JP2008050660A - Shape memory alloy - Google Patents

Shape memory alloy Download PDF

Info

Publication number
JP2008050660A
JP2008050660A JP2006228720A JP2006228720A JP2008050660A JP 2008050660 A JP2008050660 A JP 2008050660A JP 2006228720 A JP2006228720 A JP 2006228720A JP 2006228720 A JP2006228720 A JP 2006228720A JP 2008050660 A JP2008050660 A JP 2008050660A
Authority
JP
Japan
Prior art keywords
shape memory
alloy
ductility
memory alloy
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006228720A
Other languages
Japanese (ja)
Inventor
Takahiro Sawaguchi
孝宏 澤口
Kazuyuki Ogawa
一行 小川
Takehiko Kikuchi
武丕児 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006228720A priority Critical patent/JP2008050660A/en
Publication of JP2008050660A publication Critical patent/JP2008050660A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron-manganese-based shape memory alloy having such an improved ductility as to be capable of being plastic-worked by warm working without needing hot working. <P>SOLUTION: The alloy having high ductility and improved plastic working properties without decreasing its shape memory characteristics is the iron-manganese-based shape memory alloy which has a composition containing iron, manganese (Mn) solely, or further chromium (Cr), and/or nickel (Ni) and silicon (Si), has an Ms point of room temperature or lower, and further includes 1 mass% aluminum (Al). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、 鉄(Fe)−A(A:マンガン(Mn)単独若しくは、これとクロム(Cr)又は/及びニッケル(Ni)元素)−シリコン(Si)合金で、Ms点が室温以下の形状記憶合金に関し、より詳しくは、その延性の向上に関する。   The present invention is an iron (Fe) -A (A: manganese (Mn) alone or a chromium (Cr) or / and nickel (Ni) element) -silicon (Si) alloy having a Ms point of room temperature or less. More particularly, the memory alloy relates to the improvement of ductility.

上記形状記憶合金は、非特許文献1から非特許文献9に示すように従来知られた実用性が期待される形状記憶合金ではあるが、熱間加工により、圧延、伸線などを行わなければ、成形加工が困難であった。
熱間加工を加えた場合、予測不可能な特性の変化が生じる恐れがあり、その結果、溶解処理にてその変化した特性を無くす処理などが要求されることとなる。
このような溶解処理は、加工精度を低下させることとなり、結果的には、安定した特性の高精度加工品として得ることは極めて困難であった。
熱間加工の最適温度範囲が800℃〜1000℃と狭く、これより温度が高くなると加工性が急激に低下して割れを生じるなど制御が難しいことも生産性を悪化する要因であった。
Although the shape memory alloy is a shape memory alloy that has been expected to be practically known as shown in Non-Patent Document 1 to Non-Patent Document 9, it must be rolled, drawn, or the like by hot working. The molding process was difficult.
When hot working is applied, there is a risk that unpredictable property changes may occur, and as a result, processing for eliminating the changed properties in the melting process is required.
Such a melting treatment reduces processing accuracy, and as a result, it has been extremely difficult to obtain a high-precision processed product having stable characteristics.
The optimum temperature range for hot working is as narrow as 800 ° C. to 1000 ° C. When the temperature is higher than this, the workability is drastically lowered and cracking is difficult, which is another factor that deteriorates productivity.

Acta Metallurgica, 30, 1177−1183, 1982, A. Sato, E. Chishima, K. Soma, T. Mori.Acta Metallurgica, 30, 1177-1183, 1982, A. et al. Sato, E .; Shishima, K .; Soma, T .; Mori. 塑性と加工, 45, 697−701, 2004, 直井久, 丸山忠克.Plasticity and processing, 45, 697-701, 2004, Hisashi Naoi, Tadakatsu Maruyama. Materials Science and Technology, 14, 1213−1217, 1998, O. Grassel, G. Frommeyer.Materials Science and Technology, 14, 1213-1217, 1998, O.M. Grassel, G.M. Frommyer. ISIJ International, 30, 674−679, 1990, H. Otsuka, H. Yamada, T. Maruyama, H. Tanahashi, S. Matsuda, M. Murakami.ISIJ International, 30, 674-679, 1990, H.I. Otsuka, H. et al. Yamada, T .; Maruyama, H.M. Tanahashi, S .; Matsuda, M .; Murakami. 金属, 66, 63−72, 1996, 丸山忠克, 大塚広明.Metal, 66, 63-72, 1996, Tadakatsu Maruyama, Hiroaki Otsuka. Materials Science and Engineering A, 315, 174−179, 2001, D. F. Wang, D. Z. Liu, Z. Z. Dong, W. X. Liu, J. M. Chen.Materials Science and Engineering A, 315, 174-179, 2001, D.A. F. Wang, D.W. Z. Liu, Z .; Z. Dong, W.D. X. Liu, J .; M.M. Chen. Scripta Materialia, 44, 2809−2814, 2001, S. Kajiwara, D. Liu, T. Kikuchi, N. Shinya.Scripta Materialia, 44, 2809-2814, 2001, S.A. Kajiwara, D.H. Liu, T .; Kikuchi, N.A. Shinya. Materials Transactions, 43, 585−588, 2002, A. Baruj, T. Kikuchi, S. Kajiwara, N. Shinya.Materials Transactions, 43, 585-588, 2002, A.A. Baruj, T .; Kikuchi, S .; Kajiwara, N .; Shinya. 日本金属学会誌, 69, 659−662, 2005, 澤口孝宏, 菊池武丕児, 小川一行, 梶原節夫, 池尾陽作, 小島正朗, 小川孝寿.Journal of the Japan Institute of Metals, 69, 659-662, 2005, Takahiro Sawaguchi, Takeshi Kikuchi, Kazuyuki Ogawa, Nobuo Sugawara, Yosaku Ikeo, Masao Kojima, Takatoshi Ogawa.

本発明は、上記問題が、当該合金の延性が極めて悪い点によるものであることに起因するとの認識に基づき、その延性が熱間加工を要することなく加工しえる程度にまで向上させることを目的とした。   The present invention aims to improve the ductility to such an extent that it can be processed without requiring hot working, based on the recognition that the above problem is caused by the extremely poor ductility of the alloy. It was.

本発明の形状記憶合金は、アルミニューム(Al)が1質量%含有していることを特徴とする構成を採用した。   The shape memory alloy of the present invention employs a configuration characterized by containing 1% by mass of aluminum (Al).

上記構成により、その形状記憶特性は、従来に比し勝るとも劣らないが、その延性は50%を超えるものであり、温間加工により、十分加工しえるものとなった。
なお、上記元素からなる合金であって、アルミニュームが2質量%以上のものが良好な延性を有することは知られているが、これらは、トレーニング処理によっても実用的な形状記憶特性を得ることができないものであった。
これに比し、わずか1%の相違ではあるが、アルミニュームを含まないものと同等以上の形状記憶特性を有しながら、高い延性を有すという従来では予測不可能な特性を有するに至ったのが本発明の形状記憶合金である。
With the above configuration, the shape memory characteristics are not inferior to those of conventional ones, but the ductility exceeds 50% and can be sufficiently processed by warm processing.
In addition, although it is known that the alloy which consists of said element and whose aluminum is 2 mass% or more has favorable ductility, these also obtain practical shape memory characteristics also by a training process. It was something that could not be done.
Compared to this, although it is a difference of only 1%, it has an unpredictable characteristic that it has a high ductility while having a shape memory characteristic equal to or higher than that not containing aluminum. This is the shape memory alloy of the present invention.

高周波真空誘導炉を用い、表1に示す4種類の合金を溶製した。実施例1は、Alを1質量%含む合金である。参照用に、Al無添加の形状記憶合金(比較例1)、Alを2および3質量%含む合金(比較例2、3)も作製した。
その後、図1の製造工程フローに従って各種測定用試験片を作製し、形状回復率、延性の測定に供した。
熱間鍛造・圧延は、加工温度が800℃以下とならないよう、1000℃での加熱と加工を交互に繰り返し行った。均一化・溶体化熱処理は、試料をステンレス箔中に真空封入し、アルゴン雰囲気中で熱処理を行うことにより、表面の酸化と表面からのマンガン欠損を防いだ。
このようにして、加工条件を同じにし、かつ、出来るだけ加工環境による影響を受けないようにして試験片を加工した。
Using a high-frequency vacuum induction furnace, four types of alloys shown in Table 1 were melted. Example 1 is an alloy containing 1% by mass of Al. For reference, an Al-free shape memory alloy (Comparative Example 1) and alloys containing 2 and 3% by mass of Al (Comparative Examples 2 and 3) were also produced.
Thereafter, various test specimens were prepared according to the manufacturing process flow of FIG. 1 and subjected to measurement of shape recovery rate and ductility.
In hot forging / rolling, heating at 1000 ° C. and processing were alternately repeated so that the processing temperature would not be 800 ° C. or lower. In the homogenization and solution heat treatment, the sample was vacuum sealed in a stainless steel foil, and heat treatment was performed in an argon atmosphere to prevent surface oxidation and manganese deficiency from the surface.
In this way, the test piece was processed with the same processing conditions and with as little influence as possible from the processing environment.

形状回復率の測定は、直径13mmの円柱状治具側面に沿って、試験片を変形させた後、600℃で10分間加熱すると、いくつかのサンプルは、形状記憶効果によって、曲げられた状態から元の直線形状に開こうとする(図2)。
4合金の加熱前後の形状回復率および延性を表2に示す。
The shape recovery rate was measured by deforming the test piece along the side of a cylindrical jig having a diameter of 13 mm and then heating it at 600 ° C. for 10 minutes. Some samples were bent due to the shape memory effect. It tries to open to the original linear shape (Fig. 2).
Table 2 shows the shape recovery rate and ductility of the four alloys before and after heating.


Alを1質量%添加した実施例1は、Al無添加の比較例1とほぼ同程度の形状記憶効果を示すことと、比較例1よりも遙かに高い延性を示すことが判明した。
Alをさらに添加すると、延性はさらに増加するが、Alの添加量が2質量%以上では形状記憶効果をほとんど示さなくなる(比較例2、3)。
表2より、延性はAlの添加量にほぼ比例して増加することがわかる。Alが1%増えるごとに延性は20%も上昇することから、Alの添加量は微量でも効果的であることが容易に類推される。本発明では、延性改善の観点から、Alの添加量の下限を10%の延性向上が期待される0.5質量%とする。

It was found that Example 1 to which 1% by mass of Al was added exhibited substantially the same shape memory effect as Comparative Example 1 to which Al was not added, and a much higher ductility than Comparative Example 1.
When Al is further added, the ductility is further increased, but when the added amount of Al is 2% by mass or more, the shape memory effect is hardly exhibited (Comparative Examples 2 and 3).
From Table 2, it can be seen that the ductility increases almost in proportion to the amount of Al added. As the Al content increases by 1%, the ductility increases by as much as 20%. Therefore, it can be easily inferred that the addition amount of Al is effective even with a small amount. In the present invention, from the viewpoint of improving ductility, the lower limit of the amount of Al added is set to 0.5 mass% at which ductility improvement of 10% is expected.

一方、形状記憶効果は、Alを1%程度添加しても無添加のものと同等がそれ以上であるが、2%になると急激に低下して極めて小さい形状回復しか示さなくなることから、Al添加量1%と2%の間、概ね1.5%付近に有意な形状記憶効果を示すかどうかの上限が存在すると推測される。     On the other hand, the shape memory effect is equal to or higher than that without addition even if about 1% of Al is added, but when it becomes 2%, it rapidly decreases and shows only a very small shape recovery. It is estimated that there is an upper limit on whether or not a significant shape memory effect is exhibited between the amount of 1% and 2%, and approximately in the vicinity of 1.5%.

文献1、1183ページのConclusion、および文献2、697ページ、2.1節など、様々な文献で紹介されているように、この合金系(比較例1)における形状記憶効果は、fcc構造のオーステナイト晶が変形によりhcp構造のマルテンサイト晶に応力誘起変態し、その後の逆変態温度以上への加熱により元のオーステナイト晶に逆変態することに起因する。
一方、文献3、1213ページのIntroductionに示されているように、TWIP鋼(比較例2、3)では、変形前の構造は形状記憶合金と同様のfccオーステナイト晶であるが、変形すると応力誘起変態する代わりに、双晶変形する。
実施例1では、変形時、上記の応力誘起変態と双晶変形の両方が同時に発生し、前者が形状記憶特性、後者が延性を担っていると考えられる。このことは、表2より、実施例1が比較例1と比較例2、3の中間の特徴を示すことからも裏付けることができる。
As introduced in various references such as Reference 1, page 1183, and Reference 2, page 697, section 2.1, the shape memory effect in this alloy system (Comparative Example 1) is the austenite of the fcc structure. This is because the crystal undergoes stress-induced transformation to a martensite crystal having an hcp structure due to deformation, and then reverse transformation to the original austenite crystal by heating to a temperature higher than the reverse transformation temperature.
On the other hand, as shown in the introduction on pages 3 and 1213, the structure before deformation of the TWIP steel (Comparative Examples 2 and 3) is the same fcc austenite crystal as that of the shape memory alloy. Instead of transformation, twin deformation occurs.
In Example 1, it is considered that at the time of deformation, both the stress-induced transformation and twin deformation occur simultaneously, with the former responsible for shape memory characteristics and the latter responsible for ductility. This can be confirmed from Table 2 that Example 1 shows intermediate characteristics between Comparative Example 1 and Comparative Examples 2 and 3.

文献2、697ページ、2.2節によれば、形状記憶効果を得るための条件は、マルテンサイト変態開始温度(Ms点)が室温以下、γオーステナイトの反強磁性磁気変温度(T点)がMs点以下となることである。
文献2,表2などによれば、そのような条件を満たし、形状記憶効果を発現するための成分範囲は、Mn:29質量%〜33質量%、Si:6質量%である。また、文献4,675ページ、Table1によれば、Mnの一部を、5〜12質量%のCrや4〜7%のNiで置換してもよく、この場合、耐食性が向上する効果がある。最適成分組成としては、例えば、Fe−28Mn−6Si−5CrやFe−14Mn−6Si−9Cr−5Niなどが提案されている。
According to Reference 2, page 697, section 2.2, the conditions for obtaining the shape memory effect are: the martensitic transformation start temperature (Ms point) is below room temperature, and the antiferromagnetic magnetic transformation temperature ( TN point) of γ-austenite. ) Is below the Ms point.
According to Literature 2, Table 2, etc., the component ranges for satisfying such conditions and exhibiting the shape memory effect are Mn: 29 mass% to 33 mass% and Si: 6 mass%. Further, according to Document 4, page 675, Table 1, a part of Mn may be replaced with 5 to 12% by mass of Cr or 4 to 7% of Ni. In this case, the corrosion resistance is improved. . As the optimum component composition, for example, Fe-28Mn-6Si-5Cr, Fe-14Mn-6Si-9Cr-5Ni, and the like have been proposed.

前述のモデルに基づけば、実施例の結果は、形状記憶合金の代表的な成分であるFe−30Mn−6Siに2%を超えないAlを添加することで、変形様式として、形状記憶効果を担う応力誘起変態と、延性を担う双晶変形とを同時に発生できる、と解釈できるが、同様のAl添加効果は、上記全ての形状記憶合金に適用できることは容易に類推できる。
Fe−Mn−Si系形状記憶合金の形状記憶特性改善のために提案されている各種の製造プロセスやAlを除く微量成分添加についても、同様な作用効果を発揮させうる。
Based on the above-mentioned model, the results of Examples bear the shape memory effect as a deformation mode by adding Al not exceeding 2% to Fe-30Mn-6Si, which is a typical component of the shape memory alloy. It can be interpreted that the stress-induced transformation and the twin deformation responsible for ductility can be generated simultaneously, but it can be easily analogized that the same Al addition effect can be applied to all the above shape memory alloys.
The same effects can be achieved with respect to various manufacturing processes proposed for improving the shape memory characteristics of Fe—Mn—Si based shape memory alloys and the addition of trace components other than Al.

文献5、64ページなどによれば、数%の変形と逆変態温度以上への加熱を繰り返すことにより、形状記憶特性は改善される。トレーニング効果として知られるこの加工熱処理は、母相オーステナイトを加工強化させてすべり変形(形状記憶効果を阻害する)を抑制するとともに、積層欠陥(εマルテンサイトの核生成サイトとして形状記憶効果を促進する)の導入により変態誘起応力を低下させることによって達成される。このような内部組織変化は、Al添加の新合金においても同様に有効であることが容易に類推できる。
そのほか、集合組織制御(文献5、64ページ)やオースフォーミング(文献6、Fig.1およびFig.2)など、形状記憶効果改善のための各種加工熱処理方法も本発明の実施例1に適用できると考えられる。
According to Reference 5, page 64, and the like, the shape memory characteristics are improved by repeating several percent deformation and heating above the reverse transformation temperature. This thermomechanical heat treatment, known as the training effect, strengthens the matrix austenite to suppress slip deformation (inhibits the shape memory effect) and promotes the shape memory effect as a nucleation site for ε martensite. ) To lower the transformation-induced stress. It can be easily inferred that such a change in internal structure is also effective in a new alloy containing Al.
In addition, various processing heat treatment methods for improving the shape memory effect, such as texture control (reference 5, pages 64) and ausforming (reference 6, FIG. 1 and FIG. 2), can also be applied to the first embodiment of the present invention. it is conceivable that.

文献7、8によれば、NbおよびCの微量添加と時効熱処理または加工熱処理によるナノレベルの微細NbC炭化物生成は、上記トレーニング処理よりも簡便なプロセスによって形状記憶効果を改善できると提案している。これは、NbCによって母相の強化とεマルテンサイトの核生成サイトを同時に達成するものであり、Al添加合金にも同様の作用効果が類推できる。   Documents 7 and 8 suggest that nano-level fine NbC carbide generation by addition of a small amount of Nb and C and aging heat treatment or thermomechanical treatment can improve the shape memory effect by a simpler process than the training process. . This is because NbC simultaneously achieves the strengthening of the parent phase and the nucleation site of ε martensite, and the same effect can be inferred for the Al-added alloy.

こうした微細析出物の効果は、NbCのみならず、様々な炭化物、窒化物、金属間化合物など、鉄鋼材料中に析出するすべての化合物に対して適用できると考えられる。
すなわち、本発明は、これまでに提案されてきた、Fe−Mn−Si系合金のあらゆる成分組成、製造プロセスの効果を活かしながら、かつ、Alの添加による延性改善効果を追加できるものである。
Fe−Mn−Si系形状記憶合金の用途としては、これまで、パイプの締結部材など各種締結用途(文献2,5)、コンクリートのプレストレス強化(文献9)などが提案されてきた。本発明の合金は、これら全ての用途に適用可能である。
The effect of such fine precipitates is considered to be applicable not only to NbC but also to all compounds that precipitate in steel materials such as various carbides, nitrides, and intermetallic compounds.
That is, this invention can add the ductility improvement effect by addition of Al, utilizing the effect of all the component compositions and manufacturing processes of the Fe-Mn-Si type alloy proposed so far.
As applications of the Fe—Mn—Si-based shape memory alloy, various fastening applications such as pipe fastening members (References 2 and 5), prestressing reinforcement of concrete (Reference 9), and the like have been proposed. The alloy of the present invention is applicable to all these uses.


Fe−Mn−Si系形状記憶合金の用途としては、これまで、パイプの締結部材など各種締結用途(文献2,5)、コンクリートのプレストレス強化(文献9)などが提案されてきた。本発明の合金は、これら全ての用途に適用可能である。

As applications of the Fe—Mn—Si-based shape memory alloy, various fastening applications such as pipe fastening members (References 2 and 5), prestressing reinforcement of concrete (Reference 9), and the like have been proposed. The alloy of the present invention is applicable to all these uses.

試験片の製造工程フローManufacturing process flow of test piece Fe−Mn−Si合金とFe−Mn−Si−Al合金の加熱による形状変化を示す写真Photograph showing shape change of Fe-Mn-Si alloy and Fe-Mn-Si-Al alloy by heating 形状回復率の算出方法を示す模式Model showing how to calculate the shape recovery rate

Claims (1)

鉄(Fe)−A(A:マンガン(Mn)単独若しくは、これとクロム(Cr)又は/及びニッケル(Ni)元素)−シリコン(Si)合金で、Ms点が室温以下の形状記憶合金であって、アルミニューム(Al)が1質量%含有していることを特徴とする形状記憶合金































Iron (Fe) -A (A: Manganese (Mn) alone or this and chromium (Cr) or / and nickel (Ni) element) -silicon (Si) alloy, which is a shape memory alloy having an Ms point of room temperature or less. A shape memory alloy containing 1% by mass of aluminum (Al)































JP2006228720A 2006-08-25 2006-08-25 Shape memory alloy Pending JP2008050660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228720A JP2008050660A (en) 2006-08-25 2006-08-25 Shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228720A JP2008050660A (en) 2006-08-25 2006-08-25 Shape memory alloy

Publications (1)

Publication Number Publication Date
JP2008050660A true JP2008050660A (en) 2008-03-06

Family

ID=39234983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228720A Pending JP2008050660A (en) 2006-08-25 2006-08-25 Shape memory alloy

Country Status (1)

Country Link
JP (1) JP2008050660A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170457A (en) * 1986-01-23 1987-07-27 Nippon Steel Corp Shape memory iron alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170457A (en) * 1986-01-23 1987-07-27 Nippon Steel Corp Shape memory iron alloy

Similar Documents

Publication Publication Date Title
JP6383503B2 (en) Nb-containing ferritic stainless steel hot-rolled steel sheet and method for producing the same, Nb-containing ferritic stainless steel cold-rolled steel sheet and method for producing the same
KR101939512B1 (en) Austenitic stainless steel sheet
JP5215855B2 (en) Fe-based alloy and manufacturing method thereof
JP5396752B2 (en) Ferritic stainless steel with excellent toughness and method for producing the same
JP2008019479A (en) Rolled austenitic stainless steel plate with excellent strength and ductility, and its manufacturing method
TWI546389B (en) Fat iron stainless steel plate
JP4666271B2 (en) Titanium plate
KR101683039B1 (en) Ferritic stainless steel sheet
TW201715056A (en) Damping ferritic stainless steel and producing method
EP3556892A1 (en) Low alloy steel sheet having excellent strength and ductility
JP3550132B2 (en) Precipitation hardening type soft magnetic ferritic stainless steel
JP6793067B2 (en) Austenitic stainless steel sheets and gaskets
JP2010209449A (en) Stainless steel sheet having excellent shape fixability and workability, method for producing the same and article
JP2003268501A (en) SHAPE MEMORY Fe ALLOY AND PRODUCTION METHOD THEREOF
JP5073966B2 (en) Age-hardening ferritic stainless steel sheet and age-treated steel using the same
JP6093063B1 (en) High-strength stainless steel material excellent in workability and its manufacturing method
JP4210495B2 (en) High-strength soft magnetic stainless steel and manufacturing method thereof
JP2010090472A (en) Vibration-damping stainless steel, method for producing the same and molded product thereof
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP6587881B2 (en) Ferritic stainless steel wire for fastening parts
JP2008050660A (en) Shape memory alloy
JP5889518B2 (en) High corrosion resistance ferritic stainless steel sheet with excellent toughness and method for producing the same
JP2006249514A (en) HOT-ROLLED STEEL PLATE OF Cr-CONTAINING ALLOY HAVING HIGH STRENGTH AND SUPERIOR WORKABILITY, AND MANUFACTURING METHOD THEREFOR
JP7090514B2 (en) How to manufacture metal gasket intermediate products and metal gaskets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Effective date: 20110922

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111004

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221