JP2008049576A - Gas barrier laminate - Google Patents

Gas barrier laminate Download PDF

Info

Publication number
JP2008049576A
JP2008049576A JP2006227574A JP2006227574A JP2008049576A JP 2008049576 A JP2008049576 A JP 2008049576A JP 2006227574 A JP2006227574 A JP 2006227574A JP 2006227574 A JP2006227574 A JP 2006227574A JP 2008049576 A JP2008049576 A JP 2008049576A
Authority
JP
Japan
Prior art keywords
gas barrier
barrier laminate
oxide
pretreatment
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006227574A
Other languages
Japanese (ja)
Inventor
Toshiya Ishii
敏也 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006227574A priority Critical patent/JP2008049576A/en
Publication of JP2008049576A publication Critical patent/JP2008049576A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment-resistant gas-barrier laminate which keeps original gas-barrier properties without degrading adhesion even when subjected to heat treatment including heating sterilization such as boiling sterilization or retort sterilization, cooking, etc. <P>SOLUTION: In the gas-barrier laminate, a vapor deposition film layer made of at least an inorganic oxide is laminated on the polyethylene terephthalate substrate. A pretreatment part is formed on at least one side of the substrate by pretreatment using discharge treatment. The distance between the peaks of C-C and C-O bonds measured by an X-ray photoelectron spectroscopic method of the treatment part is 1.65-1.76 eV. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、食品や医薬品等の包装に好適に用いられるフィルム状のガスバリア性積層体であって、特にボイル殺菌やレトルト殺菌等の加熱殺菌や加熱調理等による加熱処理がなされても密着性が低下せず、加熱処理前に有していた当初のガスバリア性が劣化しないようにした、加熱処理耐性を有するガスバリア性積層体に関する。   The present invention is a film-like gas barrier laminate suitably used for packaging foods, pharmaceuticals and the like, and particularly has adhesiveness even when heat treatment such as boil sterilization or retort sterilization or heat treatment is performed. The present invention relates to a gas barrier laminate having heat treatment resistance that does not deteriorate and does not deteriorate the initial gas barrier property that it had before heat treatment.

近年、食品や医薬品等の包装に用いられる包装材料は、内容物の変質を抑制してそれらの機能や性質を保持するため、包装材料を透過する酸素、水蒸気、その他内容物を変質させる気体による影響を防止する必要があり、これらの気体を遮断するガスバリア性等を備えることが求められている。そのため従来から、温度や湿度等による影響が少ないアルミニウム等の金属箔をガスバリア層として用いた包装材料が一般的に用いられてきた。   In recent years, packaging materials used for packaging foods, pharmaceuticals, etc., are made of oxygen, water vapor, or other gas that alters the contents that penetrates the packaging materials in order to suppress the alteration of the contents and retain their functions and properties. It is necessary to prevent the influence, and it is required to have a gas barrier property or the like for blocking these gases. Therefore, conventionally, a packaging material using a metal foil such as aluminum, which is less affected by temperature, humidity, etc., as a gas barrier layer has been generally used.

ところが、アルミニウム等の金属箔を用いた包装材料は、温度や湿度等による影響が少なく、高度なガスバリア性を示すが、それを介して内容物を確認することができない、使用後の廃棄の際には不燃物として処理しなければならない、検査の際に金属探知器が使用できない、等々の欠点を有しており問題があった。   However, packaging materials using metal foils such as aluminum are less affected by temperature, humidity, etc., and show high gas barrier properties. However, the contents cannot be confirmed through them, and when discarded after use However, it has problems such as having to treat it as an incombustible material and not being able to use a metal detector for inspection.

そこで、これらの欠点を克服すべく、真空蒸着法やスパッタリング法等の薄膜形成手段により酸化珪素、酸化アルミニウム等の無機酸化物の蒸着薄膜層をプラスチックフィルム上に形成した包装材料(蒸着フィルム)が提案されている(例えば、特許文献1、2参照。)。これらの蒸着フィルムは、透明性及び酸素、水蒸気等に対するガスバリア性を有していることが知られ、金属箔等を用いた包装材料では得ることのできない、透明性とガスバリア性を共に有する包装材料として広く用いられている。   Therefore, in order to overcome these drawbacks, there is a packaging material (deposited film) in which a deposited thin film layer of an inorganic oxide such as silicon oxide or aluminum oxide is formed on a plastic film by thin film forming means such as vacuum deposition or sputtering. It has been proposed (see, for example, Patent Documents 1 and 2). These vapor-deposited films are known to have transparency and gas barrier properties against oxygen, water vapor, etc., and cannot be obtained with packaging materials using metal foils, etc., and have both transparency and gas barrier properties. Is widely used.

しかしながら、このような包装材料においては、前処理を施していないプラスチックフィルム上に無機酸化物を蒸着した場合には、プラスチックフィルムと蒸着薄膜層との密着性が弱いため、ボイル殺菌やレトルト殺菌等の加熱殺菌やレトルト調理等により加熱処理がなされるとデラミネーションを引き起こすことがよくあった。また、密着性の低下により、ガスバリア性が劣化するという問題も抱えていた。   However, in such packaging materials, when an inorganic oxide is deposited on a plastic film that has not been pretreated, the adhesiveness between the plastic film and the deposited thin film layer is weak, so boil sterilization, retort sterilization, etc. When heat treatment is performed by heat sterilization or retort cooking, delamination is often caused. In addition, there is a problem that the gas barrier property is deteriorated due to a decrease in adhesion.

このような問題を解決するために、プラスチックフィルム表面に、薬品、火炎、プラズマ等を用いた前処理を行い、その上に形成される無機酸化物の蒸着薄膜層との密着性を改善し、密着性や後加工適性等を向上させようとする試みが種々なされている。
米国特許第3442686号明細書 特公昭63−28017号公報
In order to solve such problems, the plastic film surface is subjected to pretreatment using chemicals, flame, plasma, etc., and the adhesion with the deposited thin film layer of inorganic oxide formed thereon is improved. Various attempts have been made to improve adhesion and post-processing suitability.
U.S. Pat. No. 3,442,686 Japanese Patent Publication No.63-28017

本発明は上記のような状況に鑑みなされたものであり、ポリエチレンテレフタレートのフィルムやシート等からなるポリエチレンテレフタレート製基材と無機酸化物からなる蒸着薄膜層との密着性を向上させ、レトルト調理や加熱殺菌等の加熱処理が施されたとしてもデラミネーションが発生することのないガスバリア性積層体の提供を目的とする。   The present invention has been made in view of the above situation, and improves the adhesion between a polyethylene terephthalate substrate made of a polyethylene terephthalate film or sheet and a vapor-deposited thin film layer made of an inorganic oxide, It aims at providing the gas-barrier laminated body which does not generate | occur | produce a delamination even if heat processing, such as heat sterilization, are performed.

以上の課題を達成するためになされ、請求項1記載の発明は、ポリエチレンテレフタレート製基材上に少なくとも無機酸化物からなる蒸着薄膜層が積層されているガスバリア性積層体であって、無機酸化物からなる蒸着薄膜層が積層されている基材の少なくとも一方の表面には放電処理を利用した前処理により前処理部が形成されていると共に、X線光電子分光法により測定した当該処理部のC−C結合ピークとC−O結合ピークとのピーク間距離が1.65〜1.76eVであることを特徴とするガスバリア性積層体である。   In order to achieve the above-described problems, the invention according to claim 1 is a gas barrier laminate in which a vapor-deposited thin film layer made of at least an inorganic oxide is laminated on a polyethylene terephthalate substrate, the inorganic oxide At least one surface of the substrate on which the vapor-deposited thin film layer is laminated is formed with a pretreatment portion by a pretreatment utilizing a discharge treatment, and C of the treatment portion measured by X-ray photoelectron spectroscopy. The gas barrier laminate is characterized in that the peak-to-peak distance between the —C bond peak and the C—O bond peak is 1.65 to 1.76 eV.

また、請求項2記載の発明は、請求項1記載のガスバリア性積層体において、前記無機酸化物からなる蒸着薄膜層の層厚が10〜100nmの範囲にあることを特徴とする。   The invention described in claim 2 is characterized in that, in the gas barrier laminate according to claim 1, the thickness of the vapor-deposited thin film layer made of the inorganic oxide is in the range of 10 to 100 nm.

さらにまた、請求項3記載の発明は、請求項1または2に記載のガスバリア性積層体において、前記無機酸化物が、酸化アルミニウム、酸化珪素、酸化マグネシウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化タングステン或いはそれらの混合物のいずれかであることを特徴とする。   Furthermore, the invention according to claim 3 is the gas barrier laminate according to claim 1 or 2, wherein the inorganic oxide is aluminum oxide, silicon oxide, magnesium oxide, tin oxide, indium oxide, zinc oxide, oxidation It is characterized by being either tungsten or a mixture thereof.

さらにまた、請求項4記載の発明は、請求項1〜3のいずれかに記載のガスバリア性積層体において、前記前処理部が、放電処理を利用したプラズマ処理により形成されたものであることを特徴とする。   Furthermore, the invention according to claim 4 is the gas barrier laminate according to any one of claims 1 to 3, wherein the pretreatment part is formed by plasma treatment using discharge treatment. Features.

さらにまた、請求項5記載の発明は、請求項4記載のガスバリア性積層体において、前記前処理部が、アルゴン、窒素、酸素、水素のうちの1種のガス、またはこれらの混合ガスを用いた、1回もしくは連続する複数回のプラズマ処理により形成されたものであることを特徴とする。   Furthermore, the invention according to claim 5 is the gas barrier laminate according to claim 4, wherein the pretreatment section uses one kind of gas of argon, nitrogen, oxygen, hydrogen, or a mixed gas thereof. It is characterized by being formed by one or a plurality of continuous plasma treatments.

本発明によれば、レトルト調理や加熱殺菌処理等の加熱処理が施されたとしても良好な密着性を維持することができ、積層体が当初有していたガスバリア性が劣化することがない。   According to the present invention, even when heat treatment such as retort cooking or heat sterilization treatment is performed, good adhesion can be maintained, and the gas barrier properties that the laminate initially had do not deteriorate.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は本発明のガスバリア性積層体の概略の断面構成の一例を示す説明図である。図示のガスバリア性積層体は、ポリエチレンテレフタレート(PET)製基材1の上に無機酸化物からなる蒸着薄膜層2が積層されてなるものである。   FIG. 1 is an explanatory view showing an example of a schematic cross-sectional configuration of a gas barrier laminate of the present invention. The illustrated gas barrier laminate is obtained by laminating a vapor deposition thin film layer 2 made of an inorganic oxide on a polyethylene terephthalate (PET) substrate 1.

この基材1は、その表面に放電処理を利用した前処理により前処理部3が形成されていると共に、その表面状態が、X線光電子分光法による測定(XPS測定)で得られるCls波形のピーク分離解析によるC−C結合ピークとC−O結合ピークのピーク間距離が1.65〜1.76eVの範囲内にあるように設定されている。   The base material 1 has a pretreatment portion 3 formed on the surface by pretreatment utilizing discharge treatment, and the surface state of the Cls waveform obtained by measurement by X-ray photoelectron spectroscopy (XPS measurement). The distance between the C—C bond peak and the C—O bond peak by peak separation analysis is set to be in the range of 1.65 to 1.76 eV.

表面に放電処理等の前処理が施されていない、所謂未処理PETフィルムの表面は、X線光電子分光法による測定(XPS測定)で得られるCls波形に基づいてピーク分離解析を行うと、図2に示すように、C1s波形はC−C結合ピーク4、C−O結合ピーク5、COO結合ピーク6に分離される。   When the surface of a so-called untreated PET film that has not been subjected to pretreatment such as discharge treatment on the surface is subjected to peak separation analysis based on a Cls waveform obtained by measurement by X-ray photoelectron spectroscopy (XPS measurement), As shown in FIG. 2, the C1s waveform is separated into a C—C bond peak 4, a C—O bond peak 5, and a COO bond peak 6.

本発明者等は、このような表面状態を有する未処理PETフィルムの表面に放電処理を施し、その表面状態が、XPS測定で得られるCls波形のピーク分離解析によるC−C結合ピークとC−O結合ピークのピーク間距離が1.65〜1.76eVの範囲内にあるような前処理部3を形成しておくことにより、その上に積層する無機酸化物からなる蒸着
薄膜層2との密着を非常に強固なものとすることができ、たとえレトルト調理やレトルト殺菌、さらには加熱殺菌等の加熱処理が加わったとしても、その強力な密着性が劣化しないという知見を得た。
The inventors of the present invention performed discharge treatment on the surface of an untreated PET film having such a surface state, and the surface state was found to be a C—C bond peak and C— by peak separation analysis of a Cls waveform obtained by XPS measurement. By forming the pretreatment part 3 such that the peak-to-peak distance of the O bond peak is in the range of 1.65 to 1.76 eV, the vapor deposition thin film layer 2 made of an inorganic oxide laminated thereon is formed. It has been found that the adhesion can be made very strong, and even if heat treatment such as retort cooking, retort sterilization, and heat sterilization is added, the strong adhesion does not deteriorate.

すなわち、未処理PETフィルム表面のXPS測定で得られるC1s波形においては、一般的にPET分子に由来するC−C結合は285.0eV、C−O結合は286.6eV、COO結合は288.9eVの結合エネルギー値にピークが出る。これらのピークの中でC−C結合ピークとC−O結合ピークのピーク間距離(上記の場合は1.60)はPETフィルムの最表面の結晶性や分子量が変わることによりその値が変わる。そして、このピーク間距離が1.65eV未満あるいは1.76eVを超える表面状態を有するPETフィルム上に無機酸化物からなる蒸着薄膜層が積層されてなるガスバリア性積層体は、加熱処理が施されるとその界面の密着性が低下し剥離を起こし易くなり、処理前に有していたガスバリア性が劣化する。   That is, in the C1s waveform obtained by XPS measurement on the surface of the untreated PET film, generally, the C—C bond derived from the PET molecule is 285.0 eV, the C—O bond is 286.6 eV, and the COO bond is 288.9 eV. A peak appears in the binding energy value of. Among these peaks, the distance between peaks of the C—C bond peak and the C—O bond peak (in the above case, 1.60) varies depending on the crystallinity and molecular weight of the outermost surface of the PET film. The gas barrier laminate obtained by laminating a vapor-deposited thin film layer made of an inorganic oxide on a PET film having a surface state with a peak-to-peak distance of less than 1.65 eV or more than 1.76 eV is subjected to heat treatment. In addition, the adhesiveness at the interface is lowered and peeling is likely to occur, and the gas barrier property possessed before the treatment is deteriorated.

これに対して、PETフィルムの表面に放電処理を利用した前処理を施すことにより、その表面状態を、XPS測定に係るC1s波形のC−C結合ピークとC−O結合ピークのピーク間距離を1.65〜1.76eVとなるように設定すると、その上に積層される無機酸化物からなる蒸着薄膜層との密着性が強くなり、たとえ加熱処理が施されても剥離が非常に発生し難くなり、積層体が当初有していた高いガスバリア性を維持することが可能となる。   On the other hand, the surface condition of the surface of the PET film is determined by applying the pretreatment using the discharge treatment, and the distance between the C—C bond peak and the C—O bond peak of the C1s waveform related to the XPS measurement is determined. When it is set to be 1.65 to 1.76 eV, the adhesion with the deposited thin film layer made of an inorganic oxide is increased, and even if heat treatment is performed, peeling occurs very much. It becomes difficult, and it becomes possible to maintain the high gas barrier property originally possessed by the laminate.

基材1としては、PETフィルムやPETシート、さらには表面にPETからなる表面層が積層されてなるフィルム状の積層基材等を使用することができるが、熱寸法安定性及び耐熱性の点から二軸延伸されたPETフィルムを使用することが好ましい。   As the base material 1, a PET film, a PET sheet, and a film-like laminated base material in which a surface layer made of PET is laminated on the surface can be used. It is preferable to use a biaxially stretched PET film.

また、この基材1中には公知の添加剤、たとえば帯電防止剤、紫外線吸収剤、可塑剤、滑材等が適宜添加されていてもよいが、その表面状態は、上述したように、XPS測定に係るC1s波形のC−C結合ピークとC−O結合ピークのピーク間距離が1.65〜1.76eVである必要がある。   In addition, known additives such as antistatic agents, ultraviolet absorbers, plasticizers, lubricants and the like may be appropriately added to the substrate 1, but the surface state thereof is XPS as described above. The distance between the C—C bond peak and the C—O bond peak of the C1s waveform related to the measurement needs to be 1.65 to 1.76 eV.

基材1の厚さは特に制限を受けるものではなく、また包装材料としての適性を考慮して単層構成のものであっても、多層構成のものであってもよい。なお、包装材料としての用途を考慮して、プライマー層やガスバリア性皮膜層をさらに積層する場合の加工性等を考えると、実用的には3〜200μmの範囲の厚さのものが好ましい。より好ましくは、6〜30μmの厚さである。   The thickness of the substrate 1 is not particularly limited, and may be of a single layer structure or a multilayer structure in consideration of suitability as a packaging material. In consideration of the use as a packaging material, when considering the workability in the case of further laminating a primer layer and a gas barrier film layer, a material having a thickness in the range of 3 to 200 μm is preferable. More preferably, the thickness is 6 to 30 μm.

基材1の表面状態を、XPS測定に係るC−C結合ピークとC−O結合ピークのピーク間距離を1.65〜1.76eVとなるように設定するには、PETフィルム表面に放電処理を利用した前処理を施せばよい。この前処理を行うことで、発生したラジカルやイオンを利用してC−C結合ピークとC−O結合ピークのピーク間距離を所定の範囲内に制御し、基材1と無機酸化物からなる蒸着薄膜層2との密着性を強化させることができ、レトルト調理や加熱殺菌等の加熱処理が施されたとしても、蒸着着薄膜層におけるクラック発生や剥離の発生を阻止することが可能となり、ガスバリア性を維持することができるようになる。   In order to set the surface state of the substrate 1 so that the distance between the C—C bond peak and the C—O bond peak according to XPS measurement is 1.65 to 1.76 eV, the surface of the PET film is subjected to a discharge treatment. The pre-processing using can be performed. By performing this pretreatment, the distance between the peak of the C—C bond peak and the C—O bond peak is controlled within a predetermined range using the generated radicals and ions, and the substrate 1 and the inorganic oxide are formed. Adhesion with the vapor deposition thin film layer 2 can be strengthened, and even if heat treatment such as retort cooking or heat sterilization is performed, it becomes possible to prevent the occurrence of cracks and peeling in the vapor deposition thin film layer, The gas barrier property can be maintained.

前記した放電処理による前処理を行うためのガス種としては、アルゴン、酸素、窒素、水素を挙げることができる。これらのガスは単独で用いても、2種類以上組み合わせて用いてもよい。また、前処理を1基の放電処理機を用いて行うだけでなく、2基以上の処理機を用いて連続して行うようにしてもよい。この時の処理機は必ずしも同じものを使用する必要はない。   Examples of the gas species for performing the pretreatment by the above-described discharge treatment include argon, oxygen, nitrogen, and hydrogen. These gases may be used alone or in combination of two or more. Further, the pretreatment may be performed not only using one discharge processing machine but also continuously using two or more processing machines. It is not always necessary to use the same processing machine at this time.

次に無機酸化物からなる蒸着薄膜層2について、詳しく説明する。この無機酸化物からなる蒸着薄膜層2は、酸化アルミニウム、酸化珪素、酸化錫、酸化インジウム、酸化インジウム、酸化マグネシウム、酸化亜鉛、酸化タングステン、或いはそれらの混合物等の無機酸化物の蒸着膜層からなり、酸素、水蒸気等に対するガスバリア性を有する層である。より優れた加熱処理耐性の付与を考えるとこれらの中では、酸化アルミニウムや酸化珪素からなるものがより好ましい。   Next, the vapor deposition thin film layer 2 made of an inorganic oxide will be described in detail. The vapor-deposited thin film layer 2 made of an inorganic oxide is formed from a vapor-deposited film layer of an inorganic oxide such as aluminum oxide, silicon oxide, tin oxide, indium oxide, indium oxide, magnesium oxide, zinc oxide, tungsten oxide, or a mixture thereof. It is a layer having a gas barrier property against oxygen, water vapor and the like. Of these, those made of aluminum oxide or silicon oxide are more preferable in view of giving better heat treatment resistance.

蒸着薄膜層2の層厚は、一般的には5〜300nm程度の範囲にあることが望ましい。具体的な値は用途や積層体の層構成等に合わせて適宜選択され得る。ただし、層厚が5nm未満の場合は均一な薄膜層が得られ難くなり、ガスバリア材としての機能を十分に果たすことができない場合がある。また、層厚が300nmを超える場合は薄膜層に柔軟性を保持させることが難しくなり、成膜後に折り曲げられたり、引っ張られることにより、薄膜層に亀裂が生じる恐れがあるので好ましくない。10〜150nmの範囲内であればより好ましい。   In general, the thickness of the deposited thin film layer 2 is desirably in the range of about 5 to 300 nm. Specific values can be appropriately selected according to the use, the layer structure of the laminate, and the like. However, when the layer thickness is less than 5 nm, it is difficult to obtain a uniform thin film layer, and the function as a gas barrier material may not be sufficiently achieved. Further, when the layer thickness exceeds 300 nm, it is difficult to maintain flexibility in the thin film layer, and it is not preferable because the thin film layer may be cracked by being bent or pulled after film formation. More preferably, it is in the range of 10 to 150 nm.

この無機酸化物からなる蒸着薄膜層2を基材1上に形成する方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマ気相成長法(CVD)等の薄膜形成方法を用いることができる。ただし、生産性を考慮すれば、現時点では真空蒸着法が最も好ましい。真空蒸着法の加熱手段としては電子線加熱方式や抵抗加熱方式、誘導加熱方式のいずれかの方法を用いることが好ましいが、蒸着材料の選択性の幅広さを考慮すると電子線加熱方式を用いることが好ましい。また、蒸着薄膜層2と基材1との密着性及び蒸着薄膜層の緻密性を向上させるために、プラズマアシスト法やイオンビームアシスト法を用いて成膜することも可能である。また、蒸着薄膜の透明性を上げるために蒸着の際、酸素等の各種ガスなど吹き込む反応蒸着を用いても一向に構わない。   As a method of forming the vapor deposition thin film layer 2 made of the inorganic oxide on the substrate 1, a thin film formation method such as a vacuum vapor deposition method, a sputtering method, an ion plating method, or a plasma vapor deposition method (CVD) is used. Can do. However, in view of productivity, the vacuum deposition method is most preferable at present. As a heating means of the vacuum evaporation method, it is preferable to use any one of an electron beam heating method, a resistance heating method, and an induction heating method, but the electron beam heating method should be used in consideration of the wide range of selectivity of the evaporation material. Is preferred. Moreover, in order to improve the adhesiveness of the vapor deposition thin film layer 2 and the base material 1 and the denseness of the vapor deposition thin film layer, it is also possible to form a film using a plasma assist method or an ion beam assist method. Further, in order to increase the transparency of the deposited thin film, it is possible to use reactive deposition in which various gases such as oxygen are blown during the deposition.

以下に本発明のガスバリア性積層体の実施例を説明する。なお、本発明はこれらの実施例に限定されるものではない。   Examples of the gas barrier laminate of the present invention will be described below. The present invention is not limited to these examples.

厚さ12μmの両面未処理PETフィルムの片面に、プラズマ処理機を用いてプラズマ処理を利用した前処理を行い、前処理部を形成した。この時、電極には周波数13.56MHz高周波電源を用い、処理ガスには窒素と酸素の混合ガスを用いた。前処理部の表面状態は、XPS測定によるC−C結合ピークとC−O結合ピークのピーク間距離が1.69eVであった。このような表面状態を有する前処理部の上に、電子線加熱方式を用いた反応蒸着により、酸化アルミニウムからなる蒸着薄膜層を20nmの厚さで成膜して、実施例1に係る本発明のガスバリア性積層体を作製した。   A pretreatment using plasma treatment was performed on one surface of a double-side untreated PET film having a thickness of 12 μm using a plasma treatment machine to form a pretreatment portion. At this time, a high frequency power source with a frequency of 13.56 MHz was used for the electrodes, and a mixed gas of nitrogen and oxygen was used for the processing gas. As for the surface state of the pretreatment portion, the distance between peaks of the C—C bond peak and the C—O bond peak by XPS measurement was 1.69 eV. On the pretreatment part having such a surface state, a vapor deposition thin film layer made of aluminum oxide is formed to a thickness of 20 nm by reactive vapor deposition using an electron beam heating method, and the present invention according to Example 1 A gas barrier laminate was prepared.

なお、前処理部の表面状態の分析は以下のようにして行った。
[表面状態分析方法]
測定装置は日本電子株式会社製JPS−90MXVを用い、X線源としては非単色化MgKα(1253.6eV)を使用し、X線出力は100W(10kV−10mA)で測定した。C1s波形の波形分離解析はガウシアン関数とローレンツ関数の混合関数を使用し、帯電補正はベンゼン環に由来するC−C結合ピークを285.0eVとして補正した。
In addition, the analysis of the surface state of the pretreatment part was performed as follows.
[Surface condition analysis method]
The measuring apparatus used was JPS-90MXV manufactured by JEOL Ltd., non-monochromated MgKα (1253.6 eV) was used as the X-ray source, and the X-ray output was measured at 100 W (10 kV-10 mA). The waveform separation analysis of the C1s waveform used a mixed function of a Gaussian function and a Lorentz function, and the charge correction was performed by correcting the CC bond peak derived from the benzene ring as 285.0 eV.

処理ガスには水素ガスを用い、前処理して得られた基材の前処理部のXPS測定によるC−C結合ピークとC−O結合ピークのピーク間距離が1.68であった以外は 実施例1と同様の方法で、実施例2に係るガスバリア性積層体を作製した。   Hydrogen gas was used as the treatment gas, except that the distance between peaks of the C—C bond peak and the C—O bond peak by XPS measurement of the pretreatment portion of the base material obtained by pretreatment was 1.68. A gas barrier laminate according to Example 2 was produced in the same manner as in Example 1.

処理ガスには酸素ガスを用い、前処理して得られた基材の前処理部のXPS測定によるC−C結合ピークとC−O結合ピークのピーク間距離が1.67であった以外は 実施例1と同様の方法で、実施例3に係るガスバリア性積層体を作製した。   Oxygen gas was used as the treatment gas, except that the distance between peaks of the C—C bond peak and the C—O bond peak by XPS measurement of the pretreatment part of the base material obtained by pretreatment was 1.67. A gas barrier laminate according to Example 3 was produced in the same manner as in Example 1.

処理ガスには窒素ガスを用い、前処理して得られた基材の前処理部のXPS測定によるC−C結合ピークとC−O結合ピークのピーク間距離が1.72であった以外は 実施例1と同様の方法で、実施例4に係るガスバリア性積層体を作製した。   Nitrogen gas was used as the treatment gas, except that the distance between peaks of the C—C bond peak and the C—O bond peak by XPS measurement of the pretreatment part of the base material obtained by pretreatment was 1.72. A gas barrier laminate according to Example 4 was produced in the same manner as in Example 1.

処理ガスにはアルゴンを用い、前処理して得られた基材の前処理部のXPS測定によるC−C結合ピークとC−O結合ピークのピーク間距離が1.74であった以外は 実施例1と同様の方法で、実施例4に係るガスバリア性積層体を作製した。   Argon was used as the treatment gas, except that the distance between the peak of the C—C bond peak and the C—O bond peak by XPS measurement of the pretreatment part of the substrate obtained by pretreatment was 1.74. A gas barrier laminate according to Example 4 was produced in the same manner as in Example 1.

表面部分のXPS測定によるC−C結合ピークとC−O結合ピークのピーク間距離が1.60である未処理PETフィルムを使用した以外は実施例1と同様の方法で、比較のための実施例6に係るガスバリア性積層体を作製した。   Implementation for comparison in the same manner as in Example 1 except that an untreated PET film in which the distance between peaks of the C—C bond peak and the C—O bond peak by XPS measurement of the surface portion was 1.60 was used. A gas barrier laminate according to Example 6 was produced.

PETフィルムに対する前処理をコロナ処理装置を用いたコロナ処理で行い、その処理部分のXPS測定によるC−C結合ピークとC−O結合ピークのピーク間距離が1.64であった以外は実施例1と同様の方法で、比較のための実施例7に係るガスバリア性積層体を作製した。   Example in which pre-treatment for PET film was performed by corona treatment using a corona treatment apparatus, and the distance between peaks of the C—C bond peak and the C—O bond peak by XPS measurement of the treated portion was 1.64. 1 was used to produce a gas barrier laminate according to Example 7 for comparison.

処理ガスにアルゴンと酸素の混合ガスを用い、前処理して得られたPETフィルムのXPS測定によるC−C結合ピークとC−O結合ピークのピーク間距離が1.78であった以外は実施例1と同様の方法で、比較のための実施例8に係るガスバリア性積層体を作製した。   A mixed gas of argon and oxygen was used as the treatment gas, and the PET film obtained by pretreatment was carried out except that the distance between peaks of the C—C bond peak and the C—O bond peak by XPS measurement was 1.78. In the same manner as in Example 1, a gas barrier laminate according to Example 8 for comparison was produced.

次に、下記に組成を示すA液とB液を配合比(重量%)で6:4にて混合し、複合被膜形成用の溶液を作製した。
[A液]
テトラエトキシシラン10.4gに塩酸(0.1N)89.6gを加え、30分間攪拌し加水分解させた固形分3重量%(SiO2換算)の加水分解溶液。
[B液]
ポリビニルアルコールの3重量%水/イソプロピルアルコート溶液(水:イソロピルアルコール重量比で90:10)。
Next, the A liquid and B liquid which show a composition below were mixed by the compounding ratio (weight%) 6: 4, and the solution for composite film formation was produced.
[Liquid A]
A hydrolyzed solution having a solid content of 3% by weight (in terms of SiO 2 ) obtained by adding 89.6 g of hydrochloric acid (0.1N) to 10.4 g of tetraethoxysilane and stirring for 30 minutes for hydrolysis.
[Liquid B]
A 3% by weight water / isopropyl alcohol coat solution of polyvinyl alcohol (90:10 by weight of water: isopropyl alcohol).

続いて、この溶液の薄膜を上記実施例1〜8に係る各ガスバリア性積層体の蒸着薄膜層上にグラビアコート法により塗布し、しかる後に乾燥させ、厚さ0.4μmの複合被膜層を積層した。   Then, the thin film of this solution was apply | coated by the gravure coating method on the vapor deposition thin film layer of each gas-barrier laminated body which concerns on the said Examples 1-8, and it was made to dry after that, and a 0.4 micrometer-thick composite film layer was laminated | stacked did.

さらに二液硬化型ポリウレタン系接着剤を用いて、ドライラミネーションにより、上記工程で積層された複合被膜層上に、延伸ナイロン(15μm)/未延伸ポリプロピレン(70μm)を順次積層させ、積層サンプルを作製した。   Further, using a two-component curable polyurethane adhesive, stretched nylon (15 μm) / unstretched polypropylene (70 μm) are sequentially laminated on the composite coating layer laminated in the above process by dry lamination to produce a laminated sample. did.

そして、これらの積層サンプルに対して、下記の要領でラミネート強度測定とガスバリア測定を行い、評価をした。
[ラミネート強度測定]
オリエンテック社製テンシロン万能試験機RTC−1250を用いて測定した(JIS
Z1707準拠)。剥離角度は180度とした。ただし、測定の際に測定部位を水で湿潤させながら行った。結果を表1に示す。
And these laminated samples were evaluated by performing laminate strength measurement and gas barrier measurement in the following manner.
[Measurement of laminate strength]
Measured using a Tensilon universal testing machine RTC-1250 manufactured by Orientec (JIS
Z1707 conformity). The peeling angle was 180 degrees. However, the measurement was performed while the measurement site was wetted with water. The results are shown in Table 1.

[ガスバリア測定]
バスバリア性の指標として酸素透過度(cc/m2・day)と水蒸気透過度(g/m2・day)を測定した。測定はモコン法を用いて行い、その測定条件は、酸素透過率が30℃−70%RH、水蒸気透過率が40℃―90%RHとした。結果を表1に示す。
[Gas barrier measurement]
Oxygen permeability (cc / m 2 · day) and water vapor permeability (g / m 2 · day) were measured as indicators of bath barrier properties. The measurement was performed using the Mocon method. The measurement conditions were an oxygen transmission rate of 30 ° C.-70% RH and a water vapor transmission rate of 40 ° C.-90% RH. The results are shown in Table 1.

Figure 2008049576
表からも理解されるように、C−C結合ピークとC−O結合ピークのピーク間距離が1.70eVを超えるPETフィルムを用いたガスバリア性積層体は、ラミネート強度が低く、レトルト処理によりガスバリア性が劣化した。
Figure 2008049576
As understood from the table, the gas barrier laminate using the PET film in which the distance between the peak of the C—C bond peak and the C—O bond peak exceeds 1.70 eV has a low laminate strength. Deteriorated.

本発明のガスバリア性積層体の概略の断面構成を示す説明図である。It is explanatory drawing which shows the general | schematic cross-sectional structure of the gas-barrier laminated body of this invention. 未処理PETフィルム表面のXPS波形分離スペクトルである。It is an XPS waveform separation spectrum of an untreated PET film surface.

符号の説明Explanation of symbols

1・・・基材
2・・・無機酸化物からなる蒸着薄膜層
3・・・前処理部
4・・・C−C結合ピーク
5・・・C−O結合ピーク
6・・・COO結合ピーク
DESCRIPTION OF SYMBOLS 1 ... Base material 2 ... Evaporated thin film layer 3 which consists of inorganic oxides ... Pre-processing part 4 ... CC bond peak 5 ... CO bond peak 6 ... COO bond peak

Claims (5)

ポリエチレンテレフタレート製基材上に少なくとも無機酸化物からなる蒸着薄膜層が積層されているガスバリア性積層体であって、無機酸化物からなる蒸着薄膜層が積層されている基材の少なくとも一方の表面には放電処理を利用した前処理により前処理部が形成されていると共に、X線光電子分光法により測定した当該前処理部のC−C結合ピークとC−O結合ピークのピーク間距離が1.65〜1.76eVであることを特徴とするガスバリア性積層体。   A gas barrier laminate in which a vapor-deposited thin film layer made of at least an inorganic oxide is laminated on a polyethylene terephthalate substrate, on at least one surface of the substrate on which the vapor-deposited thin film layer made of an inorganic oxide is laminated Has a pretreatment portion formed by pretreatment utilizing discharge treatment, and the distance between peaks of the C—C bond peak and the C—O bond peak of the pretreatment portion measured by X-ray photoelectron spectroscopy is 1. A gas barrier laminate characterized by being 65 to 1.76 eV. 前記無機酸化物からなる蒸着薄膜層の層厚が10〜100nmの範囲にあることを特徴とする請求項1記載のガスバリア性積層体。   The gas barrier laminate according to claim 1, wherein the vapor-deposited thin film layer made of the inorganic oxide has a thickness in the range of 10 to 100 nm. 前記無機酸化物が、酸化アルミニウム、酸化珪素、酸化マグネシウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化タングステン或いはそれらの混合物のいずれかであることを特徴とする請求項1または2記載のガスバリア性積層体。   3. The gas barrier laminate according to claim 1, wherein the inorganic oxide is any one of aluminum oxide, silicon oxide, magnesium oxide, tin oxide, indium oxide, zinc oxide, tungsten oxide, or a mixture thereof. body. 前記前処理部が、放電処理を利用したプラズマ処理により形成されたものでであることを特徴とする請求項1〜3のいずれかに記載のガスバリア性積層体。   The gas barrier laminate according to any one of claims 1 to 3, wherein the pretreatment part is formed by plasma treatment using discharge treatment. 前記前処理部が、アルゴン、窒素、酸素、水素のうちの1種のガス、またはこれらの混合ガスを用いた、1回もしくは連続する複数回プラズマ処理により形成されたものであることを特徴とする請求項4記載のガスバリア性積層体。   The pretreatment unit is formed by one or a plurality of continuous plasma treatments using one kind of gas of argon, nitrogen, oxygen, hydrogen, or a mixed gas thereof. The gas barrier laminate according to claim 4.
JP2006227574A 2006-08-24 2006-08-24 Gas barrier laminate Pending JP2008049576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227574A JP2008049576A (en) 2006-08-24 2006-08-24 Gas barrier laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227574A JP2008049576A (en) 2006-08-24 2006-08-24 Gas barrier laminate

Publications (1)

Publication Number Publication Date
JP2008049576A true JP2008049576A (en) 2008-03-06

Family

ID=39234068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227574A Pending JP2008049576A (en) 2006-08-24 2006-08-24 Gas barrier laminate

Country Status (1)

Country Link
JP (1) JP2008049576A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101505A (en) * 2010-11-12 2012-05-31 Toppan Printing Co Ltd Transparent gas barrier laminate
JP2017094620A (en) * 2015-11-25 2017-06-01 大日本印刷株式会社 Moisture-proof sheet for housing material
JP2017206019A (en) * 2012-08-01 2017-11-24 東レ株式会社 Gas barrier film
US10385447B2 (en) 2014-09-08 2019-08-20 Sumitomo Chemical Company, Limited Laminated film and flexible electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212842A (en) * 1990-12-06 1992-08-04 Toppan Printing Co Ltd Deposited film
JPH11116702A (en) * 1997-10-21 1999-04-27 Toppan Printing Co Ltd Polyethylene terephthalate film for vapor deposition
JPH11262970A (en) * 1998-03-18 1999-09-28 Dainippon Printing Co Ltd Transparent barrier film and its production
WO2003009998A1 (en) * 2001-07-24 2003-02-06 Toppan Printing Co., Ltd. Deposition film
JP2004137419A (en) * 2002-10-21 2004-05-13 Toppan Printing Co Ltd Polyethylene terephthalate film and laminate
JP2006062115A (en) * 2004-08-25 2006-03-09 Toppan Printing Co Ltd Transparent barrier film for retort

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212842A (en) * 1990-12-06 1992-08-04 Toppan Printing Co Ltd Deposited film
JPH11116702A (en) * 1997-10-21 1999-04-27 Toppan Printing Co Ltd Polyethylene terephthalate film for vapor deposition
JPH11262970A (en) * 1998-03-18 1999-09-28 Dainippon Printing Co Ltd Transparent barrier film and its production
WO2003009998A1 (en) * 2001-07-24 2003-02-06 Toppan Printing Co., Ltd. Deposition film
JP2004137419A (en) * 2002-10-21 2004-05-13 Toppan Printing Co Ltd Polyethylene terephthalate film and laminate
JP2006062115A (en) * 2004-08-25 2006-03-09 Toppan Printing Co Ltd Transparent barrier film for retort

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101505A (en) * 2010-11-12 2012-05-31 Toppan Printing Co Ltd Transparent gas barrier laminate
JP2017206019A (en) * 2012-08-01 2017-11-24 東レ株式会社 Gas barrier film
US10385447B2 (en) 2014-09-08 2019-08-20 Sumitomo Chemical Company, Limited Laminated film and flexible electronic device
JP2017094620A (en) * 2015-11-25 2017-06-01 大日本印刷株式会社 Moisture-proof sheet for housing material

Similar Documents

Publication Publication Date Title
WO2008029733A1 (en) Multilayer body
JP2019111822A (en) Transparent vapor-deposited film
JP2010036350A (en) Gas-barrier laminate
WO2014157652A1 (en) Gas-barrier laminate and method for manufacturing gas-barrier laminate
JP2017177343A (en) Laminate film and method for manufacturing the same
Zhang et al. Recent progress on non-thermal plasma technology for high barrier layer fabrication
JP2006056092A (en) Strong adhesion vapor deposition film and packaging material for retort pouch using the film
JP2007196550A (en) Gas barrier film laminate resistant to heat treatment
JP2008049576A (en) Gas barrier laminate
JP4784040B2 (en) High performance barrier film
JP4784039B2 (en) Strong adhesion deposition film with antistatic performance
JP6907695B2 (en) Gas barrier film and its manufacturing method
JP4385835B2 (en) Strong adhesion vapor deposition film and retort packaging material using the same
WO2019031263A1 (en) Gas barrier laminate
JP4461737B2 (en) Retort packaging material
JP2012218206A (en) Manufacturing method of hydrothermally resistant gas barrier film, and the hydrothermally resistant gas barrier film
JP2016087814A (en) Gas barrier laminate and manufacturing method therefor
JP4734897B2 (en) Retort laminate
JP4978066B2 (en) Method for evaluating manufacturing conditions of gas barrier film laminate
JP2006224427A (en) Laminate for retort
JP2004137419A (en) Polyethylene terephthalate film and laminate
JP2005059537A (en) Gas-barrier film and its production method
JP5034258B2 (en) Transparent deposited film and method for producing the same
JP2006062115A (en) Transparent barrier film for retort
JP2008023898A (en) Deposition film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A521 Written amendment

Effective date: 20100726

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Effective date: 20110628

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327