:Y(蒸発器温度)=a・X(外気温度)+b、第2の条件式:Y(蒸発器温度)=a・X(外気温度)+cの係数a、b、cを算出しており、これは蒸発器が目詰まりするポイントとほぼ一致する。また圧縮機回転数、入水温度、沸き上げ温度、ファン速などの影響を考慮して係数を算出してもよく、本実施の形態では1次式で置き換えたが、2次式もしくはその他の多項式で置き換えても構わない。   The operation and action of the heat pump type water heater configured as described above will be described below. The first defrosting operation is the same as the conventional method, and detailed description is omitted. In addition, in the conventional method, when the defrosting operation is performed when there is almost no decrease in capacity from the maximum heating capacity, the defrosting operation is frequently performed in a situation where the amount of frost formation is small, and the defrosting operation is performed with respect to the boiling operation time. Since the percentage of operation time increases and the boiling time decreases, the accumulated hot water heating capacity decreases and energy is required to increase the evaporator temperature for each defrost operation. Will do. On the other hand, when the defrosting operation is performed when the capacity reduction from the maximum heating capacity is large, the boiling operation time per cycle becomes longer, but the hot water heating capacity is reduced due to frosting, and only wasteful energy is consumed. In addition, since the frost is growing, the defrosting operation time is lengthened, and the generation of intermediate temperature water is promoted. Therefore, in consideration of the balance, a conditional expression must be obtained from the correlation between the evaporator temperature and the outside air temperature when a certain capacity falls from the maximum heating capacity. In the present embodiment, the first conditional expression: Y (evaporator temperature) = a · X (outside air temperature) + b, second from the correlation between the evaporator temperature and the outside air temperature at 90% of the maximum heating capacity. Conditional expressions: Y (evaporator temperature) = a · X (outside air temperature) + c coefficients a, b, and c are calculated, which almost coincides with the point at which the evaporator is clogged. Further, the coefficient may be calculated in consideration of the effects of the compressor rotational speed, the incoming water temperature, the boiling temperature, the fan speed, and the like. In this embodiment, the coefficient is replaced by the linear expression, but the quadratic expression or other polynomials are used. You can replace it with

図2、図3は、本実施の形態における除霜運転開始の判断領域を示す図である。つまり2回目以降の除霜運転をする/しないを判断する領域を示すものである。図2、図3に示すように、第1の条件式および第2の条件式は補正係数eによって補正されている。なお図2は補正係数eが正の定数で補正された時の判断領域を示す図、図3は補正係数eが負の定数で補正された時の判断領域を示す図である。補正係数eは、前回の除霜運転が所定時間よりも長いか短いかによって決定され、所定時間よりも除霜運転時間が長い場合は、補正係数eは正の定数、所定時間よりも除霜運転時間が短い場合は、補正係数eは負の定数とする。つまり所定時間よりも除霜運転時間が長い場合は、着霜量が多いと判断し、より除霜運転を開始しやすくするため条件を甘く設定し、所定時間よりも除霜運転時間が短い場合は、着霜量が少ないと判断し、除霜運転を遅らせてもよいため条件を厳しく設定するものである。このように補正することで、2回目以降の除霜運転において、適切なタイミングで除霜運転を開始させることができる。   2 and 3 are diagrams showing a determination region for starting the defrosting operation in the present embodiment. That is, it shows an area for determining whether or not to perform the second and subsequent defrosting operations. As shown in FIGS. 2 and 3, the first conditional expression and the second conditional expression are corrected by the correction coefficient e. FIG. 2 is a diagram showing a determination region when the correction coefficient e is corrected with a positive constant, and FIG. 3 is a diagram showing a determination region when the correction coefficient e is corrected with a negative constant. The correction coefficient e is determined based on whether the previous defrosting operation is longer or shorter than the predetermined time. When the defrosting operation time is longer than the predetermined time, the correction coefficient e is a positive constant, and the defrosting is longer than the predetermined time. When the operation time is short, the correction coefficient e is a negative constant. In other words, when the defrosting operation time is longer than the predetermined time, it is determined that the amount of frost formation is large, the condition is set to be easier to start the defrosting operation, and the defrosting operation time is shorter than the predetermined time. Since it is judged that the amount of frost formation is small and the defrosting operation may be delayed, the conditions are set strictly. By correcting in this way, the defrosting operation can be started at an appropriate timing in the second and subsequent defrosting operations.

図4は、本実施の形態における除霜運転開始の制御フローチャートである。図4において沸き上げ運転が行われるとステップ41において領域A(図2、3参照)に位置するかどうかを判断し、領域Aにいれば沸き上げ運転を継続し、領域Aにいなければステップ42に進む。   FIG. 4 is a control flowchart for starting the defrosting operation in the present embodiment. When the boiling operation is performed in FIG. 4, it is determined whether or not it is located in the region A (see FIGS. 2 and 3) in step 41. If it is in the region A, the boiling operation is continued. Go to 42.

ステップ42において領域Bに位置するかどうかを判断し、領域Bにいればステップ43に進み、領域Bにいなければ除霜運転を開始する。   In step 42, it is determined whether or not the vehicle is located in the region B. If it is in the region B, the process proceeds to step 43. If it is not in the region B, the defrosting operation is started.

ステップ43において蒸発器温度の変化率の絶対値|△T|が所定の値△Tiよりも大きく、かつ蒸発器温度の変化率△Tがマイナスであるかどうかを判断し、条件を満足すれ
ば除霜運転を開始し、条件を満足しなければステップ44に進む。
In step 43, it is determined whether the absolute value | ΔT | of the evaporator temperature change rate is larger than a predetermined value ΔTi and the evaporator temperature change rate ΔT is negative. The defrosting operation is started, and if the condition is not satisfied, the process proceeds to step 44.

ステップ44において領域Bに位置している継続時間が所定時間(例えば、20分)経過したかどうかを判断し、条件を満足すれば除霜運転を開始し、条件を満足しなければステップ42に進む。   In step 44, it is determined whether or not a predetermined time (for example, 20 minutes) has elapsed in the region B. If the condition is satisfied, the defrosting operation is started. If the condition is not satisfied, the process proceeds to step 42. move on.

ここでステップ43について詳細に説明する。図5は、縦軸に給湯加熱能力・蒸発器温度、横軸に運転時間をプロットした通常時における給湯加熱能力・蒸発器温度と運転時間の相関図である。図5において、あるポイントから給湯加熱能力および蒸発器温度が急激に落ち込んでいることが分かるが、これは蒸発器が霜によって目詰まりし始めていることを示しており、蒸発器温度の変化率を除霜運転開始の判定条件とすることで精度よく除霜運転を行うことができる。ただし、領域Aに位置するときに、この条件で除霜運転を開始してしまうと、何らかの要因で蒸発器温度が急激に落ち込んだ場合、着霜していない、もしくはほとんど着霜していない場合においても除霜運転を開始してしまうために、本実施の形態では領域Bにおける除霜運転の開始条件としている。   Here, step 43 will be described in detail. FIG. 5 is a correlation diagram of the hot water supply heating capacity / evaporator temperature and the operation time in a normal time with the hot water supply heating capacity / evaporator temperature plotted on the vertical axis and the operation time plotted on the horizontal axis. In FIG. 5, it can be seen that the hot water heating capacity and the evaporator temperature are drastically dropping from a certain point. This indicates that the evaporator is beginning to clog due to frost, and the rate of change of the evaporator temperature is The defrosting operation can be performed with high accuracy by using the determination condition for starting the defrosting operation. However, if the defrosting operation is started under this condition when located in the area A, the evaporator temperature suddenly drops for some reason, the frost is not formed, or the frost is hardly formed In this embodiment, the defrosting operation start condition in region B is used in order to start the defrosting operation.

またステップ44について詳細に説明する。図6は、縦軸に給湯加熱能力・蒸発器温度、横軸に運転時間をプロットした低湿度時における給湯加熱能力・蒸発器温度と運転時間の相関図である。図6において、外湿度が低湿度(例えば、70%以下)の時における給湯加熱能力・蒸発器温度の時間変化を示す。図6に示すように、低湿度時においては、急激な蒸発器温度の減少を見ることができないため、ステップ43における蒸発器温度の変化率を、除霜運転開始の判断材料とすることができない。しかしながら、領域Bに位置するときにはある程度着霜していることが予想されるため、このような状態が長時間継続することは、累積給湯加熱能力の低下につながり好ましくない。そこで、領域Bに位置し、ある所定の時間(例えば、20分)が経過した時に除霜運転を開始することとした。なお、所定の時間は累積給湯加熱能力が最大になるように決定すればよい。   Step 44 will be described in detail. FIG. 6 is a correlation diagram of hot water heating capacity / evaporator temperature and operating time at low humidity with the vertical axis representing hot water heating capacity / evaporator temperature and the horizontal axis plotted operating time. In FIG. 6, the time change of the hot water supply heating capacity and the evaporator temperature when the external humidity is low (for example, 70% or less) is shown. As shown in FIG. 6, when the humidity is low, since a rapid decrease in the evaporator temperature cannot be seen, the change rate of the evaporator temperature in step 43 cannot be used as a judgment material for starting the defrosting operation. . However, since it is expected that frost is formed to some extent when it is located in the region B, it is not preferable that such a state continues for a long time, leading to a decrease in the accumulated hot water heating capability. Therefore, the defrosting operation is started when a predetermined time (for example, 20 minutes) elapses, which is located in the region B. In addition, what is necessary is just to determine predetermined time so that accumulated hot water supply heating capability may become the maximum.

以上のように、前回の除霜運転時間に合わせて、次回の除霜運転開始条件を設定することで、適切なタイミングで除霜運転を開始することができるので、不必要な除霜運転をすることがなく、沸き上げ時間を長時間化させることを防止することができる。   As described above, by setting the next defrosting operation start condition according to the previous defrosting operation time, the defrosting operation can be started at an appropriate timing. Therefore, it is possible to prevent the boiling time from being prolonged.

以上のように、本発明にかかるヒートポンプ式給湯機における除霜運転開始の判定制御は、貯湯タンクとヒートポンプサイクルが一体に構成された一体型ヒートポンプ式給湯機、水―冷媒熱交換器で加熱した湯をそのまま出湯する瞬間湯沸し運転にも適用できる。   As described above, the determination control of the start of the defrosting operation in the heat pump type hot water heater according to the present invention is performed by the integrated heat pump type hot water heater in which the hot water storage tank and the heat pump cycle are configured integrally, the water-refrigerant heat exchanger. It can also be applied to the instantaneous water heating operation in which hot water is discharged as it is.

実施の形態1におけるヒートポンプ式給湯機の構成図Configuration diagram of heat pump water heater in Embodiment 1 実施の形態1における除霜運転の開始判断領域(補正係数e>0で補正)図Defrosting operation start determination area (corrected with correction coefficient e> 0) in the first embodiment 実施の形態1における除霜運転の開始判断領域(補正係数e<0で補正)図Defrosting operation start determination area (corrected with correction coefficient e <0) in the first embodiment 実施の形態1における除霜運転の開始判断制御フローチャートDefrosting operation start determination control flowchart in the first embodiment 実施の形態1における通常時における給湯加熱能力・蒸発器温度と運転時間の相関図Correlation diagram of hot water heating capacity / evaporator temperature and operation time in normal time in Embodiment 1 実施の形態1における低湿度時における給湯加熱能力・蒸発器温度と運転時間の相関図Correlation diagram of hot water supply heating capacity / evaporator temperature and operation time at low humidity in the first embodiment 従来の形態における除霜運転の開始判断領域図Start determination area diagram of defrosting operation in conventional form 従来の形態における蒸発器温度と外気温度との相関図Correlation diagram between evaporator temperature and outside air temperature in conventional configuration

符号の説明Explanation of symbols

61 蒸発器
62 圧縮機
63 膨張弁
64 送風機
65 水冷媒熱交換器
66 サーミスタ(蒸発器温度検出手段)
67 サーミスタ(外気温度検出手段)
68 マイクロコンピュータ(電子制御装置)
61 Evaporator 62 Compressor 63 Expansion Valve 64 Blower 65 Water Refrigerant Heat Exchanger 66 Thermistor (Evaporator Temperature Detection Means)
67 Thermistor (Outside air temperature detection means)
68 Microcomputer (electronic control unit)

Claims (8)

大気と冷媒とを熱交換する蒸発器と、外気温度を検出する外気温度検出手段と、蒸発器温度を検出する蒸発器温度検出手段とを備え、前記蒸発器に付着した霜を取り除く除霜運転を有するヒートポンプ式給湯機において、外気温度と蒸発器温度との相関関係から求めた第1の条件式および第2の条件式を有し、前記第1の条件式および前記第2の条件式が形成する領域によって除霜運転の開始を判断し、2回目以降の除霜運転を行う時には、前回の除霜運転時間に応じて第1の条件式および第2の条件式に補正係数を加えることによって第1の条件式および第2の条件式を補正し、除霜運転の開始の判断領域を補正することを特徴とするヒートポンプ式給湯機。 A defrosting operation comprising an evaporator for exchanging heat between the atmosphere and the refrigerant, an outside air temperature detecting means for detecting the outside air temperature, and an evaporator temperature detecting means for detecting the evaporator temperature, and removing frost adhering to the evaporator. In the heat pump water heater having the above, the first conditional expression and the second conditional expression obtained from the correlation between the outside air temperature and the evaporator temperature are included, and the first conditional expression and the second conditional expression are The start of the defrosting operation is determined according to the area to be formed, and when performing the second and subsequent defrosting operations, a correction coefficient is added to the first conditional expression and the second conditional expression according to the previous defrosting operation time. The heat pump type hot water heater is characterized in that the first conditional expression and the second conditional expression are corrected by and the determination area of the start of the defrosting operation is corrected. 前回の除霜運転時間が所定の時間よりも長かった場合、補正係数は正の定数であることを特徴とする請求項1に記載のヒートポンプ式給湯機。 The heat pump type hot water heater according to claim 1, wherein when the last defrosting operation time is longer than a predetermined time, the correction coefficient is a positive constant. 前回の除霜運転時間が所定の時間よりも短かった場合、補正係数は負の定数であることを特徴とする請求項1または2に記載のヒートポンプ式給湯機。 The heat pump type hot water heater according to claim 1 or 2, wherein when the previous defrosting operation time is shorter than a predetermined time, the correction coefficient is a negative constant. 除霜運転の上限値および下限値を設け、第1の条件式および上限値よりも下領域、かつ第2の条件式および下限値よりも上領域に外気温度および蒸発器温度が位置する時には、除霜開始条件を満足すれば除霜運転を開始し、第1の条件式および上限値よりも下領域、かつ第2の条件式および下限値よりも下領域に外気温度および蒸発器温度が位置する時には、無条件で除霜運転を開始することを特徴とする請求項1〜3のいずれか1項に記載のヒートポンプ式給湯機。 When the upper limit value and the lower limit value of the defrosting operation are provided, and the outside air temperature and the evaporator temperature are located in a region below the first conditional expression and the upper limit value, and above the second conditional expression and the lower limit value, If the defrosting start condition is satisfied, the defrosting operation is started, and the outside air temperature and the evaporator temperature are located below the first conditional expression and the upper limit value, and below the second conditional expression and the lower limit value. The heat pump type hot water heater according to any one of claims 1 to 3, wherein the defrosting operation is started unconditionally. 除霜運転開始条件は、蒸発器温度の下降時において、所定の変化率以上となることを特徴とする請求項4に記載のヒートポンプ式給湯機。 The heat pump hot water heater according to claim 4, wherein the defrosting operation start condition is equal to or higher than a predetermined rate of change when the evaporator temperature is lowered. 除霜運転開始条件は、第1の条件式および上限値よりも下領域に所定時間継続して位置することを特徴とする請求項4に記載のヒートポンプ式給湯機。 The heat pump type hot water heater according to claim 4, wherein the defrosting operation start condition is continuously located for a predetermined time in a region below the first conditional expression and the upper limit value. 高圧側の冷媒圧力が、臨界圧力以上となることを特徴とする請求項1〜6のいずれか1項に記載のヒートポンプ式給湯機。 The heat pump type water heater according to any one of claims 1 to 6, wherein the refrigerant pressure on the high pressure side is equal to or higher than a critical pressure. 使用する冷媒が二酸化炭素であることを特徴とする請求項7に記載のヒートポンプ式給湯機。 The heat pump type water heater according to claim 7, wherein the refrigerant to be used is carbon dioxide.
JP2006226185A 2006-08-23 2006-08-23 Heat pump type water heater Pending JP2008051361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006226185A JP2008051361A (en) 2006-08-23 2006-08-23 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006226185A JP2008051361A (en) 2006-08-23 2006-08-23 Heat pump type water heater

Publications (1)

Publication Number Publication Date
JP2008051361A true JP2008051361A (en) 2008-03-06

Family

ID=39235593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006226185A Pending JP2008051361A (en) 2006-08-23 2006-08-23 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP2008051361A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164259A (en) * 2009-01-16 2010-07-29 Toshiba Corp Temperature control device
WO2014137060A1 (en) * 2013-03-04 2014-09-12 주식회사 두텍 Apparatus for detecting time to defrost evaporation heat exchanger based on bypass airflow measurement and method for controlling operations of same
JP2015127603A (en) * 2013-12-27 2015-07-09 ダイキン工業株式会社 Water heating device
CN111664548A (en) * 2020-05-15 2020-09-15 海信(山东)空调有限公司 Air conditioner defrosting control method and air conditioner
JP2021071249A (en) * 2019-10-31 2021-05-06 株式会社コロナ Heat pump-type hot water heating system
CN114279121A (en) * 2021-12-14 2022-04-05 广东芬尼克兹节能设备有限公司 Defrosting control method and device, electronic equipment and storage medium
WO2023032586A1 (en) * 2021-08-30 2023-03-09 パナソニックIpマネジメント株式会社 Food storage container

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164259A (en) * 2009-01-16 2010-07-29 Toshiba Corp Temperature control device
WO2014137060A1 (en) * 2013-03-04 2014-09-12 주식회사 두텍 Apparatus for detecting time to defrost evaporation heat exchanger based on bypass airflow measurement and method for controlling operations of same
JP2015127603A (en) * 2013-12-27 2015-07-09 ダイキン工業株式会社 Water heating device
JP2021071249A (en) * 2019-10-31 2021-05-06 株式会社コロナ Heat pump-type hot water heating system
JP7232746B2 (en) 2019-10-31 2023-03-03 株式会社コロナ Heat pump hot water heating system
CN111664548A (en) * 2020-05-15 2020-09-15 海信(山东)空调有限公司 Air conditioner defrosting control method and air conditioner
WO2023032586A1 (en) * 2021-08-30 2023-03-09 パナソニックIpマネジメント株式会社 Food storage container
CN114279121A (en) * 2021-12-14 2022-04-05 广东芬尼克兹节能设备有限公司 Defrosting control method and device, electronic equipment and storage medium
CN114279121B (en) * 2021-12-14 2023-07-21 广东芬尼克兹节能设备有限公司 Defrosting control method, defrosting control device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
JP2008051361A (en) Heat pump type water heater
JP5108923B2 (en) Air conditioner
JP2012057869A (en) Air conditioner
JP5144728B2 (en) Air conditioner
JP6119639B2 (en) Air conditioner
JP2011106771A (en) Air conditioner
JP2012077942A (en) Air conditioner
US20180195788A1 (en) Method of Defrosting a Heat Pump Device as Well as a Heat Pump Device
JP2007278551A (en) Defrosting operation method of heat pump water heater
JP2008020147A (en) Heat pump water heater
JP4513760B2 (en) Heat pump type hot water supply apparatus and control device for heat pump type hot water supply apparatus
JP5708249B2 (en) Heat pump water heater
JP5293714B2 (en) Air conditioner
JP2004225929A (en) Air conditioner and control method of air conditioner
JP2006292240A (en) Heat pump water heater
JP2008014593A (en) Air conditioner
JP4784288B2 (en) Heat pump type hot water supply apparatus and control device for heat pump type hot water supply apparatus
JP5287821B2 (en) Air conditioner
JP5843642B2 (en) Heat pump type liquid heating device
JP5287820B2 (en) Air conditioner
JP2007040555A (en) Heat pump type water heater
JP2007139350A (en) Air conditioner
JP5218510B2 (en) Air conditioner
JP5310696B2 (en) Air conditioner
JP2011106743A (en) Outdoor unit of air conditioner