JP2008050593A - Fluorophor-containing composition, light emitter, illuminator, and image display device - Google Patents

Fluorophor-containing composition, light emitter, illuminator, and image display device Download PDF

Info

Publication number
JP2008050593A
JP2008050593A JP2007193781A JP2007193781A JP2008050593A JP 2008050593 A JP2008050593 A JP 2008050593A JP 2007193781 A JP2007193781 A JP 2007193781A JP 2007193781 A JP2007193781 A JP 2007193781A JP 2008050593 A JP2008050593 A JP 2008050593A
Authority
JP
Japan
Prior art keywords
phosphor
light
containing composition
fine particles
phosphors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007193781A
Other languages
Japanese (ja)
Other versions
JP5386800B2 (en
Inventor
Hidehiko Obara
秀彦 小原
Hanako Katou
波奈子 加藤
Keiichi Seki
敬一 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007193781A priority Critical patent/JP5386800B2/en
Publication of JP2008050593A publication Critical patent/JP2008050593A/en
Application granted granted Critical
Publication of JP5386800B2 publication Critical patent/JP5386800B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorophor-containing composition which can prevent the precipitation of the fluorophor for a time until cured, in a process for charging the composition in a light emitter. <P>SOLUTION: This fluorophor-containing composition comprising fine silica particles, a fluorophor, and a liquid medium is characterized in that the hydroxyl group concentration of the fine silica particles measured by the following method (I) for measuring a hydroxyl group concentration is 0.3 to 2 particles/nm<SP>2</SP>. The method (I) for measuring the hydroxyl group concentration comprises (1) measuring a specific surface area (m<SP>2</SP>/g) per g of the silica particles by BET method; (2) drying 1 g of the fine silica particles at 100°C for one hour in a vacuum of 10<SP>-2</SP>hPa, reacting the dried fine silica particles with 10 g of LiAlH<SB>4</SB>in 1 L of diethylene glycol dimethyl ether, and determining the volume b (ml) of the generated H<SB>2</SB>; (3) calculating the concentration of the hydroxyl groups according to an expression: hydroxyl group concentration (groups/nm<SP>2</SP>)=(6×10<SP>23</SP>×b)/(22400×a×10<SP>18</SP>). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は蛍光体含有組成物、発光装置、照明装置、および画像表示装置に関する。詳しくは、発光装置へ充填してから硬化するまでの間に蛍光体の沈降が少ない蛍光体含有組成物、および前記蛍光体含有組成物を用いて形成された発光装置、および前記発光装置を用いて形成された照明装置および画像表示装置に関する。   The present invention relates to a phosphor-containing composition, a light emitting device, a lighting device, and an image display device. Specifically, the phosphor-containing composition in which the phosphor is less precipitated during the period from filling to the light-emitting device and curing, the light-emitting device formed using the phosphor-containing composition, and the light-emitting device are used. The present invention relates to an illumination device and an image display device formed in this manner.

波長変換材料としての蛍光体は、白色発光の発光装置の材料として、近紫外域から青色域発光の半導体発光素子として注目されている発光効率の高い窒化ガリウム(GaN)系発光ダイオード(light emitting diode。以下、適宜「LED」と略称する。)や半導体レーザーダイオード(semiconductor laser diode。以下、適宜「LD」と略称する
。)と組み合わせて用いられており、その発光装置は画像表示装置や照明装置の発光源として用いられている。
前記の蛍光体は半導体発光素子の発光効率の高い近紫外域から青色域の励起光に対し波長変換効率の高いものが要求される(特許文献1〜2)。
Phosphors as wavelength conversion materials are gallium nitride (GaN) light emitting diodes with high luminous efficiency (light emitting diodes) that are attracting attention as semiconductor light emitting devices that emit light in the near ultraviolet to blue region, as materials for white light emitting devices. Hereinafter, it is used in combination with “LED” as appropriate, and a semiconductor laser diode (hereinafter referred to as “LD” where appropriate), and the light emitting device is an image display device or illumination device. It is used as a luminescence source.
The phosphor is required to have high wavelength conversion efficiency with respect to excitation light in the near-ultraviolet region to blue region where the light emitting efficiency of the semiconductor light emitting device is high (Patent Documents 1 and 2).

一方、上記発光装置を製造する場合、蛍光体を発光装置の所望の位置に配置するため、通常、蛍光体を液状媒体に分散させた蛍光体含有組成物を装置内に充填(注入)し、その後この組成物を硬化させる工程が含まれる。しかしながら、この工程の際、注入された蛍光体含有組成物が硬化するまでの間に蛍光体が沈降し、蛍光体含有組成物内部の蛍光体の分布に偏りが生じることがあるため、発光が不均一となり、蛍光体の有効利用の点で問題があった。この問題を解決する目的で、例えば高粘度の液状媒体を使用する方法や、酸化ケイ素などの無機フィラーを添加することにより、蛍光体含有組成物の粘度を増大せしめて蛍光体の沈降を防止する方法が提案されている(特許文献3)。しかしながら、蛍光体含有組成物の粘度が高いと、(i)注入時に配管の閉塞などトラブルの原因となりやすい、(ii)気泡が抜けにくい、(iii)半導体素子のリードワイヤーの断線が起こりやすい、などの悪影響をもたらすことがあった。   On the other hand, when manufacturing the light-emitting device, in order to place the phosphor at a desired position of the light-emitting device, the phosphor-containing composition in which the phosphor is dispersed in a liquid medium is usually filled (injected) into the device, Thereafter, a step of curing the composition is included. However, during this process, the phosphor may settle before the injected phosphor-containing composition is cured, and the phosphor distribution inside the phosphor-containing composition may be biased, so that light emission occurs. There was a problem in terms of effective use of the phosphor. In order to solve this problem, for example, by using a liquid medium having a high viscosity or by adding an inorganic filler such as silicon oxide, the viscosity of the phosphor-containing composition is increased to prevent the phosphor from being precipitated. A method has been proposed (Patent Document 3). However, when the viscosity of the phosphor-containing composition is high, (i) it is likely to cause troubles such as blockage of the pipe at the time of injection, (ii) bubbles are difficult to escape, (iii) the lead wire of the semiconductor element is likely to break, It may cause adverse effects such as.

そこで、注入する際に粘度が増大することなく、注入されて後硬化するまでの間に蛍光体が沈降しない蛍光体含有組成物が求められていた。そして、この問題の解決のために蛍光体含有組成物にその一部が少なくともナノ粒子であるチキソトロープ剤を添加することにより蛍光体の沈降を防止しようとする提案がなされている(特許文献4)。
特開平10−190066号公報 特開平10−247750号公報 特開2003−64358号公報 特表2005−524737号公報
Therefore, there has been a demand for a phosphor-containing composition in which the phosphor does not settle during injection until it is cured after injection without increasing the viscosity. In order to solve this problem, a proposal has been made to prevent sedimentation of the phosphor by adding a thixotropic agent, a part of which is at least nanoparticles, to the phosphor-containing composition (Patent Document 4). .
Japanese Patent Laid-Open No. 10-190066 Japanese Patent Laid-Open No. 10-247750 JP 2003-64358 A JP 2005-524737 A

しかしながら、蛍光体含有組成物がチキソトロープ性を有することは発光装置の構造によっては装置内への充填(注入)の最終段階で注入速度が小さくなると粘度が高くなるために充填が不十分となる場合があった。このため、チキソトロープ性を有しないか、有していても前述の装置内への充填不十分という問題のない蛍光体含有組成物が要求されていた。また、従来技術において数多開示されているチキソトロープ剤の中でも、前記の蛍光体の沈降防止効果がさらに優れたものが要求されていた。また、蛍光体の沈降防止効果を実効ならしめるための、蛍光体と液状媒体の組み合わせに応じた適切な組成が要求されていた。   However, the phosphor-containing composition has thixotropic properties, depending on the structure of the light-emitting device, if the injection speed becomes low at the final stage of filling (injection) into the device, the viscosity increases and the filling becomes insufficient. was there. For this reason, there has been a demand for a phosphor-containing composition that does not have thixotropic properties or that does not have a problem of insufficient filling in the above-described apparatus. In addition, among thixotropic agents disclosed in many in the prior art, there has been a demand for a further excellent antisedimentation effect of the phosphor. In addition, there has been a demand for an appropriate composition according to the combination of the phosphor and the liquid medium in order to make the phosphor sedimentation preventing effect effective.

本発明者等は上述の課題に鑑み、鋭意研究を重ねた結果、液体媒体と蛍光体からなる蛍光体含有組成物に、特定のシリカ微粒子を添加することにより、蛍光体含有組成物の粘度上昇がなく、チキソトロープ性を示さない場合であっても蛍光体の沈降が抑制されることを見出し、本発明を完成した。即ち、水酸基濃度が0.3個/nm以上、2個/nm以下であり、好ましくは、さらにpH4.5以上、7以下であるシリカ微粒子を含有する蛍光体含有組成物を用いた場合、含有する蛍光体が実質上沈降することが無いことを見出し、その結果、発光分布が均一な半導体発光装置が得られることを見出した。 As a result of intensive studies in view of the above problems, the present inventors have increased the viscosity of the phosphor-containing composition by adding specific silica fine particles to the phosphor-containing composition comprising a liquid medium and a phosphor. Thus, the present inventors have found that the sedimentation of the phosphor is suppressed even when the thixotropic property is not exhibited, and the present invention has been completed. That is, when a phosphor-containing composition containing silica fine particles having a hydroxyl group concentration of 0.3 / nm 2 or more and 2 / nm 2 or less, preferably pH 4.5 or more and 7 or less is used. The present inventors have found that the phosphor contained therein does not substantially settle, and as a result, found that a semiconductor light emitting device having a uniform light emission distribution can be obtained.

すなわち、本発明の要旨は下記<1>〜<7>に存する。
<1>シリカ微粒子、蛍光体、および液体媒体を含有する蛍光体含有組成物であって、下記の水酸基濃度測定方法(I)で測定される前記シリカ微粒子の水酸基濃度が0.3個/nm以上、2個/nm以下であることを特徴とする蛍光体含有組成物。
水酸基濃度測定方法(I)
(1)シリカ微粒子の1g当たりの比表面積a(m/g)をBET法により測定する。(2)シリカ微粒子1gを10−2hPaの真空中で100℃、1時間乾燥した後、ジエチレングリコールジメチルエーテル1L中でLiAlH10gと反応させ、発生したH量b(ml)を定量する。
(3)下記式により水酸基濃度を算出する。
水酸基濃度(個/nm)=(6×1023×b)/(22400×a×1018
<2>下記のpH測定方法(II)により測定される前記シリカ微粒子のpHが4.5以上、7以下である前記<1>に記載の蛍光体含有組成物。
pH測定方法(II)
水:メタノール=1:1溶液0.1L中にシリカ微粒子4gを加え、液温20〜25℃において、5分間充分に撹拌した後、pH計にてpHを測定する。
That is, the gist of the present invention resides in the following <1> to <7>.
<1> A phosphor-containing composition containing silica fine particles, a phosphor, and a liquid medium, wherein the hydroxyl concentration of the silica fine particles measured by the following hydroxyl concentration measurement method (I) is 0.3 / nm. 2. A phosphor-containing composition characterized by being 2 or more and 2 / nm 2 or less.
Hydroxyl concentration measurement method (I)
(1) The specific surface area a (m 2 / g) per 1 g of the silica fine particles is measured by the BET method. (2) 1 g of silica fine particles is dried at 100 ° C. for 1 hour in a vacuum of 10 −2 hPa, then reacted with 10 g of LiAlH 4 in 1 L of diethylene glycol dimethyl ether, and the amount of generated H 2 b (ml) is quantified.
(3) The hydroxyl group concentration is calculated by the following formula.
Hydroxyl concentration (pieces / nm 2 ) = (6 × 10 23 × b) / (22400 × a × 10 18 )
<2> The phosphor-containing composition according to <1>, wherein the silica fine particles measured by the following pH measurement method (II) have a pH of 4.5 or more and 7 or less.
pH measurement method (II)
4 g of silica fine particles are added to 0.1 L of water: methanol = 1: 1 solution, and after sufficiently stirring for 5 minutes at a liquid temperature of 20 to 25 ° C., the pH is measured with a pH meter.

<3>液体媒体がシリコーン樹脂である前記<1>または<2>に記載の蛍光体含有組成物。
<4>蛍光体がEu付活窒化物蛍光体から選ばれる1以上の蛍光体、ならびにCe付活珪酸塩蛍光体およびCe付活酸化物蛍光体から選ばれる1以上の蛍光体を含有する前記<1>〜<3>のいずれかに記載の蛍光体含有組成物。
<3> The phosphor-containing composition according to <1> or <2>, wherein the liquid medium is a silicone resin.
<4> The phosphor containing one or more phosphors selected from Eu-activated nitride phosphors, and one or more phosphors selected from Ce-activated silicate phosphors and Ce-activated oxide phosphors The phosphor-containing composition according to any one of <1> to <3>.

<5>前記<1>〜<4>のいずれかに記載の蛍光体含有組成物を用いて形成された発光装置。
<6>前記<5>に記載の前記発光装置を用いて形成された画像表示装置。
<7>前記<5>に記載の前記発光装置を用いて形成された照明装置。
<5> A light-emitting device formed using the phosphor-containing composition according to any one of <1> to <4>.
<6> An image display device formed using the light emitting device according to <5>.
<7> An illuminating device formed using the light emitting device according to <5>.

本発明の蛍光体含有組成物は、粘度上昇がなく、チキソトロープ性を示さない場合であっても蛍光体の沈降を抑制することができる。また、本発明の発光装置は、蛍光体の発光分布が均一であり、高品質である。また、蛍光体が有効に利用されるため、発光装置の製造上有用である。また、かかる発光装置を使用した画像表示装置および照明装置は、発光分布が均一であり、高品質である。また、蛍光体が有効に利用されるため、画像表示装置および照明装置の製造上有用である。   The phosphor-containing composition of the present invention can suppress the sedimentation of the phosphor even when the viscosity does not increase and the thixotropic property is not exhibited. In addition, the light emitting device of the present invention has a uniform light emission distribution of the phosphor and high quality. Further, since the phosphor is effectively used, it is useful for manufacturing a light emitting device. Further, an image display device and an illumination device using such a light emitting device have a uniform light emission distribution and high quality. Further, since the phosphor is effectively used, it is useful for manufacturing an image display device and a lighting device.

以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[1]蛍光体含有組成物
本発明の蛍光体含有組成物は、特定の物性を有するシリカ微粒子、蛍光体、および液体媒体を含有することを必須要件とする。また、要すればその他の任意成分を含有していてもよい。
[1−1]シリカ微粒子
本発明の蛍光体含有組成物は、特定の物性を有するシリカ微粒子を含有することを必須とする。本発明に用いられるシリカ微粒子を用いた場合、蛍光体含有組成物の粘度上昇がなく、チキソトロープ性を示さない場合であっても発光装置への充填(注入)、硬化工程における蛍光体の沈降が抑制される。本発明のシリカ微粒子が前記効果を奏する理由は明らかでないが、以下のように推察される。すなわち、一般にシリカ微粒子が組成物の系に添加されると、シリカ微粒子の水酸基同士の水素結合によりネットワークが形成される。チキソトロープ性発現の理由は、応力が小さい場合はネットワークが維持され高粘度を示すが、応力が大きい場合はネットワークが切れて低粘度を示すものとして説明されている。本発明は水酸基濃度が低いシリカ微粒子を使用するため、上記のようなネットワークが形成されにくく、チキソトロープ性を示さない場合があるものと推定される。このような場合であっても蛍光体の沈降が抑制される理由は、添加したシリカ微粒子が蛍光体表面と相互作用して蛍光体表面に緩やかに結合した緩衝構造を形成することにより、蛍光体同士の凝集を防止し、また、蛍光体含有組成物中の蛍光体の見かけ比重を小さくしているものと推定される。
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
[1] Phosphor-containing composition
It is essential that the phosphor-containing composition of the present invention contains silica fine particles having specific physical properties, a phosphor, and a liquid medium. Moreover, you may contain other arbitrary components if needed.
[1-1] Silica fine particles
The phosphor-containing composition of the present invention must contain silica fine particles having specific physical properties. When the silica fine particles used in the present invention are used, there is no increase in the viscosity of the phosphor-containing composition, and even when the thixotropic property is not exhibited, filling (injection) into the light-emitting device, and precipitation of the phosphor in the curing process occurs. It is suppressed. The reason why the silica fine particles of the present invention exert the above effect is not clear, but is presumed as follows. That is, when silica fine particles are generally added to the composition system, a network is formed by hydrogen bonding between the hydroxyl groups of the silica fine particles. The reason for the thixotropic property is described as a network that maintains a high viscosity when the stress is small, but is low and exhibits a low viscosity when the stress is large. Since the present invention uses silica fine particles having a low hydroxyl group concentration, it is presumed that the network as described above is not easily formed and the thixotropic property may not be exhibited. Even in such a case, the sedimentation of the phosphor is suppressed because the added silica fine particles interact with the phosphor surface to form a buffer structure that is loosely bonded to the phosphor surface. It is presumed that aggregation between each other is prevented and the apparent specific gravity of the phosphor in the phosphor-containing composition is reduced.

以下、本発明に用いられるシリカ微粒子について詳述する。
[1−1−1]水酸基濃度
本発明に使用するシリカ微粒子は、下記の水酸基濃度測定方法(I)で測定される前記シリカ微粒子の水酸基濃度が0.3個/nm以上、2個/nm以下である。これは、微粒子表面に存在するSiOH基量が特定範囲のシリカ微粒子が、本発明の蛍光体含有組成物の材料として好適であることを表す。
水酸基濃度測定方法(I)
(1)シリカ微粒子の1g当たりの比表面積a(m/g)をBET法により測定する。(2)シリカ微粒子1gを10−2hPaの真空中で100℃、1時間乾燥した後、ジエチレングリコールジメチルエーテル1L中でLiAlH10gと反応させ、発生したH量b(ml)を定量する。
(3)下記式により水酸基濃度を算出する。
水酸基濃度(個/nm)=(6×1023×b)/(22400×a×1018
Hereinafter, the silica fine particles used in the present invention will be described in detail.
[1-1-1] Hydroxyl concentration
Silica fine particles used in the present invention, the hydroxyl group concentration of the silica fine particles measured by the hydroxyl group concentration measurement method (I) below is 0.3 pieces / nm 2 or more, two / nm 2 or less. This indicates that silica fine particles having a specific amount of SiOH groups present on the surface of the fine particles are suitable as a material for the phosphor-containing composition of the present invention.
Hydroxyl concentration measurement method (I)
(1) The specific surface area a (m 2 / g) per 1 g of the silica fine particles is measured by the BET method. (2) 1 g of silica fine particles is dried at 100 ° C. for 1 hour in a vacuum of 10 −2 hPa, then reacted with 10 g of LiAlH 4 in 1 L of diethylene glycol dimethyl ether, and the amount of generated H 2 b (ml) is quantified.
(3) The hydroxyl group concentration is calculated by the following formula.
Hydroxyl concentration (pieces / nm 2 ) = (6 × 10 23 × b) / (22400 × a × 10 18 )

シリカ微粒子の水酸基濃度の下限は、好ましくは0.5個/nm以上である。また、上限は、好ましくは1.5個/nm以下である。水酸基濃度が少なすぎると、蛍光体表面との相互作用が弱くなり、蛍光体粒子を蛍光体含有組成物中に保持する力が弱くなる場合がある。水酸基濃度が多すぎると、蛍光体表面との相互作用が強くなり、シリカ微粒子が蛍光体粒子間の橋架け構造を形成するようになるため、蛍光体の凝集による沈降が起こる場合がある。
[1−1−2]pH
更に本発明に使用するシリカ微粒子は、下記のpH測定方法(II)により測定されるpHが4.5以上、7以下であることが好ましい。
The lower limit of the hydroxyl group concentration of the silica fine particles is preferably 0.5 / nm 2 or more. Moreover, an upper limit becomes like this. Preferably it is 1.5 piece / nm < 2 > or less. If the hydroxyl group concentration is too low, the interaction with the phosphor surface is weakened, and the force for holding the phosphor particles in the phosphor-containing composition may be weakened. If the hydroxyl group concentration is too high, the interaction with the phosphor surface becomes strong, and the silica fine particles form a bridge structure between the phosphor particles, so that precipitation due to aggregation of the phosphor may occur.
[1-1-2] pH
Furthermore, the silica fine particles used in the present invention preferably have a pH measured by the following pH measurement method (II) of 4.5 or more and 7 or less.

pH測定方法(II)
水:メタノール=1:1溶液0.1L中にシリカ微粒子4gを加え、液温20〜25℃、5分間充分に撹拌した後、pH計にてpHを測定する。
シリカ微粒子のpHの下限は、好ましくは4.8以上であり、上限は、好ましくは6.5以下である。pHは蛍光体粒子と粒子間の相互作用に影響を及ぼすため、pHが高すぎると蛍光体を蛍光体含有組成物中に保持する力が弱くなる場合がある。また、pHが低すぎると蛍光体の凝集による沈降が起こる場合がある。
pH measurement method (II)
4 g of silica fine particles are added to 0.1 L of water: methanol = 1: 1 solution, and after sufficiently stirring for 5 minutes at a liquid temperature of 20 to 25 ° C., the pH is measured with a pH meter.
The lower limit of the pH of the silica fine particles is preferably 4.8 or more, and the upper limit is preferably 6.5 or less. Since pH affects the interaction between phosphor particles, if the pH is too high, the force for holding the phosphor in the phosphor-containing composition may be weakened. If the pH is too low, precipitation due to aggregation of the phosphor may occur.

[1−1−3]疎水性
本発明に使用するシリカ微粒子は、上述の様に、水酸基同士の水素結合によるネットワークの形成が少ないものであるため、疎水性であることが好ましい。
シリカ微粒子は、例えば親水性のシリカ微粒子の表面に存在するシラノール基と別途添加する表面改質剤を反応させることにより表面を疎水化することができる。
表面改質剤としては、アルキルシラン類の化合物が挙げられ、具体例としてジメチルジクロロシラン、ヘキサメチルジシラザン、オクチルシラン、ジメチルシリコーンオイルなどが挙げられる。
[1-1-3] Hydrophobicity
As described above, the silica fine particles used in the present invention are preferably hydrophobic because they are less likely to form a network due to hydrogen bonding between hydroxyl groups.
The surface of the silica fine particles can be hydrophobized by reacting, for example, a silanol group present on the surface of the hydrophilic silica fine particles and a surface modifier added separately.
Examples of the surface modifier include alkylsilane compounds, and specific examples include dimethyldichlorosilane, hexamethyldisilazane, octylsilane, and dimethylsilicone oil.

なお、シリカ微粒子が前記表面改質剤と反応したことを確認する方法は炭素含有量を測定することにより確認できる。炭素含有量の測定は、例えば下記の方法を採用することができる。
シリカ微粒子を誘導炉にて、1000〜1100℃、10〜60分間の条件下に置き、含有炭素を酸化させて一酸化炭素を生成させる。次に触媒の存在下で、300〜600℃で再酸化させて二酸化炭素とする。生成した二酸化炭素量を炭素分析装置(例えば、LECO社製炭素分析装置「C-244型」等)で測定し、炭素含有量を算出する。
The method for confirming that the silica fine particles have reacted with the surface modifier can be confirmed by measuring the carbon content. For example, the following method can be employed for measuring the carbon content.
Silica fine particles are placed in an induction furnace under conditions of 1000 to 1100 ° C. for 10 to 60 minutes, and the contained carbon is oxidized to generate carbon monoxide. Next, it is re-oxidized at 300 to 600 ° C. to carbon dioxide in the presence of a catalyst. The amount of carbon dioxide produced is measured with a carbon analyzer (for example, a carbon analyzer “C-244 type” manufactured by LECO), and the carbon content is calculated.

[1−1−4]その他物性
本発明のシリカ微粒子は、例えばフュームドシリカを挙げることができる。フュームドシリカは、HとOとの混合ガスを燃焼させた1100〜1400℃の炎でSiClガスを酸化、加水分解させることにより作製される。フュームドシリカの一次粒子は、平均粒径が5〜50nm程度の非晶質の二酸化ケイ素(SiO)を主成分とする球状の超微粒子であり、この一次粒子がそれぞれ凝集し、粒径が数百nmである二次粒子を形成する。フュームドシリカは、超微粒子であるとともに、急冷によって作製されるため、表面の構造が化学的に活性な状態となっている。
[1-1-4] Other physical properties
Examples of the silica fine particles of the present invention include fumed silica. Fumed silica is produced by oxidizing and hydrolyzing SiCl 4 gas with a flame of 1100 to 1400 ° C. in which a mixed gas of H 2 and O 2 is burned. The primary particles of fumed silica are spherical ultrafine particles mainly composed of amorphous silicon dioxide (SiO 2 ) having an average particle size of about 5 to 50 nm. Secondary particles that are several hundred nm are formed. Since fumed silica is an ultrafine particle and is produced by rapid cooling, the surface structure is in a chemically active state.

本発明に使用するシリカ微粒子は、BET法による比表面積が、通常50m/g以上、好ましくは80m/g以上、さらに好ましくは100m/g以上である。また、通常300m/g以下、好ましくは200m/g以下である。比表面積が小さすぎるとシリカ微粒子を添加しても蛍光体粒子の沈降抑制効果が認められず、また、大きすぎるとシリカ微粒子の樹脂中への分散処理が困難になる。 The silica fine particles used in the present invention have a specific surface area by the BET method of usually 50 m 2 / g or more, preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more. Moreover, it is 300 m < 2 > / g or less normally, Preferably it is 200 m < 2 > / g or less. If the specific surface area is too small, the effect of suppressing the precipitation of the phosphor particles is not observed even if silica particles are added, and if it is too large, it is difficult to disperse the silica particles in the resin.

本発明に使用するシリカ微粒子の一次粒子の平均粒子径は上記の比表面積から計算により求めたものである。平均粒子径をd(nm)、1gの粉体が有する表面積をS(m/g
)、形状係数をφと
すると
d=6/Sφ
の関係が成立する(出典:化学大辞典)
例えばシリカ微粒子の真比重が2.2、形状が真球の場合はφ=2.2×10−3とおくことによりdを求めることができる。 本発明に使用する前記シリカ微粒子は、市販のものを使用することができ、具体的には、例えば日本アエロジル株式会社製疎水性「アエロジル」(登録商標)が挙げられる。疎水性「アエロジル」(登録商標)の例としては、「R8200」、「R972」、「R972V」、「R972CF」、「R974」、「R202」、「R805」、「R812」、「R812S」、「RX200」「RY200
」、「RY200S」が挙げられる。
The average particle diameter of the primary particles of the silica fine particles used in the present invention is obtained from the above specific surface area by calculation. The average particle diameter is d (nm), and the surface area of 1 g of powder is S (m 2 / g
), The shape factor is φ
Then
d = 6 / Sφ
Is established (Source: University of Chemistry Dictionary)
For example, when the true specific gravity of silica fine particles is 2.2 and the shape is a true sphere, d can be obtained by setting φ = 2.2 × 10 −3 . As the silica fine particles used in the present invention, commercially available ones can be used. Specific examples include hydrophobic “Aerosil” (registered trademark) manufactured by Nippon Aerosil Co., Ltd. Examples of hydrophobic “Aerosil” (registered trademark) include “R8200”, “R972”, “R972V”, “R972CF”, “R974”, “R202”, “R805”, “R812”, “R812S”, "RX200""RY200
And “RY200S”.

[1−2]蛍光体
本発明の蛍光体含有組成物に用いられる蛍光体とは、一般に光の照射によって可視光を発する物質をいう。
蛍光体の組成には特に制限はないが、結晶母体であるY、ZnSiO等に代表される金属酸化物、SrSi等に代表される金属窒化物、Ca(PO)Cl等に代表されるリン酸塩及びZnS、SrS、CaS等に代表される硫化物に、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Cu、Au、Al、Mn、Sb等の金属のイオンを付活元素又は共付活元素として組み合わせたものが好ましい。
[1-2] Phosphor
The phosphor used in the phosphor-containing composition of the present invention generally refers to a substance that emits visible light when irradiated with light.
There is no particular limitation on the composition of the phosphor, Y 2 O 3 is a host crystal, Zn 2 metal oxide represented by SiO 4 and the like, a metal nitride typified by Sr 2 Si 5 N 8 such, Ca 5 (PO 4 ) 3 Cl etc. and phosphates such as ZnS, SrS, CaS etc., Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, A combination of rare earth metal ions such as Tm and Yb and metal ions such as Ag, Cu, Au, Al, Mn, and Sb as activators or coactivators is preferred.

結晶母体の好ましい例としては、例えば、(Zn,Cd)S、SrGa、SrS、ZnS等の硫化物、YS等の酸硫化物、(Y,Gd)Al12、YAlO、BaMgAl1017、(Ba,Sr)(Mg,Mn)Al1017、(Ba,Sr,C
a)(Mg,Zn,Mn)Al1017、BaAl1219、CeMgAl1119
、(Ba,Sr,Mg)O・Al、BaAlSi、SrAl、SrAl1425、YAl12等のアルミン酸塩、YSiO、ZnSiO等の珪酸塩、SnO、Y等の酸化物、GdMgB10、(Y,Gd)BO等の硼酸塩、Ca10(PO)(F,Cl)、(Sr,Ca,Ba,Mg)10(PO)Cl等のハロリン酸塩、Sr、(La,Ce)PO等のリン酸塩等を挙げることができる。
ただし、上記の結晶母体及び付活元素又は共付活元素は、元素組成には特に制限はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視領域の光を吸収して可視光を発するものであれば用いることが可能である。
Preferred examples of the crystal matrix include sulfides such as (Zn, Cd) S, SrGa 2 S 4 , SrS, and ZnS, oxysulfides such as Y 2 O 2 S, and (Y, Gd) 3 Al 5 O. 12 , YAlO 3 , BaMgAl 10 O 17 , (Ba, Sr) (Mg, Mn) Al 10 O 17 , (Ba, Sr, C
a) (Mg, Zn, Mn) Al 10 O 17 , BaAl 12 O 19 , CeMgAl 11 O 19
, (Ba, Sr, Mg) O.Al 2 O 3 , BaAl 2 Si 2 O 8 , SrAl 2 O 4 , Sr 4 Al 14 O 25 , Y 3 Al 5 O 12, etc., aluminates such as Y 2 SiO 5 Silicate such as Zn 2 SiO 4 , oxide such as SnO 2 and Y 2 O 3 , borate such as GdMgB 5 O 10 and (Y, Gd) BO 3 , Ca 10 (PO 4 ) 6 (F, Cl ) 2 , halophosphates such as (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 , phosphates such as Sr 2 P 2 O 7 , (La, Ce) PO 4, etc. it can.
However, the crystal matrix and the activator element or coactivator element are not particularly limited in element composition, and can be partially replaced with elements of the same family, and the obtained phosphor is light in the near ultraviolet to visible region. Any material that absorbs and emits visible light can be used.

具体的には、蛍光体として以下に挙げるものを用いることが可能であるが、これらはあくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。なお、以下の例示では、構造の一部のみが異なる蛍光体を、適宜省略して示している。例えば、「YSiO:Ce3+」、「YSiO:Tb3+」及び「YSiO:Ce3+,Tb3+」を「YSiO:Ce3+,Tb3+」と、「LaS:Eu」、「YS:Eu」及び「(La,Y)S:Eu」を「(La,Y)S:Eu」とまとめて示している。省略箇所はカンマ(,)で区切って示す。 Specifically, the following phosphors can be used, but these are merely examples, and phosphors that can be used in the present invention are not limited to these. In the following examples, phosphors that differ only in part of the structure are omitted as appropriate. For example, “Y 2 SiO 5 : Ce 3+ ”, “Y 2 SiO 5 : Tb 3+ ” and “Y 2 SiO 5 : Ce 3+ , Tb 3+ ” are changed to “Y 2 SiO 5 : Ce 3+ , Tb 3+ ”, “ “La 2 O 2 S: Eu”, “Y 2 O 2 S: Eu” and “(La, Y) 2 O 2 S: Eu” are collectively shown as “(La, Y) 2 O 2 S: Eu”. ing. Omitted parts are shown separated by commas (,).

[1−2−1]橙色ないし赤色蛍光体
本発明の蛍光体含有組成物は、橙色ないし赤色の蛍光を発する蛍光体(以下適宜、「橙 色ないし赤色蛍光体」という。)を含有していてもよい。
赤色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常570nm以上、好ましくは580nm以上、また、通常700nm以下、好ましくは680nm以下が望ましい。
本発明にかかる蛍光体以外の橙色ないし赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行なう(Mg,Ca,Sr,Ba)Si:Euで表わされるユウロピウム付活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y,La,Gd,Lu)S:Euで表わされるユウロピウム付活希土類オキシカルコゲナイド系蛍光体等が挙げられる。
[1-2-1] Orange to red phosphor
The phosphor-containing composition of the present invention may contain a phosphor emitting orange to red fluorescence (hereinafter referred to as “orange to red phosphor” as appropriate).
When the specific wavelength range of the fluorescence emitted by the red phosphor is exemplified, the peak wavelength is usually 570 nm or more, preferably 580 nm or more, and usually 700 nm or less, preferably 680 nm or less.
Examples of the orange or red phosphor other than the phosphor according to the present invention include, for example, broken particles having a red fracture surface and emit light in a red region (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Europium-activated alkaline earth silicon nitride-based phosphor represented by Eu, composed of growing particles having a substantially spherical shape as a regular crystal growth shape, and emits light in the red region (Y, La, Gd, Lu) Examples include europium activated rare earth oxychalcogenide phosphors represented by 2 O 2 S: Eu.

さらに、特開2004−300247号公報に記載された、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なくも1種の元素を含有する酸窒化物及び/又は酸硫化物を含有する蛍光体であって、Al元素の一部又は全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本実施形態において用いることができる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。   Furthermore, the oxynitride and / or acid containing at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, W, and Mo described in JP-A-2004-300247 A phosphor containing a sulfide and containing an oxynitride having an alpha sialon structure in which a part or all of the Al element is substituted with a Ga element can also be used in this embodiment. These are phosphors containing oxynitride and / or oxysulfide.

また、そのほか、赤色蛍光体としては、(La,Y)S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O:Eu、Y:Eu等のEu付活酸化物蛍光体、(Ba,Sr,Ca,Mg)SiO:Eu,Mn、(Ba,Mg)SiO:Eu,Mn等の Eu,Mn付活珪酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO:Eu等のEu付活アルミン酸塩蛍光体、LiY(SiO):Eu、Ca(SiO):Eu、(Sr,Ba,Ca)SiO:Eu、SrBaSiO:Eu等のEu付活珪酸塩蛍光体、(Y,Gd)Al12:Ce、(Tb,Gd)Al12:Ce等のCe付活アルミン酸塩蛍光体、(Ca,Sr,Ba)Si:Eu、(Mg,Ca,Sr,Ba)SiN:Eu、(Mg,Ca,Sr,Ba)AlSiN:Eu等のEu付活窒化物蛍光体、(Mg,Ca,Sr,Ba)AlSiN:Ce等のCe付活窒化物蛍光体、(Sr,Ca,Ba,Mg)10(PO)Cl:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、(BaMg)Si:Eu,Mn、(Ba,Sr,Ca,Mg)(Zn,Mg)Si:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF・GeO:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La):Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP:Eu,Mn、(Sr,Ca,Ba,Mg,Zn):Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)WO:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)Si:Eu,Ce(但し、x、y、zは、1以上の整数)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO)(F,Cl,Br,OH):Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1−xScCe)(Ca,Mg)1−r(Mg,Zn)2+rSiz−qGeqO12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。 In addition, examples of red phosphors include Eu-activated oxysulfide phosphors such as (La, Y) 2 O 2 S: Eu, Y (V, P) O 4 : Eu, Y 2 O 3 : Eu, and the like. Eu-activated oxide phosphor, (Ba, Sr, Ca, Mg) 2 SiO 4: Eu, Mn, (Ba, Mg) 2 SiO 4: Eu, Eu such as Mn, Mn-activated silicate phosphor, (Ca, Sr) S: Eu-activated sulfide phosphors such as Eu, YAlO 3 : Eu-activated aluminate phosphors such as Eu, LiY 9 (SiO 4 ) 6 O 2 : Eu, Ca 2 Y 8 ( SiO 4 ) 6 O 2 : Eu, (Sr, Ba, Ca) 3 SiO 5 : Eu, Sr 2 BaSiO 5 : Eu-activated silicate phosphor such as Eu, (Y, Gd) 3 Al 5 O 12 : Ce , (Tb, Gd) 3 Al 5 O 12 : Ce-activated aluminate phosphor such as Ce, (Ca, Sr, Ba) 2 Si 5 N 8: Eu, (Mg, Ca, Sr, Ba) SiN 2: Eu, (Mg, Ca, Sr, Ba) AlSiN 3: Eu -activated nitride phosphor such as Eu, (Mg, Ca, Sr , Ba ) AlSiN 3 : Ce-activated nitride phosphor such as Ce, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, Mn-activated halophosphate phosphor such as Eu, Mn, 2. Ba 3 Mg) Si 2 O 8 : Eu, Mn, (Ba, Sr, Ca, Mg) 3 (Zn, Mg) Si 2 O 8 : Eu, Mn activated silicate phosphor such as Eu, Mn 5MgO · 0.5MgF 2 · GeO 2 : Mn-activated germanate phosphor such as Mn, Eu-activated oxynitride phosphor such as Eu-activated α-sialon, (Gd, Y, Lu, La) 2 O 3 : Eu, Bi activated oxide phosphor such as Eu, Bi, (Gd, Y, Lu, La) 2 O 2 S: Eu, Bi Eu, Bi-activated oxysulfide phosphor such as (Gd, Y, Lu, La) VO 4 : Eu, Bi-activated vanadate phosphor such as Eu, Bi, SrY 2 S 4 : Eu, Ce, etc. Eu, Ce activated sulfide phosphors, CaLa 2 S 4 : Ce activated sulfide phosphors such as Ce, (Ba, Sr, Ca) MgP 2 O 7 : Eu, Mn, (Sr, Ca, Ba, Mg, Zn) 2 P 2 O 7 : Eu, Mn activated phosphate phosphor such as Eu, Mn, (Y, Lu) 2 WO 6 : Eu, Mo activated tungstate phosphor such as Eu, Mo , (Ba, Sr, Ca) x Si y N z: Eu, Ce ( provided that, x, y, z are an integer of 1 or more) Eu, Ce-activated nitride phosphor such as, (Ca, Sr, Ba , Mg) 10 (PO 4) 6 (F, Cl, Br, OH): Eu, Eu such as Mn, Mn-activated halophosphate phosphor, ((Y, Lu, d, Tb) can also be used such as 1-x Sc x Ce y) 2 (Ca, Mg) 1-r (Mg, Zn) 2 + r Si z-q GeqO Ce -activated silicate phosphors 12 + [delta], etc. .

赤色蛍光体としては、β−ジケトネート、β−ジケトン、芳香族カルボン酸、又は、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフ ェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン)、アント ラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。   As the red phosphor, β-diketonate, β-diketone, aromatic carboxylic acid, or a red organic phosphor composed of a rare earth element ion complex having an anion such as Bronsted acid as a ligand, a perylene pigment (for example, Dibenzo {[f, f ′]-4,4 ′, 7,7′-tetraphenyl} diindeno [1,2,3-cd: 1 ′, 2 ′, 3′-lm] perylene), anthraquinone pigment , Lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane basic dyes, indanthrone pigments, indophenol pigments It is also possible to use cyanine pigments and dioxazine pigments.

また、赤色蛍光体のうち、ピーク波長が580nm以上、好ましくは590nm以上、また、620nm以下、好ましくは610nm以下の範囲内にあるものは、橙色蛍光体として好適に用いることができる。このような橙色蛍光体の例としては、(Sr,Ba)SiO:Eu、(Sr,Mg)(PO:Sn等が挙げられる。 Of the red phosphors, those having a peak wavelength in the range of 580 nm or more, preferably 590 nm or more, and 620 nm or less, preferably 610 nm or less can be suitably used as the orange phosphor. Examples of such orange phosphors include (Sr, Ba) 3 SiO 5 : Eu, (Sr, Mg) 3 (PO 4 ) 2 : Sn, and the like.

[1−2−2]緑色蛍光体
本発明の蛍光体含有組成物は、緑色の蛍光を発する蛍光体(以下適宜、「緑色蛍光体」 という。)を含有していてもよい。
緑色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常490nm以上、好ましくは500nm以上、また、通常570nm以下、好ましくは550nm以下が望ましい。
このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Mg,Ca,Sr,Ba)Si:Euで表わされるユウロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Ba,Ca,Sr,Mg)SiO:Euで表わ
されるユウロピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。
[1-2-2] Green phosphor
The phosphor-containing composition of the present invention may contain a phosphor that emits green fluorescence (hereinafter, referred to as “green phosphor” as appropriate).
When the specific wavelength range of the fluorescence emitted from the green phosphor is exemplified, the peak wavelength is usually 490 nm or more, preferably 500 nm or more, and usually 570 nm or less, preferably 550 nm or less.
As such a green phosphor, for example, a europium-activated alkali represented by (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu that is composed of fractured particles having a fracture surface and emits light in the green region. Europium-activated alkaline earth silicate composed of an earth silicon oxynitride phosphor, broken particles having a fracture surface, and emitting in the green region (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu System phosphors and the like.

また、そのほか、緑色蛍光体としては、SrAl1425:Eu、(Ba,Sr, Ca)Al:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)AlSi:Eu、(Ba,Mg)SiO:Eu、(Ba,Sr,Ca,Mg)SiO:Eu、(Ba,Sr,Ca)(Mg,Zn)Si:Eu等のEu付活珪酸塩蛍光体、YSiO:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr−Sr:Eu等のEu付活硼酸リン酸塩蛍光体、SrSi−2SrCl:Eu等のEu付活ハロ珪酸塩蛍光体、ZnSiO:Mn等のMn付活珪酸塩蛍光体、CeMgAl1119:Tb、YAl12:Tb等のTb付活アルミン酸塩蛍光体、Ca(SiO):Tb、LaGaSiO14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y(Al,Ga)12:Ce、(Y,Ga,Tb,La,Sm,Pr,Lu)(Al,Ga)12:Ce等のCe付活アルミン酸塩蛍光体、CaScSi12:Ce、Ca(Sc,Mg,Na,Li)Si12:Ce等のCe付活珪酸塩蛍光体、CaSc:Ce等のCe付活酸化物蛍光体、SrSi:Eu、(Sr,Ba,Ca)Si:Eu、Eu付活βサイアロン、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、BaMgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)S:Tb等のTb付活酸硫化物蛍光体、LaPO:Ce,Tb等のCe,Tb付活リン酸塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO:Ce,Tb、NaGd:Ce,Tb、(Ba,Sr)(Ca,Mg,Zn)B:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、CaMg(SiO)Cl:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In):Eu等のEu付活チオアルミネート蛍光体やチオガレート蛍光体、(Ca,Sr)(Mg,Zn)(SiO)Cl:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体等を用いることも可能である。 In addition, examples of the green phosphor include Eu-activated aluminate phosphors such as Sr 4 Al 14 O 25 : Eu, (Ba, Sr, Ca) Al 2 O 4 : Eu, and (Sr, Ba) Al 2. Si 2 O 8 : Eu, (Ba, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu activated silicate phosphor such as Eu, Y 2 SiO 5 : Ce, Tb activated silicate phosphor such as Ce, Tb, Sr 2 P 2 O 7 —Sr 2 B 2 O 5 : Eu such as Eu Activated boric acid phosphor, Sr 2 Si 3 O 8 -2SrCl 2 : Eu activated halosilicate phosphor such as Eu, Zn 2 SiO 4 : Mn activated silicate phosphor such as Mn, CeMgAl 11 O 19 : Tb, Y 3 Al 5 O 12 : Tb-activated aluminate firefly such as Tb Light body, Tb activated silicate phosphor such as Ca 2 Y 8 (SiO 4 ) 6 O 2 : Tb, La 3 Ga 5 SiO 14 : Tb, (Sr, Ba, Ca) Ga 2 S 4 : Eu, Tb Eu, Tb, Sm activated thiogallate phosphor such as Sm, Sm, Y 3 (Al, Ga) 5 O 12 : Ce, (Y, Ga, Tb, La, Sm, Pr, Lu) 3 (Al, Ga) 5 Ce-activated silicic acid such as O 12 : Ce-activated aluminate phosphor such as Ce, Ca 3 Sc 2 Si 3 O 12 : Ce, Ca 3 (Sc, Mg, Na, Li) 2 Si 3 O 12 : Ce Salt phosphor, Ce activated oxide phosphor such as CaSc 2 O 4 : Ce, SrSi 2 O 2 N 2 : Eu, (Sr, Ba, Ca) Si 2 O 2 N 2 : Eu, Eu activated β sialon Eu activated oxynitride phosphors such as Eu activated α sialon, BaMgAl 10 O 17 : Eu, Mn activated aluminate phosphor such as Eu, Mn, SrAl 2 O 4 : Eu activated aluminate phosphor such as Eu, (La, Gd, Y) 2 O 2 S: Tb such as Tb Activated oxysulfide phosphor, LaPO 4 : Ce, Tb activated phosphate phosphor such as Ce, Tb, Sulfide phosphor such as ZnS: Cu, Al, ZnS: Cu, Au, Al, (Y, Ga, Lu, Sc, La) BO 3: Ce, Tb, Na 2 Gd 2 B 2 O 7: Ce, Tb, (Ba, Sr) 2 (Ca, Mg, Zn) B 2 O 6: K, Ce, Ce, Tb activated borate phosphor such as Tb, Eu, Mn activated halosilicate phosphor such as Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu, Mn, (Sr, Ca, Ba) (Al, Ga, In) 2 S 4 : Eu-activated thioaluminate phosphor such as Eu, thiogallate phosphor, (Ca, Sr) 8 (M g, Zn) (SiO 4 ) 4 Cl 2 : Eu, Mn-activated halosilicate phosphors such as Eu and Mn can also be used.

また、緑色蛍光体としては、ピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テルビウム錯体等の有機蛍光体を用いることも可能である。   In addition, as the green phosphor, it is also possible to use a pyridine-phthalimide condensed derivative, a benzoxazinone-based, a quinazolinone-based, a coumarin-based, a quinophthalone-based, a nartaric imide-based fluorescent dye, or an organic phosphor such as a terbium complex. is there.

[1−2−3]青色蛍光体
本発明の蛍光体含有組成物は、青色の蛍光を発する蛍光体(以下適宜、「青色蛍光体」 という。)を含有していてもよい。
青色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常420nm以上、好ましくは440nm以上、また、通常480nm以下、好ましくは470nm以下が望ましい。
このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行なうBaMgAl1017:Euで表わされるユウロピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr ,Ba)(PO)Cl:Euで表わされるユウロピウム付活ハロリン酸カルシウム系 蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)Cl:Euで表わされるユウロピウム付活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行なう(Sr,Ca,Ba)Al:Eu又は(Sr,Ca,Ba)Al1425:Euで表わされるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
[1-2-3] Blue phosphor
The phosphor-containing composition of the present invention may contain a phosphor emitting blue fluorescence (hereinafter appropriately referred to as “blue phosphor”).
When the specific wavelength range of the fluorescence emitted from the blue phosphor is exemplified, the peak wavelength is usually 420 nm or more, preferably 440 nm or more, and usually 480 nm or less, preferably 470 nm or less.
As such a blue phosphor, a europium-activated barium magnesium aluminate system represented by BaMgAl 10 O 17 : Eu, which is composed of growing particles having a substantially hexagonal shape as a regular crystal growth shape and emits light in a blue region. Europium-activated halo represented by (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: Eu, which is composed of phosphors and grown particles having a substantially spherical shape as a regular crystal growth shape and emits light in the blue region. Calcium phosphate phosphor, composed of growing particles having a cubic shape as a regular crystal growth shape, emits light in the blue region, and is activated by europium represented by (Ca, Sr, Ba) 2 B 5 O 9 Cl: Eu Consists of alkaline earth chloroborate phosphors and fractured particles with fractured surfaces, and emits light in the blue-green region. (Sr, Ca, Ba) Al 2 O 4: Eu or (Sr, Ca, Ba) 4 Al 14 O 25: activated alkaline earth with europium aluminate-based phosphor such as represented by Eu and the like.

また、そのほか、青色蛍光体としては、Sr:Sn等のSn付活リン酸塩蛍光体、SrAl1425:Eu、BaMgAl1017:Eu、BaAl13:Eu等のEu付活アルミン酸塩蛍光体、SrGa:Ce、CaGa:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl1017:Eu、BaMgAl1017:Eu,Tb,Sm等のEu付活アルミン酸塩蛍光体、(Ba,Sr ,Ca)MgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(PO)Cl:Eu、(Ba,Sr,Ca)(PO)(Cl,F,Br,OH):Eu,Mn,Sb等のEu付活ハロリン酸塩蛍光体、BaAlSi:Eu、(Sr,Ba)MgSi:Eu等のEu付活珪酸塩蛍光体、Sr:Eu等のEu付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、YSiO:Ce等のCe付活珪酸塩蛍光体、CaWO等のタングステン酸塩蛍光体、(Ba,Sr,Ca)BPO:Eu,Mn、(Sr,Ca)10(PO)・nB:Eu、2SrO・0.84P・0.16B:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、SrSi・2SrCl:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。 In addition, as the blue phosphor, Sn-activated phosphate phosphors such as Sr 2 P 2 O 7 : Sn, Sr 4 Al 14 O 25 : Eu, BaMgAl 10 O 17 : Eu, BaAl 8 O 13 : Eu-activated aluminate phosphors such as Eu, Ce-activated thiogallate phosphors such as SrGa 2 S 4 : Ce, CaGa 2 S 4 : Ce, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, BaMgAl 10 O 17 : Eu-activated aluminate phosphor such as Eu, Tb, Sm, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, Mn-activated aluminate phosphor such as Eu, Mn, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, (Ba, Sr, Ca) 5 (PO 4 ) 3 (Cl, F, Br, OH): Eu activation such as Eu, Mn, Sb Halophosphate phosphor, BaAl 2 Si 2 O 8 : Eu, (Sr, Ba) 3 MgSi 2 O 8 : Eu-activated silicate phosphor such as Eu, Sr 2 P 2 O 7 : Eu-activated phosphate phosphor such as Eu, ZnS : Ag, ZnS: Sulfide phosphors such as Ag, Al, Y 2 SiO 5 : Ce-activated silicate phosphors such as Ce, Tungsten phosphors such as CaWO 4 , (Ba, Sr, Ca) BPO 5 : Eu, Mn, (Sr, Ca) 10 (PO 4 ) 6 · nB 2 O 3 : Eu, 2SrO · 0.84P 2 O 5 · 0.16B 2 O 3 : Eu, Mn activated phosphorus borate such as Eu It is also possible to use an acid activated phosphor, an Eu-activated halosilicate phosphor such as Sr 2 Si 3 O 8 .2SrCl 2 : Eu, or the like.

また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラゾリン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。
なお、上述のような蛍光体は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用しても良い。
Further, as the blue phosphor, for example, naphthalic acid imide-based, benzoxazole-based, styryl-based, coumarin-based, pyrazoline-based, triazole-based fluorescent dyes, organic phosphors such as thulium complexes, and the like can be used. .
In addition, the above-mentioned fluorescent substance may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.

[1−2−4]黄色蛍光体
本発明の蛍光体含有組成物は、黄色の蛍光を発する蛍光体(以下適宜、「黄色蛍光体」 という。)を含有していてもよい。
黄色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、通常530nm以上、好ましくは540nm以上、より好ましくは550nm以上、また、通常620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあることが好適である。黄色蛍光体の発光ピーク波長が短すぎると黄色成分が少なくなり演色性が劣る発光装置となる可能性があり、長すぎると発光装置の輝度が低下する虞がある。
[1-2-4] Yellow phosphor
The phosphor-containing composition of the present invention may contain a phosphor that emits yellow fluorescence (hereinafter appropriately referred to as “yellow phosphor”).
Illustrating the specific wavelength range of the fluorescence emitted by the yellow phosphor, it is usually 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less, preferably 600 nm or less, more preferably 580 nm or less. It is preferable to be in the range. If the emission peak wavelength of the yellow phosphor is too short, there is a possibility that the yellow component will be reduced and the light emitting device will be inferior in color rendering, and if it is too long, the luminance of the light emitting device may be reduced.

このような黄色蛍光体としては、各種の酸化物系、窒化物系、酸窒化物系、硫化物系、酸硫化物系等の蛍光体が挙げられる。
特に、RE12:Ce(ここで、REは、Y,Tb,Gd,Lu,Smの少なくとも1種類の元素を表し、Mは、Al,Ga,Scの少なくとも1種類の元素を表す。)やM2M3M412:Ce(ここで、M2は2価の金属元素、M3は3価の金属元素、M4は4価の金属元素)等で表されるガーネット構造を有するガーネット系蛍光体、AEM5O:Eu(ここで、AEは、Ba,Sr,Ca,Mg,Znの少なくとも1種類の元素を表し、M5は、Si,Geの少なくとも1種類の元素を表す。)等で表され るオルソシリケート系蛍光体、これらの系の蛍光体の構成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、AEAlSiN:Ce(ここで、AEは、Ba,Sr,Ca,Mg,Znの少なくとも1種類の元素を表す。)等のCaAlSiN構造を有する窒化物系蛍光体等のCeで付活した蛍光体が挙げられる。
Examples of such yellow phosphors include various oxide-based, nitride-based, oxynitride-based, sulfide-based, and oxysulfide-based phosphors.
In particular, RE 3 M 5 O 12 : Ce (where RE represents at least one element of Y, Tb, Gd, Lu, and Sm, and M represents at least one element of Al, Ga, and Sc) Or a garnet structure represented by M2 3 M3 2 M4 3 O 12 : Ce (where M2 is a divalent metal element, M3 is a trivalent metal element, M4 is a tetravalent metal element), etc. Garnet-based phosphor having AE 2 M5O 4 : Eu (where AE represents at least one element of Ba, Sr, Ca, Mg, Zn, and M5 represents at least one element of Si, Ge) Orthosilicate phosphors represented by, etc., oxynitride phosphors obtained by substituting part of oxygen of the constituent elements of these phosphors with nitrogen, AEAlSiN 3 : Ce (where AE represents , Ba, Sr, Ca, Mg, Zn Both activated and phosphor can be mentioned in one element represents a.) Of the nitride-based fluorescent material or the like having a CaAlSiN 3 structure, such as Ce.

また、そのほか、黄色蛍光体としては、CaGa:Eu(Ca,Sr)Ga:Eu、(Ca,Sr)(Ga,Al):Eu等の硫化物系蛍光体、Cax(Si,Al)12(O,N)16:Eu等のSiAlON構造を有する酸窒化物系蛍光体等のEuで付活した蛍光体を用いることも可能である。 In addition, examples of yellow phosphors include sulfide phosphors such as CaGa 2 S 4 : Eu (Ca, Sr) Ga 2 S 4 : Eu, (Ca, Sr) (Ga, Al) 2 S 4 : Eu. It is also possible to use a phosphor activated with Eu such as an oxynitride phosphor having a SiAlON structure such as Cax (Si, Al) 12 (O, N) 16 : Eu.

[1−2−5]蛍光体の組み合わせ
本発明の蛍光体含有組成物に使用される蛍光体の具体的な好ましい組み合わせの例として、赤色蛍光体としてEu付活窒化物蛍光体から選ばれる1以上の蛍光体、ならびに緑色蛍光体としてCe付活珪酸塩蛍光体およびCe付活酸化物蛍光体から選ばれる1以上の蛍光体を含有する蛍光体含有組成物が挙げられる。
[1-2-5] Combination of phosphors
Examples of specific preferred combinations of phosphors used in the phosphor-containing composition of the present invention include one or more phosphors selected from Eu-activated nitride phosphors as red phosphors, and Ce as a green phosphor. Examples include phosphor-containing compositions containing one or more phosphors selected from activated silicate phosphors and Ce-activated oxide phosphors.

Eu付活窒化物赤色蛍光体としては、(Ca,Sr,Ba)Si:Eu、(Mg ,Ca,Sr,Ba)SiN:Eu、(Mg,Ca,Sr,Ba)AlSiN:Eu等 が挙げられ、中でもCaAlSiN:Eu(以下「CASN」と略記することがある。)、および(Sr,Ca)AlSiN:Eu(以下「SCASN」と略記することがある)が好適である。 Eu-activated nitride red phosphors include (Ca, Sr, Ba) 2 Si 5 N 8 : Eu, (Mg, Ca, Sr, Ba) SiN 2 : Eu, (Mg, Ca, Sr, Ba) AlSiN. 3 : Eu etc. Among them, there are CaAlSiN 3 : Eu (hereinafter sometimes abbreviated as “CASN”) and (Sr, Ca) AlSiN 3 : Eu (hereinafter sometimes abbreviated as “SCASN”). Is preferred.

Ce付活珪酸塩緑色蛍光体としては、CaScSi12:Ce、Ca(Sc ,Mg,Na,Li)Si12:Ce等が挙げられ、中でもCa(Sc,Mg, Na,Li)Si12:Ce(以下「CSMS」と略記することがある)が好適である。
Ce付活酸化物緑色蛍光体としては、CaSc:Ce(以下「CSO」と略記することがある。)の組み合わせが挙げられる。これらの蛍光体の組み合わせは所望の色度座標、演色指数、発光効率などに応じて適宜組み合わせればよい。
Examples of the Ce-activated silicate green phosphor include Ca 3 Sc 2 Si 3 O 12 : Ce, Ca 3 (Sc, Mg, Na, Li) 2 Si 3 O 12 : Ce, and among others, Ca 3 (Sc , Mg, Na, Li) 2 Si 3 O 12 : Ce (hereinafter sometimes abbreviated as “CSMS”) is preferable.
Examples of the Ce-activated oxide green phosphor include a combination of CaSc 2 O 4 : Ce (hereinafter sometimes abbreviated as “CSO”). Combinations of these phosphors may be appropriately combined according to desired chromaticity coordinates, color rendering index, luminous efficiency, and the like.

[1−2−6]その他の蛍光体の物性
本発明に使用する蛍光体の粒径は特に制限はないが、中央粒径(D50)で通常0.1μm以上、好ましくは2μm以上、さらに好ましくは10μm以上である。また、通常100μm以下、好ましくは50μm以下、さらに好ましくは20μm以下である。D50が小さすぎると、輝度が低下し、蛍光体粒子が凝集してしまう虞がある。一方、D50が大きすぎると、塗布ムラやディスペンサー等の閉塞が生じる虞がある。
[1-2-6] Physical properties of other phosphors
The particle size of the phosphor used in the present invention is not particularly limited, but the median particle size (D 50 ) is usually 0.1 μm or more, preferably 2 μm or more, more preferably 10 μm or more. Moreover, it is 100 micrometers or less normally, Preferably it is 50 micrometers or less, More preferably, it is 20 micrometers or less. If D 50 is too small, and the luminance decreases, there is a possibility that phosphor particles tend to aggregate. On the other hand, when D 50 is too large, there is a possibility that clogging of such coating unevenness or dispenser may occur.

蛍光体粒子の粒度分布(QD)は、蛍光体含有組成物中での粒子の分散状態をそろえるために小さい方が好ましいが、小さくするためには分級収率が下がってコストアップにつながるので、通常0.03以上、好ましくは0.05以上、更に好ましくは0.07以上である。また、通常0.4以下、好ましくは0.3以下、更に好ましくは0.2以下である。また、蛍光体粒子の形状は、蛍光体部形成に影響を与えない限り、特に限定されない。   The particle size distribution (QD) of the phosphor particles is preferably small in order to align the dispersed state of the particles in the phosphor-containing composition, but in order to reduce the particle size, the classification yield decreases, leading to an increase in cost. Usually, it is 0.03 or more, preferably 0.05 or more, more preferably 0.07 or more. Moreover, it is 0.4 or less normally, Preferably it is 0.3 or less, More preferably, it is 0.2 or less. Further, the shape of the phosphor particles is not particularly limited as long as the phosphor part formation is not affected.

なお、本発明において、中央粒径(D50)、粒度分布(QD)は、重量基準粒度分布曲線から得ることが出来る。前記重量基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定し得られるもので、具体的には、例えば以下のように測定することが出来る。
気温25℃、湿度70%の環境下において、エチレングリコールなどの溶媒に蛍光体を分散させる。
In the present invention, the median particle size (D 50 ) and particle size distribution (QD) can be obtained from a weight-based particle size distribution curve. The weight-based particle size distribution curve is obtained by measuring the particle size distribution by a laser diffraction / scattering method, and specifically, for example, can be measured as follows.
A phosphor is dispersed in a solvent such as ethylene glycol under an environment of an air temperature of 25 ° C. and a humidity of 70%.

レーザ回折式粒度分布測定装置(堀場製作所 LA−300)により、粒径範囲0.1μm〜600μmにて測定する。
この重量基準粒度分布曲線において積算値が50%のときの粒径値を中央粒径D50と表記する。また、積算値が25%及び75%の時の粒径値をそれぞれD25、D75と表記し、QD=(D75−D25)/(D75+D25)と定義する。QDが小さいことは粒度分布が狭いことを意味する。
Measurement is performed with a laser diffraction particle size distribution measuring apparatus (Horiba, Ltd. LA-300) in a particle size range of 0.1 μm to 600 μm.
Integrated value in the weight particle size distribution curve is denoted a particle size value when the 50% and median particle diameter D 50. Further, the particle size values when the integrated values are 25% and 75% are expressed as D 25 and D 75 , respectively, and defined as QD = (D 75 −D 25 ) / (D 75 + D 25 ). A small QD means a narrow particle size distribution.

[1−2−7]蛍光体の表面処理
本発明に使用する蛍光体は、耐水性を高める目的で、または蛍光体含有組成物中で蛍光体の不要な凝集を防ぐ目的で、表面処理が行われていてもよい。
かかる表面処理の例としては、例えば特開2002−223008号公報に記載の有機材料、無機材料、ガラス材料などを用いた表面処理、特開2000−96045号公報等に記載の金属リン酸塩による被覆処理、金属酸化物による被覆処理、シリカコート等の公知の表面処理が挙げられる。
具体的には、例えば蛍光体の表面に上記金属リン酸塩を被覆させるには、下記(i)〜(iii)の手順による被覆方法が挙げられる。(i)所定量のリン酸カリウム、リン酸ナ
トリウムなどの水溶性のリン酸塩と塩化カルシウム、硫酸ストロンチウム、塩化マンガン、硝酸亜鉛等のアルカリ土類金属、Zn及びMnの中の少なくとも1種の水溶性の金属塩化合物とを蛍光体懸濁液中に添加し、攪拌する。(ii)アルカリ土類金属、Zn及びMnの中の少なくとも1種の金属のリン酸塩を懸濁液中で生成させると共に、生成したこれらの金属リン酸塩を蛍光体表面に沈積させる。(iii)水分を除去する。
[1-2-7] Phosphor surface treatment
The phosphor used in the present invention may be subjected to a surface treatment for the purpose of enhancing water resistance or preventing unnecessary aggregation of the phosphor in the phosphor-containing composition.
Examples of such surface treatments include surface treatments using organic materials, inorganic materials, glass materials, and the like described in JP-A No. 2002-223008, and metal phosphates described in JP-A No. 2000-96045. Known surface treatments such as coating treatment, coating treatment with metal oxide, and silica coating can be used.
Specifically, for example, in order to coat the surface of the phosphor with the metal phosphate, the following coating methods (i) to (iii) are mentioned. (I) A predetermined amount of a water-soluble phosphate such as potassium phosphate and sodium phosphate and at least one of alkaline earth metals such as calcium chloride, strontium sulfate, manganese chloride and zinc nitrate, Zn and Mn A water-soluble metal salt compound is added to the phosphor suspension and stirred. (Ii) A phosphate of at least one metal among alkaline earth metals, Zn and Mn is formed in the suspension, and the generated metal phosphate is deposited on the phosphor surface. (Iii) Remove moisture.

また、シリカコートとしては、水ガラスを中和してSiOを析出させる方法、アルコキシシランを加水分解したものを表面処理する方法(例えば、特開平3−231987号公報)等が挙げられ、分散性を高める点においてはアルコキシシランを加水分解したものを表面処理する方法が好ましい。 Examples of the silica coat include a method of neutralizing water glass to precipitate SiO 2 , a method of surface treating a hydrolyzed alkoxysilane (for example, JP-A-3-231987), and the like. From the standpoint of enhancing the properties, a method of surface-treating a hydrolyzed alkoxysilane is preferable.

[1−3]液状媒体
使用される液状媒体としては無機系材料および/または有機系材料が使用できる。
無機系材料としては、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液(例えばシロキサン結合を有する無機系材料)等を挙げることができる。
有機系材料としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。従来、半導体発光装置用の蛍光体分散材料としては、一般的にエポキシ樹脂が用いられてきたが、特に照明など大出力の発光装置が必要な場合、耐熱性や耐光性等を目的として珪素含有化合物を使用するのが好ましい。
[1-3] Liquid medium
As the liquid medium to be used, an inorganic material and / or an organic material can be used.
Examples of the inorganic material include a solution obtained by hydrolyzing a solution containing a metal alkoxide, a ceramic precursor polymer, or a metal alkoxide by a sol-gel method (for example, an inorganic material having a siloxane bond). it can.
Examples of organic materials include thermoplastic resins, thermosetting resins, and photocurable resins. Specifically, for example, methacrylic resin such as polymethylmethacrylate; styrene resin such as polystyrene and styrene-acrylonitrile copolymer; polycarbonate resin; polyester resin; phenoxy resin; butyral resin; polyvinyl alcohol; Cellulose resins such as cellulose acetate butyrate; epoxy resins; phenol resins; silicone resins. Conventionally, as a phosphor dispersion material for a semiconductor light emitting device, an epoxy resin has been generally used. However, when a high output light emitting device such as an illumination is required, it contains silicon for the purpose of heat resistance and light resistance. It is preferred to use compounds.

珪素含有化合物とは分子中に珪素原子を有する化合物をいい、ポリオルガノシロキサン等の有機材料(シリコーン系材料)、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等の無機材料、及びホウケイ酸塩、ホスホケイ酸塩、アルカリケイ酸塩等のガラス材料を挙げることができる。中でも、ハンドリングの容易さや、硬化物が応力緩和力を有する点から、シリコーン系材料が好ましい。半導体発光装置用シリコーン樹脂に関しては例えば特開平10−228249号公報や特許2927279号公報、特開2001−36147号公報などで封止剤への使用、特開2000−123981号公報において波長調整コーティングへの使用が試みられている。   A silicon-containing compound is a compound having a silicon atom in the molecule, organic materials such as polyorganosiloxane (silicone-based materials), inorganic materials such as silicon oxide, silicon nitride, and silicon oxynitride, and borosilicates and phosphosilicates. Examples thereof include glass materials such as salts and alkali silicates. Among these, silicone materials are preferable from the viewpoint of ease of handling and the point that the cured product has a stress relaxation force. Regarding silicone resins for semiconductor light emitting devices, for example, use as a sealant in JP-A-10-228249, JP-A-2927279, JP-A-2001-36147, etc., and JP-A 2000-123981 to wavelength adjustment coating. The use of is being tried.

[1−3−1]シリコーン系材料
シリコーン系材料とは、通常、シロキサン結合を主鎖とする有機重合体をいい、例えば一般組成式で表される化合物及び/またはそれらの混合物が挙げられる。
(RSiO1/2M(RSiO2/2D(RSiO3/2T(SiO4/2Q
ここで、RからRは同じであっても異なってもよく、有機官能基、水酸基、水素原子からなる群から選択される。またM、D、T及びQは0から1未満であり、M+D+T+Q=1を
満足する数である。
シリコーン系材料を半導体発光素子の封止に用いる場合、液状のシリコーン系材料を用いて封止した後、熱や光によって硬化させて用いることができる。
[1-3-1] Silicone material
The silicone material generally refers to an organic polymer having a siloxane bond as a main chain, and examples thereof include a compound represented by a general composition formula and / or a mixture thereof.
(R 1 R 2 R 3 SiO 1/2 ) M (R 4 R 5 SiO 2/2 ) D (R 6 SiO 3/2 ) T (SiO 4/2 ) Q
Here, R 1 to R 6 may be the same or different and are selected from the group consisting of an organic functional group, a hydroxyl group, and a hydrogen atom. M, D, T, and Q are 0 to less than 1 and satisfy M + D + T + Q = 1.
When a silicone material is used for sealing a semiconductor light emitting element, it can be used after being sealed with a liquid silicone material and then cured by heat or light.

[1−3−2]シリコーン系材料の種類
シリコーン系材料を硬化のメカニズムにより分類すると、通常付加重合硬化タイプ、縮重合硬化タイプ、紫外線硬化タイプ、パーオキサイド架硫タイプなどのシリコーン系材料を挙げることができる。これらの中では、付加重合硬化タイプ(付加型シリコーン樹脂)、縮合硬化タイプ(縮合型シリコーン樹脂)、紫外線硬化タイプが好適である。以下、付加型シリコーン系材料、及び縮合型シリコーン系材料について説明する。
[1-3-2] Types of silicone materials
When silicone materials are classified according to the curing mechanism, silicone materials such as an addition polymerization curing type, a condensation polymerization curing type, an ultraviolet curing type, and a peroxide vulcanization type can be mentioned. Among these, addition polymerization curing type (addition type silicone resin), condensation curing type (condensation type silicone resin), and ultraviolet curing type are preferable. Hereinafter, the addition type silicone material and the condensation type silicone material will be described.

[1−3−2−1]付加型シリコーン系材料
付加型シリコーン系材料とは、ポリオルガノシロキサン鎖が、有機付加結合により架橋されたものをいう。代表的なものとしては、例えばビニルシランとヒドロシランをPt触媒などの付加型触媒の存在下反応させて得られるSi−C−C−Si結合を架橋点に有する化合物等を挙げることができる。
[1-3-2-1] Addition type silicone material
The addition-type silicone material refers to a material in which a polyorganosiloxane chain is crosslinked by an organic addition bond. A typical example is a compound having a Si—C—C—Si bond at a crosslinking point obtained by reacting vinylsilane and hydrosilane in the presence of an addition catalyst such as a Pt catalyst.

上記付加型シリコーン系材料は、具体的には、例えば下記平均組成式(1a)で表されるアルケニル基含有オルガノポリシロキサン(A)と下記平均組成式(2a)で表されるヒドロシリル基含有オルガノポリシロキサン(B)を(A)の総アルケニル基に対して(B)の総ヒドロシリル基量が0.5〜2.0倍となる量比で混合し、触媒量の(C)付加反応触媒の存在下反応させて得ることが出来る。   Specifically, the addition-type silicone material includes, for example, an alkenyl group-containing organopolysiloxane (A) represented by the following average composition formula (1a) and a hydrosilyl group-containing organo group represented by the following average composition formula (2a). The polysiloxane (B) is mixed with the total alkenyl group of (A) at a ratio such that the total hydrosilyl group amount of (B) is 0.5 to 2.0 times, and a catalytic amount of (C) addition reaction catalyst It can be obtained by reacting in the presence of.

(A)アルケニル基含有オルガノポリシロキサン
RnSiO〔(4−n)/2〕 (1a)
(但し、式中Rは同一又は異種の置換又は非置換の1価炭化水素基、アルコキシ基、又は水酸基で、nは1≦n<2を満たす正数である。)で示される1分子中に少なくとも2個のケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンである。
(A) Alkenyl group-containing organopolysiloxane RnSiO [(4-n) / 2] (1a)
(In the formula, R is the same or different substituted or unsubstituted monovalent hydrocarbon group, alkoxy group, or hydroxyl group, and n is a positive number satisfying 1 ≦ n <2.) And an organopolysiloxane having an alkenyl group bonded to at least two silicon atoms.

(B)ヒドロシリル基含有ポリオルガノシロキサン
R’aHbSiO〔(4−a−b)/2〕 (2a)
(但し式中R’は脂肪族不飽和炭化水素基を除く同一又は異種の置換又は非置換の1価炭化水素基、a、bは0.7≦a≦2.1、0.001≦b≦1.0かつ、0.8≦a+b≦2.6を満たす正数である。)で示される1分子中に少なくとも2個のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサンである。
(B) Hydrosilyl group-containing polyorganosiloxane R′aHbSiO [(4-ab) / 2] (2a)
Wherein R ′ is the same or different substituted or unsubstituted monovalent hydrocarbon group excluding the aliphatic unsaturated hydrocarbon group, and a and b are 0.7 ≦ a ≦ 2.1 and 0.001 ≦ b. ≦ 1.0 and 0.8 ≦ a + b ≦ 2.6.) Is a organohydrogenpolysiloxane having hydrogen atoms bonded to at least two silicon atoms in one molecule. .

以下、付加型シリコーン樹脂につき更に詳しく説明する。
上記式(1a)のRにおいて、アルケニル基とはビニル基、アリル基、ブテニル基、ペンテニル基などの炭素数2〜8のアルケニル基である。Rが炭化水素基である場合はメチル基、エチル基などのアルキル基、ビニル基、フェニル基等の炭素数1〜20の1価炭化水素基から選択される。好ましくは、メチル基、エチル基、フェニル基である。それぞれは異なっても良いが、耐UV性が要求される場合にはRの80%以上はメチル基であることが好ましい。Rが炭素数1〜8のアルコキシ基や水酸基であってもよいが、アルコキシ基や水酸基の含有率は(A)の重量の3%以下であることが好ましい。
Hereinafter, the addition type silicone resin will be described in more detail.
In R of the above formula (1a), the alkenyl group is an alkenyl group having 2 to 8 carbon atoms such as vinyl group, allyl group, butenyl group or pentenyl group. When R is a hydrocarbon group, it is selected from alkyl groups such as methyl group and ethyl group, monovalent hydrocarbon groups having 1 to 20 carbon atoms such as vinyl group and phenyl group. Preferably, they are a methyl group, an ethyl group, and a phenyl group. Each may be different, but when UV resistance is required, 80% or more of R is preferably a methyl group. R may be an alkoxy group having 1 to 8 carbon atoms or a hydroxyl group, but the content of the alkoxy group or hydroxyl group is preferably 3% or less of the weight of (A).

nは1≦n<2を満たす正数であるが、この値が2以上であると封止材としての十分な強度が得られなくなり、1未満であると合成上このオルガノポリシロキサンの合成が困難になる。
次に、(B)成分のオルガノハイドロジェンポリシロキサン(2a)は、(A)成分のオルガノポリシロキサン(1a)とヒドロシリル化反応により組成物を硬化させる架橋剤として作用するものであり、下記平均組成式(2a)
R’aHbSiO(4−a−b)/2 (2a)
(但し、式中R’はアルケニル基を除く一価の炭化水素基であり、a、bは0.7≦a≦2.1、0.001≦b≦1.0、かつ0.8≦a+b≦2.6、好ましくは0.8≦a≦2、0.01≦b≦1、1≦a+b≦2.4を満たす正数である。)で示される1分子中に少なくとも2個、好ましくは3個以上のSiH結合を有するオルガノハイドロジェンポリシロキサンが好ましい。
n is a positive number satisfying 1 ≦ n <2, but if this value is 2 or more, sufficient strength as a sealing material cannot be obtained, and if it is less than 1, synthesis of this organopolysiloxane is not possible. It becomes difficult.
Next, the organohydrogenpolysiloxane (2a) as the component (B) acts as a crosslinking agent for curing the composition by hydrosilylation reaction with the organopolysiloxane (1a) as the component (A). Composition formula (2a)
R'aHbSiO (4-ab) / 2 (2a)
(In the formula, R ′ is a monovalent hydrocarbon group excluding an alkenyl group, and a and b are 0.7 ≦ a ≦ 2.1, 0.001 ≦ b ≦ 1.0, and 0.8 ≦ a + b ≦ 2.6, preferably 0.8 ≦ a ≦ 2, 0.01 ≦ b ≦ 1, 1 ≦ a + b ≦ 2.4.) at least two in one molecule An organohydrogenpolysiloxane having 3 or more SiH bonds is preferred.

ここで、R’としては、式(1a)中のR2と同様の基を挙げることができるが、好ましくはアルケニル基を有さないものがよい。また、耐UV性要求される用途に用いる場合には少なくとも80%以上はメチル基であることが好ましい。
このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよいが、1分子中のケイ素原子の数(又は重合度)は3〜1000、特に3〜300程度のものを使用することができる。
Here, examples of R ′ include the same groups as R2 in formula (1a), but those having no alkenyl group are preferable. Further, when used for applications requiring UV resistance, at least 80% is preferably a methyl group.
The molecular structure of the organohydrogenpolysiloxane may be any of linear, cyclic, branched, and three-dimensional network structures, but the number of silicon atoms in one molecule (or the degree of polymerization) is 3 to 1000. In particular, about 3 to 300 can be used.

上記(B)成分のオルガノハイドロポリシロキサン(2a)の配合量は、(A)成分のオルガノポリシロキサン(1a)の総アルケニル基量に依存し、オルガノポリシロキサン(1a)の総アルケニルキ基に対して総SiH量が0.5〜2.0倍となる量好ましくは0.8〜1.5倍となる量とすればよい。
(C)成分の付加反応触媒は、(A)成分中のアルケニル基と(B)成分中のSiH基とのヒドロシリル化付加反応を促進するための触媒であり、この付加反応触媒としては、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。なお、この付加反応触媒の配合量は触媒量とすることができるが、通常、白金族金属として(A)及び(B)成分の合計重量に対して1〜500ppm、特に2〜100ppm程度配合することが好ましい。
The blending amount of the organohydropolysiloxane (2a) as the component (B) depends on the total amount of alkenyl groups of the organopolysiloxane (1a) as the component (A) and is based on the total alkenyl groups of the organopolysiloxane (1a). Thus, the total SiH amount may be 0.5 to 2.0 times, preferably 0.8 to 1.5 times.
The addition reaction catalyst for component (C) is a catalyst for promoting the hydrosilylation addition reaction between the alkenyl group in component (A) and the SiH group in component (B). Black, platinum chloride, chloroplatinic acid, reaction product of chloroplatinic acid and monohydric alcohol, complex of chloroplatinic acid and olefins, platinum catalyst such as platinum bisacetoacetate, palladium catalyst, rhodium catalyst Platinum group metal catalysts such as In addition, although the compounding quantity of this addition reaction catalyst can be made into a catalytic quantity, it is normally mix | blended as 1 to 500 ppm with respect to the total weight of (A) and (B) component as a platinum group metal, especially about 2-100 ppm. It is preferable.

本発明の組成物には、上記(A)〜(C)成分に加え、任意成分として硬化性、ポットライフを与えるために付加反応制御剤、硬度・粘度を調節するために例えばアルケニル基を有する直鎖状のジオルガノポリシロキサンの他にも直鎖状の非反応性オルガノポリシロキサン、ケイ素原子数が2〜10個程度の直鎖状又は環状の低分子オルガノポリシロキサンなどを本発明の効果を損なわない範囲で添加してもよい。   In addition to the above components (A) to (C), the composition of the present invention has an addition reaction control agent for imparting curability and pot life as an optional component, and has, for example, an alkenyl group for adjusting hardness and viscosity. In addition to the linear diorganopolysiloxane, the linear non-reactive organopolysiloxane, the linear or cyclic low-molecular organopolysiloxane having about 2 to 10 silicon atoms, and the like are effective. You may add in the range which does not impair.

なお、上記組成物の硬化条件は特に制限されないが、120〜180℃、30〜180分の条件とすることが好ましい。得られる硬化物が硬化後にも柔らかいゲル状である場合には、ゴム状や硬質プラスチック状のシリコーン樹脂と比較して線膨張係数大きいため、室温付近の低温にて10〜30時間硬化することにより内部応力の発生を抑制することができる。
付加型シリコーン系材料は公知のものを使用することができ、さらには金属やセラミックスへの密着性を向上させる添加剤や有機基を導入しても良い。例えば、特許3909826号公報、特許3910080号公報、特開2003−128922号公報、特開2004−221308号公報、特開2004−186168号公報に記載のシリコーン材料が好適である。また、これらは市販のものを使用することができ、例えば付加重合硬化タイプの具体的商品名としては、信越化学工業社製「LPS−1400」「LPS−2410」「LPS−3400」等が挙げられる。
In addition, although the hardening conditions in particular of the said composition are not restrict | limited, It is preferable to set it as the conditions for 120-180 degreeC and 30-180 minutes. When the resulting cured product is in a soft gel state even after curing, the linear expansion coefficient is larger than that of a silicone resin in the form of rubber or hard plastic. Generation of internal stress can be suppressed.
As the addition-type silicone material, known materials can be used, and an additive or an organic group for improving adhesion to metal or ceramics may be introduced. For example, silicone materials described in Japanese Patent No. 3909826, Japanese Patent No. 3910080, Japanese Patent Application Laid-Open No. 2003-128922, Japanese Patent Application Laid-Open No. 2004-221308, and Japanese Patent Application Laid-Open No. 2004-186168 are suitable. Moreover, these can use a commercially available thing, For example, as a specific brand name of addition polymerization hardening type, Shin-Etsu Chemical Co., Ltd. "LPS-1400""LPS-2410""LPS-3400" etc. are mentioned, for example. It is done.

[1−3−2−2]縮合型シリコーン系材料
縮合型シリコーン系材料とは、例えば、アルキルアルコキシシランの加水分解・重縮合で得られるSi−O−Si結合を架橋点に有する化合物を挙げることができる。
具体的には、下記一般式(1b)及び/又は(2b)で表わされる化合物、及び/又はそのオリゴマーを加水分解・重縮合して得られる重縮合物が挙げられる。
m+n1 m-1 (1b)
(式(1b)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも1種の元素を表わし、Xは、加水分解性基を表わし、Y1は、1価の有機基
を表わし、mは、Mの価数を表わす1以上の整数を表わし、nは、X基の数を表わす1以上の整数を表わす。但し、m≧nである。)
(Ms+ s−t−1 (2b)
(式(2b)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも1種の元素を表わし、Xは、加水分解性基を表わし、Y1は、1価の有機基
を表わし、Y2は、u価の有機基を表わし、sは、Mの価数を表わす1以上の整数を表わ
し、tは、1以上、s−1以下の整数を表わし、uは、2以上の整数を表わす。)
また、硬化触媒としては、例えば金属キレート化合物などを好適なものとして用いることができる。金属キレート化合物は、Ti、Ta、Zrのいずれか1以上を含むものが好ましく、Zrを含むものがさらに好ましい。
[1-3-2-2] Condensation type silicone material
Examples of the condensation type silicone material include a compound having a Si—O—Si bond obtained by hydrolysis and polycondensation of an alkylalkoxysilane at a crosslinking point.
Specific examples include polycondensates obtained by hydrolysis and polycondensation of compounds represented by the following general formula (1b) and / or (2b) and / or oligomers thereof.
M m + X n Y 1 m-1 (1b)
(In the formula (1b), M represents at least one element selected from silicon, aluminum, zirconium, and titanium, X represents a hydrolyzable group, and Y 1 represents a monovalent organic group. M represents one or more integers representing the valence of M, and n represents one or more integers representing the number of X groups, provided that m ≧ n.
(M s + X t Y 1 s-t-1) u Y 2 (2b)
(In the formula (2b), M represents at least one element selected from silicon, aluminum, zirconium, and titanium, X represents a hydrolyzable group, and Y 1 represents a monovalent organic group. Y 2 represents a u-valent organic group, s represents an integer of 1 or more representing the valence of M, t represents an integer of 1 or more and s−1 or less, and u represents 2 or more. Represents an integer.)
Moreover, as a curing catalyst, a metal chelate compound etc. can be used suitably, for example. The metal chelate compound preferably contains one or more of Ti, Ta, and Zr, and more preferably contains Zr.

縮合型シリコーン系材料は公知のものを使用することができ、例えば、特開2006−77234号公報、特開2006−291018号公報、特開2006−316264号公報、特開2006−336010号公報、特開2006−348284号公報、および国際公開2006/090804号パンフレットに記載の半導体発光デバイス用部材が好適である。   A well-known thing can be used for a condensation type silicone type material, for example, Unexamined-Japanese-Patent No. 2006-77234, Unexamined-Japanese-Patent No. 2006-291018, Unexamined-Japanese-Patent No. 2006-316264, Unexamined-Japanese-Patent No. 2006-336010, The semiconductor light-emitting device members described in JP-A-2006-348284 and International Publication No. 2006/090804 are suitable.

シリコーン系材料の中で、特に好ましい材料について、以下に説明する。
シリコーン系材料は、一般に半導体発光素子や素子を配置する基板、パッケージ等との接着性が弱いことが欠点とされるが、密着性が高いシリコーン系材料として、特に、以下の特徴〈1〉〜〈3〉のうち1つ以上を有するシリコーン系材料が好ましい。
〈1〉ケイ素含有率が20重量%以上である。
〈2〉後に詳述する方法によって測定した固体Si−核磁気共鳴(NMR)スペクトルにおいて、下記(a)及び/又は(b)のSiに由来するピークを少なくとも1つ有する。
Of the silicone materials, particularly preferred materials will be described below.
Silicone-based materials generally have a drawback of poor adhesion to semiconductor light-emitting elements, substrates on which the elements are arranged, packages, and the like, but as silicone-based materials with high adhesion, the following characteristics <1> to A silicone material having one or more of <3> is preferred.
<1> The silicon content is 20% by weight or more.
<2> The solid Si-nuclear magnetic resonance (NMR) spectrum measured by the method described in detail later has at least one peak derived from Si in the following (a) and / or (b).

(a)ピークトップの位置がシリコーンゴムを基準(−22.333ppm)としてケミカルシフト−40ppm以上、0ppm以下の領域にあり、ピークの半値幅が0.3ppm以上、3.0ppm以下であるピーク。
(b)ピークトップの位置がシリコーンゴムを基準(−22.333ppm)としてケミカルシフト−80ppm以上、−40ppm未満の領域にあり、ピークの半値幅が0.3ppm以上5.0ppm以下であるピーク。
〈3〉シラノール含有率が0.01重量%以上、10重量%以下である。
(A) A peak where the peak top position is in a region where the chemical shift is −40 ppm or more and 0 ppm or less with reference to silicone rubber (−22.333 ppm), and the half width of the peak is 0.3 ppm or more and 3.0 ppm or less.
(B) A peak whose peak top position is in a region where the chemical shift is −80 ppm or more and less than −40 ppm with respect to silicone rubber (−22.333 ppm), and the half width of the peak is 0.3 ppm or more and 5.0 ppm or less.
<3> The silanol content is 0.01% by weight or more and 10% by weight or less.

本発明においては、上記の特徴〈1〉〜〈3〉のうち、特徴〈1〉を有するシリコーン系材料が好ましい。さらに好ましくは、上記の特徴〈1〉及び〈2〉を有するシリコーン系材料が好ましい。特に好ましくは、上記の特徴〈1〉〜〈3〉を全て有するシリコーン系材料が好ましい。また、上記の特徴を有するシリコーン系材料の中でも、縮合型シリコーン系材料が耐熱性、耐光性等の観点より好ましい。   In the present invention, among the above features <1> to <3>, a silicone material having the feature <1> is preferable. More preferably, a silicone material having the above characteristics <1> and <2> is preferable. Particularly preferably, a silicone material having all of the above features <1> to <3> is preferable. Of the silicone materials having the above characteristics, a condensation type silicone material is preferable from the viewpoint of heat resistance, light resistance, and the like.

[1−3−3]液状媒体の含有量
液状媒体は、本発明の蛍光体含有組成物全体に対して、通常50重量%以上、好ましくは75重量%以上であり、通常99重量%以下、好ましくは95重量%以下である。
液状媒体の量が多い場合には特段の問題は起こらないが、半導体発光装置とした場合に所望の色度座標、演色指数、発光効率等を得るには、通常、上記のような配合比率で蛍光体を添加する必要がある。少なすぎると流動性がなく取り扱いにくい。
液状媒体は、前述の様に、本発明の蛍光体含有組成物において、主にバインダーとしての役割を有する。液状媒体は単独で用いてもよいが、複数を混合してもよい。例えば、耐熱性や耐光性等を目的として珪素含有化合物を使用する場合は、珪素含有化合物の耐久性を損なわない程度に、エポキシ樹脂など他の熱硬化性樹脂を含有してもよい。この場合、他の熱硬化性樹脂の含有量は、通常、バインダーに対して25重量%以下、好ましくは10重量%以下である。
[1-3-3] Content of liquid medium
The liquid medium is usually 50% by weight or more, preferably 75% by weight or more, and usually 99% by weight or less, preferably 95% by weight or less, based on the entire phosphor-containing composition of the present invention.
When the amount of the liquid medium is large, no particular problem occurs. However, in order to obtain a desired chromaticity coordinate, color rendering index, luminous efficiency, etc. in the case of a semiconductor light emitting device, it is usually at a blending ratio as described above. It is necessary to add a phosphor. If it is too small, it is difficult to handle due to lack of fluidity.
As described above, the liquid medium mainly has a role as a binder in the phosphor-containing composition of the present invention. Although a liquid medium may be used independently, multiple may be mixed. For example, when a silicon-containing compound is used for the purpose of heat resistance, light resistance, etc., other thermosetting resins such as an epoxy resin may be contained to the extent that the durability of the silicon-containing compound is not impaired. In this case, the content of the other thermosetting resin is usually 25% by weight or less, preferably 10% by weight or less based on the binder.

[1−4]その他の成分
本発明の蛍光体含有組成物は、上記成分の他に、色素、酸化防止剤、安定化剤(燐系加工安定化剤などの加工安定化剤、酸化安定化剤、熱安定化剤、紫外線吸収剤などの耐光性安定化剤など)、シランカップリング剤、光拡散材、フィラーなど、当該分野で公知の添加物のいずれをも用いることができる。
[1-4] Other ingredients
In addition to the above components, the phosphor-containing composition of the present invention comprises a dye, an antioxidant, a stabilizer (a processing stabilizer such as a phosphorus processing stabilizer, an oxidation stabilizer, a heat stabilizer, an ultraviolet ray, Any additive known in the art such as a light-resistant stabilizer such as an absorbent), a silane coupling agent, a light diffusing material, and a filler can be used.

[1−5]蛍光体含有組成物の製造方法
本発明の蛍光体含有組成物の製造法には特に制限はなく、蛍光体、シリカ微粒子、および必要に応じて添加する添加物が液状媒体中に均一に分散する方法であれば良い。
シリカ微粒子の配合量は液状媒体100重量部に対して通常0.1重量部以上、好ましくは0.3重量部以上である。また、通常30重量部以下、好ましくは20重量部以下、更に好ましくは15重量部以下、特に好ましくは10重量部以下、とりわけ好ましくは5重量部以下である。シリカ微粒子の配合量が少なすぎると、蛍光体粒子の沈降抑制効果が発現せず、多すぎるとシリカ微粒子の分散が困難となったり、蛍光体含有組成物の粘度が高くなりすぎて、発光装置に充填(注入)する際に困難を生ずることがある。
[1-5] Method for producing phosphor-containing composition
The method for producing the phosphor-containing composition of the present invention is not particularly limited as long as the phosphor, silica fine particles, and additives to be added as necessary are uniformly dispersed in the liquid medium.
The compounding amount of the silica fine particles is usually 0.1 parts by weight or more, preferably 0.3 parts by weight or more with respect to 100 parts by weight of the liquid medium. The amount is usually 30 parts by weight or less, preferably 20 parts by weight or less, more preferably 15 parts by weight or less, particularly preferably 10 parts by weight or less, and particularly preferably 5 parts by weight or less. If the amount of silica fine particles is too small, the effect of suppressing the precipitation of phosphor particles will not be exhibited, and if too large, dispersion of the silica fine particles will be difficult, or the viscosity of the phosphor-containing composition will become too high, resulting in a light emitting device. When filling (injecting) the material, difficulties may occur.

蛍光体の配合量は通常、液状媒体100重量部に対して通常0.01重量部以上、好ましくは0.1重量部以上、さらに好ましくは1重量部以上である。また、通常100重量部以下、好ましくは80重量部以下、さらに好ましくは60重量部以下である。
液状媒体としてシリコーン樹脂を使用する場合は、例えばシリコーン樹脂、蛍光体、シリカ微粒子、ならびに架橋剤、硬化触媒、増量材、およびその他の添加剤を配合し、ミキサー、高速ディスパー、ホモジナイザー、3本ロール、ニーダー等で混合する等、従来公知の方法で製造することができる。この場合、前記成分を全て混合して、1液の形態として液状シリコーン樹脂組成物を製造しても良いが、
(i)シリコーン樹脂と蛍光体及び増量材を主成分とするシリコーン樹脂液と、(ii)架橋剤と硬化触媒を主成分とする架橋剤液の2液を調製しておき、使用直前にシリコーン樹脂液と架橋剤液を混合して液状シリコーン樹脂組成物を製造しても良い。
The blending amount of the phosphor is usually 0.01 parts by weight or more, preferably 0.1 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the liquid medium. Moreover, it is 100 parts weight or less normally, Preferably it is 80 parts weight or less, More preferably, it is 60 parts weight or less.
When a silicone resin is used as the liquid medium, for example, a silicone resin, a phosphor, silica fine particles, a crosslinking agent, a curing catalyst, an extender, and other additives are blended, and a mixer, a high-speed disper, a homogenizer, and a three roll It can be produced by a conventionally known method such as mixing with a kneader. In this case, all of the above components may be mixed to produce a liquid silicone resin composition in the form of one liquid,
Two liquids, (i) a silicone resin liquid mainly composed of a silicone resin, a phosphor and an extender, and (ii) a crosslinker liquid mainly composed of a crosslinking agent and a curing catalyst are prepared. A liquid silicone resin composition may be produced by mixing a resin solution and a crosslinking agent solution.

[1−6]蛍光体含有組成物の物性
[1−6−1]粘度
本発明の蛍光体含有組成物の粘度は、通常500mPa・s以上、好ましくは1000mPa・s以上、さらに好ましくは2000mPa・s以上であり、通常15000mPa・s以下、10000mPa・s以下、好ましくは8000mPa・s以下である。粘度が高すぎると発光装置に充填(注入)時に配管の閉塞などトラブルの原因となりやすく、また気泡が抜けにくい、更には半導体素子のリードワイヤーの断線が起こりやすいなどの悪影響をもたらす。一方、粘度が低すぎると蛍光体粒子の沈降が起こるので好ましくない。
[1-6] Physical properties of phosphor-containing composition
[1-6-1] Viscosity
The viscosity of the phosphor-containing composition of the present invention is usually 500 mPa · s or more, preferably 1000 mPa · s or more, more preferably 2000 mPa · s or more, and usually 15000 mPa · s or less, 10000 mPa · s or less, preferably 8000 mPa · s. s or less. If the viscosity is too high, troubles such as blockage of piping are likely to occur when filling (injecting) the light emitting device, bubbles are difficult to escape, and lead wires of the semiconductor element are likely to be disconnected. On the other hand, if the viscosity is too low, the phosphor particles settle, which is not preferable.

なお本発明の蛍光体含有組成物は、発光装置内へ十分に充填(注入)させ得るために、チキソトロープ性を示さないものが好ましい。チキソトロープ性を示さないことは、ローター回転数を1rpmおよび5rpmとした場合のB型粘度計における粘度が略等しいことで確認することができる。
[2]発光装置
本発明の発光装置は、[1]に記載の蛍光体含有組成物を用いて、公知の方法により形成される。以下、本発明の発光装置について説明する。
The phosphor-containing composition of the present invention preferably does not exhibit thixotropic properties in order to be sufficiently filled (injected) into the light emitting device. The lack of thixotropy can be confirmed by the fact that the viscometers of the B-type viscometer are approximately equal when the rotor rotational speed is 1 rpm and 5 rpm.
[2] Light emitting device
The light emitting device of the present invention is formed by a known method using the phosphor-containing composition described in [1]. Hereinafter, the light emitting device of the present invention will be described.

[2−1]光源
本発明の発光装置における光源は、前記[1−2]の蛍光体や後述するその他の蛍光体を励起する光を発光するものである。光源の発光波長は、蛍光体の吸収波長と重複するものであれば、特に制限されず、幅広い発光波長領域の蛍光体を使用することができる。通常は、近紫外領域から青色領域までの発光波長を有する蛍光体が使用され、具体的数値としては、通常300nm以上、好ましくは330nm以上、また、通常500nm以下、好ましくは480nm以下のピーク発光波長を有する発光体が使用される。この光源としては、一般的には半導体発光素子が用いられ、具体的には発光ダイオード(LED)や半導体レーザーダイオード(LD)等が使用できる。
[2-1] Light source
The light source in the light-emitting device of this invention light-emits the light which excites the said [1-2] fluorescent substance and the other fluorescent substance mentioned later. The emission wavelength of the light source is not particularly limited as long as it overlaps with the absorption wavelength of the phosphor, and a phosphor having a wide emission wavelength region can be used. Usually, a phosphor having an emission wavelength from the near ultraviolet region to the blue region is used, and specific values are usually 300 nm or more, preferably 330 nm or more, and usually 500 nm or less, preferably 480 nm or less. A light emitter having the following is used. As this light source, a semiconductor light emitting element is generally used, and specifically, a light emitting diode (LED), a semiconductor laser diode (LD), or the like can be used.

中でも、光源としては、GaN系化合物半導体を使用したGaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、同じ電流負荷に対し、通常GaN系LEDやLDはSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlxGayN発光層、GaN発光層、又はInxGayN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInxGayN発光層を有するものの発光強度が非常に高いので、さらに好ましく、InxGayN層とGaN層の多重量子井戸構造のものが発光強度が非常に高いので、特に好ましい。   Among these, as the light source, a GaN LED or LD using a GaN compound semiconductor is preferable. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for the same current load, a GaN-based LED or LD usually has a light emission intensity 100 times or more that of a SiC-based. A GaN-based LED or LD preferably has an Al x Gay N light emitting layer, a GaN light emitting layer, or an In x Gay N light emitting layer. Among the GaN-based LEDs, those having an InxGayN light emitting layer have a very high light emission intensity, and are more preferable, and those having a multiple quantum well structure of an InxGayN layer and a GaN layer are particularly preferable because the light emission intensity is very high. .

なお、上記においてx+yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。
GaN系LEDはこれら発光層、p層、n層、電極、及び基板を基本構成要素としたものであり、発光層をn型とp型のAlxGayN層、GaN層、又はInxGayN層などでサンドイッチにしたヘテロ構造を有しているものが、発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが、発光効率がさらに高く、より好ましい。
In the above, the value of x + y is usually in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics.
A GaN-based LED has these light emitting layer, p layer, n layer, electrode, and substrate as basic components, and the light emitting layer is sandwiched between n-type and p-type AlxGayN layers, GaN layers, or InxGayN layers. Those having the heterostructure are preferably high in luminous efficiency, and those having a heterostructure in the quantum well structure are further preferable because of higher luminous efficiency.

[2−2]蛍光体の選択
本発明の発光装置において、前述の蛍光体(赤色蛍光体、緑色蛍光体、青色蛍光体等)の使用の有無及びその種類は、発光装置の用途に応じて適宜選択すればよい。
本発明の発光装置を白色発光の発光装置として構成する場合には、所望の白色光が得られるように、1種以上の蛍光体を適切に組み合わせればよい。光源として青色発光素子を使用する場合は蛍光体として青色の補色関係にある黄色蛍光体を、より演色性の高い白色を得るには赤、及び緑色蛍光体を使用することが好ましい。近紫外光を発する半導体発光素子を用いる場合は赤、緑、青の3色の蛍光体を使用するのが好ましい。
[2-2] Selection of phosphor
In the light emitting device of the present invention, whether or not the above-described phosphors (red phosphor, green phosphor, blue phosphor, etc.) are used and the type thereof may be appropriately selected according to the use of the light emitting device.
When the light emitting device of the present invention is configured as a white light emitting device, one or more phosphors may be appropriately combined so that desired white light is obtained. When a blue light emitting element is used as a light source, it is preferable to use a yellow phosphor having a complementary color relationship of blue as a phosphor, and red and green phosphors to obtain white with higher color rendering properties. When using a semiconductor light emitting device that emits near-ultraviolet light, phosphors of three colors of red, green, and blue are preferably used.

具体的に、本発明の発光装置を白色発光の発光装置として構成する場合における、光源と、蛍光体との好ましい組み合わせの例としては、以下の(i)〜(iii)の組み合わせ が挙げられる。
(i)光源として青色発光体(青色LED等)を使用し、蛍光体として赤色蛍光体および緑色蛍光体を使用する。
(ii)光源として近紫外発光体(近紫外LED等)を使用し、蛍光体として赤色蛍光体、緑色蛍光体及び青色蛍光体を併用する。
(iii)光源として青色発光体(青色LED等)を使用し、橙色蛍光体および緑色蛍光体 を使用する。
Specifically, in the case where the light emitting device of the present invention is configured as a white light emitting device, examples of preferable combinations of a light source and a phosphor include the following combinations (i) to (iii).
(I) A blue light emitter (blue LED or the like) is used as a light source, and a red phosphor and a green phosphor are used as phosphors.
(Ii) A near-ultraviolet light emitter (near-ultraviolet LED or the like) is used as a light source, and a red phosphor, a green phosphor and a blue phosphor are used in combination as phosphors.
(Iii) A blue light emitter (blue LED or the like) is used as a light source, and an orange phosphor and a green phosphor are used.

[2−3]発光装置の構成
本発明の発光装置は、上述の光源および本発明の蛍光体含有組成物を備えていればよく、そのほかの構成は特に制限されないが、通常は、適当なフレーム上に上述の光源および蛍光体含有組成物を配置してなる。この際、光源の発光によって蛍光体が励起されて発光を生じ、且つ、この光源の発光および/または蛍光体の発光が、外部に取り出されるように配置されることになる。この場合、赤色蛍光体は、緑色蛍光体、青色蛍光体とは必ずしも同一の層中に混合されなくてもよく、例えば、赤色蛍光体を含有する層の上に青色蛍光体と緑色蛍光体を含有する層が積層されていてもよい。
[2-3] Configuration of light emitting device
The light-emitting device of the present invention is only required to include the above-described light source and the phosphor-containing composition of the present invention, and other configurations are not particularly limited, but usually the above-described light source and phosphor-containing composition are provided on an appropriate frame. A composition is arranged. At this time, the phosphor is excited by the light emission of the light source to generate light emission, and the light emission of the light source and / or the light emission of the phosphor is arranged to be taken out to the outside. In this case, the red phosphor does not necessarily have to be mixed in the same layer as the green phosphor and the blue phosphor. For example, the blue phosphor and the green phosphor are placed on the layer containing the red phosphor. The layer to contain may be laminated | stacked.

[2−4]発光装置の実施形態
以下、本発明の発光装置について、具体的な実施の形態を挙げて、より詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲

において任意に変形して実施することができる。
図1は、本発明の一実施形態に係る発光装置の構成を模式的に示す図である。本実施形態の発光装置1は、フレーム2と、光源である青色LED3と、青色LED3から発せられる光の一部を吸収し、それとは異なる波長を有する光を発する蛍光体含有部4からなる。
[2-4] Embodiment of light-emitting device
Hereinafter, the light-emitting device of the present invention will be described in more detail with reference to specific embodiments. However, the present invention is not limited to the following embodiments and does not depart from the gist of the present invention.

It can be implemented with any modification.
FIG. 1 is a diagram schematically showing a configuration of a light emitting device according to an embodiment of the present invention. The light emitting device 1 of the present embodiment includes a frame 2, a blue LED 3 that is a light source, and a phosphor-containing portion 4 that absorbs part of light emitted from the blue LED 3 and emits light having a wavelength different from that.

フレーム2は、青色LED3、蛍光体含有部4を保持するための金属または樹脂製の基部である。フレーム2の上面には、図1中上側に開口した断面台形状の凹部(窪み)2Aが形成されている。これにより、フレーム2はカップ形状となっているため、発光装置1から放出される光に指向性をもたせることができ、放出する光を有効に利用できるようになっている。更に、フレーム2の凹部2A内面は、銀などの金属メッキにより、可視光域全般の光の反射率を高められており、これにより、フレーム2の凹部2A内面に当たった光も、発光装置1から所定方向に向けて放出できるようになっている。   The frame 2 is a metal or resin base for holding the blue LED 3 and the phosphor-containing portion 4. On the upper surface of the frame 2, a trapezoidal concave section (dent) 2A having an opening on the upper side in FIG. Thereby, since the frame 2 has a cup shape, the light emitted from the light emitting device 1 can have directivity, and the emitted light can be used effectively. Further, the inner surface of the concave portion 2A of the frame 2 is enhanced in the reflectance of light in the entire visible light region by metal plating such as silver. Can be discharged in a predetermined direction.

フレーム2の凹部2Aの底部には、光源として青色LED3が設置されている。青色LED3は、電力を供給されることにより青色の光を発するLEDである。この青色LED3から発せられた青色光の一部は、蛍光体含有部4内の発光物質(蛍光体)に励起光として吸収され、また別の一部は、発光装置1から所定方向に向けて放出されるようになっている。   A blue LED 3 is installed as a light source at the bottom of the recess 2 </ b> A of the frame 2. The blue LED 3 is an LED that emits blue light when supplied with electric power. Part of the blue light emitted from the blue LED 3 is absorbed as excitation light by the luminescent material (phosphor) in the phosphor-containing portion 4, and another part is directed from the light emitting device 1 in a predetermined direction. To be released.

また、青色LED3は前記のようにフレーム2の凹部2Aの底部に設置されているが、ここではフレーム2と青色LED3との間は接着剤5によって接着され、これにより、青色LED3はフレーム2に設置されている。
更に、フレーム2には、青色LED3に電力を供給するための金製のワイヤ6が取り付けられている。つまり、青色LED3の上面に設けられた電極(図示省略)とは、ワイヤ6を用いてワイヤボンディングによって結線されていて、このワイヤ6を通電することによって青色LED3に電力が供給され、青色LED3が青色光を発するようになっている。なお、ワイヤ6は青色LED3の構造にあわせて1本又は複数本が取り付けられる。
In addition, the blue LED 3 is installed at the bottom of the recess 2A of the frame 2 as described above. Here, the frame 2 and the blue LED 3 are bonded to each other by the adhesive 5, so that the blue LED 3 is attached to the frame 2. is set up.
Further, a gold wire 6 for supplying power to the blue LED 3 is attached to the frame 2. That is, the electrode (not shown) provided on the upper surface of the blue LED 3 is connected by wire bonding using the wire 6, and when the wire 6 is energized, power is supplied to the blue LED 3. It emits blue light. One or a plurality of wires 6 are attached in accordance with the structure of the blue LED 3.

更に、フレーム2の凹部2Aには、青色LED3から発せられる光の一部を吸収し異なる波長を有する光を発する蛍光体含有部4が設けられている。蛍光体含有部4は、蛍光体と透明樹脂とで形成されている。蛍光体は、青色LED3が発する青色光により励起されて、青色光よりも長波長の光である光を発する物質である。蛍光体含有部4を構成する蛍光体は一種類であっても良いし、複数からなる混合物であってもよく、青色LED3の発する光と蛍光体発光部4の発する光の総和が所望の色になるように選べばよい。色は白色だけでなく、黄色、オレンジ、ピンク、紫、青緑等であっても良い。また、これらの色と白色との間の中間的な色であっても良い。また、透明樹脂は蛍光体含有部4の封止材料であり、ここでは、本発明の蛍光体含有組成物を硬化させて用いている。   Further, the concave portion 2A of the frame 2 is provided with a phosphor-containing portion 4 that absorbs part of the light emitted from the blue LED 3 and emits light having a different wavelength. The phosphor-containing part 4 is formed of a phosphor and a transparent resin. The phosphor is a substance that is excited by blue light emitted from the blue LED 3 and emits light having a wavelength longer than that of the blue light. The phosphor constituting the phosphor-containing portion 4 may be a single type or a mixture of a plurality, and the sum of the light emitted from the blue LED 3 and the light emitted from the phosphor light-emitting portion 4 is a desired color. Choose to be. The color is not limited to white, but may be yellow, orange, pink, purple, blue-green, or the like. Further, it may be an intermediate color between these colors and white. Further, the transparent resin is a sealing material for the phosphor-containing portion 4, and here, the phosphor-containing composition of the present invention is cured and used.

モールド部7は、青色LED3、蛍光体含有部4、ワイヤ6などを外部から保護するとともに、配光特性を制御するためのレンズとしての機能を持つ。モールド部7には主にエポキシ樹脂を用いることができる。
図2は、図1に示す発光装置1を組み込んだ面発光照明装置の一実施例を示す模式的断面図である。図2において、8は面発光照明装置、9は拡散板、10は保持ケースである。
The mold unit 7 functions as a lens for protecting the blue LED 3, the phosphor-containing unit 4, the wire 6 and the like from the outside and controlling the light distribution characteristics. An epoxy resin can be mainly used for the mold part 7.
FIG. 2 is a schematic cross-sectional view showing an embodiment of a surface emitting illumination device incorporating the light emitting device 1 shown in FIG. In FIG. 2, 8 is a surface emitting illumination device, 9 is a diffusion plate, and 10 is a holding case.

この面発光照明装置8は、内面を白色の平滑面等の光不透過性とした方形の保持ケース10の底面に、多数の発光装置1を、その外側に発光装置1の駆動のための電源及び回路等(図示せず。)を設けて配置したものである。発光の均一化のために、保持ケース10の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板9を固定している。
そして、面発光照明装置8を駆動して、発光装置1の青色LED3に電圧を印加することにより青色光等を発光させる。その発光の一部を、蛍光体含有部4において波長変換材料である蛍光体が吸収し、より長波長の光に変換し、蛍光体に吸収されなかった青色光等との混色により、高輝度の発光が得られる。この光が拡散板9を透過して、図面上方に出射され、保持ケース10の拡散板9面内において均一な明るさの照明光が得られることとなる。
This surface-emitting illuminating device 8 has a large number of light-emitting devices 1 on the bottom surface of a rectangular holding case 10 whose inner surface is light-opaque such as a white smooth surface, and a power source for driving the light-emitting device 1 on the outside thereof. And a circuit or the like (not shown). In order to make the light emission uniform, a diffusion plate 9 such as an acrylic plate made of milky white is fixed to a portion corresponding to the lid portion of the holding case 10.
Then, the surface-emitting illumination device 8 is driven to apply blue voltage to the blue LED 3 of the light-emitting device 1 to emit blue light or the like. A part of the emitted light is absorbed by the phosphor that is the wavelength conversion material in the phosphor-containing portion 4, converted into light having a longer wavelength, and mixed with blue light or the like that is not absorbed by the phosphor, resulting in high brightness. Can be obtained. This light passes through the diffusion plate 9 and is emitted upward in the drawing, and illumination light with uniform brightness is obtained within the surface of the diffusion plate 9 of the holding case 10.

また、本発明の発光装置において、特に励起光源として面発光型のものを使用する場合、蛍光体含有部を膜状とするのが好ましい。即ち、面発光型の発光体からの光は断面積が十分大きいので、蛍光体含有部をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。   In the light-emitting device of the present invention, in particular, when a surface-emitting type is used as the excitation light source, it is preferable that the phosphor-containing portion is formed into a film. That is, since the cross-sectional area of the light from the surface-emitting type phosphor is sufficiently large, when the phosphor-containing portion is formed into a film shape in the direction of the cross-section, the irradiation cross-section area of the phosphor from the first phosphor is fluorescent. Since it becomes large per body unit quantity, the intensity | strength of light emission from fluorescent substance can be enlarged more.

また、光源として面発光型のものを使用し、蛍光体含有部として膜状のものを用いる場合、光源の発光面に、直接膜状の蛍光体含有部を接触させた形状とするのが好ましい。ここでいう接触とは、光源と蛍光体含有部とが空気や気体を介さないでぴたりと接している状態をつくることを言う。その結果、光源からの光が蛍光体含有部の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。   In addition, when a surface-emitting type light source is used as the light source and a film-like one is used as the phosphor-containing portion, it is preferable that the light-emitting surface of the light source is directly in contact with the film-like phosphor-containing portion. . Contact here means creating a state where the light source and the phosphor-containing portion are in perfect contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the light source is reflected by the film surface of the phosphor-containing portion and oozes out, so that the light emission efficiency of the entire apparatus can be improved.

図3は、このように、光源として面発光型のものを用い、蛍光体含有部として膜状のものを適用した発光装置の一例を示す模式的斜視図である。図3中、11は、前記蛍光体を有する膜状の蛍光体含有部、12は光源としての面発光型GaN系LD、13は基板を表す。相互に接触した状態をつくるために、光源12のLDと蛍光体含有部11とそれぞれ別個につくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、光源12の発光面上に蛍光体含有部11を製膜(成型)させても良い。これらの結果、光源12と第2の蛍光体含有部11とを接触した状態とすることができる。   FIG. 3 is a schematic perspective view showing an example of a light-emitting device using a surface-emitting type light source as the light source and applying a film-like one as the phosphor-containing portion. In FIG. 3, 11 is a film-like phosphor-containing portion having the phosphor, 12 is a surface-emitting GaN-based LD as a light source, and 13 is a substrate. In order to create a state where they are in contact with each other, the LD of the light source 12 and the phosphor-containing portion 11 may be formed separately, and their surfaces may be brought into contact with each other by an adhesive or other means. The phosphor-containing portion 11 may be formed (molded) on the light emitting surface. As a result, the light source 12 and the second phosphor-containing portion 11 can be brought into contact with each other.

[7]発光装置の用途
本発明の発光装置は使用する蛍光体の種類、量により各色の発光が可能であるが照明用途などは、白色光を発するもの発光装置が有用である。本発明の発光装置は、発光効率が通常20lm/W以上、好ましくは30lm/W以上、より好ましくは40lm/W以上であり、特に好ましくは60lm/W以上であり、平均演色評価指数Raが80以上、好ましくは90以上、より好ましくは95以上である。
[7] Application of light emitting device
The light-emitting device of the present invention can emit light of various colors depending on the type and amount of the phosphor used. For lighting applications, a light-emitting device that emits white light is useful. The light emitting device of the present invention has a luminous efficiency of usually 20 lm / W or higher, preferably 30 lm / W or higher, more preferably 40 lm / W or higher, particularly preferably 60 lm / W or higher, and an average color rendering index Ra of 80. Above, preferably 90 or more, more preferably 95 or more.

なお、上記平均演色評価指数Raは、JIS Z 8726により算出される。
本発明の発光装置の用途は特に制限されず、通常の発光装置が用いられる各種の分野に使用することが可能である。また、単独で、又は複数個を組み合わせて用いても良い。具体的には、例えば、照明ランプ、液晶パネル用等のバックライト、超薄型照明等の種々の照明装置、画像表示装置の光源として使用することができる。なお、本発明の発光装置を画像表示装置の光源として用いる場合には、カラーフィルターと併用してもよい。
The average color rendering index Ra is calculated according to JIS Z 8726.
The application of the light-emitting device of the present invention is not particularly limited, and can be used in various fields where a normal light-emitting device is used. Moreover, you may use individually or in combination. Specifically, for example, it can be used as a light source for illumination lamps, backlights for liquid crystal panels, various illumination devices such as ultra-thin illumination, and image display devices. In addition, when using the light-emitting device of this invention as a light source of an image display apparatus, you may use together with a color filter.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
[1]蛍光体含有組成物
[1−1]蛍光体の表面処理
[1−1−1]赤色蛍光体の表面処理(合成例1)
赤色蛍光体(CaAlSiN:Eu、中央粒径D50=8.2μm)1kgを水10kgに加え、10分撹拌した後、10%NaPO・12HO水溶液50mlを添加し10分撹拌した。ついで、20%Ca(NO・4HO水溶液25mlを添加し、30分間撹拌した後,静置した。上澄み液を排出した後、純水を導入し撹拌を10分行った。静置から純水導入までの工程を3回繰り返し、上澄み液の電気伝道度を1.8mS/m以下とした後、乾燥して表面処理された赤色蛍光体を得た。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[1] Phosphor-containing composition
[1-1] Phosphor surface treatment
[1-1-1] Surface treatment of red phosphor (Synthesis Example 1)
1 kg of red phosphor (CaAlSiN 3 : Eu, median particle size D 50 = 8.2 μm) is added to 10 kg of water, stirred for 10 minutes, and then added with 50 ml of 10% Na 3 PO 4 · 12H 2 O aqueous solution and stirred for 10 minutes. did. Next, 25 ml of 20% Ca (NO 3 ) 2 .4H 2 O aqueous solution was added, stirred for 30 minutes, and allowed to stand. After discharging the supernatant, pure water was introduced and stirring was performed for 10 minutes. The process from standing to pure water introduction was repeated three times, and the electrical conductivity of the supernatant liquid was adjusted to 1.8 mS / m or less, and then dried to obtain a surface-treated red phosphor.

[1−1−2]緑色蛍光体の表面処理(合成例2)
合成例1の赤色蛍光体を、緑色蛍光体(CaScSi12:Ce、中央粒径D50=11.5μm)に代えた以外は、合成例1と同様にして表面処理された緑色蛍光体を得た。
[1−2]シリカ微粒子の物性測定
表1に示される実施例1〜4、および比較例1〜4で使用するシリカ微粒子について、下記の物性を測定した。
[1−2−1]水酸基濃度の測定
(1)シリカ微粒子の1g当たりの比表面積a(m/g)をBET法により測定した。
(2)シリカ微粒子1gを10−2hPaの真空中で100℃、1時間乾燥した後、ジエチレングリコールジメチルエーテル1L中でLiAlH10gと反応させ、発生したH量b(ml)を定量した。
(3)下記式により水酸基濃度を算出した。
水酸基濃度(個/nm)=(6×1023×b)/(22400×a×1018
結果を表1に示す。
[1-1-2] Surface treatment of green phosphor (Synthesis Example 2)
Surface treatment was performed in the same manner as in Synthesis Example 1 except that the red phosphor of Synthesis Example 1 was replaced with a green phosphor (Ca 3 Sc 2 Si 3 O 12 : Ce, median particle size D 50 = 11.5 μm). A green phosphor was obtained.
[1-2] Measurement of physical properties of silica fine particles
The following physical properties of the silica fine particles used in Examples 1 to 4 and Comparative Examples 1 to 4 shown in Table 1 were measured.
[1-2-1] Measurement of hydroxyl group concentration
(1) Specific surface area a (m 2 / g) per 1 g of silica fine particles was measured by the BET method.
(2) 1 g of silica fine particles was dried at 100 ° C. for 1 hour in a vacuum of 10 −2 hPa, then reacted with 10 g of LiAlH 4 in 1 L of diethylene glycol dimethyl ether, and the amount of H 2 generated b (ml) was quantified.
(3) The hydroxyl group concentration was calculated by the following formula.
Hydroxyl concentration (pieces / nm 2 ) = (6 × 10 23 × b) / (22400 × a × 10 18 )
The results are shown in Table 1.

[1−2−2]pHの測定
水:メタノール=1:1溶液0.1リットル中に各シリカ微粒子4gを加え、液温20〜25℃において、5分間充分に撹拌した後、pH計にてpHを測定した。結果を表1に示す。
[1−3]蛍光体含有組成物の製造
信越化学工業製付加硬化型シリコーン樹脂商品名LPS−2410(粘度=4.7Pa・s、硬化物のTypeA硬さ=42)100重量部(主剤:架橋剤=100:10)に後述する実施例1〜4、比較例1〜4のシリカ微粒子0.5重量部を加えて手攪拌した後、前述の合成例1で得られた赤色蛍光体1重量部と合成例2で得られた緑色蛍光体(CaScSi12:Ce、中央粒径D50=11.5μm)8重量部とを加え、シンキー社製攪拌装置(「あわとり練太郎」AR−100)で3分混練して蛍光体含有組成物とした。
[1-2-2] pH measurement
4 g of each silica fine particle was added to 0.1 liter of water: methanol = 1: 1 solution, and after sufficiently stirring at a liquid temperature of 20 to 25 ° C. for 5 minutes, the pH was measured with a pH meter. The results are shown in Table 1.
[1-3] Production of phosphor-containing composition
Examples described later in Shin-Etsu Chemical Co., Ltd., addition curable silicone resin trade name LPS-2410 (viscosity = 4.7 Pa · s, Type A hardness of cured product = 42) 100 parts by weight (main agent: crosslinking agent = 100: 10) 1 to 4 and 0.5 parts by weight of silica fine particles of Comparative Examples 1 to 4 were added and stirred manually, and then 1 part by weight of the red phosphor obtained in Synthesis Example 1 and the green fluorescence obtained in Synthesis Example 2 were used. 8 parts by weight of the body (Ca 3 Sc 2 Si 3 O 12 : Ce, median particle size D 50 = 11.5 μm) is added, and the mixture is kneaded for 3 minutes with a stirrer (“Awatori Kentaro” AR-100) manufactured by Shinky Corporation. Thus, a phosphor-containing composition was obtained.

[1−4]蛍光体含有組成物の粘度測定
前述で得られた蛍光体含有組成物について、ブルックフィールド社製プロクラマブルデジタル粘度計コーンプレート型(型式: RVDV−11)を用いて、ローター回転数1rpmおよび5rpmにおける粘度を測定した。
結果を表1に示す。
[1-4] Viscosity measurement of phosphor-containing composition
About the fluorescent substance containing composition obtained above, the viscosity in rotor rotation speed 1rpm and 5rpm was measured using the proclamable digital viscometer cone plate type (model | form: RVDV-11) by Brookfield.
The results are shown in Table 1.

[2]発光装置
[2−1]発光装置の製造
東洋電波製SMD LEDパッケージ「TY−SMD1202B」(2.8×3.5×1.9mm厚)にCREE社製LEDチップ「C460−MB290」(発光波長=461nm)をボンディングした。
実施例1〜4および比較例1〜4の蛍光体含有組成物を前記LEDチップ付きパッケージの上面ぎりぎりまで充填した後、150℃、1時間硬化させて十分冷却し、発光装置を得た。
[2] Light emitting device
[2-1] Manufacturing of light emitting device
An LED chip “C460-MB290” (emission wavelength = 461 nm) manufactured by CREE was bonded to an SMD LED package “TY-SMD1202B” (2.8 × 3.5 × 1.9 mm thickness) manufactured by Toyo Denpa.
The phosphor-containing compositions of Examples 1 to 4 and Comparative Examples 1 to 4 were filled to the very top of the package with the LED chip, then cured at 150 ° C. for 1 hour and sufficiently cooled to obtain a light emitting device.

[2−2]発光装置の評価
気温25℃±1℃に保たれた室内において、駆動電流20mA通電時の発光スペクトルを測定した。オーシャン オプティクス社製の色・照度測定ソフトウエア及びUSB2000シリーズ分光器(積分球仕様)を用いて測定し、この発光スペクトルの380nm〜780nmの波長領域のデータから、JIS Z8701で規定されるXYZ表色系における色度座標として色度値(Cx,Cy,Cz)を算出した。なお、この場合、Cx+Cy+Cz=1の関係式が成立する。結果を表1に示す。
[2-2] Evaluation of light emitting device
In a room maintained at a temperature of 25 ° C. ± 1 ° C., an emission spectrum was measured when a drive current of 20 mA was applied. XYZ color specification defined by JIS Z8701 from the wavelength range of 380 nm to 780 nm of the emission spectrum measured using Ocean Optics color / illuminance measurement software and USB2000 series spectrometer (integral sphere specification). Chromaticity values (Cx, Cy, Cz) were calculated as chromaticity coordinates in the system. In this case, the relational expression Cx + Cy + Cz = 1 holds. The results are shown in Table 1.

また、目標とする色度座標点(Cx,Cy)=(0.33,0.33)と出来上がった発光装置の色度座標点(Cx,Cy)の距離L={(Cx−Cx+(Cy−Cy1/2を算出した。
結果を表1に示す。
本発明の発光装置において、蛍光体含有組成物中での蛍光体粒子の沈降が激しい場合ほど、添加した蛍光体によるLEDチップからの発光の波長変換が十分に行なわれなくなるため、Lが大きくなってしまう。
Further, the distance L = {(Cx 0 , Cy 1 ) = (0.33, 0.33) as the target and the chromaticity coordinate point (Cx 1 , Cy 1 ) of the completed light emitting device. 0 -Cx 1) 2 + (Cy 0 -Cy 1) 2} was calculated 1/2.
The results are shown in Table 1.
In the light-emitting device of the present invention, the more the phosphor particles settle in the phosphor-containing composition, the more the wavelength of light emitted from the LED chip by the added phosphor is not sufficiently converted, so L increases. End up.

また、青色発光LEDを使用した場合は、蛍光体の分散が均一である程、青色励起光が蛍光体に吸収される効率が高まるので、蛍光体の発光量が増加することによって、Cx,Cy値が増加し、逆にCzが小さな値となる。従ってCz値が小さいことが蛍光体の沈降が少ないことの証左となるのでCzを蛍光体の沈降抑制度の指標とすることができる。   In addition, when a blue light emitting LED is used, the more uniformly the phosphor is dispersed, the more efficiently the blue excitation light is absorbed by the phosphor. Therefore, the amount of light emitted from the phosphor increases, so that Cx, Cy On the contrary, Cz becomes a small value. Therefore, since a small Cz value proves that the phosphor is less precipitated, Cz can be used as an index for the degree of sedimentation inhibition of the phosphor.

Figure 2008050593
Figure 2008050593

A:日本エアロジル社製疎水性アエロジル「R8200」
B:日本エアロジル社製疎水性アエロジル「RY200」
C:日本エアロジル社製疎水性アエロジル「R972」
D:日本エアロジル社製疎水性アエロジル「RY200S」
E:日本エアロジル社製親水性アエロジル「#200」
F:日本エアロジル社製親水性アエロジル「#130」
G:日本エアロジル社製親水性アエロジル「#380」
表1の実施例1〜4、比較例1〜4の結果より、以下のことが確認された。
A: Hydrophobic Aerosil “R8200” manufactured by Nippon Aerosil Co., Ltd.
B: Hydrophobic Aerosil “RY200” manufactured by Nippon Aerosil Co., Ltd.
C: Hydrophobic Aerosil “R972” manufactured by Nippon Aerosil Co., Ltd.
D: Hydrophobic Aerosil "RY200S" manufactured by Nippon Aerosil Co., Ltd.
E: Hydrophilic Aerosil “# 200” manufactured by Nippon Aerosil Co., Ltd.
F: Hydrophilic Aerosil “# 130” manufactured by Nippon Aerosil Co., Ltd.
G: Hydrophilic Aerosil “# 380” manufactured by Nippon Aerosil Co., Ltd.
From the results of Examples 1 to 4 and Comparative Examples 1 to 4 in Table 1, the following was confirmed.

即ち、水酸基濃度及びpHが所定の範囲にあるシリカ微粒子を添加した蛍光体含有組成物は、チキソトロープ性を示さないにもかかわらず、蛍光体粒子の沈降が抑制されており、これを用いて製作した発光装置は、蛍光体粒子の沈降に伴う所望の白色光からの色ずれが小さな発光が得られた。     That is, the phosphor-containing composition to which silica fine particles having a hydroxyl group concentration and a pH within a predetermined range are added has a thixotropic property, but the sedimentation of the phosphor particles is suppressed. The light emitting device produced light emission with a small color shift from the desired white light accompanying the settling of the phosphor particles.

本発明の蛍光体含有組成物は、粘度上昇がなく、チキソトロープ性を示さない場合であっても蛍光体の沈降を抑制することができる。また、本発明の発光装置は、蛍光体の発光分布が均一であり、高品質である。また、蛍光体が有効に利用されるため発光装置の製造上有用である。また、かかる発光装置を使用した画像表示装置および照明装置は、発光分布が均一であり、高品質である。また、蛍光体が有効に利用されるため、画像表示装置および照明装置の製造上有用である。従って、本発明の蛍光体含有組成物、発光装置、画像表示装置、および照明装置は、当該各分野における産業上の利用可能性が極めて高い。   The phosphor-containing composition of the present invention can suppress the sedimentation of the phosphor even when the viscosity does not increase and the thixotropic property is not exhibited. In addition, the light emitting device of the present invention has a uniform light emission distribution of the phosphor and high quality. Further, since the phosphor is effectively used, it is useful for manufacturing a light emitting device. Further, an image display device and an illumination device using such a light emitting device have a uniform light emission distribution and high quality. Further, since the phosphor is effectively used, it is useful for manufacturing an image display device and a lighting device. Therefore, the phosphor-containing composition, the light-emitting device, the image display device, and the lighting device of the present invention have extremely high industrial applicability in each field.

本発明の発光装置の一実施例を示す模式的断面図である。It is typical sectional drawing which shows one Example of the light-emitting device of this invention. 本発明の発光装置を用いた面発光照明装置の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the surface emitting illumination apparatus using the light-emitting device of this invention. 本発明の発光装置の他の実施の形態を示す模式的な斜視図である。It is a typical perspective view which shows other embodiment of the light-emitting device of this invention.

符号の説明Explanation of symbols

1 発光装置
2 フレーム
2A フレームの凹部
3 青色LED
4 蛍光体含有部
5 銀ペースト
6 ワイヤ
7 モールド部
8 面発光照明装置
9 拡散板
10 保持ケース
11 蛍光体含有部
12 光源
13 基板
1 Light-emitting device
2 frames
2A Concave part of the frame
3 Blue LED
4 Phosphor-containing part 5 Silver paste
6 wires
7 Mold part
8 Surface emitting lighting device
9 Diffusion plate
10 Holding case
11 Phosphor content part
12 Light source
13 Substrate

Claims (7)

シリカ微粒子、蛍光体、および液体媒体を含有する蛍光体含有組成物であって、下記の水酸基濃度測定方法(I)で測定される前記シリカ微粒子の水酸基濃度が0.3個/nm以上、2個/nm以下であることを特徴とする蛍光体含有組成物。
水酸基濃度測定方法(I)
(1)シリカ微粒子の1g当たりの比表面積a(m/g)をBET法により測定する。(2)シリカ微粒子1gを10−2hPaの真空中で100℃、1時間乾燥した後、ジエチレングリコールジメチルエーテル1L中でLiAlH10gと反応させ、発生したH量b(ml)を定量する。
(3)下記式により水酸基濃度を算出する。
水酸基濃度(個/nm)=(6×1023×b)/(22400×a×1018
A phosphor-containing composition containing silica fine particles, a phosphor, and a liquid medium, wherein the hydroxyl concentration of the silica fine particles measured by the following hydroxyl concentration measurement method (I) is 0.3 / nm 2 or more, A phosphor-containing composition, wherein the number is 2 / nm 2 or less.
Hydroxyl concentration measurement method (I)
(1) The specific surface area a (m 2 / g) per 1 g of the silica fine particles is measured by the BET method. (2) 1 g of silica fine particles is dried at 100 ° C. for 1 hour in a vacuum of 10 −2 hPa, then reacted with 10 g of LiAlH 4 in 1 L of diethylene glycol dimethyl ether, and the amount of generated H 2 b (ml) is quantified.
(3) The hydroxyl group concentration is calculated by the following formula.
Hydroxyl concentration (pieces / nm 2 ) = (6 × 10 23 × b) / (22400 × a × 10 18 )
下記のpH測定方法(II)により測定される前記シリカ微粒子のpHが4.5以上、7以下である請求項1に記載の蛍光体含有組成物。
pH測定方法(II)
水:メタノール=1:1溶液0.1L中にシリカ微粒子4gを加え、液温20〜25℃において、5分間充分に撹拌した後、pH計にてpHを測定する。
The phosphor-containing composition according to claim 1, wherein the pH of the silica fine particles measured by the following pH measurement method (II) is 4.5 or more and 7 or less.
pH measurement method (II)
4 g of silica fine particles are added to 0.1 L of water: methanol = 1: 1 solution, and after sufficiently stirring for 5 minutes at a liquid temperature of 20 to 25 ° C., the pH is measured with a pH meter.
前記液体媒体がシリコーン樹脂である請求項1または2に記載の蛍光体含有組成物。   The phosphor-containing composition according to claim 1 or 2, wherein the liquid medium is a silicone resin. 前記蛍光体がEu付活窒化物蛍光体から選ばれる1以上の蛍光体、ならびにCe付活珪酸塩蛍光体およびCe付活酸化物蛍光体から選ばれる1以上の蛍光体を含有する請求項1〜3のいずれか1項に記載の蛍光体含有組成物。   The phosphor comprises one or more phosphors selected from Eu-activated nitride phosphors, and one or more phosphors selected from Ce-activated silicate phosphors and Ce-activated oxide phosphors. The phosphor-containing composition according to any one of -3. 請求項1〜4のいずれか1項に記載の蛍光体含有組成物を用いて形成された発光装置。   The light-emitting device formed using the fluorescent substance containing composition of any one of Claims 1-4. 請求項5に記載の前記発光装置を用いて形成された画像表示装置。   An image display device formed using the light emitting device according to claim 5. 請求項5に記載の前記発光装置を用いて形成された照明装置。   An illumination device formed using the light emitting device according to claim 5.
JP2007193781A 2006-07-26 2007-07-25 Phosphor-containing composition, light emitting device, lighting device, and image display device Expired - Fee Related JP5386800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007193781A JP5386800B2 (en) 2006-07-26 2007-07-25 Phosphor-containing composition, light emitting device, lighting device, and image display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006203787 2006-07-26
JP2006203787 2006-07-26
JP2007193781A JP5386800B2 (en) 2006-07-26 2007-07-25 Phosphor-containing composition, light emitting device, lighting device, and image display device

Publications (2)

Publication Number Publication Date
JP2008050593A true JP2008050593A (en) 2008-03-06
JP5386800B2 JP5386800B2 (en) 2014-01-15

Family

ID=39234926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007193781A Expired - Fee Related JP5386800B2 (en) 2006-07-26 2007-07-25 Phosphor-containing composition, light emitting device, lighting device, and image display device

Country Status (1)

Country Link
JP (1) JP5386800B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115332A (en) * 2006-11-07 2008-05-22 Mitsubishi Chemicals Corp Phosphor-containing composition, light-emitting device, lighting device, and image display device
JP2008300544A (en) * 2007-05-30 2008-12-11 Sharp Corp Light-emitting device, and manufacturing method thereof
JP2009102514A (en) * 2007-10-23 2009-05-14 Mitsubishi Chemicals Corp Method for producing fluorescent substance-containing composition, and method for producing semiconductor light-emitting device
JP2010010378A (en) * 2008-06-26 2010-01-14 Kyocera Corp Light-emitting device and lighting unit
JP2010100743A (en) * 2008-10-24 2010-05-06 Mitsubishi Chemicals Corp Method for producing phosphor-containing composition
JP2010100733A (en) * 2008-10-23 2010-05-06 Mitsubishi Chemicals Corp Production method of phosphor-containing composition
JP2011009346A (en) * 2009-06-24 2011-01-13 Shin-Etsu Chemical Co Ltd Optical semiconductor device
JP2011222718A (en) * 2010-04-08 2011-11-04 Samsung Led Co Ltd Light-emitting diode package and method of manufacturing the same
US8210701B2 (en) 2008-10-08 2012-07-03 Sony Corporation Lighting device and display device having the same
CN102585830A (en) * 2011-12-27 2012-07-18 江苏博睿光电有限公司 Cerium-activated silicate green fluorescent powder and preparation method thereof
JP2012248715A (en) * 2011-05-30 2012-12-13 Panasonic Corp Resin coating device and resin coating method
JP2012248714A (en) * 2011-05-30 2012-12-13 Panasonic Corp Led package manufacturing system and resin coating method in led package manufacturing system
JP2013504668A (en) * 2009-09-16 2013-02-07 ダリアン ルーミングライト カンパニー リミテッド Light conversion flexible polymer material and use thereof
JP2013153175A (en) * 2013-02-26 2013-08-08 Shin Etsu Chem Co Ltd Method for suppressing discoloration of sealing resin
EP2816620A4 (en) * 2012-02-13 2015-08-19 Konica Minolta Inc Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same
JP2015211076A (en) * 2014-04-24 2015-11-24 豊田合成株式会社 Method of manufacturing light emission device
KR20160119833A (en) 2014-06-02 2016-10-14 쇼와 덴코 가부시키가이샤 Curable composition, cured product, optical material and electronic material containing semiconductor nanoparticles
KR101797981B1 (en) 2017-06-05 2017-11-15 주식회사 올텍 Yellow light emitting device, illuminating apparatus comprising the same and apparatus for eliminating harmful insect comprising the same
JP2019121678A (en) * 2018-01-04 2019-07-22 シチズン電子株式会社 Light-emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104053A (en) * 1998-09-30 2000-04-11 Kasei Optonix Co Ltd Phosphor paste composition for plasma display panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104053A (en) * 1998-09-30 2000-04-11 Kasei Optonix Co Ltd Phosphor paste composition for plasma display panel

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115332A (en) * 2006-11-07 2008-05-22 Mitsubishi Chemicals Corp Phosphor-containing composition, light-emitting device, lighting device, and image display device
JP2008300544A (en) * 2007-05-30 2008-12-11 Sharp Corp Light-emitting device, and manufacturing method thereof
JP2009102514A (en) * 2007-10-23 2009-05-14 Mitsubishi Chemicals Corp Method for producing fluorescent substance-containing composition, and method for producing semiconductor light-emitting device
JP2010010378A (en) * 2008-06-26 2010-01-14 Kyocera Corp Light-emitting device and lighting unit
US8210701B2 (en) 2008-10-08 2012-07-03 Sony Corporation Lighting device and display device having the same
JP2010100733A (en) * 2008-10-23 2010-05-06 Mitsubishi Chemicals Corp Production method of phosphor-containing composition
JP2010100743A (en) * 2008-10-24 2010-05-06 Mitsubishi Chemicals Corp Method for producing phosphor-containing composition
JP2011009346A (en) * 2009-06-24 2011-01-13 Shin-Etsu Chemical Co Ltd Optical semiconductor device
JP2013504668A (en) * 2009-09-16 2013-02-07 ダリアン ルーミングライト カンパニー リミテッド Light conversion flexible polymer material and use thereof
JP2011222718A (en) * 2010-04-08 2011-11-04 Samsung Led Co Ltd Light-emitting diode package and method of manufacturing the same
JP2012248715A (en) * 2011-05-30 2012-12-13 Panasonic Corp Resin coating device and resin coating method
JP2012248714A (en) * 2011-05-30 2012-12-13 Panasonic Corp Led package manufacturing system and resin coating method in led package manufacturing system
US8993353B2 (en) 2011-05-30 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. LED package manufacturing system and resin coating method for use in LED package manufacturing system
US9147617B2 (en) 2011-05-30 2015-09-29 Panasonic Intellectual Property Management Co., Ltd. Resin coating device and a resin coating method
CN102585830A (en) * 2011-12-27 2012-07-18 江苏博睿光电有限公司 Cerium-activated silicate green fluorescent powder and preparation method thereof
EP2816620A4 (en) * 2012-02-13 2015-08-19 Konica Minolta Inc Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same
JP2013153175A (en) * 2013-02-26 2013-08-08 Shin Etsu Chem Co Ltd Method for suppressing discoloration of sealing resin
JP2015211076A (en) * 2014-04-24 2015-11-24 豊田合成株式会社 Method of manufacturing light emission device
KR20160119833A (en) 2014-06-02 2016-10-14 쇼와 덴코 가부시키가이샤 Curable composition, cured product, optical material and electronic material containing semiconductor nanoparticles
KR101797981B1 (en) 2017-06-05 2017-11-15 주식회사 올텍 Yellow light emitting device, illuminating apparatus comprising the same and apparatus for eliminating harmful insect comprising the same
JP2019121678A (en) * 2018-01-04 2019-07-22 シチズン電子株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP5386800B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5386800B2 (en) Phosphor-containing composition, light emitting device, lighting device, and image display device
US8258699B2 (en) Illuminating device
JP5552748B2 (en) Curable polysiloxane composition, and cured polysiloxane using the same, optical member, member for aerospace industry, semiconductor light emitting device, lighting device, and image display device
JP6213585B2 (en) Semiconductor device member and semiconductor light emitting device
JP2008260930A (en) Composition containing fluorescent substance, light emitter, lighting apparatus and image display device
JP5374857B2 (en) Method for producing phosphor-containing composition and method for producing semiconductor light-emitting device
JP2008111080A (en) Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device
JP5332921B2 (en) Semiconductor light emitting device, lighting device, and image display device
JP2009013186A (en) Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device and illuminating device
JP2010100743A (en) Method for producing phosphor-containing composition
JP2009135485A (en) Semiconductor light-emitting apparatus and method of manufacturing the same
JP2010004035A (en) Semiconductor light-emitting apparatus, illuminator, and image display apparatus
WO2011125463A1 (en) Sealant for optical semiconductors and optical semiconductor device
JP5374855B2 (en) Method for producing phosphor-containing composition
JP2010004034A (en) Semiconductor light-emitting apparatus, illuminator, and image display apparatus
JP5446078B2 (en) SEMICONDUCTOR DEVICE MEMBER, SEMICONDUCTOR DEVICE MEMBER FORMING METHOD AND SEMICONDUCTOR DEVICE MEMBER MANUFACTURING METHOD, SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME, SEMICONDUCTOR DEVICE MEMBER FORMING SOLUTION, AND PHOSPHOR COMPOSITION
JP2010100733A (en) Production method of phosphor-containing composition
JP4923728B2 (en) Phosphor-containing composition, light emitting device, lighting device, and image display device
JP2012256085A (en) Light-emitting device, and manufacturing method of light-emitting device
JP2008115332A (en) Phosphor-containing composition, light-emitting device, lighting device, and image display device
JP2012134362A (en) Semiconductor light-emitting device package and light-emitting device
JP6435594B2 (en) Silicone resin composition
JP2008081831A (en) Method for treating surface of substrate, solid matter, composition containing luminophor, light emitting device, picture display unit and lighting equipment
JP2008276175A (en) Optical guiding member, optical waveguide and light guide plate
JP2012188627A (en) Lens material for optical semiconductor apparatus, optical semiconductor apparatus, and method for manufacturing optical semiconductor apparatus

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R150 Certificate of patent or registration of utility model

Ref document number: 5386800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees